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Abstract

Differential expression analysis is one of the most common types of analyses performed
on various biological data (e.g. RNA-seq or mass spectrometry proteomics). It is the
process that detects features, such as genes or proteins, showing statistically significant
differences between the sample groups under comparison. A major challenge in the
analysis is the choice of an appropriate test statistic, as different statistics have been
shown to perform well in different datasets. To this end, the reproducibility-optimized
test statistic (ROTS) adjusts a modified t-statistic according to the inherent properties
of the data and provides a ranking of the features based on their statistical evidence for
differential expression between two groups. ROTS has already been successfully applied
in a range of different studies from transcriptomics to proteomics, showing competitive
performance against other state-of-the-art methods. To promote its widespread use, we
introduce here a Bioconductor R package for performing ROTS analysis conveniently on
different types of omics data. To illustrate the benefits of ROTS in various applications,
we present three case studies, involving proteomics and RNA-seq data from public
repositories, including both bulk and single cell data. The package is freely available
from Bioconductor (https://www.bioconductor.org/packages/ROTS).

Introduction 1

Differential expression analysis between two groups of samples is perhaps the most 2

common type of analysis that is performed on various types of omics data. The aim of 3

differential expression analysis is to detect features (e.g. genes or proteins) showing 4

statistically significant changes between the groups. A commonly used approach has 5

been the Student’s t-test, which has been later shown not to be the most optimal 6

solution in many cases [1, 2]. Although a number of alternative test statistics have 7

therefore been introduced [3–5], a major practical challenge remains that the different 8

statistics perform well in different datasets [6–9] and there is no general agreement on 9

how to make an appropriate choice of the statistic a priori. 10

To address this need, we have introduced a reproducibility-optimized test statistic 11

(ROTS) that optimizes the choice of the statistic directly from the data instead of using 12

a fixed predefined statistic [10]. This is done by maximizing the overlap of top-ranked 13
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features in group-preserving bootstrap datasets among a family of t-type statistics. In 14

particular, ROTS optimizes the ranks of the features because usually the final ranking 15

determines if the differentially expressed features are selected for further validation 16

studies. 17

The ROTS method has already been used in various applications, such as 18

microarrays [10], mass spectrometry proteomics [11] as well as bulk and single-cell 19

RNA-seq [9, 12], and its competitive performance has been shown against other tools for 20

differential expression analysis. Here we introduce a Bioconductor R package ROTS for 21

performing differential expression analysis using the ROTS method and demonstrate 22

the applicability of the method in three diverse case studies. The R package together 23

with detailed documentation is freely available from Bioconductor. 24

Design and Implementation 25

Algorithm 26

ROTS optimizes the reproducibility of top-ranked features in group-preserving 27

bootstrap datasets among a family of modified t-statistics: 28

dα =
|x̄1 − x̄2|
α1 + α2s

(1)

where |x̄1 − x̄2| is the absolute difference between the group averages, α1 and α2 are 29

non-negative parameters to be optimized, and s is the pooled standard error [10]. 30

Special cases of ROTS are the ordinary t-statistic (α1 = 0, α2 = 1) and the signal 31

log-ratio (α1 = 1, α2 = 0). The optimal statistic is determined by maximizing the 32

reproducibility Z-score: 33

Zk (dα) =
Rk (dα)−R0

k (dα)

sk (dα)
(2)

over a lattice α1 ∈ {0, 0.01, ..., 5} , α2 ∈ {0, 1}, k ∈ {1, 2, ..., G}. Here, Rk (dα) is the 34

observed reproducibility of statistic dα at top list size k in bootstrap datasets, R0
k (dα) 35

is the corresponding null reproducibility in randomized datasets permuted over samples, 36

sk (dα) is the standard deviation of the bootstrap distribution, and G is the total 37

number of features in the data. Reproducibility is defined as the average overlap of k 38

top-ranked features over pairs of bootstrapped datasets. 39

The final ROTS output is calculated from the original data using the optimized 40

parameters α1 and α2 giving the highest reproducibility Z-score. The false discovery 41

rate (FDR) is estimated by randomly permuting the sample labels. 42

Software features 43

The ROTS package is freely available from Bioconductor 44

(https://www.bioconductor.org/packages/ROTS) and runs in R environment. Both the 45

package and the R environment can be used on Windows, MacOS or UNIX platforms. 46

After installing the package, the differential expression analysis can be performed within 47

R. A preprocessed and appropriately normalized data matrix is required for input with 48

columns representing different samples and rows representing the features. It can be 49

various types of omics data, such as gene expression microarray data, RNA-seq data or 50

mass spectrometry based proteomics data. As an example, an excerpt from a typical 51

expression matrix of a label-free proteomics study is shown in Table 1, containing log 52

scaled protein abundances of three replicates from two sample groups of the shotgun 53

’profiling standard sample set’ [13]. 54
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Table 1. Example layout of expression data to be used as input for ROTS, where
columns represent different samples and rows represent the features.

Feature A1 A2 A3 B1 B2 B3

1 19.263 19.213 19.151 19.138 19.168 19.328
2 25.950 25.935 25.950 24.040 24.058 24.078
3 21.077 20.982 21.101 21.255 21.263 21.328
4 20.691 20.531 20.470 20.921 20.902 20.911

To perform differential expression analysis on an expression matrix (here data), only 55

one line of code is required after loading the package: 56

library(ROTS) 57

rots.out <- ROTS(data, groups = c(0,0,0,1,1,1), B = 1000, K = 500) 58

Here the vector groups defines the columns of the data matrix belonging to the two 59

different sample groups under comparison, B denotes the number of bootstraps to 60

perform, and K is the maximum top list size to consider in reproducibility optimization. 61

Setting this number to a smaller value may improve the running time drastically. 62

However, we recommend that the value should always be considerably higher than the 63

number of features expected to be differentially expressed. 64

The generated ROTS object (here rots.out) contains the test statistics and 65

additional details for all the features in the input data, including the optimized 66

parameters a1 and a2. If the reported top list size k (rots.out$k) is close to the given 67

parameter K, it suggests that the maximum top list size to be tested might have been 68

too small, and increasing it should be considered. The reproducibility value 69

(rots.out$R) and the reproducibility Z-score (rots.out$Z) are also included. All the 70

results including p-values (rots.out$pvalue), false discovery rates (rots.out$FDR) or 71

fold changes (rots.out$logfc) can be exported by the user and used for further 72

external analysis, such as gene-set or pathway enrichment analysis. 73

The ROTS package includes also versatile built-in options for visualization that can 74

be accessed using the standard R plot function. The type of plot can be selected using 75

the type parameter of the function. Fig 1A shows an example of a volcano plot 76

(type=’volcano’), which visualizes the relationship between fold changes and p-values 77

(i.e. magnitude of change and statistical significance). It can be used to select the most 78

promising candidate features for further validation studies. Fig 1B shows an example of 79

an MA plot (type=’ma’), which shows the relationship between the average intensities 80

(A) and intensity ratios (M) calculated across and between the sample groups for each 81

feature, respectively. It can be used, for instance, to assess the quality of normalization 82

used in preprocessing the data. Fig 1C illustrates the ROTS reproducibility Z-score as a 83

function of top list size k (type=’reproducibility’). It can be used to look for 84

possible alternative peaks of Z-score, which could suggest, for example, subgroups of 85

differentially expressed features or artifacts from data normalization. Fig 1D illustrates 86

a histogram of p-values (type=’pvalue’), which enables assessing the overall 87

performance of the hypothesis testing. Under the null hypothesis, p-values are 88

uniformly distributed, but if there is a large number of differentially expressed features 89

present, the distribution of p-values is likely skewed towards smaller values. Fig 1E 90

shows an example of a principal component analysis (PCA) of the differentially 91

expressed features defined based on a user-specified FDR cutoff (type=’pca’). It is a 92

transformation, where the data is projected into a new coordinate system of principal 93

components retaining the highest variance. It can be used as a tool to evaluate 94

similarities between samples or groups. By setting the FDR parameter to 1, the 95

principal components are calculated using all the features. Fig 1F illustrates a heatmap 96
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with hierarchical clustering of samples and features to visualize the expression levels of 97

differentially expressed features as colours (type=’heatmap’). 98

For additional details and examples of using the ROTS package, the reader is 99

referred to the package manual and the three case studies discussed below. 100

Fig 1. Visualizations provided by ROTS. (A) Volcano plot of the features, where
the differentially expressed features are coloured red. (B) MA plot of the features,
where the differentially expressed features are coloured red. (C) ROTS reproducibility
Z-score as function of top list size. The highest score is marked with red dot together
with its value. (D) Histogram of p-values. (E) Principal component analysis (PCA) plot
of the differentially expressed features. (F) Heatmap and hierarchical clustering of the
samples (columns) and the differentially expressed features (rows) using euclidean
distance and the complete-linkage agglomerative clustering method.

Results 101

The benefits of ROTS over other state-of-the-art tools have already been shown in 102

various applications [9–12]. Here, we used three new case studies to further demonstrate 103

the performance of the ROTS method in different study settings, including label-free 104

quantitative proteomics and both bulk and single-cell RNA-seq studies. 105

Case study 1: Quantitative label-free proteomics 106

The ROTS method has previously been benchmarked in label-free shotgun proteomics 107

using spike-in mixtures and complex mouse liver samples, where it has shown 108

competitive performance against other state-of-the-art methods [11]. Here, the 109

performance of ROTS with quantitative mass spectrometry based proteomics data is 110

illustrated in another published benchmark spike-in study, where the truly differentially 111

expressed proteins are known. 112

The data are from an inter-laboratory spike-in study of the Clinical Proteomic 113

Tumor Analysis Consortium (CPTAC technology assessment study 6) [14–16]. It 114

contains a mixture of 48 human proteins (Sigma UPS1) spiked into a yeast proteome (S. 115

cerevisiae) background at different concentration levels ranging from 0.25 to 20 fmol/µL 116

to create five distinct sample groups each with three technical replicates. From the 117

different datasets available, we processed Orbitrap raw files produced at site 86, from 118

which a total of 736 proteins were quantified using the Progenesis software with peptide 119

identifications from the Mascot search algorithm in Proteome Discoverer software. 120

Threshold for peptide identifications was set to FDR < 0.01 and relative protein 121

quantitation was done using non-conflicting peptides, followed by median normalization. 122

Progenesis was unable to align one of the three replicates in one of the sample groups 123

(sample group E). Only the sample groups with all three replicates (sample groups from 124

A to D) were used here for performance benchmarking. 125

Fig 2 shows the performance of ROTS on the CPTAC data together with other 126

popular methods for differential expression analysis, including significance analysis of 127

microarrays (SAM) [3], Limma [5] and the Student’s t-test. Performance was measured 128

using receiver operating characteristic (ROC) curves, which were created by merging 129

the results from the six possible individual pairwise comparisons involving sample 130

groups from A to D. Overall, ROTS produced a significantly better ROC-curve 131

compared to all other tested methods (DeLong’s test p < 0.001 for each method), which 132

supports the applicability of ROTS in proteomics studies to distinguish differentially 133

expressed proteins. 134
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Fig 2. Performance of ROTS and current state-of-the-art methods for
proteomics in the spike-in proteomics data from the Clinical Proteomic
Tumor Analysis Consortium (CPTAC technology assessment study 6).
Performance was evaluated using receiver operating characteristic (ROC) curves and the
areas under the curves (AUC).

Case study 2: Bulk RNA-seq 135

Similarly as with proteomics data, the ROTS method has been extensively 136

benchmarked against other software packages in bulk RNA-seq data [12]. Besides 137

systematically outperforming other methods in spike-in data, ROTS has also been used 138

to successfully identify prognostic markers for clear cell renal cell carcinoma, which 139

confirms the clinical relevance of estimating differential gene expression accurately with 140

ROTS [12]. Here, the performance of ROTS in bulk RNA-seq data is illustrated using a 141

published benchmark spike-in study. 142

The data are from the sequencing quality control (SEQC) project [17], which 143

includes four distinct sample groups (A, B, C and D) each with five technical replicates 144

sequenced using Illumina HiSeq 2000 platform. For groups A and B, 92 synthetic 145

polyadenylated transcripts provided by the External RNA Control Consortium 146

(ERCC) [18] have been spiked into the Universal Human Reference RNA (UHRR) and 147

Human Brain Reference RNA (HBRR) respectively, so that their concentrations were 148

controlled to have different fold changes of 0.5, 0.67, 1 or 4 between the groups A and B. 149

Samples C and D were then obtained by mixing samples A and B using different ratios: 150

75 % of sample A and 25 % of sample B for sample C and vice versa for sample D. For 151

performance benchmarking, we downloaded the count table from GEO with accession 152

number GSE47774. The trimmed mean of M-values (TMM) normalization [20] with 153

voom transformation [19] was applied before differential expression analysis. In total, 154

four comparisons were considered: A vs B, A vs D, B vs C, and C vs D. 155

Fig 3 shows the performance of ROTS in the bulk RNA-seq data together with other 156

state-of-the-art methods, including edgeR [21,22], Differential Expression analysis for 157

Sequence count data (DESeq) [23] and Limma [5]. Similarly as with proteomics, the 158

performance was measured using ROC-curves, which were created by merging the 159

results from the individual pairwise comparisons. Again, ROTS showed improved 160

performance over the other tested methods (DeLong’s test p < 0.001 for each method), 161

confirming the applicability of ROTS in bulk RNA-seq studies to detect differentially 162

expressed genes. 163

Fig 3. Performance of ROTS and current state-of-the-art methods for bulk
RNA-seq in the spike-in data from the SEQC project. Performance was
evaluated using receiver operating characteristic (ROC) curves and the areas under the
curves (AUC).

Case study 3: Single-cell RNA-seq 164

Recently, performance of the ROTS method in comparison to other state-of-the-art 165

methods has also been tested in single-cell RNA-seq data. ROTS showed good 166

performance without requiring any single-cell-specific modifications, whereas no 167

systematic benefits of the recent single-cell-specific methods were found [9]. Here, we 168

further demonstrate the utility of the ROTS method also in the increasingly popular 169

single-cell RNA-seq data. 170

The data are from a previously published single-cell study on innate lymphoid cells 171

(ILC), containing single cell samples sequenced using Illumina HiSeq 2000 platform [24]. 172
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Similarly as in our recent study [9], we compared different cell populations. The count 173

table was downloaded from GEO with accession number GSE70580. However, unlike in 174

our previous study, where we compared ILC1 and ILC2 cells against ILC3 cells, the 175

comparison here was performed between ILC1 and ILC2 cells. After excluding cells with 176

total expression < 10000, the data contained 127 ILC1 cells and 139 ILC2 cells. With 177

ROTS we performed TMM normalization and with the other tested methods the 178

guidelines of their respective manuals were followed. 179

Fig 4 shows the performance of ROTS in the single-cell RNA-seq data together with 180

other state-of-the art tools, including Single Cell Differential Expression (SCDE) [25], 181

Model-based Analysis of Single-cell Transcriptomics (MAST) [26] and Limma [5]. First, 182

we investigated the precision and recall of the findings when the number of cells was 183

reduced to 90, 70, 50 or 30 cells in both groups. Ten subsets of each size were generated. 184

Overall, ROTS showed the highest precision in finding the genes detected in the full 185

data as differentially expressed (FDR < 0.05) also in the reduced datasets (Fig 4A). 186

Notably, it also had the highest recall, indicating that the findings from the reduced 187

data covered the findings from the full data better than with the other tested methods 188

(Fig 4B). Finally, to investigate whether the methods tended to find a large number of 189

false positives, we generated artificial mock datasets by randomly dividing the 139 ILC2 190

cells into two groups of similar size ten times. These artificial sets should not differ from 191

one another since all the cells are from the same population. Also the investigation of 192

the mock comparisons ranked ROTS as the top performing method (Fig 4C). These 193

results further confirm the applicability of ROTS for single-cell RNA-seq studies. 194

Fig 4. Precision, recall, and false positive ratios of ROTS and current
state-of-the-art methods for single-cell RNA-seq in the innate lymphoid
cell data. (A) Precision of the findings in reduced data. Precision was defined as the
ratio between the number of common detections in the reduced and full data, and the
total number of detections in the reduced data. Median values over ten randomly
generated subsets are indicated by lines across the different numbers of cells per group.
(B) Recall of the findings in reduced data. Recall was defined as the ratio between the
number of common detections in the reduced and full data, and the total number of
detections in the full data. Median values over ten randomly generated subsets are
indicated by lines across the different numbers of cells per group. (C) False positive
ratios of the findings in ten randomly generated mock datasets. The false positive ratio
was defined as the ratio between the number of differentially expressed genes in the
mock comparison and the average number of differentially expressed genes in the actual
comparison. Limma was visualized separately because of the different scale compared to
the other methods and jittering was used to separate overlapping points.

Availability and Future Directions 195

ROTS has been successfully applied in multiple studies in a diversity of applications 196

and the results on different types of omics data have shown its overall robustness. A 197

major benefit of ROTS is its ability to automatically select an appropriate test statistic 198

for a specific data under study by maximizing the reproducibility of the differentially 199

expressed features. Therefore, it would be beneficial to integrate ROTS into various 200

existing workflows to perform the differential expression analysis. Besides being able to 201

select a test statistic, ROTS could possibly aid also in selecting, for instance, an 202

appropriate normalization method based on the data. While ROTS is based on a 203

modified t-statistic, it is possible to further extend the method by allowing multiple 204

sample groups by using, for example, a modified F -statistic. Finally, to enhance the 205
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running time of the algorithm, parallelization within the package or improved heuristics 206

could be implemented for optimizing the parameters. 207

The R package ROTS is freely available from Bioconductor 208

(https://www.bioconductor.org/packages/ROTS) and it conveniently allows to perform 209

statistical testing and result visualization using simple commands. A complete reference 210

manual for the package and a vignette with examples are also available from 211

Bioconductor. 212
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