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Matti Lahti (2012) The structure and function of I domains in collagen 
receptor and leukocyte integrins. Department of Biochemistry and Food 
Chemistry, and Turku Doctoral Programme of Biomedical Sciences, University 
of Turku, Turku, Finland. Annales Universitatis Turkuensis, Series A1, 453. 
 

ABSTRACT 

Integrins are heterodimeric, signaling transmembrane adhesion receptors that 
connect the intracellular actin microfilaments to the extracellular matrix 
composed of collagens and other matrix molecules. Bidirectional signaling is 
mediated via drastic conformational changes in integrins. These changes also 
occur in the integrin I domains, which are responsible for ligand binding by 
collagen receptor and leukocyte specific integrins. Like intact integrins, soluble 
I domains exist in the closed, low affinity form and in the open, high affinity 
form, and so it is possible to use isolated I domains to study the factors and 
mechanisms involved in integrin activation/deactivation. Integrins are found in 
all mammalian tissues and cells, where they play crucial roles in growth, 
migration, defense mechanisms and apoptosis. Integrins are involved in many 
human diseases, such as inflammatory, cardiovascular and metastatic diseases, and 
so plenty of effort has been invested into developing integrin specific drugs.  
 

Humans have 24 different integrins, four of which are collagen receptor (11, 
21, 101, 111) and five leukocyte specific integrins (L2, M2, X2, 
D2, E7). These two integrin groups are quite unselective having both 
primary and secondary ligands. This work presents the first systematic studies 
performed on these integrin groups to find out how integrin activation affects 
ligand binding and selectivity. These kinds of studies are important not only for 
understanding the partially overlapping functions of integrins, but also for drug 
development. In general, our results indicated that selectivity in ligand 
recognition is greatly reduced upon integrin activation. Interestingly, in some 
cases the ligand binding properties of integrins have been shown to be cell type 
specific. The reason for this is not known, but our observations suggest that cell 
types with a higher integrin activation state have lower ligand selectivity, and 
vice versa. Furthermore, we solved the three-dimensional structure for the 
activated form of the collagen receptor α1I domain. This structure revealed a 
novel intermediate conformation not previously seen with any other integrin αI 
domain. This is the first 3D structure for an activated collagen receptor αI 
domain without ligand. Based on the differences between the open and closed 
conformation of the I domain we set structural criteria for a search for 
effective collagen receptor drugs. By docking a large number of molecules into 
the closed conformation of the 2I domain we discovered two polyketides, 
which best fulfilled the set structural criteria, and by cell adhesion studies we 
showed them to be specific inhibitors of the collagen receptor integrins. 
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Matti Lahti (2012) Kollageenireseptori- ja leukosyytti-integriinien αI-
domeenien rakenne ja toiminta. Biokemian ja elintarvikekemian laitos ja 
Turun biolääketieteellinen tohtoriohjelma, Turun yliopiston julkaisuja, sarja 
A1, 453. 

TIIVISTELMÄ 
Integriinit ovat kahdesta erilaisesta alayksiköstä koostuvia, solukalvon läpäi-
seviä, signaalivälitykseen osallistuvia reseptoriproteiineja, jotka liittävät solun-
sisäisen aktiinimikrofilamenttitukirangan solun ulkopuoliseen proteiiniverkos-
toon. Kaksisuuntainen signalointi välittyy integriineissä tapahtuvien suurten 
rakennemuutosten kautta. Kollageenia sitovissa ja leukosyyteille ominaisissa 
integriineissä on I-domeeni, joka vastaa näihin integriineihin kiinnittyvien 
proteiinien (ligandien) sitomisesta. Solukalvolla olevien integriinien tavoin 
eristetyt, liukoiset I-domeenit esiintyvät sekä suljetussa, pienen aktiivisuuden 
omaavassa muodossa että avoimessa, suuren aktiivisuuden muodossa. Näin 
ollen liukoisilla I-domeeneilla voidaan tutkia integriinien aktivaatioon liittyviä 
tapahtumia. Integriinejä on nisäkkäiden kaikissa soluissa ja ne ovat keskeisiä 
solujen kasvussa, liikenteessä, puolustusmekanismeissa ja ohjelmoidussa 
solukuolemassa. Integriineillä on merkitystä monissa taudeissa, kuten tulehdus- 
ja verisuonitaudeissa sekä syövissä, ja siksi viime vuosina on runsaasti 
panostettu tiettyjen integriinien toimintaa estävien lääkeaineiden kehitystyöhön.  
 
Ihmisellä on 24 erilaista integriiniä. Väitöskirjassa tutkittiin ihmisen 
kollageenireseptori-integriinejä, joita on neljä (11, 21, 101, 111), ja 
leukosyytti-integriinejä, joita on viisi (L2, M2, X2, D2, E7). Nämä 
integriinit sitovat melko epäselektiivisesti erilaisia molekyylejä. Ensimmäistä 
kertaa näillä integriineillä tutkittiin systemaattisesti aktivoitumisen vaikutuksia 
ligandien sitomiseen ja ligandiselektiivisyyteen. Väitöskirjatyön tulokset ovat 
tärkeitä paitsi näiden integriiniperheiden osittain päällekkäisten toimintojen 
ymmärtämiselle, mutta myös integriineihin kohdistuvalle lääkekehitykselle. 
Tulokset osoittavat, että integriinien aktivoituessa niiden kyky tunnistaa 
ligandeja heikkenee. Joidenkin integriinien sitomisominaisuuksien on havaittu 
riippuvan solutyypistä. Syytä tähän ei tiedetä, mutta tulostemme perusteella 
suuren integriiniaktiivisuuden omaavat solut saattavat pystyä sitomaan 
useammanlaisia proteiineja kuin pienen aktiivisuuden solut. Määritimme 
kollageeni-integriinin aktivoidun α1I-domeenin kolmiulotteisen rakenteen, joka 
osoittautui aiemmin tuntemattomaksi, αI-domeenin suljetun ja avoimen 
rakenteen välimuodoksi. Tämä on ensimmäinen kollageenireseptori-integriinin 
aktivoidun αI-domeenin rakenne ilman ligandia. Lääkekehitysprojektiin liittyen 
löysimme I-domeenin suljetun ja avoimen rakenteen välisiin eroihin perustuen 
kaksi polyketidien luokkaan kuuluvaa yhdistettä, jotka sitoutuvat tehokkaasti 
kollageeni-integriinien suljettuun muotoon estäen niiden toiminnan. 
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1.  REVIEW OF THE LITERATURE ON INTEGRINS 

1.1. INTRODUCTION  

1.1.1. Integrins  

Integrins are bidirectionally signaling transmembrane receptors composed of 

two different subunits,  and  (Hynes, 1992). They integrate the intracellular 

cytoskeleton, the contractile actin microfilament system and signaling pathways 

to the network of extracellular matrix (ECM) proteins (Brakebusch & Fässler, 

2003; Humphries et al., 2004; Kinashi, 2005).  In vertebrates specific integrins 

are also involved in cell-cell adhesion interacting with other transmembrane 

proteins of the neighbouring cells. In order to function properly it is absolutely 

essential that integrins become active and thus capable of binding their ECM-

ligands only under specific conditions (Hynes, 2002; Kim et al., 2011). 

Bidirectional signaling and the regulation of integrin activity are mediated via 

large conformational changes (Takagi et al., 2002; Hynes, 2004; Mould & 

Humphries, 2004a; Arnaout et al., 2005; Gahmberg et al., 2009; Moser et al., 

2009; Shattil et al., 2010; Springer & Dustin, 2012) (Figure 1).  

 
Integrins are found in all multicellular animals, but not in prokaryotes, plants, 

or fungi. The number of different integrin  and  subunits varies in different 

species. Mammals have 24 different heterodimeric integrins composed of eight 

different  subunits and eighteen different  subunits. Although some subunits 

appear only in a single heterodimer, 12 integrins contain a 1 subunit and five 

have V, for example (Figure 2). The occurrence of integrins in all multicellular 

animals suggests that integrins are essential for the development of 

multicellular organs and tissues (Hynes, 2002; Kim et al., 2011).  

 

Integrins are divided into five groups: collagen-binding integrins (section 

1.1.2.), laminin binding integrins (Nishiuchi et al., 2006), RGD-binding 



Review of the Literature on Integrins 

 

12 

 
 

Figure 1. Activation states of integrins. Integrins exist in various 
conformational states (a-c) having different ligand binding properties. The 
bent/closed form (a) has a low affinity for ligands, whereas the straight/open 
one (b) is a high affinity form. Ligand binding to the extracellular region 
induces a series of conformational changes, which are mediated through the 
membrane to the intracellular region of the integrins leading to the dissociation 
of the cytoplasmic domains of the  and  subunits and thus to changes in the 
signaling pathways (c). This is a bidirectional signaling system, meaning that 
the binding of intracellular signaling molecules to the cytoplasmic domains of 
integrins induces a series of conformational changes, which also affect the 
structure of the extracellular region of the integrins and leads to changes in their 
ligand binding properties. (Mould & Humphries, 2004a, Nature 432, 27-28. 
Reprinted with permission from Macmillan Publishers Ltd.). 
 

 
Figure 2. The family of integrin receptors. The 24 mammalian  heterodimeric 
integrins are composed of various combinations of eighteen different   and 
eight  subunits. The  subunits of collagen receptors and leukocyte-specific 
receptors have an extra domain called the I domain (see the text). (Margadant 
et al., 2011, Curr. Opin. Cell Biol. 23, 607-614. Reprinted with permission from 
Elsevier).  
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integrins which bind ligands with  an Arg-Gly-Asp recognition motif (Pytela et 

al., 1986), leukocyte specific integrins (section 1.1.3.) and a group including 

α9β1 and α4β1 integrins (Vandenberg, 2008; Gupta & Vlahakis, 2010) (Figure 

2). Most integrins are not strictly ligand specific, but instead they are able to 

bind different kinds of ECM ligands, and vice versa many ECM ligands are 

able to bind to different integrins (Hynes, 2004; Meves et al., 2009). Integrins 

differ from each other also based on their intracellular binding partners and on 

the consequences their activation has inside the cell. Integrins can also be 

divided into two groups depending on whether they include an extra domain, 

called the I domain in the extracellular region of the  subunit. Half of the 

mammalian integrin α subunits have the I domain, which is responsible for the 

ECM ligand binding in that group of integrins (Humphries, 2000; Heino, 2000; 

Hynes, 2002; Moser et al, 2009; Xie et al., 2010) (Figure 2). 

 

Even though integrins exist in all tissues and cells in multicellular organism, no 

cell type expresses all the different integrins of that species. Each cell has under 

certain conditions a specific, dynamic repertoire of integrins, which changes 

with the developmental age of the cell and/or when the microenvironmental 

conditions of the cells are otherwise altered (Barczyk et al., 2010). The 

expression of integrins is regulated by the extracellular milieu of the cell so that 

the cell produces integrins which can interact with the ECM (Humphries et al., 

2006; Kim et al., 2011). Cells, which fail to bind to the ECM, will die as a 

result of apoptosis. Furthermore, the expression of integrins in cells which do 

not have the corresponding ECM ligand in their extracellular matrix space will 

initiate programmed cell death (Frisch & Ruoslahti, 1997; Kuphal et al., 2005; 

Stupack, 2005; Mayadas & Cullere, 2005). This kind of apoptosis induced by 

the absence of the receptor’s ECM ligand is called anoikis, which means 

homelessness (Frisch & Francis, 1994). As shown by the phenotypes of 

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Vandenberg%2BCA%5bauth%5d�
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Gupta%2BSK%5bauth%5d�
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Vlahakis%2BNE%5bauth%5d�
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knockout mice, integrins play diverse and important role in many biological 

processes, such as development, immune responses, leukocyte traffic, 

inflammation, hemostasis, bone remodeling, and angiogenesis. Therefore, 

integrins are also involved in many human diseases, such as cancers, genetic 

and autoimmune diseases, and others (Hynes, 2002; Barczyk et al., 2010; 

Shattil et al., 2010; Desgrosellier & Cheresh, 2010). Accordingly, plenty of 

effort has been invested in studies aiming at developing integrin antagonists for 

the treatment of cardiovascular, inflammatory and metastatic diseases 

(Shimaoka & Springer, 2003; Mould & Humphries, 2004b; Lebwohl et al., 

2003; Kuphal et al., 2005; Mulgrew et al., 2006; Käpylä et al., 2007; Paolillo et 

al., 2009; Heino & Käpylä, 2009; Miller et al., 2009; Nissinen et al., 2010; 

Koivunen et al., 2011).  

 
1.1.2. Collagen receptor integrins and their ligands: collagens and laminins 

Collagen receptor integrins. The research described in this Ph. D. thesis mainly 

deals with integrins which bind collagens (Tulla et al., 2008; Lahti et al, 2011; 

Käpylä et al., 2007). Humans have four collagen receptor integrins, each of 

which has the same  subunit (1), but a different   subunit (1, 2, 10 and 

11) (Heino, 2000; Popova et al., 2007) (Figure 2). In addition to collagens, all 

collagen receptor integrins also bind laminins (Tulla et al., 2008). Furthermore, 

α2β1 integrin binds tenascin C (Sriramarao et al., 1993), chondoadherin (Camper 

et al., 1997), matrix metalloproteinase I (Dumin et al., 2001), adhesion receptor 

E-cadherin (Whittard et al., 2002), proteoglycans (Guidetti et al., 2002; Bix et 

al., 2004) and collectins (Zutter & Edelson, 2007). Human collagen receptor 

integrins can recognize their collagenous ligands in ways dependent or 

independent of the so-called triple helical GFOGER sequence (O denotes 

hydroxyproline) (Knight et al., 2000; Emsley et al., 2000; Käpylä et al., 2004; 

Nymalm et al., 2004)(see section 1.3.2).  

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Desgrosellier%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=20029421�
http://www.ncbi.nlm.nih.gov/pubmed?term=Cheresh%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=20029421�
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Integrin 11 is abundant in smooth muscle cells and 21 is the major collagen 

receptor in epithelial cells and platelets. Many cell types, including fibroblasts, 

osteoblasts, chondrocytes, endothelial cells, and lymphocytes may express both 

of these receptors at the same time (Heino, 2000; White et al., 2004; Popova et 

al., 2007). Integrin 101 is mainly found in cartilage and 111 in many 

mesenchymal tissues (Camper et al., 1998, 2001; Tiger et al., 2001; Heino et al., 

2009). Owing to the small structural differences in their  subunits, the four 

collagen receptor integrins have different specificities for their extracellular and 

intracellular ligands, and their activation leads to different physiological 

consequences. For example, the activation of α1β1 integrin by collagen can 

induce cell proliferation and inhibit collagen synthesis, whereas the activation of 

α2β1 integrin by collagen stimulates both the synthesis of collagen and 

collagenase. α1β1 and α2β1 integrins are also involved in cancer (White et al., 

2004; Heino, 2007). α11β1 may partially replace α2β1 integrin as the main 

collagen receptor in prostate cancer cells having effects on cell migration (Mirtti 

et al., 2006). The activation of α11β1 transcription has been observed also at the 

messenger RNA (mRNA) level in melanomas (Vuoristo et al., 2007) and non-

small-cell lung cancer (Wang et al., 2002; Zhu et al., 2007a). Knockout-mouse 

experiments on individual collagen receptor integrin α subunits have shown 

phenotypes milder than those caused by deletions of integrins α3-α8 and αV 

subunits, for example, suggesting functional redundancy between collagen-

binding integrins (Hynes, 2002; Heino et al., 2009; Popova et al., 2007; Leitinger 

& Hohenester, 2007; Leitinger, 2011). 

 

In addition to integrins, members of a structurally diverse group of 

transmembrane receptors, such as discoidin domain receptors, glycoprotein IV, 

and leukocyte-associated immunoglobulin-like receptor-1, for example, can bind 

collagens (Leitinger & Hohenester, 2007; Heino et al., 2009; Leitinger, 2011).  
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Collagens. Collagen is the most abundant protein in animals. In humans, 

collagen comprises about 1/3 of total protein. Each tissue has a specific set of 

collagens. A partial listing of the collagen types found in different tissues is 

given by Shoulders & Raines (2009). Collagen is an important component of the 

ECM having a key role in the maintenance of the structure of various tissues. 

Furthermore, collagens are involved in cell adhesion, chemotaxis and migration. 

The interactions of collagens with cells regulate tissue remodeling, 

differentiation, morphogenesis and wound healing (Myllyharju & Kivirikko, 

2004). All collagens are composed of three subunits forming a triple helical 

structure, which is important for interactions with other proteins including cell 

surface receptors (Leitinger, 2011). There are both homo- and heterotrimeric 

collagens. In vertebrates 28 collagen types (I-XXVIII) composed of 46 different 

subunits have been identified. There are also many other proteins which contain 

collagenous domains but are not considered as collagens (Myllyharju & 

Kivirikko, 2004; Heino et al., 2009; Shoulders & Raines, 2009).  At least part of 

the primary structure of the collagen subunit is monotonous containing repeating 

sequences of Gly-X-Y, where X and Y are frequently proline and 

hydroxyproline, respectively. Gly is important for the formation of the triple 

helix and hydroxyproline is important for its stability (Myllyharju & Kivirikko, 

2004). Collagens are classified based on the structures they form and the 

structural roles they have. Accordingly, vertebrates have fibrillar collagens (I-III, 

V, XI, XIV, XXVII), network-forming collagens (IV, VI, VIII, X), fibrils-

anchoring collagen (VII), fibril-associated collagens with interrupted triple 

helices (FACIT; IX, XII, XIV, XVI, XIX-XXII, XXVI), membrane-associated 

collagens with interrupted triple helices (MACIT; XIII, XVII, XXIII, XXV), and 

MULTIPLEXIN collagens which contain multiple triple-helical domains with 

interruptions (XV, XVIII) (Shoulders & Raines, 2009). The recently discovered 
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collagen type XXVIII is an I domain-containing protein with an imperfect 

collagenous domain (Veit et al., 2006; Shoulders & Raines, 2009).  

 

Laminins. Laminins are multidomain, heterotrimeric proteins composed of three 

polypeptide chains (α, β, γ) held together by disulfide bonds (Colognato & 

Yurchenco, 2000). Five α chains, three β chains and three γ chains are known for 

mouse and human. These eleven subunits can form at least 16 different α-β-γ 

combinations (Aumailley et al., 2005). Laminins have T- or cross-shaped 

structures with two or three short arms, respectively, and one long arm. Each 

short arm includes part of one polypeptide chain, whereas in the long arm parts 

of all three subunits are twisted together to form a coiled-coil domain which is 

typical for laminins (Colognato & Yurchenco, 2000; Aumailley et al., 2005).  

Laminins are found in the basal lamina where they form sheetlike networks with 

other ECM-proteins. The composition of the basal lamina network varies in 

different tissues, but it typically includes the glycoproteins laminin, collagen 

type IV and nidogen (also called entactin), as well as the proteoglycan perlecan. 

Nidogen links together the networks of laminin and collagen IV. The basal 

lamina network is attached to the plasma membrane by the transmembrane 

collagen and laminin receptors, integrins and dystroglycan (Colognato & 

Yurchenco, 2000).   

 

1.1.3. Leukocyte specific integrins 

Leukocyte specific integrins were studied in the final paper of this Ph.D. thesis 

(Paper IV; Lahti et al., 2012). There are five leukocyte specific integrins (L2, 

M2, X2, D2, E7)(Figure 2), though at least 12 different integrins are 

expressed in various types of leukocytes and platelets (Luo et al., 2007; Zhang 

& Wang, 2012). Leukocyte specific integrins are important for the 

immunoresponse that activates white blood cells. Leukocytes use these 
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adhesion receptors to migrate through the endothelial cells to invade tissues that 

show signs of inflammation (Rose et al., 2007; Zhang & Wang, 2012). Ligands 

for leukocyte specific integrins include, for example, ICAM-1 (Intercellular cell 

adhesion molecule 1), VCAM-1 (Vascular cell adhesion molecule 1), E-

cadherin, fibrinogen, vitronectin, inactive complement factors (iC3b, iC4b) and 

factor X (Humphries, 2000; Humphries et al. 2006; Barczyk et al., 2010; 

Margadant, 2011; Zhang & Wang, 2012). However, some leukocyte specific 

integrins, for example complement receptors, M2 (CR3) and X2 (CR4), as 

well as L2 also bind collagens (Lahti et al., 2012; Zhang & Wang, 2012). 

Structural and functional similarities between collagen receptor integrins and 

leukocyte specific integrins pose a big challenge for structure-based drug 

design. Selectivity is a key issue: the drugs against collagen receptor integrins 

should not block leukocytes integrins, and vice versa. 

 
1.2. THE STRUCTURE OF INTEGRINS 

By the mid of 1970's plenty of evidence had been gathered indicating that 

extracellular matrix proteins and the intracellular cytoskeleton were somehow 

linked together (Hynes, 2004). Hynes (1976) proposed that there are integral 

membrane proteins that connect an extracellular matrix protein, fibronectin, to 

the actin microfilaments of the cytoskeleton. By the mid of 1980's cDNAs 

encoding receptor proteins had been cloned and their nucleotide sequences 

determined, revealing the corresponding amino acid sequences. By comparing 

the structural and functional properties of twelve different plasma membrane 

receptors Hynes and his collaborators found these proteins to be highly similar 

and thus proposed that they form a family of plasma membrane receptors which 

they called integrins (Tamkun et al., 1986; Hynes, 1987). In 1987 the following 

was known about the structure of integrins: Integrins are heterodimeric, 

transmembrane glycoproteins composed of an  and a  subunit, which are 

connected by non-covalent interactions. Both subunits have a short C-terminal 
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cytoplasmic tail, one transmembrane domain, and a long N-terminal 

extracellular region. The primary structure of the  subunit, including four 

cysteine-rich repeat sequences of 40 amino acids, suggested that this subunit 

has several disulfide bonds. Some of the  subunits are posttranslationally 

cleaved into two parts forming heavy and light chains, which are connected to 

each other by disulfide bonds (Hynes, 1987).   

 

The α and β subunits are not homologous and the sizes of integrin subunits 

vary:  subunits are in total 1025-1188 residues long and β subunits 769-799 

residues long with the exception of β4 which has 1875 amino acid residues. 

Three α subunits and four β subunits have splice variants (3/2, 6/2, 7/4, 1/4, 

β3/3, β4/5, and β5/2; the number in the denominator indicates the number of 

splice variants) (Barzyk et al., 2010). The extracellular regions of integrins are 

long, about 700 – 1100 residues (the extracellular regions of  subunits are > 

940 residues and  subunits > 640 residues; Takagi & Springer, 2002), and the 

cytoplasmic regions are short, only about 15-50 amino acids (Humphries, 2002; 

Gahmberg et al., 2009). In this respect the 4 subunit (Figure 1) differs from all 

the other integrin subunits as its intracellular domain is very long, about 1000 

residues.  Because of this the intracellular region of the 4 subunit is able to 

bind directly to the intermediate filaments of the cytoskeleton whereas other 

integrins with short cytoplasmic domains need various mediator proteins for 

binding to the actin microfilament cytoskeleton (van der Flier & Sonnenberg, 

2001; Hynes, 2002; Moser et al., 2009; Kim et al., 2011).  

 

A three-dimensional structure of an intact integrin embedded in a membrane 

has not yet been solved. Instead, 3D structures of the extracellular region 

(ectodomain) are available for three integrins, two of which lack an αI domain 

[αI-less integrins, αvβ3 (Xiong et. al., 2001, 2002, 2009) and αIIbβ3 (Zhu et al., 
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2008)] and one with an αI domain (αxβ2, Xie et al., 2010). Furthermore, 3D 

structures have been solved for the headpiece regions (see section 1.2.1.) of 

αIIbβ3 (Xiao et al., 2004; Springer et al., 2008; Zhu et al. 2010), α5β1 (Nagae et 

al., 2012) and  α4β7 (Yu et al., 2012) integrins,  for several integrin αI domains 

[αL (Qu & Leahy, 1995; Shimaoka et al., 2003), αM (Lee et al., 1995; Li et al., 

1998), αX (Vorup-Jensen et al., 2003), α1 (Nolte et al., 1999; Rich et al., 1999; 

Nymalm et al., 2004), α2 (Emsley et al., 1997, 2000)], and for the 

transmembrane domain of αIIβ3 composed of two α-helices (Lau et al., 2009).  

 

Interestingly, all the 3D structures of the extracellular region are in the bent 

conformation (Figure 1) irrespective of the presence or absence of ligands. 

However, bent and extended conformations have been seen by electron 

microscopy for both αI-less (αvβ3, α5β1, αIIbβ3) integrins and for integrins 

including an αI domain (αxβ2, αLβ2) (Takagi & Springer, 2002; Zhu et al., 2008; 

Chen et al., 2010, 2012; Xie et al., 2010; Springer & Dustin, 2012). The 

structurally simple transmembrane domain and the short cytoplasmic tails have 

a key role in integrin activation and are described in section 1.5. Next, the 3D 

structures of the integrin extracellular region and I domains are briefly 

described.  

 

1.2.1. The structure and domains of the integrin extracellular region 

The extracellular regions of both  and  subunits of integrins are large 

consisting of several domains. The schematic representation in Figure 3 shows 

the locations of these domains in the primary structure and in the tertiary 

structure of the bent integrin molecule. Figure 4A shows the first solved three-

dimensional structure of the integrin extracellular region, that of V3. Integrins 

have a spherical headpiece region responsible for the ligand binding and long 

leg/arm region penetrating the plasma membrane. I-less integrins have 12  
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Figure 3. Schematic presentation of the location of the domains in the 
primary and bent tertiary structure of the intergin  and  subunits. A) 
Half of the mammalian integrin  subunits (Figure 2) include an I domain, 
which is the ligand binding site in those integrins. The location of the I 
domain is shown by a dashed line. The asterisks show the binding sites of Mg2+ 
(blue) and Ca2+ (red) ions. The lines below the domain boxes indicate disulfide 
bonds. B) This model has been built based on the crystal structure of V3 
integrin (Xiong et al., 2001). In this model the location of the I-domain is 
shown even though V3 integrin lacks this domain. The 3D structures of PSI 
and EGF1-2 domains could not be accurately determined and so they are 
presented in Figure B by dashed lines. The domains are coloured in the same 
way in Figures A and B. (Springer, 2002, Curr. Opin. Struct. Biol. 12, 802-813. 
Reprinted with permission from Elsevier). 
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extracellular domains (Figures 4A and B). Their spherical headpiece region is 

composed of three domains, the -propeller domain of the  subunit as well as 

the A domain and the immunoglobulin-like hybrid domain of the  subunit 

(Figures 4A and B). The -propeller domain mainly consists of  sheets and 

contains seven ~ 60 residue repeats (Figure 3A). The A domain structurally 

closely resembles the I domain of the  subunit, I, and is thus also called the 

I-like (I) domain (Figure 3). Hereafter, this domain is referred to as I in the 

text. Half of the mammalian integrin  subunits include a ~200 residue-long I 

domain (see section 1.2.2.), which is located in the headpiece region of the 

molecule (Figure 3B). 

 

The leg/arm region of the  subunit consists of three domains, thigh, calf1, and 

calf2, which are mainly -sheet structures. The leg-region of the  subunit 

includes six domains, the PSI domain (named based on three proteins,  Plextrin,  

Semaphorin and Integrins, which all have this domain; Bork et al., 1999), four 

epidermal growth factor–like, cysteine-rich domains (EGF1-4) and the -tail 

domain (TD) (Figure 4).  Xiong et al. (2001) was not able to accurately solve 

the linker 1 region of the  subunit nor the linkers 2-3 or the domains PSI and 

EGF1-2 of the  subunit suggesting that they are flexible parts of the protein.  

 

The domains of the  subunit extracellular region are in the same order in the 

primary and tertiary structure, the N-terminus is in the headpiece -propeller 

domain and the C-terminus in the calf2 domain of the leg-region. In integrins 

which have an I domain, the I domain has been inserted between the second 

and third repeat elements of the -propeller (Figure 3A). In this respect the 

structure of the  subunit is more complicated than that of the  subunit since  
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Figure 4. Three-dimensional structure of the extracellular regions of V3 
and αxβ2 integrins. The 3D structures of the bent forms of V3 (A) and αxβ2 
(C) were solved by X-ray analysis. The sraight/extended conformations of V3 
(B) and αxβ2 (D) were modelled based on the bent structures. The numbers in 
brackets in Figure 4B refer to the amino acid sequences clearly showing the 
locations of the domains within the primary structure in both subunits. The  
subunit is shown in blue and  subunit in red in Figures A and B. (A and B: 
Xiong et al., 2001, Science 294, 339-345; C and D: Xie et al., 2010, EMBO J. 
29, 666-679. Reprinted with permission from the American Association for the 
Advancement of Science (AAAS) and Macmillan Publishers Ltd., respectively).  

A    B   

C D   
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the headpiece domains (I and hybrid) are not at the N-terminus: the PSI 

domain is the N-terminal domain of the  subunit. A hybrid-domain has been 

inserted between the PSI and EGF1 domains, and the I domain inserted within 

the hybrid domain (Figures 3 and 4).   

 

The extracellular region of integrins is large and thus there are numerous 

interactions between and within the subunits. These inter- and intramolecular 

interactions have been reviewed in detail by Arnaout (2002) and are only 

briefly described here. Based on the 3D structure of V3 integrin the most 

significant intermolecular contact is between the -propeller and I domains 

(Figure 4B). There are also plenty of other intermolecular contacts, such as -

propeller:EGF3, -propeller:EGF4, thigh:EGF3, calf2:EGF4, and calf2:TD. 

However, these contact areas are quite small and thus their interactions are 

rather weak. Accordingly, they may not significantly affect the intact integrin 

bound to the plasma membrane (Xiong et al., 2001). The following 

observations reviewed by Arnaout (2002) support the idea that the headpieces 

of the  and  subunits and especially the contact between the -propeller and 

the I domain are mainly responsible for the heterodimeric structure of 

integrins: A) C-terminal deletions of  and  subunits lacking leg parts but 

including headpieces are still able to form heterodimers with each other. These 

types of deletions were produced by proteolytic digestions. B) Most of the 

mutations preventing the formation of the heterodimeric structure and thus 

resulting in the dysfunction of 2 and 3 integrins, are found in the I domain. 

C) The I domain will fold into its native conformation after it has come into 

contact with the -propeller domain; i.e., the intermolecular -propeller:I 

contacts are necessary for the proper folding of the I domain. The contacts 

between subunits are more extensive in the bent conformation than in the 

extended conformation. The formation of heterodimeric integrins occurs inside 
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the cell before the protein is transported to the cell surface (Humphries, 2000), 

i.e., free α and β subunits do not exist at the cell surface (Barczyk et al., 2010).   

 

The overall 3D structures and subunit contacts of the bent extracellular regions 

of integrins αIIbβ3 (Zhu et al., 2008) and αxβ2 (Xie et al., 2010) are quite similar 

to that of V3 (Xiong et. al., 2001, 2002) except the terminal domains calf2 and 

β-TD of the α- and β-legs, respectively, are oriented differently in the αI-less 

integrins  V3 and αIIbβ3 than in αxβ2, which has an αI domain (Figure 4). 

 

1.2.2. The structure of the I domain 

The I domain, also called the von Willebrand A (VWA) domain, is present in 

numerous proteins including integrins. VWA domains are generally found in 

multiprotein complexes and seem to be responsible for protein:protein 

interactions. Divalent metal ions are essential for many VWA domains 

(Whittaker & Hynes, 2002). The I domain folds independently into a native, 

functional conformation. Accordingly, it is easy to produce and purify this 

domain as a soluble protein for structural and functional analyses. For this 

reason several I domains have been characterized in a detailed way (for 

reviews see Arnaout, 2002;  Takagi & Springer, 2002; Luo et al., 2007); for 

example, three-dimensional structures have been solved for the αI domains of 

αL (Qu & Leahy, 1995; Shimaoka et al., 2003), αM (Lee et al., 1995; Li et al., 

1998), αX (Vorup-Jensen et al., 2003), α1 (Nolte et al., 1999; Rich et al., 1999; 

Nymalm et al., 2004; Lahti et al., 2011) and α2  (Emsley et al., 1997, 2000). 

 

For the sake of comparison Figure 5 shows the 3D structures of the 2I, LI and 

MI domains and the VWA3 domain. As seen in Figure 5, all these four 

structures are very similar to each other and they all include the classical 

Rossmann fold structure (Rossmann et al., 1974). The core of the Rossmann 
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fold in the I domains contains 5 parallel and 1 short antiparallel  sheet, 

surrounded by 6  helices. In addition to these 6  helices found in all I 

domains, some I domains also have short  helices, the number and size of 

which differ between the I domains (Takagi & Springer, 2002). In the 

topological structure each  helix is followed by a  sheet. The Rossmann fold 

is present in a large variety of proteins and enzymes, which normally bind 

dinucleotides (Gherardini et al., 2010). 

 
Figure 5. Three-dimensional structures of the 2I, LI, MI and vWF-A3 
domains. vWF-A3 is one of the three VWA domains of the von Willebrand 
Factor (vWF). vWF is a vertebrate extracellular matrix protein mediating 
adhesions between platelets and fibrillar collagen  (Sadler, 1998). The divalent 
metal ion bound to the I domain (shown in blue circle) has a significant role in 
mediating ligand binding to integrins. (Emsley et al., 1997, J. Biol. Chem 272, 
28512-28517. Reprinted with permission from The American Society for 
Biochemistry and Molecular Biology). 
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1.3. THE METAL ION AND LIGAND BINDING SITES OF THE 

EXTRACELLULAR REGION OF INTEGRINS  

1.3.1.  Binding sites of metal ions 

Divalent metal ions are essential for integrins. There are several metal ion 

binding sites in integrins each having a different specificity and affinity. Mn2+ 

and Mg2+ stimulate and Ca2+ inhibits ligand binding. In the presence of Mn2+ 

ligand binding is stronger than with Mg2+. Equilibrium dialysis measurements 

suggested that integrins have 4-5 binding sites for divalent metal ions 

(Humphries, 2000). However, in the 3D structure of the extracellular region of 

the ligand-free v3 integrin 6 metal ion binding sites were identified (Xiong et 

al., 2001), 4 in the  subunit and 2 in the  subunit (Figure 3A), whereas in the 

ligand-bound form one additional metal ion binding site was identified in each 

subunit (Xiong et al., 2002). As far as I know, the physiological roles of these 

eight metal ion binding sites are still unclear. It has been proposed that at least 

some of them would be important for stabilizing the structure of integrins 

(Humphies et al., 2003). Of these eight metal ion binding sites three located in 

the I domain have been studied in a detail. These three sites are called MIDAS 

(Metal ion-dependent adhesion site), ADMIDAS (Adjacent to MIDAS) and 

LIMBS (Ligand-associated metal binding site) (Figures 6 & 7). ADMIDAS and 

LIMBS are important for the function of integrins. MIDAS, which binds either 

Mn2+ or Mg2+, is located between these two sites. 

 

In integrins lacking an I domain, the MIDAS metal ion of the βI domain is 

directly involved in ligand binding and generally interacts either with aspartate 

or glutamate depending on the ligand. ADMIDAS and LIMBS metal ions 

regulate ligand binding.  Studies on the ADMIDAS site of various integrins 

have given somewhat contradictory results. It seems that the Ca2+ ion is the  
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Figure 6. Binding site of a small-molecular, circular RGDF-peptide ligand 
in V3 integrin. A) The -propeller domain of the V subunit is shown in blue 
and the I domain of the 3 subunit in red. Mn2+ ions at the MIDAS and 
ADMIDAS sites are shown by blue and violet balls. B) Integrin:ligand 
interactions. The amino acid residues of the V subunit interacting with the 
ligand are shown in blue and the residues of the 3 subunit interacting with the 
ligand are shown in red. Hydrogen bonds and salt bridges are indicated by 
dashed lines. There are three Mn2+ ions close to the ligand binding site. The 
metal ions at the MIDAS, ADMIDAS and LIMBS sites are shown by blue, red 
and grey balls, respectively. (Xiong et al., 2002, Science 296, 151-155. 
Reprinted with permission from AAAS).   
 
physiological effector in both the LIMBS and ADMIDAS sites and that Ca2+ in 

the LIMBS site stimulates, and in ADMIDAS inhibits ligand binding (Mould & 

Humphries, 2004b; Arnaout et al., 2005; Luo et al., 2007; Barczyk et al., 2010). 

However, in the case of αIIbβ3 integrin Ca2+ at the ADMIDAS site together with 

Mg2+ at the MIDAS site have been shown to be involved in ligand binding 

(Springer et al., 2008). Based on the 3D structure of the extracellular region of 

V3 integrin, metal ion binding to the MIDAS and ADMIDAS sites is 

independent of ligand binding, whereas a metal ion is seen at the LIMBS site 

only in the presence of a ligand (Xiong  et al., 2001; Xiong et al, 2002). 

Integrins with an I domain have the three metal ion binding sites mentioned 

above and an additional metal ion binding site in the I domain, which is also 

called the MIDAS site. In these integrins the metal ion at the MIDAS site of the 

I domain is essential for ligand binding.       

 
1.3.2.  Binding sites of ligands 

Before the 3D structure of a ligand complex of an integrin extracellular region 

was solved, the following kinds of attempts were made to identify the ligand 

binding sites of integrins: a) ligands were tested for binding with different parts 

of the extracellular ectodomain of integrins and with chimeric integrins; b) 

ligands were covalently bound to integrins and then the residues covalently 

bound to the ligands were identified; c) ligand binding sites were mapped with 
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monoclonal antibodies; d) site-specific mutagenesis was used to identify 

residues responsible for ligand binding. In these studies reviewed by Humphries 

(2000), the conclusions reached were in good agreement with the 3D structures 

solved afterwards, where the ligand binding sites could be seen in detail.  

 

A small-molecular ligand including the RGD-recognition sequence (Pytela et 

al., 1985, 1986) binds to the -propeller domain of  the  subunit and the I 

domain of the  subunit in V3 integrin; i.e., the ligand binds to the subunit 

interface interacting with amino acid residues in both subunits (Figure 6). The 

aspartate in the ligand binds to the Mn2+ ion of the MIDAS site in the I 

domain and arginine binds by hydrogen bonding to two aspartates (Asp150 and 

Asp218) in the -propeller domain (Figure 6B). The binding site of a 

macromolecular ligand naturally covers a much larger region of the integrin 

(Xiao et al., 2004) including the top parts of both the -propeller and the I 

domain. The ligand binding site in the -propeller domain is called the Cap 

region (Figure 7). 71% of the mutations affecting the binding of a 

macromolecular fibrinogen ligand are located in the Cap region of IIb3 

integrin and the remaining 29% in the top part of the I domain and in the small 

molecular ligand binding site close to the contact region of the -propeller and 

the I domain (Xiao et al., 2004). The schematic presentation of a 

macromolecular ligand binding to the headpiece of IIb3 integrin shown in 

Figure 7 was made based on the 3D structure published by Xiao et al. (2004). 

Even though the α subunit has a key role in determining ligand specificity 

(Barczyk et al., 2010) both subunits contribute to ligand binding and selectivity 

(Hynes, 2002; Nagae et al., 2012).   

 

In integrins with an I domain the ligand binding site is located in the I 

domain. Figure 8 shows the 3D structure of the 2I domain complexed with a  
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Figure 7. Schematic presentation of a macromolecular ligand binding to an 
integrin lacking an I domain. A more detailed presentation of the domain 
structures is shown in Figure 4.  L, M and A are the metal ion binding sites 
LIMBS, MIDAS and ADMIDAS, respectively. The arrow demonstrates 
conformational changes induced by ligand binding, including outward 
movements (swing-out) of hybrid and PSI domains with the result of leg 
separation. (Mould & Humphries, 2004a, Nature 432, 27-28. Reprinted with 
permission from Macmillan Publishers Ltd.). 
 

synthetic triple helical GFOGER peptide in which O is hydroxyproline. 

GFOGER (Knight et al., 1998, 2000) is one of the several high affinity binding 

sites for collagen receptor integrins; others are GROGER, GLOGER, 

GMOGER, GLOGEN, GAOGER, for example. The distribution of these 

receptor-binding sites is different in different collagens (Herr & Farndale, 2009; 

Leitinger, 2011). Collagen receptor integrins have different selectivities towards 

these binding motifs with α2β1 preferring GFOGER and α1β1 GLOGEN 

(Hamaia et al., 2012).   
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Figure 8. Three-dimensional structure of the 2I domain:collagen peptide-
complex. A) Stereoview of the complex. The three strands of the triple helical 
collagen peptide are shown in green (leading strand), yellow (middle strand) 
and blue (trailing strand). B) Enlargement of Figure A showing details of 
contacts between the I domain and the collagen ligand. C) Stereoview of the 
interactions between the MIDAS metal ion and the I domain. See the text for 
more details of the interactions. (Emsley et al., 2000, Cell 101, 47-56. Reprinted 
with permission from Elsevier).  
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The most important interactions between the middle strand of GFOGER 

(yellow ribbon) and the 2I domain are: a) the phenylalanine in GFOGER  

forms a van der Waals contact with asparagine 154 (N154) and glutamine 215 

(Q215) of  the I domain; b) the hydroxyproline is hydrogen-bonded to 

asparagine 154; c) the glutamate is coordinated to the MIDAS metal ion and 

hydrogen-bonded to threonine 221 (T221); d)  the arginine is salt-bridged to 

aspartate 219 (D219) and hydrogen-bonded to histidine 258 (H258). The 

interactions between the trailing strand of GFOGER (blue ribbon) and the I 

domain are: a) the carbonyl group of the peptide bond preceeding the GFOGER 

sequence is hydrogen-bonded to tyrosine 157 (Y157) of  the I domain; b) the 

phenylalanine of the GFOGER peptide connects to leusine 286 (L286) and 

tyrosine 157 (Y157) through van der Waals interactions; c) the hydroxyproline 

is hydrogen-bonded to asparagine 154 (N154); d) the arginine shares an ion-

bond with  glutamate 256 (E256). Some of these interactions are shown in 

Figure 8. The collagen ribbon shown in green is not connected to the I domain 

(Emsley et al., 2000).   

 

The residues important for the binding of the MIDAS metal ion are aspartates 

151 and 254 (D151 and D254), serines 153 and 155 (S153 and S155) and 

threonine 221 (T221) (Figure 8C). In addition, glutamate 256 (E256) binds to 

the MIDAS metal ion via water, but for clarity, this is not shown in Figure 8C. 

Site-directed mutagenesis studies have shown that Asp151, Ser153, Thr221 and 

Asp254 are essential for collagen binding to the integrin 2I domain (Kamata  

& Takada, 1994). 

 

Figure 9 shows a surface profile presentation of the I domain:collagen peptide 

complex. The following contacts between the I domain and the middle strand 

of the collagen fiber are highlighted in Figure 9B: a) the MIDAS metal ion  
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Figure 9. Surface presentation of the 2I domain:collagen peptide complex. 
Blue and red colours show positively and negatively charged regions in the I 
domain, respectively. The strands of the triple helical collagen peptide are 
coloured as described in Figure 8. A) The same orientation as in Figure 8. B) 
Enlargement of Figure A showing some details of the contact surface.  C) Top 
view of the complex. D) The green area is the collagen binding region in the I 
domain. (Emsley et al., 2000, Cell 101, 47-56. Reprinted with permission from 
Elsevier). 
 

containing groove with a positive charge, where the negatively charged 

glutamate of GFOGER-sequence protrudes; b) the phenylalanine of GFOGER 

sequence is located in the groove of the I domain surface, and c) the positively 

charged arginine is salt-bridged to the negatively charged I domain surface. 

 

The 3D structure of the 2I domain complexed with a triple helical collagen 

peptide was a great breakthrough for collagen receptor integrin research 



Review of the Literature on Integrins 

 

35 

showing the molecular details of contacts between the receptor and the collagen 

fiber (Emsley et al., 2000). It gave important structural information for research 

aiming to genetically modify the ligand binding properties of collagen receptor 

integrins.   

 

Ligand binding is similar in all integrins irrespective of the presence of the I 

domain. The carboxyl group of the ligand, which in I domain-containing 

integrins is generally glutamate and aspartate in other integrins, coordinates with 

the MIDAS metal ion. This explains why a divalent metal ion is essential for the 

ligand binding and adhesion properties of integrins. It also explains why the 

recognition sequences of all ligands for integrins contain a carboxyl group and 

why different integrins can recognize the same ligands (Humphries et al., 2003). 

 

1.4.  CONFORMATIONAL CHANGES IN INTEGRINS 

1.4.1.  Ligand induced conformational changes in the headpiece region of 

integrins 

The 3D structures of liganded and unliganded forms of the collagen receptor 

integrin 2I domain are presented in Figure 10. In the absence of ligand the I 

domain is in the closed conformation. Ligand binding induces a series of 

conformational changes leading to the opening of I domain. The most 

significant structural changes are the following: a) as a result of the movements 

of the 1 helix and loop 1 (L1) the MIDAS metal ion comes closer to loop 2 

(L2) and helix 3 is relocated; b) the C-terminal 7 helix moves significantly (10 

Å) downwards, and c) the movements of the 6 and C helices increase the 

length of 6 helix by one turn and the short, one-turn C helix disappears. 

Unwinding of the C helix significantly changes the position of tyrosine 285 

(Y285). Highly similar conformational changes are seen in the MI domain of 

leukocyte integrin upon ligand binding (Emsley, 2000) suggesting that the ligand  
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Figure 10. Three-dimensional structure of the collagen receptor 2I 
domain with and without ligand. Regions where significant confomational 
changes occur as a result of ligand binding are shown in red, the MIDAS metal 
ion is indicated as a blue sphere, and the largest structural transitions are 
emphasized by green arrows. (Emsley et al., 2000, Cell 101, 47-56. Reprinted 
with permission from Elsevier). 
 

induced structural changes are common and similar in all integrins, which have 

an I domain. 

 

Humphries et al. (2003) have listed the following experimental evidence to 

prove that the open conformation of the I domain is the active form with high 

avidity, and that the closed conformation is the less active form with low avidity: 

a) the mutations stabilizing  the  open  conformation increase the ligand avidity 

of the I domain; b) the molecules stabilizing the closed conformation decrease 

ligand binding and cell adhesion; c) the closed form stabilized by the disulphide 

bridge is inactive, whereas the open form stabilized by the disulphide bridge is 

active, and d) the crystal structure of the unliganded I domain is in the closed 

conformation, whereas the ligand-bound complex is in the open conformation 

(Figure 10).   
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The I domain of the integrin  subunit and the I domain of the integrin  

subunit belong to the same VWA domain family (see section 1.2.2.) and thus 

their 3D structures are very similar. Furthermore, macromolecular ligand 

binding to αI-less integrins induces similar conformational changes in the I 

domain as described above for the I domain, including significant movements 

of the MIDAS metal ion, specific loops and 1 and 7 helices. The movement 

of the C-terminal 7 helix of the I domain causes changes in the contact 

surface of I and hybrid domains, swinging out hybrid and PSI domains, which 

will lead to the separation of the integrin legs and to effects seen all the way 

down to the cytoplasmic tails of the integrins. In αI-less integrins ligand binding 

induces structural movements also in the ADMIDAS and LIMBS metal ion 

binding sites (Figures 6 and 7), which are absent in the αI domains (Xiao et al., 

2004). Furthermore, the occupation state of the three metal ion binding sites 

apparently have effects on the structural changes occurring in the I domain 

(Mould et al., 2003; Mould & Humphries, 2004b).  

 

Figure 11A shows a schematic presentation of the drastic conformational 

changes occurring in integrins lacking an I domain. Integrins with I domains 

are structurally somewhat more complicated than I-less integrins as they have 

an extra domain. The three-dimensional ectodomain structure for one integrin 

including an αI domain, αxβ2, has recently been solved (Xie et al., 2010). This 

structure is unliganded and so it is not yet known what kinds of conformational 

changes ligand binding to the αI domain exerts on the extracellular region. 

However, it has been suggested that ligand induced structural changes in I 

domains would result in a similar series of conformational changes as have 

been seen upon ligand binding in the extracellular region of integrins lacking an 

I domain (Alonso et al., 2002). Collagen binding to the I domain leads to 

numerous structural changes (Figure 10), of which Figure 11B shows only the 
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significant downward movement of the C-terminal 7 helix. As a result of this 

movement a highly conserved glutamate (shown by a yellow sphere in the 

contact region of I and I domain in Figure 11B) in the loop between the - 

 

 
Figure 11. Schematic presentation of the structural effects of ligand 
binding to integrins. A) Integrins lacking an I domain. B) Integrins having an 
I domain. Ligand induced allosteric swing-out of the hybrid domain leads to 
leg separation. The lower leg region of the β subunit is highly flexible existing 
in various conformations (section 1.4.2.) shown by solid and dashed 
representations. (Luo et al., 2007, Annu. Rev. Immunol. 25, 619-647. Reprinted 
with permission from Elsevier). 
 

A 

B 
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propeller and I domains is relocated so that it binds to the MIDAS metal ion of 

the I domain, which in turn results in a similar series of conformational 

changes in the extracellular region of the  subunit as described below for 

integrins lacking an I domain. According to this model in integrins with an I 

domain the ligand-activated I domain has the same kind of effect on the 

structure of the extracellular region as direct ligand binding has on those 

integrins lacking an I domain; i.e., the I domain acts like an endogenous 

ligand for the I domain  (Alonso et al., 2002) (Figure 11). Conformational 

changes occurring in the I domain would thus be mediated via the I domain to 

the structure and function of integrins. However, it has also been shown that the 

I domain can be allosterically regulated by the I domain (Alonso et al., 2002; 

Yang et al., 2004a; Mould & Humphries, 2004b). Based on the 3D structure of 

the unliganded αxβ2 the model shown in Figure 11B, it is still valid, except that 

the I domain is inserted into the β-propeller domain by a flexible linker 

allowing more flexibility for the I:βI interaction (Xie et al., 2010) than shown 

in Figure 11B, where the I domain is rigidly positioned above the β-propeller 

domain.   

 

1.4.2.  Conformational changes in the extracellular region of integrins 

Figure 11 shows the three conformations generally presented for integrins. These 

structural changes have significant effects on ligand binding properties. The bent 

conformation is the least adhesive form, whereas the extended conformation 

with the open headpiece is the most adhesive form. Ligand binding induces 

significant changes in the positions of the hydrid and PSI domains causing the 

separation of the integrin leg regions (Figure 11). In this process the contact 

surfaces between the I-Hydrid and Hydrid-PSI domains function as flexible 

knees like the region between the hybrid and EGF3 domains and the link 
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between the thigh and calf1 domains do when the extended integrin bends to the 

less adhesive form. 

 

All the solved 3D structures for the integrin extracellular region are in the bent 

conformation (Figure 12A) irrespective of the presence or absence of ligands 

(Xiong et. al., 2001, 2002, 2009; Zhu et al., 2008; Xie et al., 2010) indicating 

that an isolated extracellular region of an integrin is able to bind ligands in the 

bent conformation. Proof for the existence of the extended forms of integrins 

(Figure 11) has been obtained by electron microscopy images showing bent and 

extended conformations with both I-less integrins and with integrins having an 

I domain (Takagi & Springer, 2002; Zhu et al., 2008; Chen et al., 2010, 2012; 

Xie et al., 2010; Springer & Dustin, 2012). Ligand-induced swing-out of the 

hydrid and PSI domains (Figure 11) has been observed with αIIbβ3, αvβ3,  α5β1, 

αXβ2, αLβ2 and α4β7 (Xiao et al., 2004; Luo et al., 2007; Zhu et al., 2008; Chen 

et al., 2010, 2012; Xie et al., 2010; Springer & Dustin, 2012; Nagae et al., 2012; 

Yu et al., 2012), but the extent of this swing-out seems to vary significantly 

between different integrin forms (Askari et al., 2009).  

 

Figure 12 shows two models, which differ in the way that the C-terminal end of 

the extracellular leg region of the integrin, containing the calf1 and calf2 

domains of the  subunit and the EGF3-4 and TD domains of the  subunit 

(see Figure 4), are located in the bent form with  respect to the membrane. In 

the Switch blade model (Beglova et al., 2002), also known as the Flick-knife 

model (Liddington, 2002) the feet of the bent integrin are orthogonal to the 

plasma membrane and the extracellular ligand binding site, the head of the 

integrin, is very close to the plasma membrane. In the Angle-poise model 

(Hynes, 2002) the feet are not orthogonal to the plasma membrane and thus the 

head is more distant from the plasma membrane. In the Angle-poise model the  
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Figure 12. Switch-blade and Angel-poise model presentations of the bent 
form of integrins. (Hynes, 2002, Cell 110, 673-687. Reprinted with permission 
from Elsevier). 
 

extracellular ligand binding site of the bent integrin form is more accessible, at 

least for a small molecular ligand, than in the Switch blade model. Even though 

the Switch blade model is the model mainly presented and preferred in integrin 

literature, the crystal structures of the extracellular regions of integrins have 

been determined without the plasma membrane, and so the Angle-poise model 

cannot be excluded. It is clear from Figure 12 that the details for the bent 

integrin to stand up into an extended, straight form would be somewhat 

different in these two models. In both of these models the integrin has to at least 

partially stand up before the ligand-induced conformational changes in the 

headpiece region leading to the swing-out of the hybrid domain and leg 

separation (Figure 11) can happen. A Deadbolt model has been proposed in 

which a long loop of the TD domain (Figure 4A) would act as a lock in the 

bent form preventing the conformational changes in the 7 helix of the I 

domain and in the loop preceding that helix, thus also preventing the transition 

of the bent form into the extended form (Xiong et al., 2003; Arnaout et al.., 
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2005). In the Deadbolt-model intracellular signals interacting with the 

cytoplasmic domain of the integrin would open the lock leading to integrin 

unbending and activation. However, recent structural, functional and mutational 

studies with αIIbβ3, αVβ3, and αXβ2 have shown that this TD loop is not 

important for integrin activation, thus disproving the Deadbolt model (Zhu et 

al., 2007b; Xie et al., 2010; Shattil et al., 2010).   

 

The flexible knees in the extracellular region allow, in principle, for the integrin 

to exist in a great number of different conformations with the bent and fully 

extended, leg-separated conformations being only the two ultimate stages. 

Figure 13 shows examples of putative conformations. These types of 

conformations are seen by electron microscopy (Zhu et al., 2008; Chen et al.,   

 

Figure 13. Putative conformations between the bent and extended, leg-
separated forms of integrins. (Xiao et al., 2004, Nature 432, 59-67. Reprinted 
with permission from Macmillan Publishers Ltd.). 
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2010, 2012; Xie et al., 2010; Springer & Dustin, 2012). It has been shown  that 

the distance of the extracellular head-piece of 41 integrin from the plasma 

membrane differs depending on how the integrin is activated and that the 

further the head-piece of the integrin is from the membrane the higher the 

avidity the integrin has for its ligands (Chigaev et al., 2003, 2007). The I 

domain also exists in several different conformations differing from each  other, 

for example, in the degree of the shift that has occurred in the 7 helix position 

(Figure 11A) and in the ligand binding avidity (Yang et al., 2004b; Luo et al., 

2004; Mould & Humphries, 2004b). Furthermore, a pulling force on the 

integrin extracellular domain may have effects on integrin extension (Alon & 

Ley, 2008; Kim et al., 2011) and a lateral force created by the binding of the 

integrin to a growing actin cytoskeleton may have effects on the degree of leg 

separation (Zhu et al., 2008; Schürpf & Springer, 2011; Springer & Dustin, 

2012). Accordingly, it seems that integrins exist in several conformational 

forms and that the degree of unbending is both agonist- and integrin-specific 

and correlates with ligand binding affinity  (Chigaev et al., 2003, 2007 Mould 

& Humphries, 2004b; Askari et al., 2009). As described below membrane-

embedding of integrins is an essential element for regulating their affinity (Lau 

et al., 2009; Shattil et al., 2010; Kim et al., 2011), which means that to see 

physiologically relevant conformations it will be necessary to have intact, 

membrane-embedded integrins in various states. 

 

1.5. TRANSMEMBRANE AND CYTOPLASMIC DOMAINS OF 

INTEGRINS 

Transmembrane and cytoplasmic domains have a key role in integrin activation 

and signaling even though they are structurally much simpler than the 

extracellular region of integrins. In the bent form of integrins the trans-

membrane domains of the α and β subunits are in contact with each other (Kim 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Alon%20R%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ley%20K%22%5BAuthor%5D�
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et al., 2003) (Figures 1 and 11). It has been shown by mutational analysis that 

disrupting these contacts increases the affinity of the integrin to its ligand, and 

vice versa strengthening the contacts decreases the affinity (Hughes et al., 1996; 

Hynes, 2002; Kim et al., 2003; Humphries et al., 2003; Travis et al., 2003; Li et 

al., 2005; Zhu et al., 2007c). The 3D structure for the transmembrane domain 

(TMD) of αIIβ3 embedded in a lipid bilayer has been solved by NMR (Lau et 

al., 2009)(Figure 14). The TMD includes one α helix from both subunits. The 

24-residue-long transmembrane helix of the αII subunit is perpendicular to the 

lipid bilayer, whereas the 29-residue-long β3 transmembrane helix is tilted. The 

25° crossing angle between the α and β transmembrane helices facilitates the   

 
Figure 14. NMR-structure of αIIβ3 transmembrane domain embedded 
in a lipid bilayer. OMC and IMC refer to the outer and inner membrane 
clasp, respectively, briefly described in the text. The transmembrane 
helices of the αIIb and β3 subunit are shown in blue and red, respectively. 
This 3D structure was solved by Lau et al. (2009). (Kim et al., 2012, 
Nature 481, 209–213. Reprinted with permission from Macmillan 
Publishers Ltd.). 
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specific interactions to occur simultaneously close to the outer membrane and 

the inner membrane side of the lipid bilayer. The outer membrane clasp (OMC) 

includes packing of glycines (G972 and G976 of αII and G708 of β3) and the 

inner membrane clasp (IMC) includes packing of two phenylalanines (F992 and 

F993) of αII ,which mediates interhelical packing and an electrostatic interaction 

between arginine 995 of αII and aspartate 723 of β3 (Figure 14). When the 

crossing angle is changed, for example, by proteins binding to  the cytoplasmic 

tails of integrins (see section 1.6.) both OMC and IMC interactions cannot 

occur at the same time, which leads to the dissociation of the two 

transmembrane helices (Lau et al., 2009; Shattil et al., 2010; Kim et al., 2011). 

Interestingly, within the lipid bilayer in the IMC region there is one conserved 

lysine in the β subunit (K716 in β3). A positively charged residue in a 

hydrophobic lipid environment is energetically unfavourable. To minimize this 

thermodynamic problem Lys716 is extended and the charged ε-amino group is 

close to the negatively charged phospholipid head groups. This kind of 

behaviour of lysine and arginine is quite common in transmembrane domains 

and is called snorkeling. It was recently shown by NMR spectroscopy and 

mutational analysis that the snorkeling Lys716 of αIIβ3 is an important residue  

for the 25% crossing angle (Figure 14) and thus it was also suggested that 

snorkeling regulates integrin transmembrane signaling (Kim et al., 2012). 

 

With the exception of 4 the cytoplasmic domains of the integrin  and  

subunits are quite short (about 15-50 residues; see page 19). The amino acid 

sequences of the cytoplasmic domains of the  subunits are better conserved 

than those of the  subunits. This supports the idea that the cytoskeleton and the 

components of intracellular signaling pathways interact with the C-terminal 

domain of the  subunit, whereas the cytoplasmic domain of the  subunit has a 

regulatory role (Humphries et al., 2003). Hovever, collagen receptor integrins 
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(11, 21, 101, 111), for example, share the same  subunit and so 

differences in their interactions with the intracellular signaling apparatus are 

due to different  subunits (White et al., 2004). Most proteins found to interact 

with the cytoplasmic tails of integrins bind to the  subunit and quite little is 

known about proteins interacting with the cytoplasmic tails of integrin  

subunits (Barzyk et al, 2010; Shattil et al., 2011; Margadant et al., 2011; 

Rantala et al., 2011; Pellinen et al., 2012).    

 

The only conserved sequence in the cytoplasmic domain of human integrin  

subunit is a membrane proximal GFFKR (Gahmberg et al., 2009). This 

sequence is important for keeping the transmembrane domains of the  and  

subunits together in the bent, low affinity form (Figure 1). The conserved 

arginine of this sequence belongs to the IMC forming an electrostatic 

interaction with a specific aspartate in the β subunit (R995 of αII and D723 of β3 

in Figure 14). The  subunits contain two conserved sequences, the membrane 

proximal (MP) NPxY and the membrane distal (MD) NxxY, which are binding 

sites for specific proteins, such as talins and kindlins, respectively, regulating 

integrin activity (see below)(Moser et al., 2009; Shattil et al., 2011; Margadant 

et al., 2011).  

 

Despite the fact that the cytoplasmic domains of integrins are much 

smaller/shorter than the extracellular region, the 3D structure of the cytoplasmic 

region is not known well. The 3D structure of the cytoplasmic region of IIb3 

integrin determined by NMR indicates that the regions adjacent to the 

transmembrane domains are in the -helical structure in both subunits, whereas 

the C-terminal ends are unstructured (Vinogradova et al., 2002). This suggests 

that the C-termini of both subunits are flexible forming alternative 3D 

structures depending on the macromolecules they are interacting with.  
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1.6. INTEGRIN ACTIVATION AND REGULATION  

Although integrins are signaling adhesion receptors, they do not have enzyme 

activities in their cytoplasmic domains, as do many other signaling receptors. 

The conformational changes mediated across the membrane act as bidirectional 

signals in integrins. Integrins interact with several cytoplasmic proteins 

(Hughes & Pfaff, 1998; Hemler, 1998; Liu et al., 2000; van der Flier & 

Sonnenberg, 2001; Miranti & Brugge, 2002; Brakebusch & Fässler, 2003; 

Margadant et al., 2011; Shattil et al., 2010; Kim et al., 2011; Serrels et al., 

2012; Lawson et al., 2012; Pellinen et al., 2012). These interactions are 

modulated by conformational changes occurring in integrins and thus structural 

changes are mediated both into the extracellular and intracellular space via a 

sophisticated network of interactions (Giancotti & Ruoslahti, 1999; Calderwood 

et al., 2000; Schwartz & Ginsberg, 2002; Miranti & Brugge, 2002; Legate et al., 

2006; Zhang & Wang, 2012). Talin is a cytoplasmic protein with a key role in 

integrin activation and in mediating conformational signaling of integrins to the 

cytoskeleton. Vertebrates have two talin isoforms (talin 1 and 2), whereas lower 

eukaryotes have one talin corresponding to talin 1 (Senetar et al., 2007). Talins 

are antiparallel, homodimeric proteins with a subunit size of 270 kDa 

(Calderwood & Ginsberg, 2003). They are composed of an N-terminal head 

(residues 1-400), a linker region (residues 401-481) and a long C-terminal rod 

domain (residues 482-2541). The talin head interacts with the cytoplasmic tail 

of the integrin β subunit and the rod interacts with the actin microfilament of 

the cytoskeleton (Calderwood et al., 2003; Calderwood & Ginsberg, 2003; 

Travis et al., 2003; Gingras et al., 2009). The head contains a FERM (4.1, ezrin, 

radixin, moesin) domain including three subdomains (F1-F3) and an F0 domain 

(Gingras et al., 2009; Anthis et al., 2009). The F3 subdomain has a so-called 

phosphotyrosine-binding fold (PTB) by which talin first binds to the membrane 

proximal conserved NPxY sequence and then the F3 binds to the membrane 
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proximal helical region of the  subunit breaking down the IMC contacts shown 

in Figure 14. Furthermore, four basic highly conserved, positively charged 

residues on the surface of the head F2 subdomain interact with the membrane 

re-orienting talin, which results in a 20o change in the crossing angle between 

the α and β transmembrane helices leading to the dissociation of the 

transmembrane domains and the activation of the integrin (Anthis et al., 2009) 

(Figure 15). This novel combined effect of the F3 and F2 subdomains makes 

talin unique among the many other PTB-domain containing proteins of the 

cytoskeleton and signaling pathways and it also makes sure that no other PTB-

domain containing protein will start the integrin activation process. Talin binds 

at least to β1, β2, β3, β5 and β7 integrins (Margadant et al., 2011); i.e., 21 of the 

24 mammalian integrins (Figure 2) and it is thus a general activator protein of 

most, if not all, integrins.   

  

Figure 15. Talin is an important 
general activator of integrins. A-C) 
Autoinhibition of talin and integrin 
activation by talin. D) The 3D 
structure of the talin head complexed 
with the membrane and the integrin 
β subunit. (A-C: Moser et al., 2009, 
Science 324, 895-899; D: Anthis et 
al., 2009, EMBO J. 28, 3623-3632. 
Reprinted with permission from 
AAAS and Macmillan Publishers 
Ltd., respectively). 

D 
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Talin is strictly controlled by an autoinhibition mechanism to ensure that 

integrin activation happens only under specific physiological conditions. Talin 

exists in two forms differing in their activities. In the inactive form the PTB 

domain responsible for binding to the integrin is buried in a three dimensional 

structure so that it is unable to bind to the integrin (Wegener et al., 2007; 

Goksoy et al., 2008). Activation of talin by inositol phospholipids and/or by 

proteolytic activation results in conformational changes making the PTB 

domain accessible for the integrin. Proteolytic activation of talin is catalyzed by 

calpain (Paolo et al., 2002; Travis et al., 2003) (Figure 15). Calpains are Ca2+-

ion dependent proteases, which have a cysteine in their active site, and which 

exert various effects in cells (Zatz & Starling, 2005). Activation of talin by 

inositol phospholipids leads to integrin activation, whereas proteolytic 

activation in which the talin head is cleaved from the rod also leads to the loss 

of the integrin connection with the actin microfilament of cytoskeleton and 

focal adhesion disassembly (Legate et al., 2009; Moser et al, 2009). At least 

with β1 and β3 integrins phosphorylation of the tyrosyl residue of the conserved 

NPxY motif has been shown to inhibit talin interactions with the cytoplasmic 

domain of the integrin  β subunit (Moser et al., 2009) (Figure 15). 

 

In addition to talins, kindlins are also general and important activators of 

integrins, and they cooperate with talins (Moser et al., 2009; Shattil et al., 2010; 

Kim et al., 2011). Mammals have three kindlin isoforms, kindlin-1, -2 and -3 

(Meves et al., 2009; Karaköse et al., 2010). Kindlins belong to the group of 

FERM-domain containing proteins. Kindlins are significantly smaller proteins 

than talins. They resemble the talin head region except that kindlins possess a 

pleckstrin homology (PH) domain inserted into the F2 subdomain (a unique 

feature among FERM domain-containing proteins)(Karaköse et al., 2010). 

Kindlins bind to the cytoplasmic membrane distal NxxY sequence motif of the 
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integrin β1, β2 and β3 subunits (Meves et al., 2009; Moser et al., 2009); i.e., 18 

of the 24 mammalian integrins. The details for how kindlin binding to the 

integrin cytoplasmic β-tails helps talin to perform its task in integrin inside-out 

activation are not known. Furthermore, kindlins are also required for outside-in 

activation, in which they together with other proteins, such as integrin-linked 

kinase (ILK), migfilin, focal adhesion kinase (FAK) and α-actinin, indirectly 

link integrins to the actin cytoskeleton and are thus involved in integrin-induced 

signaling (Meves et al., 2009; Moser et al., 2009; Böttcher et al., 2009). 

Kindlins seem to have differential effects on specific integrin heterodimers 

(Harburger et al., 2009; Manevich-Mendelson et al., 2009; Karaköse et al., 

2010).  

 

In addition to talins and kindlins numerous other intracellular proteins are 

involved in the regulation of integrin inside-out activation by having either 

activating/stimulatory [ILK, migfilin, Rap1, Rap1-GTP-interacting adaptor 

protein (RIAM), for example] or inhibitory [Dok-1, Filamin, Calcium and 

integrin-binding protein 1 (CIB1), integrin cytoplasmic domain-associated 

protein 1 (ICAP-1), SHARPIN] effects on this process (Wegener & Campbell, 

2008; Böttcher et al., 2009; Gahmberg et al., 2009; Shattil et al., 2010; Kim et 

al., 2011; Rantala et al., 2011; Zhang & Wang, 2012). Pellinen et al. (2012) just 

recently used a functional screen to identify 13 activators and 10 inhibitors of β1 

integrin regulation.  

 

Integrin inside-out activation is a complex and tightly regulated process, which 

is terminated by the talin-induced dissociation of integrin transmebrane 

domains (Kim et al. 2011; Shattil et al. 2010;  Kahner et al., 2012)(Figure 14). 

Dissociation of the transmembrane domains initiates a series of conformational 

changes from the cytoplasmic domains to the extracellular region (inside-out 

http://jcs.biologists.org/content/123/14/2353#ref-11�
http://jcs.biologists.org/content/123/14/2353#ref-28�
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signaling) leading to a switch from the closed conformation to the open 

conformation, which makes it possible for the integrin to bind to the ECM 

ligand. The binding of the integrin with the ECM ligand induces another set of 

conformational changes in the integrin (outside-in signaling)(Figure 11), which 

results in linking the integrin cytoplasmic domains to the actin microfilament of 

the cytoskeleton (Calderwood & Ginsberg, 2003; Travis et al., 2003; Moser et 

al., 2009; Böttcher et al., 2009). This in turn induces the clustering 

phenomenon, in which several integrins will be clustered close to each other on 

the cell surface. The clustering increases the adhesion of integrins to their ECM 

ligands (Hato et al., 1998; Carman & Springer, 2003). As a result of this 

clustering the integrins will also be tightly connected to a highly complicated 

network of cytoskeletal proteins, in which intracellular signaling molecules will 

join leading to the formation of a huge focal adhesion complex (van der Flier & 

Sonnenberg, 2001; Zamir & Geiger, 2001; Ling et al., 2002; Geiger et al., 2009; 

Serrels & Frame, 2012; Lawson et al., 2012). The formation of the focal 

adhesion complex will have effects on various intracellular signaling pathways, 

which in turn has many kinds of effects on the cellular functions, such as 

proliferation, survival and gene expression, for example (Giagnotti & Ruoslahti, 

1999; Calderwood et al., 2000; Schwartz & Ginsberg, 2002; Miranti & Brugge, 

2002; Legate et al., 2006, 2009; Wehrle-Haller, 2012). Furthermore, integrin 

trafficking mechanisms are important in regulating adhesion (dis)assembly and 

migration in adherent cells (Margadant et al., 2011).  

 
Even though integrins are regulated by bidirectional conformational changes, 

clustering and trafficking, the role of each of these events and regulatory 

mechanisms involved differ significantly between different integrins and cell 

types (Margadant et al., 2011; Kim et al, 2011). Furthermore, integrins 

cooperate in many ways with other receptors, including growth factor receptors. 

So to undertand the overall processes involving integrins and their 
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consequences one has to take into account all these versatile interactions and 

regulatory mechanisms (Ivaska & Heino, 2011). 
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2. AIMS OF THE STUDY 

The main topic for this Ph.D. thesis was to study the effects of the activation of 

the collagen receptor integrin on its ligand binding properties. Collagen binding 

by the leukocyte specific integrins was also studied. These studies will help in 

understanding the ligand selectivity of integrins and the partially overlapping 

roles of the collagen receptor and leukocyte specific integrins, as well as in 

developing more specific drugs targeted to collagen receptor integrins. Small 

molecule drugs targeted to these integrins could be used to treat cancers, 

inflammations and diseases of the blood circulatory system. The four specific 

aims of this Ph.D. thesis work were the following: 

 

Aim 1: To structurally and functionally characterize the activated form of the 

collagen receptor 1I domain. 

 

Aim 2: To find out the effects of activation on the ligand binding and selectivity 

of collagen receptor integrins.  

 

Aim 3: To find out the effects of activation on the ligand binding and selectivity 

of leukocyte specific integrins. 

 

Aim 4: To develop small molecule inhibitors for collagen receptor integrins.  
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3. MATERIALS AND METHODS 

3.1. MATERIALS 

The following ligands and inhibitors were used. The collagen subtypes were 

purchased from the following companies: Human collagens I, II, III, IV, V and 

VI from Biomarket (Turku, Finland), rat collagen I from Sigma Aldrich 

(Helsinki, Finland) and mouse collagen IV from Becton Dickinson (Helsinki, 

Finland). Recombinant human collagen IX was a kind gift from Drs. J. 

Jäälinoja and L. Ala-Kokko (University of Oulu, Finland). Mouse laminin-111 

was purchased from Sigma Aldrich (Helsinki, Finland), human laminin-211 

was from Chemicon International, AH Diagnostics (Helsinki, Finland). Human 

recombinant laminins -411 and -511 were produced as described earlier by 

Kortesmaa et al. (2002) and Doi et al. (2002), respectively. Human intercellular 

adhesion molecule-1 (ICAM-1) and inactivated complement fragment 3 (iC3b) 

were obtained from R&D Systems (Minneapolis, MN, USA) and 

Calbiochem/Merck (Nottingham, United Kingdom), respectively. The 

GFOGER peptide was synthetized by Auspep (Melbourne, Australia). 

Tetracycline compounds described in paper III of this thesis (Käpylä et al., 

2007) were kindly produced and purified by Kaisa Palmu (University of Turku) 

from the Streptomyces strains purchased from Lividans Ltd. (Turku, Finland). 

Other materials used are described in the four original articles (Papers I-IV).  

3.2. METHODS 

3.2.1. Cloning and mutagenesis of the human integrin α subunits and αI 

domains 

The cDNAs of the collagen receptor integrin 1I domain including amino acids 
138ECS…LEATA338 (Nykvist et al., 2000) and the 2I domain including 

residues 125PDGF…EGTV339 (Ivaska et al., 1999) had been previously cloned 

into the pGEX-4T and pGEX-2T vectors (Amersham Biosciences, Uppsala, 
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Sweden), respectively. In this work the I domains of leukocyte specific 

integrins were cloned into the pGEX-4T vector (paper IV: Lahti et al., 2012).  

 

The full-length human α1 integrin constructed in the pcDNA3.1/Z-2 plasmid 

(Invitrogen, Carlsbad, CA, USA) was generously provided by Dr. Pauli Ollikka 

(Biotie Therapies Corp., Turku, Finland). The point mutations to both full-

length α subunits (α1 and α2) and αI domains were introduced using the 

QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA, USA). All 

mutations were verified by DNA sequencing. The plasmid constructs were 

purified with the Qiagen Maxi kit (Qiagen Nordic, Helsinki, Finland) and 

transfected into Chinese hamster ovary (CHO) cells (American Type Culture 

Collection, ATCC, Rockville, MD, USA) using FuGENE 6 transfection reagent 

(Roche Molecular Biochemicals, Indianapolis, IN, USA). The CHO cell clones 

expressing human α1 or α2 integrin were created as described previously 

(Nykvist et al., 2000).  

 

3.2.2. Cell adhesion assays 

In paper I the attachment and spreading of α1β1 (human α1, hamster β1) 

expressing CHO cells on collagen I and IV matrices were tested with the 

xCELLigence real-time cell analyzer (RTCA; Roche Diagnostics GmbH, 

Penzberg, Germany). This technology measures impedance at the bottom of a 

microtiter plate well and allows estimation of the progression of cell attachment 

and spreading. The same technique was used in paper IV to study the adhesion 

and spreading of leukocytes and human promyelocytic leukemia (HL-60) cells 

(ATCC, Rockville, MD, USA). In paper III adhesion of CHO cell clones 

expressing α2 integrin on a collagen I matrix was measured by physically 

separating the adherent and nonadherent cells followed by the detection of 

living adherent cells using the Oncogene cell viability kit.   
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3.2.3. Protein expression and purification 

I domains were expressed in Escherichia coli BL21 TunerTM (Novagen Inc., 

Madison, WI, USA) and purified as gluatiothione-S-transferase (GST) fusions 

as described in paper II (Tulla et al., 2008) for 1I and 2I domains. For the 

production of proteins for crystallizations gel filtration was used after affinity 

chromatography (Paper I). E. coli cells were grown both in bottles in a shaker at 

37°C (Papers I-IV) and in a Bioengineering fermentor (Bioengineering AG, 

Wald, Switzerland) (Paper I). The purity of the protein was checked by 

electrophoresis on 8–25% gradient polyacrylamide gels in the presence of 

0.55% sodium dodecyl sulphate using the Phast System (Amersham Pharmacia 

Biotech, Uppsala, Sweden). Protein concentrations were measured by the 

Bradford (1976) method based Bio-Rad Protein Assay (Bio-Rad, Hercules, CA, 

USA). 

 

3.2.4. Solid phase binding assays 

Ligand binding measurements were carried out with a time-resolved 

fluorescence immunoassay (TRFIA) in 96-well plates as described in papers I-

IV. In the assay a Delfia® Europium labeled anti-GST antibody (Wallac 

PerkinElmer, Turku, Finland) was used and the signal was detected by a time-

resolved fluorescence spectrophotometer (Victor3 multilabel counter, Wallac 

PerkinElmer, Turku, Finland). In the binding assays different types of collagen, 

short, synthetic triple helical GFOGER peptide (Knight et al., 2000; Käpylä et 

al., 2004), as well as non-collagenous compounds, such as laminins, 

intercellular adhesion molecule-1 (ICAM-1) and inactivated complement 

fragment 3 (iC3b) were used as ligands.   
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3.2.5. Crystallization and data collection 

Crystallization was achieved with the hanging drop vapor diffusion method 

under the conditions described in paper I. The crystal diffracted to 1.9 Å, and 

the data were collected on a ADSC Quantum Q210 detector installed on 

beamline ID 14-1 at the European Synchrotron Radiation Facility (ESRF, 

France). Crystallization and data collection were carried out in Dr. Tiina 

Salminen’s group by Eva Blight and Anna-Maria Brandt.  

 

3.2.6. Structure determination, model building and refinement 

The 3D structure of the active variant of the α1I domain (E317A/C139S) 

without ligand was solved as described in paper I. The homology model of the 

E317A variant was built in paper II using the coordinates of the wild type 1I 

domain (Nymalm et al., 2004) and the ligand-bound integrin α2I domain 

(Emsley et al., 2000) as templates. X-ray analysis and homology modeling were 

carried out by the research groups of Drs. Tiina Salminen and Mark S. Johnson, 

respectively. 

 

3.2.7. Docking of small molecule inhibitors into the closed conformation of 

the α2I domain 

To search for small molecular inhibitors of collagen receptor integrins putative 

inhibitors were docked into the closed conformation of the α2I domain by the 

program FlexX in Sibyl 6.9 (Tripos, St. Louis, MO, USA). This task was 

performed in Professor Mark S. Johnson’s group. 
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4. RESULTS AND DISCUSSION 

As described in section 1.2. integrins are very long, integrally membrane-

bound, transmembrane proteins and are thus very hard to express and purify in 

intact form. Fortunately, the I domain, which is present in the  subunit of the 

extracellular head region of collagen-binding and leukocyte specific integrins 

(section 1.2.2.) and is responsible for ligand binding, folds independently into 

its native, functional conformation. Accordingly, the structural and ligand 

binding properties of these two integrin groups can be reliably studied by 

soluble I domains (Humphries, 2000; Hynes, 2002). Like intact integrins, the 

soluble I domains also exist in a closed, low affinity form and an open, high 

affinity form (section 1.4.1.), and so it is possible to use the isolated I domain 

in order to understand the factors and mechanisms of the activation/deactivation 

of these two groups of integrins. The integrin  I domain can be activated by 

ligand binding (Emsley et al., 2000) or by various kinds of site-specific 

mutations which stabilize the open, activated conformation (Li et al., 1998; 

Xiong et al., 2000; Shimaoka et al., 2002; Aquilina et al., 2002; Vorup-Jensen 

et al., 2003; Shimaoka et al., 2003; McCleverty & Liddington, 2003; Siljander 

et al., 2004).  

 

The purpose of this thesis was to study the structure and function of αI domains 

in collagen receptor and leukocyte specific integrins with special emphasis on 

the effects of integrin activation on ligand binding and selectivity. The results 

are briefly summarized in sections 4-5. For more details, please, see the original 

publications in section 8.  
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4.1. STRUCTURE DETERMINATION OF THE ACTIVATED, 

LIGAND-FREE α1I DOMAIN SUGGESTED A THIRD 

CONFORMATIONAL STATE OF THE I DOMAIN (Paper I: 

Lahti et al, 2011)  

In paper II of this Ph.D. thesis the gain-of-function mutation of the α1I domain 

(E317A) was shown to increase collagen avidity (Tulla et al, 2008; see section 

4.2.). By testing the effects of integrin activation in cell lines overexpressing 

human 11 and its activated mutants we showed in paper I that conformational 

activation of integrin α1β1 leads to high-avidity cell adhesion to collagens I and 

IV in human integrin α1β1 transfected CHO-cell lines (Figure 1 in Lahti et al. 

2011). Previously the 3D structure of the collagen-binding integrin α1I domain 

was solved in a closed, low-affinity conformation (Nymalm et al., 2004). In 

paper I of this thesis a high-affinity variant (E317A/C139S) of the α1I domain 

was constructed, its collagen binding properties were studied and the 3D 

structure was solved by X-ray analysis at an 1,9 Å resolution (Lahti et al. 2011). 

The C139S mutation was made to significantly increase protein yield, purity 

and solubility facilitating crystallizations and X-ray analysis. The mutation did 

not affect the activation of the αI domain. The corresponding cysteine to serine 

mutation had been previously made for the αMI domain of the leukocyte 

integrin to decrease its aggregation (Xiong et al., 2000).  The activating 

mutation (E317A), which breaks the salt bridge E317:R287 caused drastic 

conformational changes resulting in the unwinding of the αC helix into a loop 

structure and large movements of residues R287 and Y285 (Figure 4 in Lahti et 

al. 2011). In the closed conformation of α1I domain Y285 covers the metal ion-

dependent adhesion site (MIDAS), from which it has moved aside in this high-

affinity conformation making MIDAS more accessible for the ligand (Figure 

4B in Lahti et al. 2011). This is the first 3D structure for the activated α1I 

domain and more generally the first 3D structure for an activated collagen 
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receptor αI domain without ligand. The 3D structure of the high-affinity variant 

α1I E317A was previously predicted by molecular modeling (paper II: Figure 2 

in Tulla et al, 2008) using the coordinates of the wild type 1I domain (Nymalm 

et al., 2004) and the ligand-bound integrin α2I domain as templates (Emsley et 

al., 2000). In the 3D structure of the ligand-free α1I C139S/E317A solved in 

paper I the conformational changes compared to the closed form were smaller 

and somewhat different from those expected based on the model of the 

activated form described in paper II (Tulla et al., 2008) and seen for the α2I 

domain when the closed and activated, ligand-bound forms were compared 

(section 1.4.1.; Emsley et al., 2000). The E317A mutation results in the 

unwinding of the αC helix as seen with the activation of α2I, but this mutation 

moved the MIDAS metal ion toward loop 1, instead of loop 2 as seen in the 

activation of α2I. The α7 helix, which has significantly moved downward in the 

open α2I structure, has not changed its position in the activated α1I variant 

(Figure 5 in Lahti et al., 2011). Interestingly, compared with the 

hexacoordination of the MIDAS metal in previously published α1I and α2I 

structures, the metal ion in our activated α1I structure is pentacoordinated 

(Figure 3 in Lahti et al., 2011). Accordingly, our results suggest that the α1I 

domain has at least three main conformations: closed, intermediate and open. 

The structure of the activated α1I variant solved in this work is clearly different 

from the intermediate form of the αLI domain (Shimaoka et al., 2003). In the 

activated α1I domain, all of the structural changes had taken place close to the 

MIDAS site, whereas in the intermediate-affinity form of the αLI domain the α7 

helix was partially shifted down, and the MIDAS was still closed. Just recently, 

based on our activated α1I structure in conjuction with their observations on the 

dynamic structural changes upon collagen and metal ion binding to the integrin 

α1I domain, Weinreb et al. (2012) proposed a model, in which the  

pentacoordinated form is an important intermediate in the activation of the 
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integrin αI domain. Mn2+ adopts the pentacoordinated conformation more easily 

than Mg2+, whereas Ca2+ is unable to adopt that conformation. This gives 

structural explanations to why the nonpysiological Mn2+ activates integrin more 

strongly than does the physiological Mg2+, and why Ca2+ is incapable of 

supporting ligand binding.  

 

As described in section 1.4.1 (Figure 11) during integrin activation, a highly 

conserved glutamate (Glu335 in α1I) of the αI domain acts like an endogenous 

ligand for the I domain binding to the metal ion at the MIDAS site of the β1 

subunit. Interestingly, in our cell adhesion assays E317A could activate 

collagen binding even after mutating the conserved Glu335 (Figure 6 in Lahti et 

al., 2011). This suggests that the stabilization of the α7 helix into its downward 

position is not required for integrin activation if the α1I MIDAS site is already 

open. The activated α1I domain represents a novel conformation for the αI 

domain, possibly mimicking the structural state where the E317:R287 ion pair 

has just broken during the activation of the integrin. 

 

4.2. INTEGRIN ACTIVATION DECREASES THE LIGAND 

SELECTIVITY OF α1 AND α2 COLLAGEN RECEPTOR 

INTEGRINS (Paper II: Tulla et al., 2008)  

4.2.1. Binding to collagen subtypes 

Previous studies in Prof. Jyrki Heino’s research group have shown that the four 

collagen-binding integrins, 11, 21, 101 and 111, have different 

specificities towards different collagen subtypes (Nykvist et al., 2000; Tulla et 

al., 2001; Zhang et al., 2003; Käpylä et al., 2004)(section 1.1.2). However, the 

effect of integrin activation on the selective binding of natural collagen 

subtypes has not been systematically studied. The activating mutation of the α2I 

domain (E318W) breaking the E318:R288 salt bridge (Aquilina et al., 2002), 
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corresponding to the E317:R287 salt bridge of α1I described in section 4.1., has 

been shown to decrease ligand selectivity with different variants of the 

GFOGER peptide (Siljander et al., 2004)(section 1.3.2.). In Paper II of this 

thesis we studied the binding of various natural collagen subtypes and laminins 

(see section 1.1.2.) to α1I and α2I wild type (closed conformations) and their 

corresponding activated mutants (open conformations), E317A and E318W, 

respectively. We found that the selectivity in ligand recognition is greatly 

reduced upon activation (Figures 3 and 4 in Tulla et al., 2008). The E317W 

mutant of the α1I domain existed in various multimeric forms in solution 

decreasing the reproducibility of the results. Accordingly, the E317A activation 

mutation was made for the α1I domain. This mutant protein did not produce 

multimers in solution and behaved reproducible in the binding assay described 

in paper II.  

 

When the closed and open conformations of α1I and α2I domains were tested 

with collagens representing fibrillar collagen (I or II), network-forming 

collagen (IV), collagen forming beaded filaments (VI) or FACIT collagen 

(recombinant collagen IX), it was noticed that in every case the binding was 

better with the open conformations, and for all collagen subtypes except 

collagen VI the binding levels were about the same in the open conformations, 

indicating that the selectivity seen with the wild type α1I and α2I domains was 

lost due to the activating mutations (Figures 3 an 4 in Tulla et al., 2008). Thus 

our results show that conformational activation of both α1I and α2I domain leads 

to high-avidity binding to otherwise disfavoured collagen subtypes. Aquilina et 

al. (2002) has previously shown that the E318W mutation enhances α2I binding 

to collagen I and IV. Deletion of the short αC helix (284-GYLNR-288) in α2I 

gave similar results as did α2I E318W (Lahti, M., unpublished results).  
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4.2.2. Binding to laminin isoforms  

Most integrins are not strictly ligand specific, but instead they are able to bind 

different kinds of ECM ligands and vice versa many ECM ligands are able to 

bind to different integrins (Hynes, 2004; Meves et al., 2009). Accordingly, even 

though there are laminin-binding integrins (α3β1 α6β1, α7β1 and α6β4; Figure 2 in 

section 1.1.1) collagen receptor integrins are also able to bind laminins 

(Languino et al, 1989; Elices & Hemler, 1989; Ignatius et al., 1990; Wong et 

al., 1996; Tulla et al., 2001). Laminins (see section 1.1.2) were recently 

renamed based on the presence of different α, β and γ chains in the trimeric 

laminin molecule (Aumailley et al., 2005). In paper II the effect of integrin 

activation was studied with laminins -111, -211, -411 and -511. Laminin-111 

(previously known as laminin-1) is the major laminin form expressed during 

early embryogenesis (Dziadek & Timpl, 1985), laminin-211 (also known as 

merosin or laminin-2) is expressed in skeletal muscle and in peripheral nerves 

(Leivo & Engvall, 1988), laminin-411 (previously laminin-8) is a component of 

vascular basement membranes, especially abundant in the heart (Iivanainen et 

al., 1997) and laminin-511 (previously laminin-10) is the most widespread 

laminin isoform and is expressed in epidermis and dermis, for example (Määttä 

et al., 2001; Pouliot et al., 2002). 

 

In general, the closed conformation of α1I recognized the tested laminins 

significantly better than did α2I. This agrees with the results of Kern et al. 

(1993) showing that α1β1 binds laminin-111 better than does α2β1. The closed 

conformation of α1I binds best to laminins -111, -511 and -211, and weakly, if 

at all, to laminin-411. Laminins -111 and -511 showed surprisingly tight 

binding to the wild type α1I, which was somewhat weaker but comparable with 

collagen I and IV binding (Figure 1 A-B in Tulla et al., 2008). The wild type α2I 
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recognized three laminins poorly in the following order: -111, -511 and -211, 

but did not recognize laminin-411 (Figure 1C in Tulla et al., 2008).  

 

Tulla et al. (2001) have shown that the R218D and D219R mutations in α1I and 

α2I, respectively, significantly weaken the binding of the αI domain to the 

collagen subtype preferred by the corresponding wild type domain. In the case 

of the α1I domain the R218D mutation (mimicking the α2I ligand binding 

surface) abolished the binding of laminins -111, -211 and -511, and drastically 

decreased collagen IV binding, but had only a small effect on collagen I 

showing that Arg218 has a key role in ligand binding and selectivity. A 

mutation in the corresponding, oppositely charged, amino acid in α2I (D219R 

mimicking α1I binding surface) behaved quite differently as it did not have a 

significant effect on laminin binding. D219R binding to collagen IV was 

unaltered and binding to collagen I was only slightly decreased compared to 

wild type α2I  (Figure 1 in Tulla et al., 2008). The effects of these mutations on 

collagen binding were similar to those presented in Tulla et al. (2001).  

 

Like to the collagen subtypes the α1I activating mutation (E317A) increased 

binding to laminins -111, -211 and -511. Laminin-411 binding, which was only 

slightly tighter than that of the background control bovine serum albumin 

(BSA), was not effected by the mutations (Figure 6 in Tulla et al., 2008). The 

dissociation constants for laminin-111 and -211 binding to the α1I E317A 

mutant were about the same (~70 nM and ~78 nM, respectively), whereas the 

wild type α1I domain bound laminin-111 weakly (Kd ~ 556 nM), but did not 

bind laminin-211. This indicates that the α1I E317A activating mutation not 

only increased laminin binding but also reduced the selectivity between 

different laminin isoforms. Interestingly, the activating E318W mutation 

drastically increased binding of laminins -111, -211 and -511 to the α2I domain, 
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which only poorly recognized laminins in the wild type, closed conformation 

(Figure 5 in Tulla et al., 2008). These results clearly showed that activation is 

required for the α2I domain to significantly bind laminins -111, -211, and -511. 

An earlier report has also suggested that binding of the α2I domain to laminin-

111 is enhanced after activation (Aquilina et al., 2002). Laminin-411 binding to 

the α2I domain remained insignificant also with the activated mutant. The lack 

of laminin-411 binding to both the closed and open conformations of the α1I 

and α2I domains may be due to the truncated N-terminus of the α4 chain in 

laminin-411.    

 

The αC-helix in the αI domain is unique for collagen receptor integrins. It has 

been shown to unwind and move away from the proximity of the metal binding 

site either due to ligand binding to α2I (Emsley et al., 2000)(see section 1.4.1) or 

as a result of the activating mutation of α1I (Lahti et al., 2011; section 4.1.). The 

exact role of the αC-helix is uncertain but it has been suggested to participate in 

ligand recognition or in the regulation of integrin activation (Käpylä et al., 

2000; Tulla et al., 2008). Based on our results we proposed that the αC-helix 

may act in the “preselection” for ligands before αI domain activation and that a 

tyrosine residue (Y285 in α1I and α2I) of the αC-helix has an important role in 

this process. If the αI domain is activated before ligand binding no preselection 

can occur, since the αC helix has disappeared and the metal ion and residues 

involved in ligand recognition are already exposed for immediate binding. 

Accordingly, a broader selection of motifs is accepted, which is seen by lower 

selectivity in ligand binding. 

 

Interestingly, in some cases the ligand binding properties of integrins have been 

shown to be cell type specific; for example, the α2β1 integrin acts solely as a 

collagen receptor or both as a collagen and laminin receptor depending on the 
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cell type (Elices & Hemler, 1989; Languino et al, 1989). The reason for this cell 

type specific behaviour is not known, but based on our results one explanation 

could be that cell types with a higher integrin activation state (Van de Walle et 

al., 2005; Cruz et al., 2005) show lower ligand selectivity, and vice versa.  

 

As discussed in section 1.3. divalent metal ions are essential for integrin 

function and the metal ion at the MIDAS site directly takes part in ligand 

binding. Accordingly, it was not a big surprise that ethylenediamine tetraacetate 

(EDTA), which chelates divalent metal ions, and a small molecular inhibitor 

L3008 (compound 2) described in paper III of this thesis (Käpylä et al., 2007), 

inhibited collagen and laminin binding to the α1I and α2I domain both in the 

closed and open conformations (Figures 5-7 in Tulla et al., 2008). 

  

4.3. STUDIES ON THE EFFECTS OF SMALL MOLECULAR 

INHIBITORS OF COLLAGEN RECEPTOR INTEGRINS (Paper 

III: Käpylä et al., 2007) 

Integrins have diverse and important roles in many biological processes and are 

involved in many human diseases. Accordingly, plenty of effort has been 

invested in studies aiming at developing integrin antagonists for the treatment 

of cardiovascular, inflammatory and metastatic diseases (see section 1.1.). Most 

of the drugs in clinical practice and drug trials that target integrins are 

antibodies, but there is an increasing interest towards developing small 

molecule inhibitors against integrins (Simmons, 2005). For the development of 

a specific small molecular drug, which is able to discriminate against one 

integrin out of the 23 other human integrins, one should choose a target subunit 

which exists only in one integrin. Fortunately, this is possible for all the 

integrins except for the two α4 integrins, α4β1 and α4β7, and for the two αV 

integrins, αVβ1, and αVβ3 (there are twelve β1 integrins, two β3 integrins, and two 

http://www.jbc.org.ezproxy.utu.fi:2048/search?author1=Gerlinde+R.+Van+de+Walle&sortspec=date&submit=Submit�
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β7 integrins; Figure 2 in section 1.1.). Small molecular inhibitors that bind to β2 

have been developed (Gadek et al., 2002; Welzenbach et al., 2002), but these 

lack specificity as they recognize all of the four β2 integrins (Figure 2). Nine of 

the 24 mammalian integrins (collagen-binding and leukocyte specific integrins) 

have an I domain, which is responsible for the ECM ligand binding in that 

group of integrins (sections 1.1., 1.2.2., 1.3.2.). All these nine I domains are 

unique and thus for all of them a specific small molecular inhibitor could in 

principle be developed, which recognizes specific structural features of the I 

domain. One challenge in the development of specific drugs against integrins 

and I domains is the highly dynamic structure of the extracellular region of 

integrins (see section 1.4.). The known small molecular I domain inhibitors 

are allosteric inhibitors (Shimaoka & Springer, 2003; Simmons, 2005), which 

recognize and stabilize the closed conformation of the LI domain (BIRT0377, 

a member of a novel class of hydantoins — Last-Barney et al., 2001; Statins — 

Weitz-Schmidt et al., 2001) and 2I domain (Arylamide compounds — Yin et 

al., 2006). Based on the results presented in this thesis, the closed I domain is 

clearly a much better drug target than the open form as the closed form has a 

much higher ligand selectivity (Papers I-IV).  

 

Based on the differences between the open and closed conformation of the 2I 

domain (see section 1.4.; Emsley et al., 2000) we set two main structural criteria 

when searching for an effective 2I inhibitor. The inhibitor should interact with 

the C helix and with amino acids located just before the following 6 helix. 

Furthermore, it should coordinate with the Mg2+ ion at the MIDAS site so that 

the coordination state seen in the closed conformation is maintained upon 

inhibitor binding (Paper III: Käpylä et al., 2007). By docking a large number of 

molecules into the closed conformation of the 2I domain, specific tetracyclic 

aromatic compounds, belonging to the group of polyketides (Thomas, 2001), 
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were identified as best fulfilling the two main structural criteria. Based on 

docking simulations these compounds coordinate to the MIDAS-Mg2+ ion, the 

aromatic rings of tetracyclic polyketides interact with Tyr285 of the αC helix, 

and the polar substituents of tetracyclic ring interact with the main-chain amino 

group of Glu256 (Fig. 1 in Käpylä et al, 2007). Furthermore, Leu296 seems to 

be important for the binding of these aromatic compounds.  

 

The two most potent, pure inhibitors were compounds called 2 (methyl 2-ethyl-

4,5,7,12-tetrahydroxy-6,11-dioxonaphthacenecarboxylate) and 3 (methyl 4,5,7, 

12-tetrahydroxy-2(methylethyl)-6,11-dioxonaphthacenecarboxylate), which had 

IC50 values of about 50 μM and 10 μM, respectively, for the collagen I binding 

to the wild closed conformation of α2I domain (Figures 1 and 3 in Käpylä et al., 

2007). The IC50 value for collagen I binding to the open conformation (E318W 

mutant; see sections 4.1. and 4.2.) of the α2I domain was about three times 

higher compared to the closed conformation indicating that the inhibitor inhibits 

both forms of the α2I domain, but that the closed form is more sensitive to this 

inhibition.  

 

At a concentration of ≥ 10 μM both compound 2 and 3 significantly inhibited 

cell adhesion to collagen I in transfected CHO cells having α21 as their sole 

collagen receptor.  Furthermore, CHO cells with the mutations Y285A and 

L296A in the α2I domain could still bind to collagen I but were much less 

sensitive to inhibition by 2, supporting the idea that Tyr285 and Leu296 are 

important for the inhibitor to bind to α2I (Figure 3e in Käpylä et al., 2007). In 

addition to binding to the α2I domain, compound 3 inhibited collagen binding to 

the α1I, α10I and α11I domains despite their structural differences. This is not a 

surprise as the four αI domains of collagen receptor integrins bind collagens in 

a similar way (Zhang et al., 2003). Compound 2 had no effect on CHO cell 



Results and Discussion 

 

69 

adhesion to fibronectin, which is the ligand for α51 and αV integrins (Danen et 

al., 2002). In summary, the potent small molecular inhibitors (2 and 3) 

identified in paper III seem to be specific for the collagen receptor subgroup of 

integrins. After paper III was published other small molecular inhibitors for 

collagen receptors have been developed (Nissinen et al., 2010; Koivunen et al., 

2011), but more work is still required to discover a small molecular drug, which 

is able to specifically recognize only one of the four collagen-binding integrins.  

 

4.4. COLLAGEN BINDING STUDIES OF THE WILD TYPE I 

DOMAINS OF LEUKOCYTE INTEGRINS AND THEIR 

MUTANTS (Paper IV: Lahti et al., manuscript submitted for 

publication) 

The physiological roles of collagen receptor and leukocyte specific integrins 

partially overlap. For example, 21 integrin recognizes proteins that participate 

in the regulation of innate immunity (Zutter & Edelson, 2007), and leukocyte 

integrins bind collagens at least in some circumstances (Garnotel et al., 1995, 

2000; Walzog et al., 1995). To make the first systematical comparison of 

human αL2 (lymphocyte function-associated antigen 1, LFA-1), αM2 (CR3) 

and αX2 (CR4) as collagen receptors, we produced the corresponding integrin 

αI domains both in the wild type and activated forms and measured their 

binding to collagen subtypes I-VI (see section 1.1.2.) and to the triple helical 

collagen analogue, GFOGER (see section 1.3.2.). The recombinant proteins 

were carefully designed to cover a comparable sequence in each I domain. 

The LI, MI and XI domains were cloned by RT-PCR (reverse transcription 

polymerase chain reaction) from the total RNA from human white blood cells. 

The mutations I306G in LI (Huth et al., 2000), I316G in MI (Xiong et al., 

2000) and I314G in XI (Vorup-Jensen et al., 2003) had been previously used to 

open the I domain structure by inhibiting isoleucine side-chain binding to a 
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specific hydrophobic pocket. Furthermore, the LI domain had also been locked 

in the open conformation by creating an interchain disulphide bond 

(K287C/K294C) (Lu et al., 2001). These mutations were made and used also in 

this study. As a positive control for these collagen binding studies we used the 

wild type 2I domain and its open mutant, E318W (see section 4.2.1). 

 

The Kd value for the binding of the primary ligands, collagen I to the wild type 

2I and iC3b (Human inactivated complement fragment 3) to the XI domain 

were about 3 nM and 170 nM, respectively, whereas no significant binding of 

the wild type LI and MI domains was seen with ICAM-1 (Intercellular cell 

adhesion molecule-1) and iC3b. The activating mutations in 2I, LI and MI 

increased binding to collagen I, ICAM-1 and iC3b, respectively. The I314G 

mutation in XI did not have any clear activating effect on iC3b binding (Figues 

3-4 and Table 2 in Lahti et al., 2012). The wild type LI bound strongest to the 

basement membrane collagen IV and somewhat to the network-forming 

collagen VI, but not to the fibril forming collagens I-III and V. The activating 

mutations in LI mostly increased binding to the fibril forming collagens having 

only a small, if any, effect on collagen IV and VI binding. Accordingly, the 

selectivity towards different collagen subtypes was largely lost by the activating 

mutations of LI. Wild-type MI recognized all the tested collagen subtypes 

quite unselectively and the activation somewhat increased binding of all 

collagen subtypes. Wild-type XI also interacted with all collagen subtypes, 

preferring collagens IV and VI, but the activating mutation had only small 

effects on collagen binding, except for collagen IV, with which the effect was 

more pronounced (Figure 5 in Lahti et al., 2012). The strongest interactions 

were observed for the LI I306G:collagen I and XI I314G:collagen IV 

complexes with Kd values of about 80 nM and 180 nM, respectively. 

Furthermore, integrin XI (I314G) bound with high avidity (Kd ≈ 200 nM) to 
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collagen VI (data not shown). Accordingly, collagen binding seems to be even 

stronger than is the binding of natural ligands to the LI, MI and XI domains 

using the same assay conditions (Figure 6 and Table 2 in Lahti et al., 2012).  

 

Collagen receptor integrins recognize collagens based on the specific triple 

helical GFOGER-like sequences (see section 1.3.2.), and so we wanted to know 

whether the leukocyte integrins also recognize this same binding motif in 

collagens. As a positive control we showed that both the wild type and activated 

2I domain bind the GFOGER peptide very tightly with Kd values of 4 nM and 

2 nM, respetively. Both wild type and I314G XI bound GFOGER with 

moderate affinity (Kd ≈ 200-300 nM), the activated MI domain bound the 

peptide weakly (Figure 7 and Table 2 in Lahti et al., 2012), but neither wild 

type nor the activated LI showed better binding than to the negative control, 

GST (not shown). To conclude, the leukocyte integrin XI recognizes the 

GFOGER peptide, whereas MI and LI may bind to different motifs than the 

actual collagen receptor integrins.  

 

The role of leukocyte specific integrins as collagen receptors was also tested by 

cell adhesion assays, which showed that the integrin subunit X function 

blocking antibody markedly decreased adhesion of human promyelocytic 

leukemia cells to collagens I (not shown) and IV, antibodies for L showed 

some inhibition, whereas antibodies for the M subunit had no effect on binding 

(Figure 1 in Lahti et al., 2012).  

 

The results presented in paper IV indicate that all three I domains of leukocyte 

integrins are able to bind collagens and that the ligand preferences and the 

dependency on activation are different for each I domain. Activation was 

shown to be a prerequisite for the LI domain to bind fibril forming collagens. 
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Similarly in paper II activation was shown to be a prerequisite for the binding 

of the collagen receptor 2I domain to laminins (section 4.2.2.) 

 

Possibly L2, M2 and X2 act as collagen receptors in inflammatory cells 

before the “true” collagen receptor integrins appear and after that they may 

have an assisting role. This may be the case also for some cancers, such as 

leukemias, in which the levels of L2, M2 and X2 are elevated, as is seen 

from the Cancer Cell Line Encyclopedia (Barretina et al., 2012). Furthermore, 

as X2 (CR4) binds to both the GFOGER motif and collagen IV quite tightly, 

it may have an overlapping function with the collagen receptor integrins.   
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5. CONCLUSIONS 

In this work the structure and function of I domains in collagen receptor and 

leukocyte specific integrins were studied with special emphasis on the effects of 

integrin activation in ligand selectivity. In paper I the three-dimensional 

structure for the activated form (C139S/E317A mutant) of the α1I domain was 

solved and its ligand binding properties were analyzed. The E317A mutation 

was previously shown to activate the α1I domain, whereas the C139S mutation 

made in this work turned out to be essential for producing enough pure protein 

for successful crystallizations and the subsequent X-ray analysis. The 3D 

structure for C139S/E317A was solved at a 1.9 Å resolution and it revealed a 

novel intermediate conformation, which had not been previously seen with any 

other αI domain.   

 

Collagen receptor and leukocyte specific integrins are quite unspecific, each 

having both primary and secondary ligands. In this work the first systematic 

studies were performed for these two integrin groups to find out how integrin 

activation affects the binding and selectivity of both primary and secondary 

ligands. These kinds of studies are important not only for understanding the 

partially overlapping functions of integrins, but also for drug development in 

trying to identify specific small molecular inhibitors, which are able to 

discriminate between different integrin subgroups. Paper II dealt with collagen 

receptor integrins and paper IV with leukocyte specific integrins. In general, 

results from both of these papers clearly indicated that selectivity in ligand 

recognition is greatly reduced upon integrin activation. Conformational 

activation of both the α1I and α2I domain led to high-avidity binding to 

otherwise disfavoured collagen subtypes. Furthermore, the closed conformation 

of α1I recognized the secondary ligands, laminin isoforms, significantly better 

than did α2I. The α1I E317A activating mutation not only increased laminin 
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binding but also reduced the selectivity between different laminins. 

Interestingly, the activating E318W mutation drastically increased binding of 

laminins -111, -211 and -511 to the α2I domain, which only poorly recognized 

laminins in the wild type, closed conformation. These results clearly showed 

that activation was required for the α2I domain to significantly bind laminins 

(Paper II). In paper IV all three I domains of the leukocyte integrins tested 

were shown to bind collagens. The ligand preferences and dependency on 

activation was different for each I domain. Activation was essential for the 

LI domain to bind fibril forming collagens. Possibly L2, M2 and X2 act 

as collagen receptors in inflammatory cells before the “true” collagen receptor 

integrins appear and after that they may have an assisting role. Interestingly, in 

some cases the ligand binding properties of integrins have been shown to be 

cell type specific; for example, α2β1 integrin acts solely as a collagen receptor 

or both as a collagen and laminin receptor depending on the cell type. The 

reason for this cell type specific behaviour is not known, but based on our 

results one explanation could be that cell types with higher integrin activation 

state have lower ligand selectivity, and vice versa. 

 

Paper III, chronologically the first one, was focused on searching for an 

effective 2I inhibitor. Based on the differences between the open and closed 

conformation of the 2I domain two main structural criteria were set for this 

search. The inhibitor should interact with the C helix and with amino acids 

located just before the following 6 helix. Furthermore, it should coordinate 

with the Mg2+ ion at the MIDAS site so that the coordination state seen in the 

closed conformation is maintained upon inhibitor binding. By docking a large 

number of molecules into the closed conformation of the 2I domain specific 

tetracyclic aromatic compounds belonging to the group of polyketides were 

identified to best fulfill the two main structural criteria. By cell adhesion and 
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ligand binding studies two of these compounds were shown to be specific for 

the collagen receptor integrins. 
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