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Abstract. We apply linear algebra and algebraic geometry to study
infinite multidimensional words of low pattern complexity. By low com-
plexity we mean that for some finite shape, the number of distinct sub-
patterns of that shape that occur in the word is not more than the size of
the shape. We are interested in discovering global regularities and struc-
tures that are enforced by such low complexity assumption. We express
the word as a multivariate formal power series over integers. We first
observe that the low pattern complexity assumption implies that there
is a non-zero polynomial whose formal product with the power series is
zero. We call such polynomials the annihilators of the word. The anni-
hilators form an ideal, and using Hilbert’s Nullstellensatz we construct
annihilators of simple form. In particular, we prove a decomposition of
the word as a sum of finitely many periodic power series. We consider in
more details a particular interesting example of a low complexity word
whose periodic decomposition contains necessarily components with in-
finitely many distinct coefficients. We briefly discuss applications of our
technique in the Nivat’s conjecture and the periodic tiling problem. The
results reported here have been first discussed in a paper that we pre-
sented at ICALP 2015.

1 Introduction

A multidimensional infinite word, or simply a configuration, c ∈ AZd is a d-
dimensional infinite array filled with symbols from a (usually finite) alphabet A.
For each cell v ∈ Zd, we denote by cv ∈ A the symbol in position v. Suppose
that for some finite observation window D ⊆ Zd, the number of distinct pat-
terns of shape D that exist in c is small, at most the cardinality |D| of D. We
investigate global regularities and structures in c that are enforced by such low
local complexity assumption.

Suppose that the alphabet A is a subset of Z. This can be established by
renaming the symbols if A is finite. It is then possible to perform arithmetics
on configurations; for example the sum of two configurations is defined cell wise.
The main result that we report (Theorem 3) is that c can be expressed as a finite

sum c = c1 + · · ·+ cm of periodic c1, . . . , cm ∈ Z(Zd). Recall that a configuration
e is called periodic if it is invariant under some translation, so that there is



a vector u ∈ Zd \ {0} such that ∀v ∈ Zd : ev = ev+u. Note that the periodic
components ci in the decomposition c = c1+· · ·+cm are not necessarily over any
finite alphabet, but they are allowed to contain infinitely many distinct integer
values. After the main result we present and analyze an example of a low local
complexity configuration c over two letters, whose periodic decomposition uses
necessarily an infinite alphabet. Finally, we briefly discuss applications of our
results on two open problems: Nivat’s conjecture [Niv97] and the periodic tiling
problem [LW96].

To prove our main Theorem 3 we proceed in two steps.

(1) We show how the low complexity assumption on c implies that there is a
non-trivial filter that annihilates c to the zero configuration. The filtering
operation is the usual convolution of c with a finite mask, which we conve-
niently express in terms of multiplication by a multivariate polynomial. This
step is based on basic linear algebra.

(2) We analyze configurations annihilated by non-trivial filtering, that is, by
multiplying them with some non-zero polynomial. The set of annihilating
polynomials is an ideal of the polynomial ring. Using Hilbert’s Nullstellensatz
we show that the annihilator ideal contains polynomials of simple form. In
particular, we show that the configuration can be annihilated by a product
of difference filters (Xv−1) that subtract from a configuration its translated
copy. This in turn implies a decomposition of the configuration into a sum
of periodic components.

The result reported here have been presented in [KS15], except for the proofs
related to the example in Section 5.

2 Preliminaries

Classically, configurations are just assignments c : Zd −→ A of symbols of a
(finite or infinite) alphabet A on an infinite grid. We use the subscript notation cv
for the symbol assigned in cell v ∈ Zd. In order to apply algebra it is convenient
to let the symbols in A be numbers, and to represent c as a formal power series
over d variables x1, . . . , xd and with coefficients in A:

c(x1, . . . , xd) =

∞∑
v1=−∞

· · ·
∞∑

vd=−∞
cv1,...,vdx

v1
1 . . . xvdd .

As usual, we abbreviate the vector (x1, . . . , xd) of variables as X, and write
monomial xv11 . . . xvdd as Xv for v = (v1, . . . , vd) ∈ Zd. Configuration c can now
be expressed compactly as

c(X) =
∑
v∈Zd

cvX
v. (1)

Usually we let A ⊆ Z so that configurations are power series with integer coef-
ficients, but to use Nullstellensatz we need an algebraically closed field, so that



frequently we consider multivariate power series and polynomials over C. Any-
way, for R = Z or R = C, we denote by R[[X±1]] the set of formal power series as
in (1) with coefficients cv in domain R. Note that we include negative exponents
in the series. We call power series (1) integral if all coefficients cv are integers,
and it is finitary if there are only finitely many distinct coefficients cv. In our
usual setup A ⊆ Z is finite so that the corresponding power series is finitary and
integral.

A polynomial over R is a formal sum a(X) =
∑
avX

v where av ∈ R and
the sum is over a finite set of d-tuples v = (v1, . . . , vd) with non-negative coor-
dinates vi ≥ 0. If the coordinates are also allowed be negative we get a Laurent
polynomial over R. We denote by R[X] and R[X±1] the sets of polynomials
and Laurent polynomials over R. We sometimes use the term proper polynomial
when we want to emphasize that a(X) is a polynomial and not only a Laurent
polynomial.

Here are some notational remarks: We use both notations a(X) and a to
denote (Laurent) polynomials and power series, that is, we may or may not
explicitly write the formal variable in the notation. For any formal polynomial,
Laurent polynomial or power series a we denote by av the value in cell v, that is,
the coefficient of monomial Xv. Sometimes we may wish to write the coefficients
explicitly differently, e.g., we may write f(X) =

∑
avX

v.
The support of a polynomial or a Laurent polynomial a(X) is the set

supp(a) = {v ∈ Zd | av 6= 0} (2)

of cells with non-zero value.
The formal product between a power series and a (Laurent) polynomial is

defined the usual way, as a convolution. This is a filtering operation, and the
result is again a power series. Note that multiplying a power series with monomial
Xv is equivalent to translating it by the vector v. It follows that power series
c(X) is periodic with period v if and only if (Xv−1)c = 0. We say that (Xv−1)
annihilates c(X).

3 Step 1: From Low Local Complexity to an Annihilating
Filter

We are studying configurations in which the number of distinct patterns of some
finite shape D is at most the size |D| of the shape. More precisely, for any finite
D ⊆ Zd we denote by πD the projection operator on R[[X±1]] defined by

πD(c) =
∑
v∈D

cvX
v,

and define the D-patterns of c to be the elements of

PattD(c) = {πD(Xuc) | u ∈ Zd }.



Configuration c has low complexity with respect to a finite D ⊆ Zd if

|PattD(c)| ≤ |D|, (3)

and we say that c has low complexity if (3) is satisfied for some finite D.
We say that a Laurent polynomial f(X) annihilates configuration c(X) if

f(X)c(X) = 0. The following lemma guarantees that each low complexity con-
figuration is annihilated by some non-zero Laurent polynomial, and hence also
by a non-zero proper polynomial.

Lemma 1. Let R be a field or R = Z. Let c(X) ∈ R[[X±1]] be a configuration
and D ⊂ Zd a finite set such that |PattD(c)| ≤ |D|. Then there exists a non-zero
polynomial f(X) ∈ R[X] such that f(X)c(X) = 0.

Proof. Let R be a field. We use elementary linear algebra. Let D = {u1, . . . ,un}.
By the low complexity assumption, the set

{(1, cu1+v, . . . , cun+v) | v ∈ Zd}

of vectors in Rn+1 contains at most n = |D| elements. There exists hence a non-
zero vector (a0, a1, . . . , an) orthogonal to the set. Consider the product of c(X)
and the Laurent polynomial g(X) = a1X

−u1 + · · · + anX
−un . In any position

v, the coefficient in the product g(X)c(X) is

a1cu1+v + · · ·+ ancun+v = −a0.

Hence the product is a constant configuration, so that (Xv−1)g(X)c(X) = 0 for
any v. We conclude that c(X) is annihilated by all non-zero Laurent polynomials
h(X) = (Xv − 1)g(X).

To obtain a non-zero proper polynomial that annihilates c, notice that if
h(X) is an annihilator of c(X), so is a(X)h(X) for any Laurent polynomial
a(X). In particular, by choosing a(X) = Xu for u ∈ Zd with sufficiently large
coordinates, we have that f(X) = Xuh(X) ∈ R[X] is a polynomial.

Consider then the case R = Z. By the proof above (for R = Q) we see that
there exists a non-zero polynomial f(X) ∈ Q[X] such that f(X)c(X) = 0. There
is a positive integer m such that m · f(X) ∈ Z[X], so that m · f(X) satisfies the
claim.

ut

As a first application of this simple observation we infer the classical Morse-
Hedlund theorem [MH38]. Consider the case d = 1, and hence a one-variable
configuration c(x) ∈ C[[x±1]] that satisfies the low complexity assumption. By
Lemma 1, there is a (one variable) polynomial f(x) that annihilates c(x). Mul-
tiplying by a suitable monomial, we can take an annihilating f(x) with the
constant term one:

f(x) = 1 + a1x+ a2x
2 + . . . anx

n.



Now f(x)c(x) = 0 means that, for all i ∈ Z,

ci = a1ci−1 + a2ci−2 + · · ·+ anci−n,

so that the symbol in position i is determined by the n symbols on its left. A
deterministic process on a finite set is necessarily periodic, so clearly c has to be
a periodic configuration. We have established

Theorem 1 (Morse, Hedlund 1938). If a one-dimensional bi-infinite word
contains at most n distinct subwords of length n then the word is periodic.

4 Step 2: From an Annihilating Filter to a Periodic
Decomposition

Let c be a configuration. We define

Ann(c) =
{
f ∈ C[X]

∣∣ fc = 0
}

to be the set of polynomials that annihilate it. Note that Ann(c) contains proper
polynomials only. Note also that we take complex polynomials so that we can
apply Hilbert’s Nullstellensatz that requires an algebraically closed field.

It is easy to see that Ann(c) is an ideal of the polynomial ring C[X], the
annihilator ideal of configuration c. We always have 0 ∈ Ann(c) where 0 is the
zero polynomial with zero coefficients. If Ann(c) = {0} then the annihilator ideal
is trivial ; if Ann(c) contains also some non-zero polynomial then it is non-trivial.
By Lemma 1, the annihilator ideal of a low complexity configuration is always
non-trivial. It is also easy to see that if c is integral and Ann(c) is non-trivial
then Ann(c) contains a non-zero polynomial from Z[X], that is, a polynomial
with integer coefficients.

More generally, if C is a set of configurations (e.g., a subshift), we let

Ann(C) =
{
f ∈ C[X]

∣∣ fc = 0 for all c ∈ C
}

be the set of common annihilators. Again, Ann(C) is an ideal of the polynomial
ring.

If Z = (z1, . . . , zd) ∈ Cd is a complex vector then it can be plugged into a
polynomial, producing a complex value. In particular, plugging into a monomial
Xv results in Zv = zv11 · · · z

vd
d .

In this section we use Hilbert’s Nullstellensatz as a tool to infer other elements
of the ideal Ann(c). Recall the statement of the Nullstellensatz: Suppose g(X)
is a polynomial such that g(Z) = 0 for all common roots Z of Ann(c), that is,
for all Z ∈ Cd such that f(Z) = 0 for all f ∈ Ann(c). Then gn(X) ∈ Ann(c) for
some n.

First we show that annihilating integral polynomials can be spatially “blown-
up”:



Lemma 2. Let c(X) be a finitary integral configuration and f(X) ∈ Ann(c) a
non-zero integral polynomial, that is, f(X) ∈ Ann(c) ∩ Z[X]. Then there exists
an integer r such that for every positive integer n relatively prime to r we have
f(Xn) ∈ Ann(c).

Proof. Denote f(X) =
∑
avX

v. First we prove the claim for the case when n is
a large enough prime.

Let p be a prime, then we have fp(X) ≡ f(Xp) (mod p). Because f annihi-
lates c, multiplying both sides by c(X) results in

0 ≡ f(Xp)c(X) (mod p).

The coefficients in f(Xp)c(X) are bounded in absolute value by

s = cmax
∑
|av|,

where cmax is the maximum absolute value of coefficients in c. Therefore if p > s
we have f(Xp)c(X) = 0.

For the general case, set r = s!. Now every n relatively prime to r is of the
form p1 · · · pk where each pi is a prime greater than s. Note that we can repeat
the argument with the same bound s also for polynomials f(Xm) for arbitrary
m – the bound s depends only on c and the (multi)set of coefficients av, which
is the same for all f(Xm). Thus we have f(Xp1···pk) ∈ Ann(c). ut

The next lemma establishes a polynomial g(X) of simple form that becomes zero
at all common roots of Ann(c):

Lemma 3. Let c be a finitary integral configuration and f(X) =
∑
avX

v a
non-trivial integral polynomial annihilator. Let S = supp(f) be the support of
f(X). Define

g(X) = x1 · · ·xd
∏
v∈S
v 6=v0

(Xrv −Xrv0)

where r is the integer from Lemma 2 and v0 ∈ S arbitrary. Then g(Z) = 0 for
any common root Z ∈ Cd of Ann(c).

Proof. Fix Z such that h(Z) = 0 for all h ∈ Ann(c). If any of its complex
coordinates is zero then clearly g(Z) = 0. For this reason we included x1 · · ·xd
as a factor of g(X).

Assume then that all coordinates of Z are non-zero. Let us define for α ∈ C

Sα =
{
v ∈ S

∣∣ Zrv = α
}
,

fα(X) =
∑
v∈Sα

avX
v.

Because S is finite, there are only finitely many non-empty sets Sα1 , . . . , Sαm
and they form a partitioning of S. In particular we have f = fα1

+ · · ·+ fαm .



Numbers of the form 1 + ir are relatively prime to r for all non-negative
integers i, therefore by Lemma 2, f(X1+ir) ∈ Ann(c). Plugging in Z we obtain
f(Z1+ir) = 0. Now compute:

fα(Z1+ir) =
∑
v∈Sα

avZ
(1+ir)v =

∑
v∈Sα

avZ
vαi = fα(Z)αi

Summing over α = α1, . . . , αm gives

0 = f(Z1+ir) = fα1
(Z)αi1 + · · ·+ fαm(Z)αim.

Let us rewrite the last equation as a statement about orthogonality of two vectors
in Cm:

(fα1
(Z), . . . , fαm(Z)) ⊥ (αi1, . . . , α

i
m)

By Vandermode determinant, for i ∈ {0, . . . ,m − 1} the vectors on the right
side span the whole Cm. Therefore the left side must be the zero vector, and
especially for α such that v0 ∈ Sα we have

0 = fα(Z) =
∑
v∈Sα

avZ
v.

Because Z does not have zero coordinates, each term on the right hand side is
non-zero. But the sum is zero, therefore there are at least two vectors v0,v ∈ Sα.
From the definition of Sα we have Zrv = Zrv0 = α, so Z is a root of Xrv−Xrv0 .

ut

Now we are ready to apply the Nullstellensatz to obtain a simple annihilator:

Theorem 2. Let c be a finitary integral configuration with a non-trivial annihi-
lator. Then there are non-zero v1, . . . ,vm ∈ Zd such that the Laurent polynomial

(Xv1 − 1) · · · (Xvm − 1)

annihilates c.

Proof. This is an easy corollary of Lemma 3. First notice that the non-trivial
annihilator can be taken so that it has integer coefficients. The polynomial g(X)
provided by Lemma 3 vanishes on all common roots of Ann(c), therefore by
Hilbert’s Nullstellensatz there is n such that gn(X) ∈ Ann(c). Note that any
monomial multiple of an annihilator is again an annihilator. Therefore also

gn(X)

xn1 · · ·xndXnrv0(|S|−1)

is, and it is a Laurent polynomial of the desired form. ut

Multiplying a configuration by (Xv−1) is a “difference operator” on the con-
figuration. Theorem 2 then says that there is a sequence of difference operators
which annihilates the configuration. We can reverse the process: let us start by
the zero configuration and step by step “integrate” until we obtain the original
configuration. This idea gives the Decomposition theorem:



Theorem 3 (Decomposition theorem [KS15]). Let c be a finitary integral
configuration with a non-trivial annihilator. Then there exist periodic integral
configurations c1, . . . , cm such that c = c1 + · · ·+ cm.

5 An Example

In this section we illustrate how the theory applies to a concrete example. Its
properties were briefly mentioned in [KS15], without proofs. Recall that con-
figurations are not assumed to be finitary or integral unless explicitly stated
so.

Fix α ∈ R irrational and define two-dimensional configurations c(1), c(2), c(3)

and s by

c
(1)
ij = −biαc, c

(2)
ij = −bjαc, c

(3)
ij = b(i+ j)αc,

s = c(1) + c(2) + c(3).

Then s is a finitary integral configuration over the alphabet {0, 1}. Obviously,
c(1), c(2), c(3) are periodic in directions (0, 1), (1, 0), (−1, 1) respectively, but they
are not finitary. In the following we prove that s cannot be expressed as a finite
sum of finitary periodic configurations.

There is a certain symmetry in s which becomes apparent when the configu-
ration is affinely transformed such that these three directions become symmetric.
In that case, it is natural to show the coefficients in a hexagonal grid, see Fig-
ure 1.

Fig. 1: The configuration s from Section 5 when α is the golden ratio is shown on
the left. On the right the configuration is skewed such that the three directions
(0, 1), (1, 0) and (1,−1) became symmetrical, the bottom left corner is preserved.

For any Laurent polynomials f1, . . . , fn ∈ C[X±1], we let

〈f1, . . . , fn〉 = {g1f1 + · · ·+ gnfn | g1, . . . , gn ∈ C[X±1]}



be the Laurent polynomial ideal they generate. Note that in this notation we let
all involved polynomials be Laurent so that this is not a polynomial ideal. For
Laurent polynomials f(X) and g(X), we denote f ≡ g mod 〈f1, . . . , fn〉 if and
only if f(X)− g(X) ∈ 〈f1, . . . , fn〉.

A (Laurent) polynomial a(X) is called a line (Laurent) polynomial if the
support supp(a) defined by (2) contains at least two points and all the points
of the support lie on a single line. If u,v ∈ Zd are such that {u + tv | t ∈ R}
contains the support of a line (Laurent) polynomial a(X) then we say that v is
a direction of a(X). By rational directions we mean elements of Zd \{0}. We say
that two line (Laurent) polynomials are parallel if they have the same directions.

Let configuration c ∈ C[[X±1]] be such that Ann(c) contains a line poly-
nomial. We call such c directed. This terminology applies to both finitary and
non-finitary configurations. Notice that for any line Laurent polynomial that
annihilates c there is a parallel line polynomial in Ann(c), obtained by multi-
plying it with a monomial. If all line polynomials in Ann(c) are parallel to each
other, we say that c is one-directed, and if c has non-parallel annihilating line
polynomials we say that c is multi-directed. Non-finitary configurations can be
directed without being periodic, but if c is finitary then it is one-directed if and
only if it is periodic in one direction only, and it is multi-directed if and only
if it has several directions of periodicity. In the two-dimensional setting d = 2,
such configurations are sometimes called singly periodic and doubly periodic,
respectively.

It is well known that a doubly periodic configuration is periodic in all rational
directions. An analogous statement holds more generally for two-dimensional
directed configurations:

Lemma 4. If a(X) and b(X) are non-parallel two-dimensional line Laurent
polynomials then 〈a, b〉 contains line Laurent polynomials in all rational direc-
tions. In particular, in two dimensions, if Ann(c) contains two non-parallel line
polynomials then it contains a line polynomial in every rational direction.

Proof. The proof is easy using simple algebraic geometry and zero dimensionality
of 〈a, b〉. Here we give it as an elementary linear algebraic reasoning. It is easy
to see that there is a finite domain D ⊆ Z2 (a parallelogram determined by the
supports of a and b) such that for any Laurent polynomial f there is a Laurent
polynomial f ′ ≡ f mod 〈a, b〉 with support supp(f ′) ⊆ D.

Let u ∈ Z2 \ {(0, 0)} be any rational direction. Consider the monomials
X0, Xu, X2u, . . . and, for each k = 0, 1, 2 . . . , let fk(X) ≡ Xku mod 〈a, b〉 be
the representative with supp(fk) ⊆ D. It follows from the finiteness of the sup-
port that f1, f2, . . . are linearly dependant, and hence there is a non-zero vector
(a0, a1, . . . , an) of coefficients such that a0f0(X) + · · ·+ anfn(X) = 0. But then
f(X) = a0X

0 + a1X
u + · · · + anX

nu is in 〈a, b〉. If f(X) is a monomial then
1 ∈ 〈a, b〉 and hence 〈a, b〉 contains all Laurent polynomials. Otherwise f(X)
has at least two non-zero coefficients and it is then a line Laurent polynomial in
direction u. ut



The next lemma states that one-directed configurations in different directions
are linearly independent.

Lemma 5. Let c1(X), . . . , cn(X) be two-dimensional configurations that are one-
directed and pairwise non-parallel. Then a1, . . . , an ∈ C satisfy a1c1(X) + · · ·+
ancn(X) = 0 if and only if a1 = · · · = an = 0.

Proof. We prove the claim by induction on n. Case n = 1: since c1(X) is one-
directed, it is not the zero power series. Hence a1c1(X) = 0 if and only if a1 = 0.

Suppose then the claim has been proved for n− 1, and let a1, . . . , an be such
that

a1c1(X) + · · ·+ ancn(X) = 0. (4)

Because cn(X) is one-directed it is annihilated by some line Laurent polynomial
a(X). We multiply (4) by a(X).

Let 1 ≤ i ≤ n − 1 and consider a(X)ci(X). It is annihilated by the same
line Laurent polynomial that annihilates ci(X) so it is directed. If it were multi-
directed then, by Lemma 4, it would be annihilated by some line Laurent polyno-
mial b(X) that is parallel to a(X). Then ci(X) would be annihilated by the line
Laurent polynomial a(X)b(X) that is parallel to a(X), a contradiction with the
fact that ci(X) and cn(X) are one-directed in different directions. We conclude
that a(X)ci(X) is one-directed in the same direction as ci(X).

Multiplying (4) by a(X) implies that

a1a(X)c1(X) + · · ·+ an−1a(X)cn−1(X) = 0.

By the inductive hypothesis, a1 = · · · = an−1 = 0. Case n = 1 applied to
ancn(X) = 0 shows that also an = 0. ut

Now we are ready to analyze the configuration s = c(1) + c(2) + c(3) defined
at the beginning of this section. We want to show that it is not a sum of finitely
many periodic finitary configurations. Suppose the contrary: c(1) + c(2) + c(3) =
f1 + · · ·+ fn for some periodic finitary fi(X). By moving the terms on the same
side, and combining terms that are directed in the same direction, we obtain
that

(c(1) + p1) + (c(2) + p2) + (c(3) + p3) + p4 + · · ·+ pm = 0, (5)

for some directed finitary pi(X) with the following properties:

– Configurations p1(X), p2(X) and p3(X) have line Laurent polynomial anni-
hilators in the same directions (0, 1), (1, 0) and (−1, 1) as c(1)(X), c(2)(X)
and c(3)(X), respectively. They may have line annihilators also in other di-
rections so that any doubly periodic fi(X) in the original bounded periodic
decomposition may be added in them.

– Configurations p4(X), . . . , pm(X) are one-directed in pairwise non-parallel
directions. These directions are also not parallel to the directions (0, 1), (1, 0)
and (−1, 1) of the line annihilators of c(1)(X), c(2)(X) and c(3)(X).

Lemma 6. In (5), configurations c(k) + pk are one-directed, for k = 1, 2, 3.



Proof. It is clear that c(k) + pk is directed in the same direction as c(k), so it is
enough to show that it is not multi-directed. For k = 1 or k = 3 let us read the
coefficients of c(k) + pk horizontally along cells . . . , (−1, 0), (0, 0), (1, 0), . . . , and
in the case k = 2 along the vertical line . . . , (0,−1), (0, 0), (0, 1), . . . . In each case
we obtain a one-dimensional configuration d(x) = c(x) + p(x) with ci = biαc for
all i ∈ Z, and with p(x) finitary. (Note that in the cases k = 1 and k = 2 we
negate the coefficients to get from −biαc to biαc.)

If c(k) + pk is multi-directed then by Lemma 4 it has an annihilating line
Laurent polynomial in every direction and then, in particular, in the horizontal
and vertical directions. This means that the one-dimensional configuration d(x)
has a non-trivial annihilator b(x). Then also

(1− x)d(x) = c′(x) + p′(x)

is annihilated by b(x), where c′(x) = (1 − x)c(x) has coefficient c′i = biαc −
b(i − 1)αc ∈ {0, 1} in cell i, and also p′(x) = (1 − x)p(x) is finitary. A one-
dimensional finitary configuration with a non-trivial annihilator is periodic by
the determinism argument we used in the proof of Theorem 1, so that d′(x) =
(1− x)d(x) is n-periodic for some n > 0. Let h = d′1 + · · ·+ d′n be the sum over
one period. Notice that di−d0 = d′1 + · · ·+d′i for all i > 0, so that djn = d0 + jh
for all j > 0. As d(x) = c(x) + p(x) we have

pjn = djn − cjn = d0 + jh− bjnαc. (6)

Because p(x) is finitary, there are j1 < j2 such that pj1n = pj2n. By (6) this
means (j2 − j1)h = bj2nαc − bj1nαc, so that h is a rational number and cannot
hence be equal to irrational nα. But then, using (6) again, limj→∞ pjn = ±∞
so that p(x) cannot be finitary, a contradiction. ut

Now it is clear that (5) is a non-trivial linear dependency among one-directed
configurations in pairwise non-parallel directions. This is impossible by Lemma 5
so (5) cannot hold. We have proved the following result:

Theorem 4. Let α > 0 be irrational. The two-dimensional configuration s over
the binary alphabet {0, 1} defined by

sij = b(i+ j)αc − biαc − bjαc

is a sum of three periodic integral configurations but not a sum of finitely many
finitary periodic configurations.

6 Conclusions and Applications

We have proved that multidimensional configurations of low local complexity
can be expressed as a sum of periodic configurations. We have also demonstrated
that sometimes the periodic components are necessarily non-finitary. We believe
that the periodic decomposition will be useful in tackling a number of questions
in multidimensional symbolic dynamics and combinatorics of words. Here we
present two open problems whose setup is amenable to our approach.



Nivat’s conjecture

Nivat’s conjecture (proposed by M. Nivat in his keynote address in ICALP
1997 [Niv97]) claims that in the two-dimensional case d = 2, the low complexity
assumption (3) for a rectangle D implies that c is periodic. The conjecture is a
natural generalization of the one-dimensional Morse-Hedlund theorem that we
presented as Theorem 1. In the two-dimensional setting, for m,n ∈ N, let us
denote by Pattm×n(c) the set of m× n rectangles in configuration c.

Conjecture 1 (Nivat’s conjecture). If for some m,n we have |Pattm×n(c)| ≤ mn
then c is periodic.

The conjecture has recently raised wide interest, but it remains unsolved.
In [EKM03] it was shown Pc(m,n) ≤ mn/144 is enough to guarantee the pe-
riodicity of c. This bound was improved to Pc(m,n) ≤ mn/16 in [QZ04], and
recently to Pc(m,n) ≤ mn/2 in [CK13b]. Also the cases of narrow rectangles
have been investigated: it was shown in [ST02] and recently in [CK13a] that
Pc(2, n) ≤ 2n and Pc(3, n) ≤ 3n, respectively, imply that c is periodic.

The analogous conjecture in the higher dimensional setups is false [ST00].
The following example recalls a simple counter example for d = 3.

n

Fig. 2: A non-periodic three-dimensional configuration where two infinite stripes
in orthogonal orientations are at distance n of each other. The number of distinct
n× n× n patterns in the configuration is 2n2 + 1.

Example 1. Fix n ≥ 3, and consider the following c ∈ {0, 1}Z3

consisting of two
perpendicular lines of 1’s on a 0-background, at distance n from each other:
c(i, 0, 0) = c(0, i, n) = 1 for all i ∈ Z, and c(i, j, k) = 0 otherwise. See Figure 2
for a picture of the configuration. For D equal to the n × n × n cube we have
|PattD(c)| = 2n2 + 1 since the D-patterns in c have at most a single 1-line
piercing a face of the cube. Clearly c is not periodic although 2n2+1 < n3 = |D|.
Notice that c is the sum of two periodic configurations. Our results imply that
any counter example must decompose into a sum of periodic components. ut



In [KS15] we reported the following asymptotic result, using the approach
discussed in the present paper. The detailed proof of the result will be published
elsewhere.

Theorem 5 ([KS15]). Let c be a two-dimensional non-periodic configuration.
Then |Pattm×n(c)| > mn for all but finitely many pairs m,n.

Periodic tiling problem

Another related open problem is the periodic (cluster) tiling problem by Lagarias
and Wang [LW96]. A (cluster) tile is a finite D ⊂ Zd. Its co-tiler is any subset
C ⊆ Zd such that

D ⊕ C = Zd. (7)

The co-tiler can be interpreted as the set of positions where copies of D are
placed so that they together cover the entire Zd without overlaps. Note that the
tile D does not need to be connected – hence the term “cluster tile” is sometimes
used. The tiling is by translations of D only: the tiles may not be rotated.

It is natural to interpret any C ⊆ Zd as the binary configuration c ∈ {0, 1}Zd

with cv = 1 if and only if v ∈ C. Then the tiling condition (7) states that C is a
co-tiler for D if and only if the (−D)-patterns in the corresponding configuration
c contain exactly a single 1 in the background of 0’s. In fact, as co-tilers of D
and −D coincide [Sze98], this is equivalent to all D-patterns having a single 1.

We see that the set C of all co-tiler configurations for D is a subshift of
finite type [LM95]. We also see that the low local complexity assumption (3) is
satisfied, even for the entire subshift of valid tilings so that |PattD(C)| ≤ |D|.

Conjecture 2 (Periodic Tiling Problem). If tile D has a co-tiler then it has a
periodic co-tiler.

This conjecture was first formulated in [LW96]. In the one-dimensional case
it is easily seen true, but already for d = 2 it is open. Interestingly, it is known
that if |D| is a prime number then every co-tiler of D is periodic [Sze98]. (See
also [KS15] for an alternative proof that uses power series and polynomials.).
The same is true if D is connected, that is, a polyomino [BN91].
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