Fundamenta Informaticae 168 (2019) 1-13
DOI 10.3233/FI-2019-1800
10S Press

A Computational Model for The Access to Medical Service in a
Basic Prototype of a Healthcare System

Luigia Petre
Distributed Systems Laboratory
Abo Akademi University and Turku Centre for Computer Science, Finland

Usman Sanwal, Gohar Shah, Charmi Panchal, Dwitiya Tyagi
Computational Biomodeling Laboratory

Abo Akademi University and Turku Centre for Computer Science, Finland

Ion Petre*

Computational Biomodeling Laboratory

University of Turku and Turku Centre for Computer Science, Finland

National Institute for Research and Development in Biological Sciences, Romania

ion.petre @utu.fi

Abstract. How robust is a healthcare system? How does a patient navigate the system and what
is the cost (e.g., number of medical services required or number of times the medical provider had
to be changed to get access to the required medical services) incurred from the first symptoms
to getting cured? How will it fare in the wake to a sudden epidemic or a disaster? How are all
of these affected by administrative decisions such as allocating/diminishing resources in various
areas or centralising services? These are the questions motivating our study on a formal prototype
model for a healthcare system. We propose that a healthcare system can be understood as a
distributed system with independent nodes (healthcare providers) computing according to their
own resources and constraints, with tasks (patient needs) being allocated between the nodes. The
questions about the healthcare system become in this context questions about resource availability
and distribution between the nodes. We construct in this paper an Event-B model capturing the
basic functionality of a simplified healthcare system: patients with different types of medical
needs being allocated to suitable medical providers, and navigating between different providers
for their turn for multi-step treatments.

* Address for correspondence: University of Turku and Turku Centre for Computer Science, Finland

2 L. Petre et al. | An Event-B Model for a Basic Prototype of a Healthcare System

1. Introduction

Healthcare systems are highly complex environments involving many different stakeholders (e.g., clin-
icians, patients, administrators) with highly diverse objectives (e.g., driven by medical concerns, need
of effectiveness, need of efficiency, focus on costs or on service availability). Changes in a healthcare
system are almost always driven by economical or administrative constraints and it is highly difficult
to predict their consequences on the overall patient-focused quality of the system. We are interested
in this paper in describing some of this complexity by building a formal model capturing the basic
architecture of a healthcare system: medical providers with specific capabilities, the connections be-
tween them, and the way patients navigate the system to have their medical needs addressed. The
model captures the connections between the users and their first point of contact (primary providers),
and the connections between the providers, from the small local units to the highly-specialized units,
with the aim of capturing the path of a user through the system from general nurse advise to sophis-
ticated treatments by specialist teams. The user is assumed to have registered at the nearest primary
provider. The primary provider addresses all the needs within its expertise. If more medical services
are needed, the primary provider assigns the patient to a secondary provider where the required ser-
vice could be obtained. The same scenario repeats here, with the patient being potentially sent to other
providers as well. Throughout the process the medical situation can be re-evaluated and the medical
services needed for that patient updated. An individual can have multiple needs and a provider can
be connected to many other providers. The architecture of our basic prototype healthcare system is

illustrated in Figure 1.
Visit primary
provider, register
as patient

Sent to another
provider for other
services

Receive a medical
service at the
urrent provider

Evaluation,
potential treatment
change

Exit, not cured

Figure 1. Overview of the architecture of our basic prototype of a healthcare system model

L. Petre et al. | An Event-B Model for a Basic Prototype of a Healthcare System 3

The model we build in this paper uses the state-based Event-B formalism [1]. Event-B is an exten-
sion of the B-method [2], with elements of Action Systems [3], TLA [4], and UNITY [5], introduced
for modelling and reasoning about systems and software.

The paper is structured as follows. We overview in Section 2 some basics about Event-B. We
present the construction of our model in Section 3. We conclude with a brief discussion in Section 4.
All Event-B models discussed in the paper are available (both in Event-B format and in pdf format) at
http://users.abo.fi/ipetre/health-eventb-model.zip.

2. Preliminaries

Event-B is a formal method focused on the stepwise development of models, building on earlier for-
malisms such as the B-Method [2] and the Action Systems [3]. An Event-B model is usually developed
at different levels of abstraction, but the model in each level contains the initial value of the system
state as well as the allowed changes to the system state. Thus, all the allowed traces of the system
state are specified at each abstraction level and semantics-wise, an Event-B model is a state transition
system viewed at different abstraction levels. For an introduction to Event-B we refer to [1]. We
discuss here briefly a few basic concepts needed in the paper.

There are two types of modules in Event-B, called contexts and machines. A context contains
definitions of constants, carrier sets, as well as axioms about them. A machine contains variables,
invariants and events, and can see one or more contexts. We describe the system state via variables;
the types of variables and other interesting properties that the state of the system must respect are
specified as invariants. The system state changes as described by events; the initial system state is
specified by a special event called Initialisation. An event can have a guard, which is a predicate on
the machine variables and, possibly, on the local variables of the event. When the guard holds, we
say the event is enabled. This means that it can be selected for execution. If two or more events
are enabled at the same time, then only one is non-deterministically chosen and executed. Besides a
guard, an event also has actions, which are assignments to various variables. If the event is chosen
and executed, then its corresponding actions are executed and consequently the variables assigned to
in the actions are updating their values; the rest of the state variables are kept unchanged. When no
more events are enabled, we say the machine has deadlocked.

Event-B is centred around the notion of refinement, see [1]. A model (typically consisting of a
machine and potentially a context) can be developed at different levels of abstraction. In the initial
(and simplest) abstraction level, a model can be very basic and only encompass the elementary features
of the system to model. Properties that we want the system to respect can be formulated already at
this level, e.g., as invariants, and proved to hold. New features can be gradually added to a model, so
that the traces of the more abstract model’s state are still valid in the more concrete model’s state and
the new features still respect the properties specified for the more abstract model. In this case, we say
that the more concrete model refines the more abstract model. The new features can, for instance, be
modeled with new variables, and new events can be specified to model the allowed changes of these
new variables. The old events can also be modified to include changes of new variables, but so that the
traces of the old variables in the more concrete model are their traces in the more abstract model. This

4 L. Petre et al. | An Event-B Model for a Basic Prototype of a Healthcare System

type of refinement is called superposition refinement. Other types of refinement also exist, for instance
data refinement, where some variables in the more abstract machine are replaced by other variables in
the refined machine; in this case, a so-called gluing invariant is specified, that describes the relation
between the old and the new variables. All the occurrences of the old variables are replaced in events
in the refined machine by the new variables; the only place where the old variables still appear is in
the gluing invariant. The refinement relation, denoted C, is asymmetric and transitive. Examples of
refinement-based modeling in Event-B are numerous. For instance, refinement in Event-B was used to
model protocols for file transfer and bounded retransmission, to model control systems, concurrency,
electronic circuits, network synchronisation, leader election algorithms, etc [1]. Refinement models
have also been developed for smart cash card systems [6], vehicle platoons [7], topology discovery in
graphs [8], self-recovery in sensor-actor networks [9], spacecraft systems [10], coordination in peer-
to-peer networks [11], smart grid recoverability [12], proactive routing in wireless networks [13], etc.

Event-B is constructed on top of set theory and logic, and every model has to verify various rules,
called proof obligations. For instance, when we specify some properties as invariants, we have to prove
that the initialisation of the variables establishes the invariants and that the invariants hold before and
after the execution of any event. More proof obligations need to be discharged when we refine models.

Event-B is supported by an Eclipse-based software package called the Rodin platform [14]. The
Rodin platform allows one to edit the models and it generates all the required proof obligations. Im-
portantly, the Rodin platform uses several prover engines such as those from AtelierB, namely PP
(Predicate Prover) and ML (the Mono Lemma prover), in addition to the implicit NewPP prover, pre-
installed in Rodin, see [14]. Based on these provers, Rodin discharges automatically all the proof
obligations that it can, using a mix of various deduction rules, proof rewriting techniques, resolution
methods, arithmetic, etc. [15]. The proof obligations not discharged can be discharged interactively
by the modeler. Often, the fact that a proof cannot be automatically discharged signals a problem-
atic modeling aspect and the modeler is prompted to reconsider the model first. This interleaving of
modeling and proving is a key feature of working with the Rodin platform and is quite similar to the
compilation of programs [14].

3. Building the Event-B model

We developed the model in two steps, connected through model refinement. In the first step we
introduced all the basic ingredients: individuals, diseases, providers, medical services, patients. We
also formulated all the basic actions modelling the medical services being administered to the patients
at various providers: being registered into the system, getting a service, getting the treatment plan
updated, switching providers, exiting the system. In the second step we introduced a notion of capacity
of a provider and modified the model to make sure that no providers is loaded beyond its capacity.

3.1. Model M0: users, medical needs, healthcare providers

Our basic model M0 is concerned with defining the main elements of our healthcare system prototype,
summarised in Table 1.

L. Petre et al. | An Event-B Model for a Basic Prototype of a Healthcare System 5

Table 1. The main elements of the model, defined as “Axioms” in the Event-B language

AXIOMS
axml: Individuals # &
axm2: Providers # &
axm3: Diseases # &
axmd: Services # &
axm3: partition(Exit, { Cured}, {NotCured})
axm6: Provider2Service C Providers x Services
axm7: Disease2Service C Diseases X Services
axm8: Provider2Provider C Providers x Providers
axm9: Individual2PrimaryProvider € Individuals — Providers
axml1O0: InitialSick C Individuals X Diseases
axml1: Provider2Service + &
axml2: Disease2Service # &
axml3: Provider2Provider #+ &
axml4: Individual2PrimaryProvider # &
axml5: InitialSick # @

e [ndividuals which may have various diseases and healthcare providers that are able to admit
and treat patients, offering different types of services. In context CO of MO we define four sets
denoting our base types in this model: Individuals, Providers, Diseases, and Services. All these
sets are non-empty and finite.

e The initial set of medical problems to be addressed is defined through the constant InitialSick C
Individuals x Diseases. The dynamic occurrence of new medical problems is left outside this
basic model.

e Each individual has a primary service provider (e.g., a family doctor or some local clinic), that
she will contact first and will get allocated to whenever she has a medical need. This is modelled
in MO through constant Individual2PrimaryProvider : Individuals — Providers.

o Each healthcare provider has a list of specific services that they can offer within their expertise.
This is modelled in MO through constant Provider2Service C Providers x Services.

e Each disease is associated with some services that may be used to address it. This is modelled
in MO through constant Disease2Service C Diseases X Services.

o If the current service provider can address some of the user’s needs, then the patient will get
service. If not, the provider will allocate her to a suitable provider that can address her needs;
the relationship between user providers is important here. This is modelled in M0 through
constant Provider2Provider C Providers X Providers. We only model it as a simple relation on
the set of providers, that may include (albeit not explicitly in this model) considerations of the
distance between providers, public/private character of the provider, etc.

6 L. Petre et al. | An Event-B Model for a Basic Prototype of a Healthcare System

The current provider (for all individuals) is defined in machine MO through the variable cur-
rent_provider C Individuals X Diseases X Providers, indicating the provider currently treating a
specific individual for a specific disease. The same individual may have different providers for differ-
ent diseases. The treatment currently assigned for this individual and disease is recorded through the
set of medical services currently anticipated to be performed in the future and modelled as a variable
treatments C Individuals X Diseases x P (Services). The whole record of all patients, diseases, services
they received and providers they visited is modelled as a variable patients C Individuals x Diseases x
Providers x P(Services). A patient may be removed from the system with an outcome ‘Cured’ or
‘Not cured’ and this is modelled through a variable outcome C Individuals x Diseases x Exit, where
the set Exit only contains two values, modelling the two possible outcomes. The set of individu-
als that have a disease but have not yet been registered into the system is modelled as a variable
sick_not_yet_reg C Individuals x Diseases.

With these definitions we can also introduce two functions NumProviders and NumServices giving
the number of providers that an individual had to visit for a given disease and the number of services
she received for it. These are some basic measures of cost for a given patient and disease in the given
model. All these variables are summarised in Table 2.

Table 2. The types of the variables are fixed through ‘Invariants’ in Event-B
INVARIANTS

invl: current_provider C Individuals x Diseases X Providers

inv2: treatments C Individuals x Diseases x P (Services)

inv3: patients C Individuals x Diseases x Providers x P (Services)
invS: outcome C Individuals x Diseases x Exit

inv4d: sick_not_yet_reg C Individuals x Diseases

inv6: NumProviders C Individuals X Diseases x N

inv7: NumServices C Individuals x Diseases X N

The functionality illustrated in Figure 1 is implemented in our model through several ‘events’:
Register_Sick, Change_Provider, Evaluation, Exit_Cured, and Exit Not_Cured. Each of these events
carries its set of guards, i.e. logical conditions that must be satisfied for the event to be enabled, and
a set of actions that are executed when the event is triggered. This approach forces the modeller to
be explicit about her assumption and opens the door to the possibility of formulating global logical
conditions that must be satisfied by the model. Rodin even offers the possibility of automatically
proving such invariants, thus helping to demonstrate the soundness of the model. We discuss this in
some details in the following.

The registration of an individual at her primary provider is modelled through the event Register_Sick
shown in Table 3. The guards of this event specify that the individual i has a disease d and not yet reg-
istered. This is checked by looking up the pair individual-disease (i, d) in the sick-not-yet-registered
set (grd3), and by checking that the pair is not yet in the registry of current treatments and providers
(grd6 and grd7). In this case the registration can proceed and it updates accordingly the treatments and

L. Petre et al. | An Event-B Model for a Basic Prototype of a Healthcare System 7

providers registries. It initialises the number of providers for (i,d) to 1, and the number of services
received to 0 (no medical service has been received yet).

Table 3. The Event-B implementation of a patient being registered at her primary provider

~

Event Register_Sick (ordinary)

any

where
grdl: i € Individualstrue
grd2: d € Diseasestrue
grd3: i+ d € sick_not_yet_regtrue
grd4: u € Providerstrue
grd5: u = Individual2PrimaryProvider(i)true
grd6: s C Disease2Service[{d}]true
grd7: i+ d & dom(treatments)true
grd8: i d & dom(current_provider)true
then
actl: patients := patients < {i — d — u — s}true
act2: treatments := treatments < {i — d — s}true
act3: current_provider(i — d) := utrue
actd: sick_not_yet_reg := sick_not_yet_reg \ {i — d}true
act5: NumProviders := NumProviders < {i — d — 1}true
act6: NumServices := NumServices < {i — d — 0}true
end

Receiving a medical service is modelled through the event Perform_Service shown in Table 4.
The guards of this event specify in all details the types of all the variables used in the implementation,
and its action simply updates the treatment registry (showing one less service still to be received), the
patient registry (recording the service that has been offered), and the number of services received by
the patient for this disease.

In case none of the currently prescribed services are available at the current provider, the model
includes the possibility of changing the provider to one who can offer some. This is implemented
through the Event-B model Change_Provider shown in Table 5. The guards are indeed checking
that no required medical service is available at the current provider (grd10) while there is a provider
connected to the current one that has relevant services to offer (grd11). The event updates the registries
of current provider and patients, and it increases by one the number of providers seen by the patient
for this disease.

8 L. Petre et al. | An Event-B Model for a Basic Prototype of a Healthcare System

Table 4. The Event-B implementation of a patient receiving a medical service

o~

Event Perform_Service (ordinary)

any
i
d
p
S
sl
s2
n

where

grdl: i € Individualstrue

grd2: d € Diseasestrue

grd3: p € Providerstrue

grd4: s C Disease2Service[{d}]true

grd5: sl € Disease2Service[{d}|true

grd6: 52 C Disease2Service[{d}]true

grd7: i+ dw— p > s € patientstrue

grd8: sl € strue

grd9: 51 € Provider2Service[{p}|true

grd10: 52 = s\ {s1}true

grd16: n € Ntrue

grd17: i — d — n € NumServicestrue

erd18: i — d — s € treatmentstrue

erd19: i — d +— p € current_providertrue
then

actl: treatments := treatments < {i — d — s2}true

act2: patients := patients U {i — d — p — {s1}}true

act3: NumServices := NumServices < {i — d — n + 1}true
end

We skip here the discussion of the remaining three events Evaluation, Exit_Cured and Exit_Not_-
Cured, as their semantic is clear from the code. All events are available at http://users.abo.fi/
ipetre/health-eventb-model.zip.

To make sure that the model is sound, we also introduced a number of additional invariants listed
in Table 6. They formulate the following conditions:

e An individual is only registered for a disease at a single current provider;

e An individual is only registered with a single treatment plan for a disease;

L. Petre et al. | An Event-B Model for a Basic Prototype of a Healthcare System 9

Table 5. The Event-B implementation of changing the medical provider

Event Change_Provider (ordinary)

any

5 » 0 T Qo =

where
grdl: i € Individualstrue
grd2: d € Diseasestrue
grd3: p € Providerstrue
grd4: g € Providerstrue
grd6: s C Disease2Service[{d}]true
grd7: p # gtrue
grd8: p — g € Provider2Providertrue
erd9: i dw— p—> s € patientstrue
grd10: s N Provider2Service[{p}| = Strue
grdl1: s N Provider2Service[{q}] # @true
grd12: n € Ntrue
erd13: i — d — n € NumProviderstrue
grd14: i — d — p € current_providertrue
erdl5: i — d — s € treatmentstrue
then
actl: current_provider := current_provider < {i — d — g}true
act2: patients := patients U {i — d — q — s}true
act3: NumProviders := NumProviders < {i — d — n + 1}true
end

o If an individual is registered with a disease, then she is assigned with a medical provider;
e The number of (visited) providers is a variable depending on the individual and the disease;
e The number of (received) services is a variable depending on the individual and the disease.

Remarkably, Rodin offered computational support to prove these invariants, most of them being ap-
proved automatically without the modeller’s intervention. This indicates that the model was soundly
written with respect to its intended functionality.

10 L. Petre et al. | An Event-B Model for a Basic Prototype of a Healthcare System

Table 6. Invariants proving the soundness of the model

INVARIANTS

inv8: Vi, d,p,q-((i = d > p) € current_provider A\ (i — d +— q) € current_provider = p = q)
inv9:

Vi,d,sl,s2-(i € Individuals A\ d € Diseases N s1 C Services \ s2 C Services N

i+ d sl € treatments N\ i — d — s2 € treatments = s1 = s2)
invl0: Vi d,j k,p-((i = d) € sick_not_yet_reg A (j — k +— p) € current_provider = (i #jV d # k))
invll: Vi, d,p-((i = d v p) € current_provider = (3s-s C Services A (i — d > s) € treatments))
invl2: Vi, d,m,n-((i — d — m) € NumProviders N\ (i — d — n) € NumProviders = m = n)
invl3: Vi,d,m,n-((i = d — m) € NumServices A (i — d — n) € NumServices = m = n)

3.2. Model M1: providers have limited capacity

We introduce now the feature of each provider having a maximum capacity in terms of the maximum
number of services they can have on their current provider list at any moment. We introduce this
through a refinement of our basic model and we use Event-B to prove that the level of occupancy
never exceeds the capacity.

Through the refinement all constants and events defined in MO0 are available also in machine M.
We only add in M/ a new (constant) function Capacity defined as Capacity € Providers — N rep-
resenting the maximum service capacity of each provider, that cannot be exceeded when taking new
patients or updating the current patients services.

To indicate that the a provider can not commit to more services than its capacity we introduce
several modifications in the events of M1.

The event Register_Sick gets a new guard Occupancy(q) + card(s)) < Capacity(q) and a new
action Occupancy(q) := Occupancy(q) + card(s), where ¢ id the primary provider of the individual
being considered for registration.

The event Perform_Service receives a new action Occupancy(p) := Occupancy(p) — 1, showing
that a service has been performed at the current provider ¢ and so its occupancy is one less than before.

The event Change_Provider gets a new guard ensuring that the new provider ¢ has enough service
capability to take the patient: Occupancy(q) + card(s)) < Capacity(q). It also gets two new actions
Occupancy(q) := Occupancy(q)+card(s)) and Occupancy(p) := Occupancy(p)—card(s)), showing
that provider ¢ committed to new services, while the current provider p has less occupancy.

The event Evaluation gets a new guard Occupancy(p)—card(s)+card(sl) < Capacity(p) ensuring
that the intended change in treatment can be committed to by the current provider. It also gets a new
action Occupancy(p) := Occupancy(p) — card(s) + card(s1).

Finally, the event Exit Not_Cured gets a new action Occupancy(p) := Occupancy(p) — card(s)
reflecting that the set s of services is not longer committed to this provider.

Our modelling of M1 satisfies the invariant that the occupancy of all providers is always at most
their capacity. We proved this result using the built-in theorem proving capability of Rodin. In fact,
the invariant was automatically proved by Rodin without our intervention, thus showing the soundness
of the model.

L. Petre et al. | An Event-B Model for a Basic Prototype of a Healthcare System 11

The model M1 is available at http://users.abo.fi/ipetre/health-eventb-model.zip.

3.3. Model Statistics

The ratio of automatically discharged proofs to interactively proved ones is illustrated in Figure 2.

Element Name __| Total | Auto | Manual
9

Full Model 62 53
MO 36 27 9
M1 26 26 0

Figure 2. The auto-to-manual proof ratio.

As is typical for Event-B developments, the automatic proofs were very useful, as were the cases
when no automatic proof was generated. We have discovered in this way several shortcomings or
incompleteness of previous versions of the model. The proofs non-automatically discharged for the
final version of the model deal with well-definedness issues and ensurance of invariants, and were
rather straightforward to discharge manually. The difficult step was in finding the best structures
for modeling the different concepts; we found these structures in a (rather typical) feedback loop of
modeling and proving.

4. Discussion

We constructed in this paper a prototype formal model of a healthcare system consisting of multiple
health service providers and patients with various types of medical needs. We built an Event-B model
for such a system, focusing on the dynamics of how a patient navigates the system between various
health service providers. The model includes some of the important basic aspects of a healthcare
system such as interactions between users and providers, and between providers themselves, map-
ping a user to a provider, navigation of a user between healthcare providers, and occupancy levels of
providers. We see this as a proof-of-concept prototype model demonstrating that some of the com-
plexity of a healthcare system may be captured with an Event-B model. The model can also be seen
as a domain-specific distributed scheduling system, and thus of general interest in a wider range of
applications.

Other aspects of healthcare systems were also described through formal methods. For example, the
interactions between healthcare agencies at the local, state, and federal levels has been done in [16],
with a focus on the flow of information between these agencies. Demonstrating the correctness or the
safety of medical protocols has been done with the help of formal specifications [17], model checking
[18], process definition languages [19], and business process modelling notations [20]. Our model
adds to the literature the patient experience throughout her navigation between healthcare providers.

Many details of a typical healthcare system are to be added in a further version of our model,
including a continuous inflow of patients, different frequencies of people getting sick, more detailed
costs of treatment per patient and per system (including cost of the access to a provider, such as

12 L. Petre et al. | An Event-B Model for a Basic Prototype of a Healthcare System

transportation). We may also model a strategy for changing providers, such as choosing one that
maximises the services being offered, or minimises the cost of changing providers. We also consider
introducing types of diseases categorised on levels of complexity. All these details may be added
directly on the basic models we built in this paper. Having them opens up the possibility of formally
investigating notions of robustness of the system, such as the waiting times being upper bounded by
an a-priori defined constant. Of high interest will also be to test the dynamics of the system in the
case of various extreme scenarios such as epidemics/pandemics or natural disasters, modelled through
a spike in the inflow of patients with a certain type of needs or in certain locations. A more detailed
version of our model may also allow to prove that certain temporary modifications in the system (such
as changes in the capacity of some providers, or adding services to others) may keep the system robust
even when in such extreme scenarios. We plan to return to these aspects in a separate study.

References

[1] Abrial JR. Modeling in Event-B: System and Software Engineering. Cambridge University Press, New
York, NY, USA, Ist edition, 2010. ISBN 0521895561, 9780521895569.

[2] Abrial JR. The B-book: Assigning Programs to Meanings. Cambridge University Press, New York, NY,
USA, 1996. ISBN 0-521-49619-5.

[3] Back RJ, Kurki-Suonio R. Decentralization of Process Nets with Centralized Control. In: Proceedings
of the Second Annual ACM Symposium on Principles of Distributed Computing, PODC ’83. ACM, New
York, NY, USA. ISBN 0-89791-110-5, 1983 pp. 131-142. doi:10.1145/800221.806716. URL http:
//doi.acm.org/10.1145/800221.806716.

[4] Lamport L. Specifying Systems: The TLA+ Language and Tools for Hardware and Soft- ware Engineers.
Addison-Wesley, 2003.

[5S] Chandy KM, Misra J. Parallel Program Design: A Foundation. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1988. ISBN 0-201-05866-9.

[6] Butler M, Yadav D. An incremental development of the Mondex system in Event-B. Formal Aspects
of Computing, 2007. 20(1):61-77. doi:10.1007/s00165-007-0061-4. URL http://dx.doi.org/10.
1007/s00165-007-0061-4.

[7] Lanoix A. Event-B Specification of a Situated Multi-Agent System: Study of a Platoon of Vehicles. In:
Theoretical Aspects of Software Engineering. IEEE Computer Society, Los Alamitos, CA, USA. ISBN
978-0-7695-3249-3, 2008 pp. 297-304. doi:http://doi.ieeecomputersociety.org/10.1109/TASE.2008.39.

[8] Hoang TS, Kuruma H, Basin D, Abrial JR. Developing Topology Discovery in Event-B. In: Leuschel
M, Wehrheim H (eds.), Integrated Formal Methods, volume LNCS 5423. Springer Berlin Heidelberg,
Berlin, Heidelberg. ISBN 978-3-642-00255-7, 2009 pp. 1-19. doi:10.1007/978-3-642-00255-7_1. URL
http://dx.doi.org/10.1007/978-3-642-00255-7_1.

[9] Kamali M, Laibinis L, Petre L, Sere K. Self-Recovering Sensor-Actor Networks. In: Proceedings Ninth
International Workshop on the Foundations of Coordination Languages and Software Architectures, FO-
CLASA 2010, Paris, France, 4th September 2010. 2010 pp. 47-61. doi:10.4204/EPTCS.30.4. URL
http://dx.doi.org/10.4204/EPTCS.30.4.

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

L. Petre et al. | An Event-B Model for a Basic Prototype of a Healthcare System 13

Salehi Fathabadi A, Rezazadeh A, Butler M. Applying Atomicity and Model Decomposition to a Space
Craft System in Event-B. In: Bobaru M, Havelund K, Holzmann GJ, Joshi R (eds.), NASA Formal
Methods. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-20398-5, 2011 pp. 328-342.
doi:10.1007/978-3-642-20398-5_24. URL http://dx.doi.org/10.1007/978-3-642-20398-5_24.

Petre L, Sandvik P, Sere K. Node Coordination in Peer-to-Peer Networks. In: Coordination Models
and Languages - 14th International Conference, COORDINATION 2012, Stockholm, Sweden, June 14-
15, 2012. Proceedings. 2012 pp. 196-211. doi:10.1007/978-3-642-30829-1_14. URL http://dx.doi.
org/10.1007/978-3-642-30829-1_14.

Horsmanheimo S, Kamali M, Kolehmainen M, Neovius M, Petre L, Ronkkoé M, Sandvik P. On Proving
Recoverability of Smart Electrical Grids. In: NASA Formal Methods - 6th International Symposium,
NFM 2014, Houston, TX, USA, April 29 - May 1, 2014. Proceedings. 2014 pp. 77-91. doi:10.1007/
978-3-319-06200-6_6. URL http://dx.doi.org/10.1007/978-3-319-06200-6_6.

Kamali M, Hofner P, Kamali M, Petre L. Formal Analysis of Proactive, Distributed Routing. In: Software
Engineering and Formal Methods - 13th International Conference, SEFM 2015, York, UK, September 7-
11, 2015. Proceedings. 2015 pp. 175-189. doi:10.1007/978-3-319-22969-0_13. URL http://dx.doi.
org/10.1007/978-3-319-22969-0_13.

Abrial JR, Butler M, Hallerstede S, Hoang TS, Mehta F, Voisin L. Rodin: an open toolset for modelling
and reasoning in Event-B. STTT, 2010. 12(6):447-466.

Maamria I, Butler M, Edmunds A, Rezazadeh A. On an Extensible Rule-Based Prover for Event-B.
In: Frappier M, Glasser U, Khurshid S, Laleau R, Reeves S (eds.), Abstract State Machines, Alloy, B
and Z, volume LNCS 5977. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-11811-
1, 2010 pp. 407-407. doi:10.1007/978-3-642-11811-1_40. URL http://dx.doi.org/10.1007/
978-3-642-11811-1_40.

Baksi D. Formal interaction specification in public health surveillance systems using pi-calculus. Comput
Methods Programs Biomed, 2008. 92(1):115-120. doi:10.1016/j.cmpb.2008.05.007.

ten Teije A, Marcos M, Balser M, van Croonenborg J, Duelli C, van Harmelen F, Lucas P, Miksch S, Reif
W, Rosenbrand K, Seyfang A. Improving medical protocols by formal methods. Artif Intell Med, 2006.
36(3):193-209. doi:10.1016/j.artmed.2005.10.006.

Bottrighi A, Giordano L, Molino G, Montani S, Terenziani P, Torchio M. Adopting model checking
techniques for clinical guidelines verification. Artif Intell Med, 2010. 48(1):1-19. doi:10.1016/j.artmed.
2009.09.003.

Christov S, Chen B, Avrunin GS, Clarke LA, Osterweil LJ, Brown D, Cassells L, Mertens W. Formally
defining medical processes. Methods Inf Med, 2008. 47(5):392-398.

Bowles J, Caminati MB, Cha S. An integrated framework for verifying multiple care pathways. In:
2017 International Symposium on Theoretical Aspects of Software Engineering (TASE). 2017 pp. 1-8.
doi:10.1109/TASE.2017.8285628.

