
 
 
This is a self-archived – parallel-published version of an original article. This version may differ from 
the original in pagination and typographic details. When using please cite the original. 

 

 

AUTHOR 
 

Samuli Laato, Sampsa Rauti, Erkki Sutinen 
 
 

TITLE 
 

The Role of Music in 21st Century Education-Comparing Programming 
and Music Composing 
 

YEAR 2020 
 
 

DOI 10.1109/ICALT49669.2020.00088 
 
 

VERSION 
 

Final draft 
 
 

 © 2020 IEEE. Personal use of this material is permitted. Permission from 
IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component 
of this work in other works. 
 
 

 



The Role of Music in 21st Century Education -
Comparing Programming and Music Composing

Samuli Laato
Dept. of Future Technologies

and Dept. of Education
University of Turku

Turku, Finland
sadala@utu.fi

Sampsa Rauti
Dept. of Future Technologies

University of Turku
Turku, Finland
sjprau@utu.fi

Erkki Sutinen
Dept. of Future Technologies

University of Turku
Turku, Finland

erkki.sutinen@utu.fi

Abstract—21st century skills are being added onto K-12
educational curricula globally, often via integrating them into
existing subjects such as math. Simultaneously music teaching
in K-12 education is losing relevance and popularity. Yet, music
theory contains logical structures which are in many regards
similar to program code. Additionally the digitization of music
production requires composers to effectively use digital music
production tools and associated technology. We investigate the
opportunities technology-assisted music composing offers for
teaching 21st skills and programming in K-12 education through
expert interviews with professional music composers (n=4) and
programmers (n=5). Analysis of the similarities and differences in
the thought processes between creating software and composing
music revealed the latter to have potential for teaching the
following thinking skills present in K-12 educational curricula:
modularity, loops and conditionals, data structures, input/output
and software design. Additionally implicit learning benefits on
increasing technical know-how, cooperative skills and design
thinking were discovered.

Index Terms—21st century skills, music composing, program-
ming, K-12 education, expert interview

I. INTRODUCTION

Population-level statistical analyses have demonstrated par-
ticipation in school music to have a strong positive correlation
with academic achievement [1], [2]. These types of studies
are often criticized for failing to control for parental influence
among other significant factors. Yet, the positive impact music
hobby seems to have is worth investigating further. The
problem is the complexity in the ways in which playing,
hearing and producing music influence various areas of life
from emotions [3] and thinking [4] to learning to learn [5]. In
order to investigate how music supports thinking skills needed
especially in software engineering and the 21st century, we ob-
serve the similarities and differences between the processes of
music composing and programming. Accordingly, we propose
the following research questions:

1) What are the similarities and differences in the thought
processes of programming software and composing mu-
sic?

2) What opportunities does technology-assisted music com-
posing provide for teaching 21st skills and program-
ming?

II. BACKGROUND

A. Music Composing and Programming

Music notations share similarities with computer program
code. Classically trained musicians are able to read sheet
music i.e. musical code and execute it accurately based on
how the composer intended [6]. Sheet music still leaves room
for interpretation in terms of, for example, note velocity,
type of vibrato, timbre etc [6]. In programming the computer
executes program code, however arguably doing less errors
and interpretation in the process compared to human musicians
playing a score.

Perhaps more interesting than the execution phase is the cre-
ation process. Both, programmers and music producers, work
with digital tools to create executable artifacts. Both processes
involve design thinking and constant evaluation of the artifact.
Furthermore, software as well as music consists of small pieces
which form larger constructs, which then eventually come
together to form the artifact: software or music composition.
This is illustrated in Fig 1, which shows a rock song split
into verses, which are then further split into the individual
instrument tracks that make up the verse. Composers need to
constantly refer to the relationships between instrument tracks
and how they relate to other tracks in the same verse as well as
how the verse relates to the rest of the song. Similarly software
engineers need to think about algorithms inside methods, in
which classes the methods belong to, what interfaces parts
of the software offer each other and how they communicate
together.

Despite the above mentioned similarities between music and
programming, music notations are not Turing-complete [7]
and cannot be used as such to write software. The process
does work the other way around, as demonstrated by several
programming tools aimed at learning computer science via
music creation. For example, the Sound Thinking program
offered a tangible interface (PicoBoard) to create music and
learn programming [8]. Peng on the other hand, suggested
that computer science concepts could be learned via a compu-
tational drumkit [9]. Because of the logical structures that are
present in music, it has also been suggested that introductory
computer science courses could contain exercises where stu-

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



Fig. 1. Visualizing songs by dividing them into verses or blocks

dents use Python or other programming languages to generate
music [10]. This has been taken further in environments such
as JythonMusic trough which both programming and music
theory can be learnt [11]. These experiments further prove
that there is a call for conceptualizing the multitude of implicit
learning benefits which music composing offers.

B. 21st Century Skills in Music Composing

In order to connect the educational benefits of music com-
posing to concrete thinking skills, we review relevant work
on 21st century skills, which describe the kinds of skills that
are needed to succeed in the society and working life in
the 21st century [12], [13]. Several overlapping definitions
exist as to what these skills are in particular [12]–[15]. A
systematic literature review found that ”21st century skills”
was used in academic papers to describe broader and a more
abstract set of skills compared to digital skills [15]. The 21st
century skills being higher level thinking and collaboration
skills also pose challenges on how to assess and evaluate
their learning [14]. Therefore, in designing education, it is
paramount to isolate measurable learning goals amidst the
21st century skill umbrella term, such as design thinking [16],
critical thinking [17] and computational thinking [18].

Many of the so called 21st skills have already been
added into K-12 national educational curricula in several
countries [19]. In most cases these skills are being taught
through existing subjects during, for example math lessons,
with traditional teaching methods [20]. However, scholars have
also proposed alternative methods for teaching these skills
such as project-based learning [21] and phenomenon-based
learning [22]. To ensure a seamless integration of 21st century
skills into existing subjects, a careful analysis of affordances of
these subjects to teach the new skills is required. In this case,
we investigate the opportunities that are provided by music
composing.

Music is one of the natural school subjects in K-12 educa-
tion through which 21st century skills can be taught due to its
inherit logical structure [13]. Shuler argues in his work that
music in particular affords learning the so-called four Cs: (1)
Creativity, (2) Critical Thinking, (3) Communication and (4)

Collaboration [13]. This list, however, is needlessly narrow,
as music composing has been shown to have affordances
for teaching, for example, various kinds of mathematics [23]
and multiple thinking skills [24]. In fact, Hanna presents
a revised version of Bloom’s taxonomy with examples of
cognitive processes present in music composing, many of
which are applicable in programming as well, including (1)
interrelationships among the basic elements within a larger
structure, (2) evaluating musical compositions (or program
code) and improve it and (3) Planning and creating songs (or
program code) [24].

III. RESEARCH DESIGN: EXPERT INTERVIEWS

This study invokes the qualitative empirical research
methodology of expert interviews [25] for probing the thought
processes and knowledge structures of professional composers
and programmers. Both professional music composers (n=4)
and programmers (n=5) were interviewed with semi-structured
questions. The interviews were carried out during holiday
season 2019-2020 and lasted between 30-60mins. A researcher
and an observer taking notes were present during the inter-
views.

In analyzing expert interview data, it is crucial to link
obtained information to existing evidence to avoid reporting
a representation-driven knowledge base that is only loosely
connected to reality [26]. For this reason, 21st century skills
in K-12 national educational curricula in seven countries as
identified by Lindberg et al. [19] were used as a backbone to
which the expert interview findings were related and linked
to.

We extracted meaningful expressions from participants
replies and further categorised them thematically following
the qualitative research method of open coding [27]. Two
authors were present during the analysis. Inter-rater reliability
was not obtained as coding and theme decisions were made
cooperatively, instead of individually and then compared. With
the resulting thematic categories we aimed to reach concrete
thinking patterns that could be connected back to previous
literature.

IV. RESULTS

A. Thought Processes of Professional Music Composers

Four professional music composers and or producers were
interviewed (29M,29M,31F,27M) with differing background
and experiences. All had received formal music education
with one having a Master’s degree in music and others at
least a secondary degree. Three of the experts were active
recording artists. The composing software actively used by
the experts included Bitwig studio, Renoise, Pro Tools, Cubase
and Sibelius. All four composers used multiple approaches and
strategies when composing and producing music, depending
on their goals for the specific project they were working on.

The composers mentioned to use several composing tech-
niques and approaches. Depending on the project they men-
tioned to alternate both the outcome they aimed at, or whether



the aimed at one at all, as well as the actual process of cre-
ating a song. Individual compositions could also use multiple
techniques. The most experienced composer said he recently
enjoyed using guitar for composing as he had no idea what
he was playing and had to rely on his hearing to know what
was good. He continued: ”Knowledge of music theory can be
limiting when coming up with new ideas. When later turning
my guitar compositions into notes I have often been surprised
by the weird key choice or chords I’ve used”. All experts
further stated that the technical interfaces through which they
visualize music have an impact on the composing process.

Three of the four interviewed composers reported to have
at some point experienced trouble interfacing their musical
hardware with software, getting certain sounds working on
their music software and having to have tweaked operating
system level settings to, for example, get a new sound card
working. This suggests that especially when using composing
technologies, music producers gain general technical skills and
know-how of computers. Furthermore, one of the composers
mentioned to regularly use Renoise, a digital audio workstation
including a scripting API (in Lua) for music creation. This is
an example of how music production is already integrated with
programming and consequently software development.

Collaborating and communicating was mentioned by all as a
major part of the process of music producing and band activity.
However, less so for the actual music composing process,
despite the existence of technical tools for collaborative music
composing [28], [29] and some bands such as Dream Theater
coming up with majority of their music that way. Finally,
one composer stressed that he usually spent at least ten times
more fine-tuning his compositions and sounds compared to the
actual composing process.

B. How the Interviewed Programmers Conceptualize Software

Five programmers participated in focus group interviews
(44M, 29other, 27M, 36M, 29M). The participants had pro-
gramming experience from various languages, including C++,
Python, Java, Haskell, COBOL and JavaScript and several
technologies such as desktop and mobile operating systems,
development environments, version control tools (git, Mercu-
rial) among others. Two participants were masters of software
engineering, one was a bachelor and the two others under-
graduate students. In addition to the semi-structured questions
which were also used in interviews with music composers, the
programmers were asked to draw with pen and paper how they
visualize software and how they would represent a musical
song with code.

Upon asking programmers to visualize the architecture of
musical songs in program code the more experienced program-
mers split the song into smaller blocks which they further split
into method-like structures. However, the more inexperienced
programmers had unique ways to visualize software: The first
one stated they preferred to visualize a user interface first
and then think how all code can be connected to that. The
second on the other hand, started thinking about the program
execution from the main-method onward and visualizing the

blocks as they approached where the execution was. This type
of visualization often relates to flowcharts and is depicted in
Fig 2. The flowchart view is the closest to music where the
execution is always linear with no dynamic calls and only in
one place at a time.

Verse A

Start

Bridge

Chorus

Verse B

Is this the first time
the chorus is played?

End

Chorus ending 1

Yes

Chorus ending 2

No

Fig. 2. An example of using a flowchart to present a song.

When discussing whether programmers need creativity in
their work, the majority replied to the positive. However, the
most experienced programmer noted that ”creative code” is
difficult to read and annoying, meaning they prefer to write
as simple and effective software as possible. When asked
about the need for technical know-how the programmers stated
that it was mostly required in the early stages of projects
at most, and the majority of their work related to actual
programming. Social skills and cooperative skills were men-
tioned as useful especially in projects involving people outside
software engineering, but for software engineers themselves,
simple well written code with comments and documentation
was mentioned to be the most useful cooperative element.
Altogether the expert interviews with programmers gave rise
to seven key thinking skills and processes which were useful
during programming and/or software development:

• Modular thinking. Dividing programs into smaller parts
and perceiving the interrelations between the components
of a program was seen as an essential skill by all
interviewed experts. Most often this was achieved by
visualizing the structure of the program with different
diagrams such as class diagrams. In object-oriented pro-
gramming, this means dividing the program into distinct



sections (such as classes and methods) with clear and
separate purposes.

• Visualizing the execution of the program. Much like when
composing a piece of music, it was found that visualizing
the intended execution of a program, for instance by
using flowcharts (see Fig. 2), is an important skill when
designing software, although programs usually have a
more complex structure involving conditional jumps, and
possibly non-deterministic and parallel execution.

• Choosing the correct tools. Using an appropriate pro-
gramming language, technology, framework or code edi-
tor was seen as an important skill, as it creates different
restrictions and possibilities in the design and implemen-
tation process. This is similar to choosing instruments
and composing tools for a piece of music. Using digital
composing tools was also found to be helpful in gaining
technical know-how and solving technical problems.

• Recalling and applying the basic programming concepts.
Understanding and applying the basic concepts such as
conditional structures, loops and variables was found to
be essential. In many ways, these bear a resemblance to
musical symbols, note values etc.

• Aiming for reusability. Several programmers indicated
that they aim for reusability in their implementations.
Although reusability does not play such a big role in
composing music, recognizing specific styles of music,
time periods, and elements associated with them is a
central skill [24].

• Evaluating quality attributes and refactoring. Especially
the more experienced programmers saw reviewing the
quality attributes (such as performance and security) [30]
as an important part of implementing software. This
also pertains to the iterative process of evaluating and
critiquing the code and architecture design and improving
it by refactoring and optimization.

• Avoiding needless creativity. Programmers did not want
to exercise needless creativity. Reusing earlier solutions
and writing simple, even boring code was preferred
over creating new and different approaches. As one of
the interviewed programmers put it: ”You should avoid
getting creative when writing software. The simplest and
most efficient solution is often the best. Once I master
a programming language, I look for new challenges by
moving on to new technologies”.

C. Opportunities of learning these skills via technology-
assisted music composing

To ground the findings from experts groups into existing
literature as guided by the methodology [26], we compare
the expert group findings with programming topics in K-
12 curricula in seven countries as identified by Lindberg et
al., [19]. The thinking skills required can be summarized to
be: (1) algorithmic thinking, (2) computational thinking (3)
loops, conditionals, variables, (4) data structures, (5) digital
logic, (6) input/output and (7) software design/modularity. The
comparison revealed significant overlap as shown in Fig I.

Yet, we notice that some aspects identified by our expert
groups are currently not present in K-12 educational curricula,
such as quality attributes and refactoring, visualizing program
execution and avoiding needless creativity.

TABLE I
SIMILARITIES BETWEEN MUSIC COMPOSING AND PROGRAMMING

Curricula Programmers Musicians
algorithmic thinking yes some
computational thinking yes no
loops, conditionals yes yes
data structures yes yes
digital logic some some
input/output yes yes
software design/modularity yes yes

Additional analysis is required to see what further possi-
bilities music composing provides for learning 21st century
thinking skills useful in programming beyond current K-12
educational curricula. A comparison between the two expert
groups reveals six thinking skill constructs which are displayed
in Fig II. Despite interviewing experts, even this is not an
exhaustive list as scholars have previously suggested thinking
skills including planning (design thinking) to be learnt via
music creation [24].

TABLE II
SIMILARITIES BETWEEN MUSIC COMPOSING AND PROGRAMMING

1. Use a defined syntax to create logical structures
2. Read syntax to understand what is meant by the creator
3. Hierarchical and modular structures
4. Refactor or adjust syntax to make it better
5. Iterative process. Constantly check the artifact for visual
or audio feedback.
6. Understand how parts of the artifact interface with
each other.

V. DISCUSSION

The results of this study revealed significant overlap be-
tween key skills needed in the work of professional pro-
grammers and music composers. Furthermore, when mapping
the skills to programming content seven K-12 educational
curricula, four primary concepts that could be learnt via
music composing emerged: (1) loops and conditionals, (2)
data structures, (3) input/output and (4) software design and
modularity. In addition, cooperative elements, technical know-
how, planning and design thinking, evaluation and refactoring
and working iteratively on an artifact were identified as skills
needed in both music composing and software development.
These skills can be further mapped to knowledge structures
which are important for both composers and programmers.

A. Implications of Findings

Music teaching is being sidelined in several countries or
even excluded from educational curricula [31]. One cause for
this might be that music in itself lacks relevance to working life
and more important subjects take its place. However, building



off previous work [10], [11], [13], [23], [24], this study
provides further evidence towards the power of music creation
to teach skills that are necessary in the 21st century. The
findings also offer some explanation to the reported implicit
learning that takes place when practicing music [1], [2].

B. Limitations

The chosen research methodology of expert interviews has
been criticized for being subjective [32], similarly to focus
groups and ethnographic methods, but it remains an effective
way to obtain expert knowledge on fields were still great deal
of conceptualization and evidence is needed [25]. The small
number of participants (N=9) and participants being recruited
from a geographically small area bring into question whether
the final list of similarities between programming and music
composing was exhaustive.

VI. CONCLUSIONS FUTURE WORK

This study found six categories of thinking skills that are
present in both music composing and programming. Further-
more, music was found to have affordances to teach four
categories of programming knowledge currently found in K-
12 educational curricula in seven countries. Additional skills
bridging technology-assisted music composing and program-
ming were also discovered such as technical know-how, coop-
eration, ability to evaluate and improve artifacts and planning
(designing) artifacts. The results highlight the following three
venues for future studies:

1) Empirically verifying the translating effect of music
composing to programming.

2) The results can be used in designing music composing
technologies that aim to teach programming concepts on
the side.

3) The pedagogical strategies used in teaching music theory
could be adopted for programming education and vice
versa.

REFERENCES

[1] C. dos Santos-Luiz, L. S. Mónico, L. S. Almeida, and D. Coimbra, “Ex-
ploring the long-term associations between adolescents’ music training
and academic achievement,” Musicae Scientiae, vol. 20, no. 4, pp. 512–
527, 2016.

[2] M. Guhn, S. D. Emerson, and P. Gouzouasis, “A population-level anal-
ysis of associations between school music participation and academic
achievement.,” Journal of Educational Psychology, 2019.

[3] K. S. McFerran, “Contextualising the relationship between music,
emotions and the well-being of young people: A critical interpretive
synthesis,” Musicae Scientiae, vol. 20, no. 1, pp. 103–121, 2016.

[4] S. M. Ritter and S. Ferguson, “Happy creativity: Listening to happy mu-
sic facilitates divergent thinking,” PloS one, vol. 12, no. 9, p. e0182210,
2017.

[5] S. J. Havre, L. Väkevä, C. R. Christophersen, and E. Haugland, “Playing
to learn or learning to play? playing rocksmith to learn electric guitar
and bass in nordic music teacher education,” British Journal of Music
Education, vol. 36, no. 1, pp. 21–32, 2019.

[6] M. Puurtinen, “Learning on the job: Rethinks and realizations about eye
tracking in music-reading studies.,” Frontline Learning Research, vol. 6,
no. 3, pp. 148–161, 2018.

[7] A. Hodges, “Alan turing and the turing machine,” The Universal Turing
Machine a Half-Century Survey, pp. 3–14, 1995.

[8] A. Ruthmann, J. M. Heines, G. R. Greher, P. Laidler, and C. Saulters II,
“Teaching computational thinking through musical live coding in
scratch,” in Proceedings of the 41st ACM technical symposium on
Computer science education, pp. 351–355, ACM, 2010.

[9] H. Peng, “Algo. rhythm: computational thinking through tangible music
device,” in Proceedings of the Sixth International Conference on Tangi-
ble, Embedded and Embodied Interaction, pp. 401–402, ACM, 2012.

[10] A. Misra, D. Blank, and D. Kumar, “A music context for teaching
introductory computing,” ACM SIGCSE Bulletin-ITiCSE’09, vol. 41,
no. 3, p. 248, 2009.

[11] B. Manaris, B. Stevens, and A. R. Brown, “Jythonmusic: An environ-
ment for teaching algorithmic music composition, dynamic coding and
musical performativity,” Journal of Music, Technology & Education,
vol. 9, no. 1, pp. 33–56, 2016.

[12] L. C. Larson and T. N. Miller, “21st century skills: Prepare students for
the future,” Kappa Delta Pi Record, vol. 47, no. 3, pp. 121–123, 2011.

[13] S. C. Shuler, “Music education for life: The three artistic pro-
cesses—paths to lifelong 21st-century skills through music,” Music
Educators Journal, vol. 97, no. 4, pp. 9–13, 2011.

[14] P. Griffin and E. Care, Assessment and teaching of 21st century skills:
Methods and approach. Springer, 2014.

[15] E. Van Laar, A. J. Van Deursen, J. A. Van Dijk, and J. De Haan,
“The relation between 21st-century skills and digital skills: A systematic
literature review,” Computers in human behavior, vol. 72, pp. 577–588,
2017.

[16] R. Razzouk and V. Shute, “What is design thinking and why is it
important?,” Review of educational research, vol. 82, no. 3, pp. 330–348,
2012.

[17] A. J. Rotherham and D. T. Willingham, “21st-century” skills,” American
Educator, vol. 17, no. 1, pp. 17–20, 2010.

[18] A. Yadav, H. Hong, and C. Stephenson, “Computational thinking for all:
pedagogical approaches to embedding 21st century problem solving in
k-12 classrooms,” TechTrends, vol. 60, no. 6, pp. 565–568, 2016.

[19] R. S. Lindberg, T. H. Laine, and L. Haaranen, “Gamifying programming
education in k-12: A review of programming curricula in seven countries
and programming games,” British Journal of Educational Technology,
2018.

[20] D. M. Gut, “Integrating 21st century skills into the curriculum,” in
Bringing schools into the 21st century, pp. 137–157, Springer, 2011.

[21] S. Bell, “Project-based learning for the 21st century: Skills for the
future,” The clearing house, vol. 83, no. 2, pp. 39–43, 2010.

[22] K. Lonka, J. Makkonen, M. Berg, M. Talvio, E. Maksniemi,
M. Kruskopf, H. Lammassaari, L. Hietajärvi, and S. K. Westling,
Phenomenal learning from Finland. Edita, 2018.

[23] S. Laato, T. Laine, and E. Sutinen, “Affordances of music composing
software for learning mathematics at primary schools,” Research in
Learning Technology, vol. 27, Sep. 2019.

[24] W. Hanna, “The new bloom’s taxonomy: Implications for music educa-
tion,” Arts Education Policy Review, vol. 108, no. 4, pp. 7–16, 2007.

[25] M. Meuser and U. Nagel, “The expert interview and changes in
knowledge production,” in Interviewing experts, pp. 17–42, Springer,
2009.

[26] N. M. Cooke and J. E. McDonald, “A formal methodology for acquiring
and representing expert knowledge,” Proceedings of the IEEE, vol. 74,
no. 10, pp. 1422–1430, 1986.

[27] A. Strauss and J. Corbin, “Open coding,” Basics of qualitative research:
Grounded theory procedures and techniques, vol. 2, no. 1990, pp. 101–
121, 1990.

[28] M. Biasutti, “Group music composing strategies: A case study within a
rock band,” British Journal of Music Education, vol. 29, no. 3, pp. 343–
357, 2012.

[29] M. T. Hopkins, “Collaborative composing in high school string chamber
music ensembles,” Journal of Research in Music Education, vol. 62,
no. 4, pp. 405–424, 2015.

[30] F. Losavio, L. Chirinos, N. Lévy, and A. Ramdane-Cherif, “Quality
characteristics for software architecture,” Journal of object Technology,
vol. 2, no. 2, pp. 133–150, 2003.

[31] S. Laato, F. Gideon, R. Shivoro, E. Sutinen, and N. Pope, “Identifying
factors for integrating math and music education at primary schools in
namibia,” IEEE, 2019.

[32] H. Dorussen, H. Lenz, and S. Blavoukos, “Assessing the reliability and
validity of expert interviews,” European Union Politics, vol. 6, no. 3,
pp. 315–337, 2005.


