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Abstract
An ancient optics problem of Ptolemy, studied later by Alhazen, is discussed. This
problemdealswith reflection of light in sphericalmirrors.Mathematically, this reduces
to the solution of a quartic equation, which we solve and analyze using a symbolic
computation software. Similar problems have been recently studied in connectionwith
ray-tracing, catadioptric optics, scattering of electromagneticwaves, andmathematical
billiards, but we were led to this problem in our study of the so-called triangular ratio
metric.

Keywords Triangular ratio metric · Ptolemy–Alhazen problem · Reflection of light
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1 Introduction

The Greek mathematician Ptolemy (ca. 100–170) formulated a problem concerning
reflection of light at a spherical mirror surface: Given a light source and a spherical
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136 M. Fujimura et al.

mirror, find the point on the mirror where the light will be reflected to the eye of an
observer.

Alhazen (ca. 965–1040) was a scientist who lived in Iraq, Spain, and Egypt and
extensively studied several branches of science. For instance, he wrote seven books
about optics and studied, e.g., Ptolemy’s problem as well as many other problems of
optics and is considered to be one of the greatest researchers of optics before Kepler
[2]. Often the above problem is known as Alhazen’s problem [10, p. 1010]. At the end
of this introduction, wewill point out various applications and earlier results connected
with the Ptolemy–Alhazen problem.

We will consider the two-dimensional version of the problem and present an alge-
braic solution for it. The solution reduces to a quartic equation which we solve with
symbolic computation software.

Let D be the unit disk {z ∈ C : |z| < 1}, and suppose that the circumference
∂D = {z ∈ C : |z| = 1} is a reflecting curve. This two-dimensional problem reads:
Given two points z1, z2 ∈ D , find u ∈ ∂D such that

�(z1, u, 0) = �(0, u, z2). (1.1)

Here, �(z, u, w) denotes the radian measure in (−π, π ] of the oriented angle with
initial side [u, z] and final side [u, w]. This equality condition for the angles says that
the angles of incidence and reflection are equal, a light ray from z1 to u is reflected
at u and goes through the point z2. Recall that, according to Fermat’s principle, light
travels between two points along a path of extremal time, as compared to other nearby
paths. One proves that u = eit0 , t0 ∈ R satisfies (1.1) if and only if t0 is a critical
point of the function t �→ ∣

∣z1 − eit
∣
∣ + ∣

∣z2 − eit
∣
∣, t ∈ R. In particular, condition (1.1)

is satisfied by the extremum points (a minimum point and a maximum point, at least)
of the function u �→ |z1 − u| + |z2 − u|, u ∈ ∂D .

We call this the interior problem—there is a natural counterpart of this problem
for the case when both points are in the exterior of the closed unit disk, called the
exterior problem. Indeed, this exterior problem corresponds to Ptolemy’s questions
about light source, spherical mirror, and observer. As we will see below, the interior
problem is equivalent to finding the maximal ellipse with foci at z1, z2 contained in
the unit disk, and the point of reflection u ∈ ∂D is the tangent point of the ellipse with
the circumference. Algebraically, this leads to the solution of a quartic equation as we
will see below.

Wemet this problem in a different context, in the study of the triangular ratio metric
sG of a given domain G ⊂ R

2 defined as follows for z1, z2 ∈ G [6,12]

sG(z1, z2) = sup
z∈∂G

|z1 − z2|
|z1 − z| + |z − z2| . (1.2)

By compactness, this supremum is attained at some point z0 ∈ ∂G. If G is convex,
it is simple to see that z0 is the point of contact of the boundary with an ellipse, with
foci z1, z2, contained in G. Now for the case G = D and z1, z2 ∈ D, if the extremal
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The Ptolemy–Alhazen Problem... 137

point is z0 ∈ ∂D, the connection between the triangular ratio distance

sD(z1, z2) = |z1 − z2|
|z1 − z0| + |z2 − z0|

and the Ptolemy–Alhazen interior problem is clear: u=z0 satisfies (1.1). Note that (1.1)
is just a reformulation of a basic property of the ellipse with foci z1, z2 : the normal to
the ellipse (which in this case is the radius of the unit circle terminating at the point u)
bisects the angle formed by segments joining the foci z1, z2 with the point u. During
the past decade, the sG metric has been studied in several papers e.g. by P. Hästö
[13,14]; the interested reader is referred to [12] and the references there.

We study the Ptolemy–Alhazen interior problem and in our main result, Theo-
rem 1.1, we give an equation of degree four that yields the reflection point on the unit
circle. Standard symbolic computation software can then be used to find this point
numerically. We also study the Ptolemy–Alhazen exterior problem.

Theorem 1.1 The point u in (1.1) is given as a solution of the equation

z1z2u
4 − (z1 + z2)u

3 + (z1 + z2)u − z1z2 = 0. (1.3)

It should be noted that the Eq. (1.3) may have roots in the complex plane that are
not on the unit circle, and of the roots on the unit circle, we must choose one root u ,

that minimizes the sum |z1 − u| + |z2 − u| . We call this root the minimizing root of
(1.3).

Corollary 1.2 For z1, z2 ∈ D we have

sD(z1, z2) = |z1 − z2|
|z1 − u| + |z2 − u|

where u ∈ ∂D is the minimizing root of (1.3).

As we will see below, the minimizing root need not be unique.
We have used Risa/Asir symbolic computation software [20] in the proofs of our

results. We give a short Mathematica code for the computation of sD(z1, z2) .

Theorem 1.1 is applicable not merely to light signals but whenever the angles of
incidence and reflection of a wave or signal are equal, for instance, in the case of
electromagnetic signals like radar signals or acoustic waves. H. Bach [4] has made
numerical studies of Alhazen’s ray-tracing problem related to circles and ellipses.
A.R. Miller and E. Vegh [18] have studied the exterior Ptolemy–Alhazen problem
and computed the grazing angle of specular reflection (the complement of the equal
angles of incidence and of reflection) using a quartic equation, which is not the same
as (1.3). They did not consider the problem of finding the point of incidence in the
case of specular reflection, which is solved through Eq. (1.3).

Mathematical theory of billiards also leads to similar studies: see for instance the
paper by M. Drexler and M.J. Gander [9]. The Ptolemy–Alhazen problem also occurs
in computer graphics and catadioptric optics [1]. The well-known lithograph of M. C.
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138 M. Fujimura et al.

Escher named “Hand with reflecting sphere” demonstrates nicely the idea of reflection
from a spherical mirror.

2 Algebraic solution to the Ptolemy–Alhazen problem

In this section, we prove Theorem 1.1 and give an algorithm for computing sD(z1, z2)
for z1, z2 ∈ D.

Problem 2.1 For z1, z2 ∈ D, find the point u ∈ ∂D such that the sum |z1−u|+|z2−u|
is minimal.

The point u is given as the point of tangency of an ellipse |z − z1| + |z − z2| = r
with the unit circle.

Remark 2.2 For z1, z2 ∈ D, if u ∈ ∂D is the point of tangency of an ellipse |z − z1| +
|z − z2| = r and the unit circle, then r is given by

r = |2 − uz1 − uz2|.

In fact, from the “reflective property” �(z1, u, 0) = �(0, u, z2) of an ellipse, the
following holds

arg
u

u − z1
= arg

u − z2
u

= − arg
u − z2

u
, (2.1)

and
arg(u(u − z1)) = arg(u(u − z2)). (2.2)

Since the point u is on the ellipse |z − z1| + |z − z2| = r and satisfies uu = 1, we
have

r = |u − z1| + |u − z2| = |u(u − z1)| + |u(u − z2)|
= |u(u − z1) + u(u − z2)| = |2 − uz1 − uz2|.

2.1 Proof of Theorem 1.1

From the Eq. (2.1), we have

arg
(u − z1

u
· u − z2

u

)

= 0.

This implies
(u − z1)(u − z2)

u2
is real and its complex conjugate is also real. Hence,

(u − z1)(u − z2)

u2
= (u − z1)(u − z2)

u2

holds. Since u satisfies uu = 1, we have the assertion. ��
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The Ptolemy–Alhazen Problem... 139

Remark 2.3 The solution of (1.3) includes all the tangent points of the ellipse |z −
z1|+|z− z2| = |2−uz1−uz2| and the unit circle. (See Figs. 1, 2). Figure 2 displays a
situationwhere all the roots of the quartic equation have unit modulus. However, this is
not always the case for theEq. (1.3). E.g., if z1 = 0.5+(0.1·k)i, k = 1, .., 5, z2 = 0.5,
the Eq. (1.3) has two roots of modulus equal to 1 and two roots off the unit circle, see
Fig. 3. Miller and Vegh [18] computed the grazing angle of specular reflection using
a quartic self-inversive polynomial equation, which is not the same as (1.3). Note that
all the roots of their equation have modulus equal to one. They have also studied the
Ptolemy–Alhazen problem using a quartic equation, that is different from our equation
and, moreover, all the roots of their equation have modulus equal to one Fig. 3.

We say that a polynomial P(z) is self-inversive if P(1/u) = 0 whenever u �= 0 and
P(u) = 0 . It is easily seen that the quartic polynomial in (1.3) is self-inversive. Note
that the points u and 1/u are obtained from each other by the inversion transformation
w �→ 1/w .

It is clear from the compactness of the unit circle, that the function |z1−z|+|z2−z|
attains its maximum and minimum on the unit circle. However, as a property of the
Eq. (1.3) itself, the following results can also be derived.

Lemma 2.4 The Eq. (1.3) always has at least two roots of modulus equal to 1.

Proof Consider first the case, when z1z2 = 0 . In this case, the Eq. (1.3) has two roots
u, |u| = 1, with u2 = z1/z1 ∈ ∂D if z2 = 0, z1 �= 0 . (The case z1 = z2 = 0 is
trivial.) Suppose that the equation has no root on the unit circle ∂D .

By the invariance property pointed out above, if u0 ∈ C \ ({0} ∪ ∂D) is a root of
(1.3), then 1/u0 also is a root of (1.3). Hence, the number of roots off the unit circle is
even and the number of roots on the unit circle must also be even. We will now show
that this even number is either 2 or 4.

Let a, b, α, β ∈ R, 0 < a < 1, 0 < b < 1 , and let

aeiα,
1

a
eiα, beiβ,

1

b
eiβ

Fig. 1 Light reflection on a
circular arc: The angles of
incidence and reflection are
equal. Ptolemy–Alhazen interior
problem: Given z1 and z2, find
u. The maximal ellipse
contained in the unit disk with
foci z1 and z2 meets the unit
circle at u
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140 M. Fujimura et al.

Fig. 2 This figure indicates the four solutions of (1.3) (dots on the unit circle) and the ellipse that corresponds
to each u, for z1 = 0.5 + 0.5i, z2 = −0.8i . The figure on the lower right shows the point u that gives the
minimum

be the four roots of the Eq. (1.3). Then, the equation

z1z2(u − aeiα)

(

u − 1

a
eiα

)

(u − beiβ)

(

u − 1

b
eiβ

)

= 0 (2.3)

coincides with (1.3). Therefore, the coefficient of degree two of (2.3) vanishes, and
we have

ei2α + ei2β = −
(

a + 1

a

)(

b + 1

b

)

ei(α+β). (2.4)

The absolute value of the left hand side of (2.4) satisfies

|ei2α + ei2β | ≤ 2. (2.5)
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Fig. 3 For z1 = 0.5+ 0.5i and z2 = 0.5, there are only two solutions of (1.3) on the unit circle. The figure
on the lower right shows the point u that gives the minimum

On the other hand, the absolute value of the right hand side of (2.4) satisfies

∣
∣
∣
∣

(

a + 1

a

)(

b + 1

b

)

ei2(α+β)

∣
∣
∣
∣
=

∣
∣
∣
∣
a + 1

a

∣
∣
∣
∣

∣
∣
∣
∣
b + 1

b

∣
∣
∣
∣
> 4, (2.6)

because the function f (x) = x + 1
x is monotonically decreasing on 0 < x ≤ 1 and

f (1) = 2. The inequalities (2.5) and (2.6) imply that the equality (2.4) never holds.
Hence (1.3) has roots of modulus equals to 1. ��

Remark 2.5 Weconsider here several special cases of the Eq. (1.3) and for some special
cases, we give the corresponding formula for the sD metric which readily follows from
Corollary 1.2.
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142 M. Fujimura et al.

Case 1. z1 �= 0 = z2 (cubic equation). The Eq. (1.3) is now (−z1) u3 + z1u = 0
and has the roots u1 = 0, u2,3 = ± z1|z1| and for z ∈ D

sD(0, z) = |z|
2 − |z| .

Case 2. z1 + z2 = 0, z1 �= 0. The Eq. (1.3) reduces now to:

(

−z1
2
)

u4 + z21 = 0 ⇔ u4 =
(
z1
z1

)2

⇔ u4 =
(

z1
|z1|

)4

.

The roots are: u1,2 = ± z1|z1| , u3,4 = ±i z1|z1| (four distinct roots of modulus
1) and for z ∈ D

sD(z,−z) = |z| .
Case 3. z1 = z2 �= 0 . Clearly sD(z, z) = 0 . Denote z := z1 = z2. The Eq. (1.3)

reduces now to:

z2u4 − 2zu3 + 2zu − z2 = (zu2 − z)(zu2 − 2u + z) = 0 .

Then, we see that u1,2 = ± z
|z| are roots. The other roots are:

1) If |z| < 1, then u3,4 = 1
z

(

1 ±
√

1 − |z|2
)

(with |u3| > 1, |u4| < 1)

2) If |z| > 1, then u3,4 = 1
z

(

1 ± i
√

|z|2 − 1
)

(with |u3| = |u4| = 1).

Case 4. |z1| = |z2| �= 0 .

Denote ρ = |z1| = |z2|. Using a rotation around the origin and a change of
orientation, we may assume that arg z2 = − arg z1 =: α, where 0 ≤ α ≤ π

2 .
The Eq. (1.3) reads now: ρ2u4 − 2ρ (cosα) u3 + 2ρ (cosα) u − ρ2 = 0

ρ2u4 − 2ρ (cosα) u3 + 2ρ (cosα) u − ρ2 = ρ2
(

u2 − 1
) (

u2 − 2 cosα

ρ
u + 1

)

The roots are: u1,2 = ±1 and

1) If 0 < ρ < cosα, then u3,4 = cosα
ρ

±
√

(
cosα

ρ

)2 − 1 (here |u3| > 1, |u4| < 1)

2) If ρ ≥ cosα, then u3,4 = cosα
ρ

± i

√

1 −
(
cosα

ρ

)2
(here |u3| = |u4| = 1).

Note that Case 4 includes Cases 2 and 3 (for α = π
2 , respectively, α = 0).

Case 5. z1 = t z2 (t ∈ R, z2 �= 0). This case is generalization of cases z1 = 0 �= z2,
z1 + z2 = 0, z1 �= 0 and z1 = z2 �= 0.
Denote P (u) = z1z2u4 − (z1 + z2) u3 + (z1 + z2) u − z1z2.
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The Ptolemy–Alhazen Problem... 143

Denoting z2 = z we have:

P(u) = t z2u4 − (1 + t) zu3 + (1 + t) zu − t z2

= t z2
(

u4 − z4

|z|4
)

− (1 + t) zu

(

u2 − z2

|z|2
)

.

P(u) = z

(

u − z

|z|
)(

u + z

|z|
)(

t zu2 − (1 + t) u + t z
)

For t = 0 the roots of P are 0,± z
|z| .

Let t �= 0. Besides ± z
|z| there are two roots, which have modulus 1 if and

only if |z| ≥ ∣
∣ 1+t
2t

∣
∣.

2.2 Exterior Problem

Given z1, z2 ∈ C \ D, find the point u ∈ ∂D such that the sum |z1 − u| + |z2 − u| is
minimal.

Lemma 2.6 If the segment [z1, z2] does not intersect with ∂D, the point u is given as
a solution of the equation

z1z2u
4 − (z1 + z2)u

3 + (z1 + z2)u − z1z2 = 0.

Remark 2.7 The above equation coincideswith the Eq. (1.3) for the “interior problem”,
since Theorem 1.1 could be proved without using the assumption z1, z2 ∈ D.

Remark 2.8 The equation of the line joining two points z1 and z2 is given by

z1 − z

z2 − z
= z1 − z

z2 − z
. (2.7)

Then, the distance from the origin to this line is

|z1z2 − z1z2|
2|z1 − z2| .

Therefore, if two points z1, z2 satisfy
|z1z2 − z1z2|
2|z1 − z2| ≤ 1, the line (2.7) intersects with

the unit circle, and the triangular ratio metric s
C\D(z1, z2) = 1.

Lemma 2.9 The boundary of Bs(z, t) = {w ∈ D : sD(z, w) < t} is included in an
algebraic curve.

Proof Without loss of generality, we may assume that the center point z =: c is on the
positive real axis. Then,
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144 M. Fujimura et al.

sD(c, w) = sup
ζ∈∂D

|c − w|
|c − ζ | + |ζ − w|

= |c − w|
|2 − uc − uw| (from Remark 2.2), (2.8)

where u is a minimizing root of the equation

Uc(w) = cwu4 − (c + w)u3 + (c + w)u − cw = 0. (2.9)

Moreover, Bs(0, t) = {|w| < 2t
1+t } (resp. Bs(c, 0) = {c}) holds for c = 0 (resp.

t = 0), and Bs(c, t) = {0} holds if and only if c = 0 and t = 0. Therefore, we may
assume that c �= 0, t �= 0 and w �≡ 0.

Now, consider the following system of equations sD(c, w) = t andUc(w) = 0, i.e,

Sc,t (w) = t2|2 − uc − uw|2 − |c − w|2 = 0 and Uc(w) = 0. (2.10)

The above two equations have a common root if and only if both of the polynomials
Sc,t (w) and Uc(w) have non-zero leading coefficient with respect to u variable and
the resultant satisfies resultantu(Sc,t ,Uc) = 0. Using the “resultant” command of the
Risa/Asir software, we have

resultantu(Sc,t ,Uc) = cww · Bc,t (w),

where

Bc,t (w)

= (wc − 1)(wc − 1)
(

(c2 + ww − 2)2 − 4(wc − 1)(wc − 1)
)2
t8

− (c − w)(c − w)
(

4wwc8 − 3(w + w)c7 − 2(2w2w2 + 2ww − 1)c6

− (w + w)(13ww + 2)c5 − 2(2w3w3 − (36w2 + 10)w2 − 27ww

− 10w2 − 4)c4 − (w + w)(13w2w2 + 92ww + 32)c3

+ 2(ww(2w3w3 − 2w2w2 + 27ww + 48) + 2(5ww + 2)(w2 + w2))c2

− ww(w + w)(3w2w2 + 2ww + 32)c + 2w2w2(ww + 4)
)

t6

+ (c − w)2(c − w)2
(

6wwc6 − 3(w + w)c5 + (4w2w2 + 16ww + 1)c4

− 2(w + w)(13ww + 5)c3 + (6w3w3 + (16w2 + 1)w2 + 52ww + w2)c2

− ww(w + w)(3ww + 10)c + w2w2)t4

− c(c − w)3(c − w)3
(

4wwc(c2 + ww + 3) − (c2 + ww)(w + w)
)

t2

+ c2ww(c − w)4(c − w)4 .

Moreover, we can check that

Bc,0(w) = |w|2c2|c − w|8
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and

B0,t (w) = |w|4t4((t − 1)2|w|2 − 4t2
)(

(t + 1)2|w|2 − 4t2
)

.

Hence, the boundary of Bs(c, t) is included in the algebraic curve defined by the
equation Bc,t (w) = 0. ��

Remark 2.10 The algebraic curve {w : B(w) = 0} does not coincidewith the boundary
∂Bs(c, t). There is an “extra” part of the curve since the Eq. (2.9) contains extraneous
solutions.

The analytic formula in Corollary 1.2 for the triangular ratio metric sD(z1, z2) is
not very practical. Therefore, we next give an algorithm based on Theorem 1.1 for
the evaluation of the numerical values.

Algorithm. We next give a Mathematica algorithm for computing sD(x, y) for given
points x, y ∈ D. Figure 4 was drawn with the help of this algorithm.

sD[x_, y_] := Module[{u, sol, mySol, tmp = 2*Sqrt[2]},
sol = Solve[ Conjugate[ x*y] uˆ4 - Conjugate[x + y] uˆ3 +

(x + y) u - x*y == 0, {u}];
mySol = u /. sol;
Do[If[Abs[Abs[mySol[[i]] ] - 1] < 10ˆ(-12),

tmp = Min[tmp,
Abs[mySol[[i]] - x] + Abs[mySol[[i]] - y]]],

{i, 1, Length[mySol]}];
Abs[x - y]/tmp] ;

One can also use numerical methods to compute sD , see [6].

Fig. 4 Level sets
{x + iy : sD(0.3, x + iy) = t}
for t = 0.1, 0.2, 0.3, 0.4, 0.6
and the unit circle. By
Lemma 2.9, these level sets are
contained in an algebraic curve.
These level sets are drawn with
the help of the Mathematica
algorithm below

0.1 0.20.3

0.4

0.6
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3 Geometric Approach to the Ptolemy–Alhazen Problem

In this section, the unimodular roots of Eq. (1.3) are characterized as points of intersec-
tion of a conic section and the unit circle, then n such roots are studied, where n = 4
in the case of the exterior problem and n = 2 in the case of the interior problem. We
describe the construction of the conic section mentioned above. Except in the cases
where 0, z1, z2 are collinear or |z1| = |z2| , the construction cannot be carried out as
ruler-and-compass construction.Neumann [19] proved thatAlhazen’s interior problem
for points z1, z2 is solvable by ruler and compass only for (Rez1, Imz1,Rez2, Imz2)
belonging to a null subset of R4, in the sense of Lebesgue measure.

We characterize algebraically condition (1.1) without assuming that z1, z2 ∈ D, or
z1, z2 ∈ C \ D, or u ∈ ∂D.

Lemma 3.1 Let z1, z2 ∈ C and u ∈ C
∗\ {zk : k = 1, 2}. The following are equivalent:

(i) �(z1, u, 0) = �(0, u, z2).
(ii) u2

(u−z1)(u−z2)
= u2

(u−z1)(u−z2)
and u2

(u−z1)(u−z2)
+ u2

(u−z1)(u−z2)
> 0;

(iii)
z1z2u

2 − (z1 + z2) uu
2 + (z1 + z2) u

2u − z1z2u
2 = 0 (3.1)

and

z1z2u
2 − (z1 + z2) uu

2 − (z1 + z2) u
2u + z1z2u

2 + 2u2u2 > 0. (3.2)

Proof Let u ∈ C
∗\ {zk : k = 1, 2}. Clearly, �(z1, u, 0) = arg u

u−z1
and �(0, u, z2) =

arg u−z2
u . Denoting v := u

u−z1
: u−z2

u , we see that �(z1, u, 0) = �(0, u, z2) if and
only if v satisfies both v = v and v + v > 0, i.e. if and only if (ii) holds.

We have v = v (respectively, v + v > 0) if and only if (3.1) (respectively, (3.2))
holds, therefore (ii) and (iii) are equivalent.

In the special case z1 = z2 = 0 (z1 = z2 �= 0) (i), (ii) and (iii) are satisfiedwhenever
u ∈ C

∗ (respectively, if and only if u = λz1 for some real number λ �= 0, 1). ��
Remark 3.2 Let u ∈ C

∗\ {zk : k = 1, 2} . If

u2

(u − z1) (u − z2)
= u2

(u − z1) (u − z2)
and

u2

(u − z1) (u − z2)

+ u2

(u − z1) (u − z2)
< 0,

then |�(z1, u, 0) − �(0, u, z2)| = π . The converse also holds.
Consider the interior problem, with z1, z2 ∈ D and u ∈ ∂D. The unit circle is

exterior to the circles of diameters [0, z1], [0, z2]. An elementary geometric argu-
ment shows that −π

2 < �(z1, u, 0) < π
2 and −π

2 < �(0, u, z2) < π
2 , therefore|�(z1, u, 0) − �(0, u, z2)| �= π . In this case (3.1) implies �(z1, u, 0) = �(0, u, z2).

The Eq. (3.1) defines a curve passing through 0, z1 and z2, that is a cubic if z1+z2 �=
0, respectively, a conic section if z1 + z2 = 0 with z1, z2 ∈ C

∗. Then, under the
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Fig. 5 The exterior problem.
Intersection of the conic (3.3)
with the unit circle

inversion with respect to the unit circle, the image of the curve given by (3.1) has the
equation

z1z2u
2 − (z1 + z2) u + (z1 + z2) u − z1z2u

2 = 0. (3.3)

This is a conic section, that degenerates to a line if z1z2 = 0 with z1, z2 not both zero.
The points of intersection of the unit circle with the conic section (3.3) are shown in
Fig. 5.

Remark 3.3 If u ∈ ∂D, then (3.1) (respectively, (3.3)) holds if and only if

z1z2u
2 − (z1 + z2) u + (z1 + z2)

1

u
− z1z2

1

u2
= 0.

The Eqs. (3.3), (3.1) and (1.3) have the same unimodular roots.

Lemma 3.4 Let z1, z2 ∈ C
∗. The conic section 	 given by (3.3) has the center c =

1
2

(
1
z1

+ 1
z2

)

and it passes through 0, 1
z1
, 1
z2
, 1
z1

+ 1
z2
. If |z1| = |z2| or |arg z1 − arg z2| ∈

{0, π}, then 	 consists of the parallels d1, d2 through c to the bisectors (interior,
respectively, exterior) of the angle �(z1, 0, z2). In the other cases, 	 is an equilateral
hyperbola having the asymptotes d1 and d2.

Proof The Eq. (3.3) is equivalent to

Im

(

z1z2u

(
1

z1
+ 1

z2
− u

))

= 0. (3.4)

The curve 	 passes through the points 0 and 2c = 1
z1

+ 1
z2
. If u satisfies (3.4), then

2c − u also satisfies (3.4); therefore, 	 has the center c. Since z1 and z2 are on the
cubic curve given by (3.1), 	 passes through 1

z1
and 1

z2
. The conic section 	 is a pair

of lines if and only if 	 passes through its center. For u = 1
2

(
1
z1

+ 1
z2

)

we have

Im

(

z1z2u

(
1

z1
+ 1

z2
− u

))

= 1

4
Im

(
z1
z2

+ z2
z1

)

,
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therefore 	 is a pair of lines if and only if z1
z2

+ z2
z1

∈ R. The following conditions are
equivalent:

(1) z1
z2

+ z2
z1

∈ R;

(2) z2
z1

∈ R or
∣
∣
∣
z2
z1

∣
∣
∣ = 1;

(3) |arg z1 − arg z2| ∈ {0, π} or |z1| = |z2|.
Denote u = x+ iy. Using a rotation around the origin and a reflection we may assume
that arg z2 = − arg z1 =: α, where 0 ≤ α ≤ π

2 . In this case, the equation of 	 is
(

x − |z1| + |z2|
2 |z1z2| cosα

) (

y − |z2| − |z1|
2 |z1z2| sin α

)

= |z2|2 − |z1|2
8 |z1z2|2

sin 2α . (3.5)

The Eq. (3.5) shows that 	 is the pair of lines d1, d2 if |z1| = |z2| or sin 2α = 0;
otherwise, 	 is an equilateral hyperbola having the asymptotes d1 and d2. ��
Lemma 3.5 (Sylvester’s theorem) In any triangle with vertices z1, z2, z3, the ortho-
center zH and the circumcenter zC satisfy the identity zH + 2zC = z1 + z2 + z3.

Proof Let zG be the centroid of the triangle. It is well known that zG = z1+z2+z3
3 .

By Euler’s straightline theorem, zH − zG = 2(zG − zC ). Then zH + 2zC = 3zG =
z1 + z2 + z3. ��
Lemma 3.6 Let z1, z2 ∈ C

∗. The orthocenter of the triangle with vertices 0, 1
z1
, 1
z2

belongs to the conic section given by Eq. (3.3).

Proof Consider a triangle with vertices z1, z2, z3 and denote by zH and zC the
orthocenter and the circumcenter, respectively. By Sylvester’s theorem, Lemma 3.5,
zH = z1 + z2 + z3 − 2zC .

But

zC = det

⎛

⎝

1 1 1
z1 z2 z3

|z1|2 |z2|2 |z3|2

⎞

⎠ : det
⎛

⎝

1 1 1
z1 z2 z3
z1 z2 z3

⎞

⎠ .

If z3 = 0, then zC = z1z2(z2−z1)
z1z2−z1z2

, hence

zH = (z1 − z2) (z1z2 + z1z2)

z1z2 − z1z2
.

Let h be the orthocenter of the triangle with vertices 0, 1
z1
, 1z2 . The above formula

implies

h = z2 − z1
z1z2

z1z2 + z1z2
z1z2 − z1z2

. (3.6)

Let f (u) := z1z2u2 − (z1 + z2) u + (z1 + z2) u − z1z2u2. Then f (u) = 2iIm
(

z1z2u2 − (z1 + z2) u
)

. Since z1z2h − (z1 + z2) = 2z1z2(z2−z1)
z1z2−z1z2

, it follows that

z1z2h
2 − (z1 + z2) h = −16 |z2 − z1|2

|z1z2 − z1z2|4
Re (z1z2) Im

2 (z1z2)

is a real number, hence f (h) = 0. ��
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Let z1, z2 ∈ C
∗ be such that |z1| �= |z2| and |arg z1 − arg z2| /∈ {0, π}. Let h be

given by (3.6). Note that h −
(

1
z1

+ 1
z2

)

= 2(z2−z1)
z1z2−z1z2

�= 0. If h /∈
{

0, 1
z1

, 1
z2

}

then the

hyperbola 	 passing through the five points 0, 1
z1

, 1
z2

, 1
z1

+ 1
z2
, h can be constructed

using a mathematical software.

In the cases where h ∈
{

0, 1
z1

, 1
z2

}

, we choose a vertex of the hyperbola 	 as the

fifth point needed to construct 	 . The vertices of the equilateral hyperbola 	 are the
intersections of 	 with the line passing through the center of the hyperbola, with the
slope m = 1 if |z1| > |z2|, respectively, m = −1 if |z1| < |z2|. Let α := arg z2−arg z1

2 .
Using (3.5) it follows that the distance d between a vertex and the center of 	 is

d =
√

∣
∣|z1|2−|z2|2

∣
∣

2|z1z2|
√
sin 2α.

If h = 0 we have α = π
4 and d = 1

2

√∣
∣
∣

∣
∣ 1
z2

∣
∣2 − ∣

∣ 1
z1

∣
∣2

∣
∣
∣. Assume that h = 1

z1
, the case

h = 1
z2

being similar. Then |z2| = |z1| cos 2α < |z1| and
∣
∣|z1|2 − |z2|2

∣
∣ = |z1 − z2|2,

therefore d = 1
2

∣
∣
∣
1
z2

− 1
z1

∣
∣
∣

√
sin 2α. Let z3 be the orthogonal projection of 1

z1
on the

line joining 1
z2

to the origin. Then d = 1
2

√∣
∣
∣
1
z2

− 1
z1

∣
∣
∣ ·

∣
∣
∣
1
z2

− z3
∣
∣
∣. We see that a vertex

of 	 can be constructed with ruler and compass if h ∈
{

0, 1
z1

, 1
z2

}

.

Remark 3.7 Being symmetric with respect to the center of 	, 1
z1

and 1
z2

belong to

distinct branches of	, each branchbeingdividedby 1
z1
or 1

z2
into twoarcs. If zk ∈ C\D,

k ∈ {1, 2}, then each of these arcs joins 1
zk
, that is in the unit disk, with some point

exterior to the unit disk; therefore, it intersects the unit circle. It follows that, in the
case of the exterior problem, 	 intersects the unit circle at four distinct points.

In the following,we identify the points of intersection of the conic section	 given by
(3.3) with the unit circle. After finding the points u ∈ ∂D∩	, it is easy to select among
these the points u for which (1.1) holds, respectively, for which |u − z1| + |u − z2|
attains its minimum or its maximum on ∂D.

First assume that	 is a pair of lines d1, d2, parallel to the interior bisector and to the
exterior bisector of the angle �(z1, 0, z2), respectively. Let α = 1

2 |arg z2 − arg z1|.
Then α ∈ {

0, π
2

}

or |z1| = |z2|. The distances from the origin to d1 and d2 are

δ1 = ||z2|−|z1||
2|z1z2| sin α and δ2 = |z1|+|z2|

2|z1z2| cosα. Then, 	 intersects the unit circle at
four distinct points in the following cases: (i) z1, z2 ∈ C \ D; (ii) z1, z2 ∈ D with
1
2

∣
∣
∣

1
|z1| − 1

|z2|
∣
∣
∣ < 1 or with |z1| = |z2| > cosα. In the other cases for z1, z2 ∈ D the

intersection of 	 with the unit circle consists of two distinct points.

Proposition 3.8 If the conic section 	 given by (3.3) is a hyperbola, then the intersec-
tion of 	 with the unit circle consists of

(i) four distinct points if z1, z2 ∈ C \D, one in the interior of each angle determined
by the lines that pass through the origin and z1, respectively, z2;

(ii) at least two distinct points if z1, z2 ∈ D, one in the interior of the angle determined
by the rays passing starting at the origin and passing through z1, respectively, z2
and the other in the interior of the opposite angle.
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Proof The intersection of 	 with the unit circle consists of the points u = eit , t ∈
(−π, π ] satisfying

Im
(

z1z2e
i2t − (z1 + z2) e

−i t
)

= 0.

Let z1, z2 ∈ C
∗. There are at most four points of intersection of 	 and the unit circle,

since these are the roots of the quartic Eq. (1.3).
Using a rotation around the origin and a change of orientation, we may assume that

arg z2 = − arg z1 =: α, where 0 ≤ α ≤ π
2 . The above equation is equivalent to

g (t) := |z1z2| sin 2t − |z1| sin (t + α) − |z2| sin (t − α) = 0. (3.7)

We have

g (−π) = g (π) = −g (0) = (|z1| − |z2|) sin α,

g (α − π) = |z1| (|z2| + 1) sin 2α , g (−α) = |z2| (1 − |z1|) sin 2α,

g (α) = |z1| (|z2| − 1) sin 2α , g (π − α) = − |z2| (|z1| + 1) sin 2α.

Consider the cases where 	 is a hyperbola, i.e., 0 < α < π
2 . Clearly, −π <

α − π < −α < 0 < α < π − α < π . We have g (π − α) < 0 < g (α − π), while
g (−π) = g (π) = −g (0) has the same sign as |z1| − |z2|.
(i) Assume that z1, z2 ∈ C \ D. Then g (−α) < 0 and g (α) > 0.

If |z1| < |z2|, then g (−π) < 0 < g (α − π) > 0, g (−α) < 0 < g (0) and
g(α) > 0 > g (π − α). Since g is continuous onR, Eq. (3.7) has at least one root
in each of the open intervals (−π, α − π), (α − π,−α), (−α, 0) and (α, π − α).
If |z2| < |z1|, then g (α − π) > 0 > g (−α), g (0) < 0 < g(α) and g (π − α) <

0 < g (π). The Eq. (3.7) has at least one root in each of the open intervals
(α − π,−α), (0, α), (α, π − α) and (π − α, π).

(ii) Now assume that z1, z2 ∈ D. Then g (−α) > 0 and g (α) < 0.
If |z1| < |z2|, then g (−π) < 0 < g (α − π) and g (0) > 0 > g(α). Since g
is continuous on R, Eq. (3.7) has at least one root in each of the open intervals
(−π, α − π) and (0, α).
If |z1| > |z2|, then g (0) > 0 > g(α) and g (π − α) < 0 < g (π). The Eq. (3.7)
has at least one root in each of the open intervals (0, α) and (π − α, π).

��
Corollary 3.9 TheEq. (1.3)has four distinct unimodular roots in the case of the exterior
problem and has at least two distinct unimodular roots in the case of the interior
problem.

4 Remarks on the Roots of the Equation (1.3)

In this section, we study the number of the unimodular roots of the Eq. (1.3) (i.e.,
the roots lying on the unit circle) and their multiplicities. Denote P(u) = z1z2u4 −
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(z1 + z2)u3 + (z1 + z2)u − z1z2 . If either z1 = 0 or z2 = 0 then the cubic Eq. (1.3)
P (u) = 0 has a root u = 0 and two simple roots on the unit circle.

We will assume in the following that z1 �= 0 and z2 �= 0. As we observed in Sect. 2,
the quartic polynomial P is self-inversive. Then, P has an even number of zeros on
the unit circle, each zero being counted as many times as its multiplicity. According
to Lemma 2.4, P has at least two unimodular zeros, distinct or not, that is P has four
or two unimodular zeros. There is a rich literature dealing with the location of zeros
of a complex self-inversive polynomial with respect to the unit circle [5,7,8,15–17].

Lemma 4.1 P(u) = z1z2u4−(z1+ z2)u3+(z1+ z2)u− z1z2 cannot have two double
zeros on the unit circle.

Proof Assume that P has two double zeros a and b on the unit circle, P(u) = z1z2(z−
a)2(z − b)2 (a, b ∈ ∂D, a �= b). Since the coefficient of u2 in P (u) vanishes,

a2 + 4ab + b2 = (

a + (2 − √
3)b

)(

a + (2 + √
3)b

) = 0 .

This contradicts the assumption |a| = |b| = 1. ��
Similarly, we rule out another case.

Lemma 4.2 For P(u) = z1z2u4 − (z1 + z2)u3 + (z1 + z2)u − z1z2 it is not possible
to have a double zero on the unit circle and two zeros not on the unit circle.

Proof Assume that P has a double zero a with |a| = 1 and the zeros b �= 1
b
. Then

P(u) = z1z2(z − a)2(z − b)
(

z − 1
b

)

. The coefficient of u2 in P (u) vanishes,

a2 + b

b
+ 2a

(

b + 1

b

)

= 0.

We have
∣
∣
∣
∣
b + 1

b

∣
∣
∣
∣

2

=
(

b + 1

b

)(

b + 1

b

)

= 2 + |b|2 + 1

|b|2 > 4.

Then 2 ≥
∣
∣
∣a2 + b

b

∣
∣
∣ =

∣
∣
∣2a

(

b + 1
b

)∣
∣
∣ > 4, a contradiction. ��

Lemma 4.3 If P(u) = z1z2u4 − (z1 + z2)u3 + (z1 + z2)u − z1z2 has a triple zero
a and a simple zero b, then b = −a, with a and b lying on the unit circle and
|z1 + z2| = 2 |z1z2|.
Proof Assume that P has a triple zero a and a simple zero b, P(u) = z1z2(z −
a)3(z − b), where a, b ∈ C, a �= b. Since P is self-inversive, |a| = |b| = 1 and
b = 1

a = −a. Also, the fact that the coefficient of u2 in P(u) vanishes already implies
a(a + b) = 0. But z1z2a2b = −z1z2 �= 0, therefore b = −a. Considering the
coefficient of u3 in P(u) = z1z2(u − a)3(u + a), it follows that 2az1z2 = z1 + z2,
hence |z1 + z2| = 2 |z1z2|. ��
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Example 4.4 Find the relation between z1, z2 such that P(u) = z1z2u4−(z1+z2)u3+
(z1 + z2)u − z1z2 has the triple zero 1 and the simple zero (−1).

Suppose
P(u) = z1z2(u − 1)3(u + 1) = 0 . (4.1)

From the constant term of (1.3) and (4.1), we have z1z2 ∈ R. Similarly, from the
coefficient of u in (1.3) and (4.1), we have

z1 + z2 − 2z1z2 = 0 .

Therefore z1 and z2 coincide with the two solutions of w2 − 2pw + p = 0, where
p = z1z2 ∈ R (in particular −1 < p < 1 for the interior problem).

In the case where 0 < p < 1, z1 and z2 are complex conjugates to each other since
discriminant(w2 −2pw + p, w) = 4(p2 − p) < 0. Hence, P(u) = z1z1(u−1)3(u+
1) = 0, and we have

(2z1 − 1)z1 − z1 = 2
∣
∣
∣z1 − 1

2

∣
∣
∣ − 1

2
= 0.

Therefore, for z1 on the circle |z − 1
2 | = 1

2 and z2 = z1, P(u) = 0 has exactly two
roots 1 and −1. This case was studied in [11, Thm. 3.1]. In fact, for z1 = a + bi with
a2 − a + b2 = 0, P(u) = a(u − 1)3(u + 1) = 0.

In the case where −1 < p < 0, the quadratic equation w2 − 2pw + p = 0 has two
real roots and we have

P(u) = z1z2(u − 1)3(u + 1).

Moreover, we can parametrize two foci as follows, z1 = t, z2 = t
2t−1 (−1 < t <√

2 − 1).

It remains to study the following cases:

Case 1. P has four simple unimodular zeros.
Case 2. P has two simple unimodular zeros and two zeros that are not unimodular.
Case 3. P has a double unimodular zero and two simple unimodular zeros.

Proposition 4.5 Assume that z1, z2 ∈ C
∗. Let P(u) = z1z2u4 − (z1 + z2)u3 + (z1 +

z2)u − z1z2 . Then

a) P has four simple unimodular zeros if |z1 + z2| < |z1z2| and
b) P has exactly two unimodular zeros, that are simple, if |z1 + z2| > 2 |z1z2|.
c) If P has four simple unimodular zeros, then |z1 + z2| < 2 |z1z2|.
d) If P has exactly two unimodular zeros, that are simple, then |z1 + z2| > |z1z2|.
Proof Let f be a complex polynomial. The location of the zeros of the derivative
f ′ of f is connected with the location of the zeros of f . Gauss–Lucas theorem [17,
Thm. 6.1] shows that the zeros of the derivative f ′ lie within the convex hull of the
set of zeros of f . In particular, if all the zeros of f lie on the unit circle, then all the
zeros of f ′ lie in the closed unit disk (and f is self-inversive). The converse holds by
a theorem of Cohn [8] stating that a complex polynomial has all its zeros on the unit

123



The Ptolemy–Alhazen Problem... 153

circle if and only if the polynomial is self-inversive and its derivative has all its zeros
in the closed unit disk.

In our case P ′ (u) = 4z1z2u3−3 (z1 + z2) u2+(z1 + z2) and P ′′ (u) = 12z1z2u2−
6 (z1 + z2) u.

a) Assume that |z1 + z2| < |z1z2|. Then for u ∈ ∂D we have

∣
∣
∣4z1z2u

3
∣
∣
∣ = 4 |z1z2| > 4 |z1 + z2| ≥

∣
∣
∣−3 (z1 + z2) u

2 + (z1 + z2)
∣
∣
∣

It follows by Rouché’s theorem [22, 3.10] that the derivative P ′ has all its zeros in
the unit disk. By Cohn’s theorem cited above, P has all its four zeros on the unit
circle ∂D.
Assume that the polynomial f is self-inversive. By [7, Thm.1], the following are
equivalent:

(i) all the zeros of f are simple and unimodular;
(ii) there exist a polynomial g having all its zeros in the unit disk |z| < 1, a non-

negative integer m and a real number θ such that f (z) = zmg (z) + eiθg∗ (z)

for all z ∈ C. Here g∗ (z) := zng
(
1
z

)

, where n = deg Q.

In our case, P (u) = umQ (z) + eiθ Q∗ (u) for m = 3, θ = π and Q (u) =
z1z2u3 + (z1 + z2). The roots of Q have modulus 3

√ |z1+z2||z1z2| < 1. The implication

(i i) ⇒ (i) from [7, Thm. 1] shows that P has four simple zeros on the unit circle.
b) Now assume that |z1 + z2| > 2 |z1z2|. For u ∈ ∂D we have

∣
∣
∣−3 (z1 + z2) u

2
∣
∣
∣ = 3 |z1 + z2| > 4 |z1z2| + |z1 + z2| ≥

∣
∣
∣4z1z2u

3 + (z1 + z2)
∣
∣
∣

and it follows using Rouché’s theorem that P ′ has exactly two zeros in the closed
unit disk. Cohn’s theorem shows that P cannot have all its zeros on ∂D. By
Lemma 2.4, P has at least two unimodular zeros; therefore, P has exactly two
unimodular zeros. By Lemma 4.2, these unimodular zeros are simple.
An alternative way to prove that P has exactly two unimodular zeros is indicated

below. Assume by contrary that P has four unimodular zeros. Using the Gauss–
Lucas theorem two times, it follows that each of the derivatives P ′and P ′′ has all
its zeros in the closed unit disc |z| ≤ 1. The zeros of P ′′ are 0 and z1+z2

2z1z2
. Then,

under the assumption |z1 + z2| > 2 |z1z2|, the second derivative P ′′ has a zero in
|z| > 1, which is a contradiction.

c) Assume that P has four simple unimodular zeros. Then, P ′ has all its zeros in the
closed unit disk. Given a self-inversive polynomial f , it is proved in [5, Lem.]
that each unimodular zero of the derivative f ′ is also a zero of f . If P ′ has a
unimodular zero a, then P (a) = 0; therefore, a is a zero of P of multiplicity
at least 2, a contradiction. It follows that P ′ has all its zeros in the unit disk. By
Gauss–Lucas theorem, the second derivative P ′′ also has all its zeros in the unit
disk; therefore, |z1 + z2| < 2 |z1z2|.

d) Now suppose that P has exactly two simple unimodular zeros, a and b. Let c and
1
c the other zeros of P , with |c| < 1. Then P (u) = z1z2 (u − a) (u − b) (u − c)
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(

u − 1
c

)

. The coefficient of u2 in P (u) vanishes; therefore,

ab + c

c
+ (a + b)

(

c + 1

c

)

= 0,

and a + b = − ab
c+ 1

c
− c

|c|2+1
. Because

∣
∣
∣
∣

ab
c+ 1

c

∣
∣
∣
∣

= 1∣
∣
∣c+ 1

c

∣
∣
∣

< 1
2 and |c|

|c|2+1
< 1

2 , we

get |a + b| < 1. Considering the coefficient of u3 in P (u) we obtain z1+z2
z1z2

=
a + b + c + 1

c . Then |z1+z2||z1z2| ≥ ∣
∣
∣
∣c + 1

c

∣
∣ − |a + b|∣∣ > 1.

��

Example 4.6 Let z1 = (1 + t) eiα and z2 = (1 + t)ei(α+t), where t > 0 and α ∈
(−π, π ]. By Corollary 3.9, the Eq. (1.3) has four simple unimodular roots in this case.
On the other hand, |z1+z2||z1z2| = (1 + t)

(

1 + e−i t
) → 2 as t → 0, therefore the constant

2 in Proposition 4.5 c) cannot be replaced by a smaller constant.

We give a direct proof for the following consequence of Proposition 4.5.

Corollary 4.7 If P(u) = z1z2u4 − (z1 + z2)u3 + (z1 + z2)u − z1z2 has one double
zero and two simple zeros on the unit circle, then |z1z2| ≤ |z1 + z2| ≤ 2 |z1z2|.

Proof Assume that P has one double unimodular zero a and two simple unimodular
zeros b, c. Then P (u) = z1z2 (z − a)2 (z − b) (z − c).

The coefficient of u2 in P (u) vanishes,

a2 + bc + 2a (b + c) = 0.

Considering the coefficient ofu3 in P (u)weobtain z1+z2
z1z2

= 2a+b+c = 2a− a2+bc
2a =

3a2−bc
2a = 3

2a− bc
2a . Then

|z1+z2||z1z2| ≤ ∣
∣ 3
2a

∣
∣+∣

∣− bc
2a

∣
∣ = 2 and |z1+z2||z1z2| ≥ ∣

∣
∣
∣ 3
2a

∣
∣ − ∣

∣− bc
2a

∣
∣
∣
∣ =
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