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A key ingredient in quantum resource theories is a notion of measure. Such as a measure should have a
number of fundamental properties, and desirably also a clear operational meaning. Here we show that a
natural measure known as the convex weight, which quantifies the resource cost of a quantum device, has
all the desired properties. In particular, the convex weight of any quantum resource corresponds exactly to
the relative advantage it offers in an exclusion (or antidistinguishability) task. After presenting the general
result, we show how the construction works for state assemblages, sets of measurements, and sets of
transformations. Moreover, in order to bound the convex weight analytically, we give a complete
characterization of the convex components and corresponding weights of such devices.
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Introduction.—Quantum theory allows for concepts that
have no analogue in classical physics. Most prominent
examples include entangled states, incompatible measure-
ments, and quantum memories. An important question is to
characterize these genuinely quantum resources, in par-
ticular to quantify their nonclassicality. A natural approach
to this problem is to view these genuine quantum proper-
ties as a resource for some task, and ask to what extent
a given quantum device deviates from the classical
scenario. Recently, a general framework of quantum
resource theories has been developed to address these
questions (see Ref. [1] for a recent review). These ideas
have already been formally applied to a broad range of
quantum properties, such as entanglement [2], joint meas-
urability [3,4], steering [5,6], thermal operations [7],
asymmetry [8], and coherence [9].
In general, a resource theory is defined via a set of free

resources (for instance, associated to classical resources),
and a set of free operations. Applying a free operation to a
free resource should always give back a free resource, and
more generally free operations cannot boost the available
resource. Hence, classical pre- and postprocessings are
usually part of free operations, which implies that the set of
free resources must be convex. This motivates the use of
convexity-based measures in order to quantify quantum
resources, i.e., to measure their nonclassicality.
Recently, a large body of work has been devoted to one

of these measures, namely, the generalized robustness
[5,10–19]. The latter quantifies the resource of a given
device, by asking by how much it can be mixed with
another (arbitrary) device before the resource is lost (i.e.,
the mixture belongs to the free set). Loosely speaking, this
captures the distance between a given device and the set of

free devices. Since its introduction, the generalized robust-
ness has been found to possess three very attractive and
fundamental properties: (i) faithfulness, i.e., it is zero if
and only if a device is free, (ii) convexity, (iii) monotonic
under free operations, (iv) it quantifies the outperformance
of a quantum device with respect to all classical ones in
an explicit task, namely, a discrimination game, (v) it can
be calculated efficiently when the free set can be
expressed through semidefinite constraints (thereby form-
ing a certificate).
In this Letter, we prove that another, also well-motivated,

quantifier has the five fundamental properties mentioned
above. This quantifier is known as the convex weight. It has
a natural interpretation in the context of resource theories.
Namely, it characterizes how a large fraction of a given
resource device can be generated with free (or classical)
resources. In this sense, the convex weight provides a direct
quantifier of the resource cost, and is thus complementary
to the generalized robustness. Consider, for instance, a
resource that is extremal, but very close to the free set.
While the generalized robustness is very small for this
resource, the convex weight will nevertheless be equal to 1.
To prove property (iv), we construct explicitly a task

for which the convex weight quantifies exactly the
relative advantage provided by the resource over any free
device. This task corresponds to an exclusion (or anti-
distinguishability) task. That is, given a randomly chosen
element xk from a known list of elements fxig, one should
provide as the answer any xi ≠ xk. After discussing the
general framework, we discuss the cases where the quantum
devices correspond to sets states, sets of measurements, and
quantum channels. For instance, any set of incompatible
quantum measurements provides an advantage in a task of
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state exclusion, and the convexweight represents the relative
advantage over any set of compatible (i.e., jointly measur-
able) measurements. Finally, we show that the convex
weight can be easily bounded (and in simple cases even
decided) by fully analytical methods, a fact that we illustrate
by characterizing all devices and correspondingweights that
can appear in a convex decomposition of a given device.
Convex weight of quantum devices.—We concentrate on

three categories of quantum devices: quantum states,
measurements, and transformations. We may also extend
the notion to include sets of such devices, e.g., a collection
of states or measurements. Formally, states correspond to
positive unit-trace operators denoted by ϱ, measurements to
collections of positive operators denoted by fMjg with the
normalization

P
j Mj ¼ 1, and transformations are given

as completely positive trace nonincreasing maps denoted
by I (or Λ if trace preserving). For a convex and compact
subset F of (a given class of) quantum devices one defines
the convex weight WFðDÞ of a device D as the maximum
relative number of times a device from the set F can be used
to produce D. Formally,

WFðDÞ ¼ min λ

s:t:∶ D ¼ ð1 − λÞDF þ λD̃; ð1Þ

where the optimization runs over devices DF in the subset
F and general devices D̃ outside of F.
The weight has the following appealing properties of a

resource quantifier: (i) faithfulness, i.e., it is zero if and only
if a device is free, (ii) convexity, (iii) monotonic under free
operations, (iv) task-oriented interpretation, (v) simple to
bound analytically. The properties (i) and (iii) follow
directly from the definition, the properties (ii) and (v)
are proven in the Supplemental Material [20] and the
property (iv) is the main message of this Letter. We note
that as a by-product of proving property (v) we provide a
complete characterization of the convex components of a
given device.
Exclusion input-output games.—An input-output game G

is defined as a triplet G ¼ ðE;M;ΩÞ, where E ¼ fpðiÞϱig
is a state ensemble, M ¼ fMjg forms a POVM, and
Ω ¼ fωijg is a real-valued reward function. The task is
to find a transformation I that minimizes the payoff defined
as PðI ;GÞ ≔ P

ij ωijpðiÞtrIðϱiÞMj. Note that in the case
I ¼ id and ωij ¼ δij the payoff corresponds to the exclu-
sion probability in a minimum error state discrimination
task. Note also that in contrast to discrimination input-
output games, where the task is to maximize the payoff, in
exclusion input-output games we are interested in mini-
mization. One could argue that there is not much difference
between input-output games and their exclusion variants,
as one can flip the signs in the reward functions and look
at the absolute value of the payoff. The difference between
the games becomes evident, however, when looking at

canonical input-output games (see below) that remove all
covariance between the payoff and the reward function. As
it turns out, such elimination of covariance is necessary for
the connection between resource measures and quantum
games [19,24]. This duality between the games also high-
lights the duality between the concepts of generalized
robustness and the convex weight.
In order to define input-output games for sets of devices,

we define the games for each device separately and as
payoff we take the sum of the individual payoffs. Formally,
in the definition of a game we replace the state ensemble
E ¼ fpðiÞϱig with a state assemblage A ¼ fpði; xÞϱijxg,
the single POVM M ¼ fMjg with a measurement assem-
blage MA ¼ fMjjxg, and the reward function Ω ¼ fωijg
with a fine-tuned reward function Ωf ¼ fωijxg. We refer to
the triplet ðA;MA;ΩfÞ with the same symbol G as used
above when there is no risk of confusion. Now the payoff
for a set of transformations fIxg reads PðfIxg;GÞ≔P

ijxωijxpði;xÞtrIxðϱijxÞMjjx. Again, the case fIxg¼fidg
and ωijx ¼ δij corresponds to a minimum error discrimi-
nation task.
Input-output games that do not relate to minimum error

discrimination have some redundancy: a game can be
transformed into another one by scaling the reward function
or by adding a constant to it. This results in a scaled or
shifted payoff. In order to treat such games on an equal
footing, we eliminate the scaling and shifting covariance by
defining canonical versions of the games. A canonical
version of a game is obtained by first shifting the lowest
payoff to zero when optimized over (sets of) transforma-
tions and then scaling the highest payoff to one.
Main idea.—The convex weight WFðDÞ of a device D

with respect to a free set F is defined in Eq. (1). Solving this
equation for D̃ and defining D̂F ≔ ð1 − λÞDF results in

WFðDÞ ¼ min λ

s:t:∶
1

λ
ðD − D̂FÞ ∈ Dev; D̂F ∈ CF; ð2Þ

where Dev is the set of all devices and CF ¼fαDFjα≥ 0;
DF ∈Fg is a cone based on the subset F. Note that the
two optimization constraints are tied to each other in that
λþ α ¼ 1.
Of the two optimization constraints the conic one is

linear and it reads the same for all three categories of
devices (or sets thereof). The other constraint, however, is
nonlinear and as such we check it in more detail. For states
and measurements the constraint reduces to positive semi-
definiteness of D − D̂F. This is due to the fact that the
normalization, i.e., having unit trace or a sum equal to
identity, of ð1=λÞðD − D̂FÞ is automatic. A transformation
can be seen as an element of a quantum instrument, i.e., a
collection of completely positive trace nonincreasing maps
summing to a completely positive trace preserving map. We
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consider instruments in place of transformations from here
on. This way the nonlinear optimization constraint becomes
linear. Namely, as the normalization is now automatic, the
operator ð1=λÞðD − D̂FÞ being an instrument corresponds
to positive semidefiniteness of the Choi picture of D − D̂F.
With the above modification we have brought the

problem of calculating the weight of a quantum device
D with respect to the set F into a linear problem with conic
constraints. Such optimization problems are called conic
programs [25,26]. Below we spell out these programs
explicitly in their dual form for states, measurements
and channels as a special case of instruments. The treatment
of general instruments is presented in the Supplemental
Material [20]. The connection between convex weight and
the performance in input-output games follows directly
from the dual.
For a state assemblage A ¼ fpði; xÞϱijxg the primal of

the cone program (2) reads

1 −WFðAÞ ¼ max
X

i;x

tr½σijx� ð3Þ

s:t:∶ pði; xÞϱijx ≥ σijx ∀ i; x:

fσijxgi;x ∈ CF: ð4Þ

This optimization problem is an example of a cone
program, the dual of which is given by [25,26]

1 −WFðAÞ ¼ min
Y≥0

X

i;x

pði; xÞtrϱijxYijx

s:t:∶
X

i;x

trTijxYijx ≥ 1 ∀ fTijxg ∈ F; ð5Þ

where Y ¼ ⨁i;xYijx is a witness. The solution of the dual
problem equals that of the primal given that the so-called
Slater condition holds, which in this case can be verified by
choosing Y ¼ α1 for large enough α > 0. This removes the
redundant parts of the free cone as well.
To see the objective function of the dual problem as an

instance of an input-output game, we define another wit-
ness as Ỹijx ≔ Yijx=N, where N ≔ kPi;x Yijxk. For each x
we can add an extra term to fỸijxgi, namely, 1 −

P
i Ỹijx,

which ensures that we get a witness corresponding to a set
of POVMs. Note that in the process we embed the state
assemblage back into the larger space if needed and
complete the witness into a POVM on the larger space
by adding the missing parts to the last outcome. The new
witness results in an objective function that is a scaled
version of the success probability in a specific minimum
error discrimination task. More precisely, psuccðA;MAÞ ≔P

i;x pði; xÞtrϱijxMijx. Clearly psucc is linear in the first
argument and so from Eq. (1) we get psuccðA;MAÞ ≥
½1 −WFðAÞ�minAF∈F psuccðAF;MAÞ. This inequality can
be saturated by taking an optimal witness in Eq. (5), writing

the corresponding object function as a minimum error state
discrimination task, and noting that the scaling N does not
affect the quotient in the following expression:

inf
MA

psuccðA;MAÞ
minAF∈FpsuccðAF;MAÞ

¼ 1 −WFðAÞ: ð6Þ

More precisely, the use of an optimal witness shows that the
left-hand side (l.h.s.) of the above expression is a lower
bound for the right-hand side and, hence, we get the
equality in the expression. Here we have used the standard
convention that the optimization is performed over those
measurement assemblagesMA for which the l.h.s. is finite.
We are ready to state our first observation.
Observation 1.—Let F be a convex subset of state

assemblages. For any state assemblage A ∉ F there exists
a set of measurements that antidistinguishes the assemblage
better than any assemblage in F. Moreover, the relative
advantage is exactly quantified by the convex weight of A
with respect to F.
As possible examples of the set F we mention unsteer-

able assemblages and their generalization to assemblages
that can be prepared by states with an upper-bounded
Schmidt number. In this case, the antidistinguishing POVM
can be alternatively interpreted as an instance of the task of
subchannel exclusion supported by one-way local oper-
ations and classical communication (one-way LOCC), see
Ref. [5] for the details of such interpretation. In the case of
state ensembles (i.e., assemblages with only one input
x ¼ 1), the antidistinguishing POVM relates to the task of
subchannel exclusion on a single system; see Refs. [13,18]
for details. In the case of single states, one can relate the
POVM to the task as a phase exclusion, see Ref. [18]. In
these cases, the possible examples include trivial ensem-
bles, separable states, and states with a positive partial
transpose.
When the free set F consists of trivial ensembles, i.e.,

ensembles that code no information about which state was
sent E ≔ fð1=nÞϱgnx¼1, the weight corresponds to a mea-
sure of antidistinguishability. The corresponding optimi-
zation constraints read Y ≥ 0 and

P
i Yi ≥ n1. One can

rewrite the second constraint as
P

i Yi ≥ 1 by multiplying
the object function with 1=n. Assuming that an optimal
witness fỸig does not satisfy the equality

P
i Ỹi ¼ 1,

equality follows when dividing the witness by
P

i kYik
and adding an extra outcome. Hence, the relative advantage
in exclusion tasks can include inconclusive events, whereas
the other common measure of generalized robustness
measures the relative advantage in discrimination tasks
without inconclusive events. Interestingly, this shows that
instead of searching for a POVM that gives the optimal
relative advantage in (anti-)distinguishing tasks, one can
search for a single state defining the trivial ensemble E
that optimizes the corresponding convex distance, see
Supplemental Material [20] for more details.
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As another interesting free set, consider separable states
(or any other set with pure free states). For such sets, the
convex weight shows a peculiar feature: when moving from
the free set to a resourceful pure state, the weight jumps
from zero to one. However, continuity is not essential for
the quantum advantage. Namely, the quantum advantage
remains regardless of small disturbances. This is due to the
fact that the convex weight is in general lower semi-
continuous similarly to the generalized robustness as shown
in the Supplemental Material [20], see also Ref. [27].
For a measurement assemblageMA ¼ fMijxg the primal

problem reads

1 −WFðMAÞ ¼ max
1

jXjd
X

i;x

tr½Oijx� ð7Þ

s:t:∶ Mijx ≥ Oijx ∀ i; x;

fOijxgi;x ∈ CF; ð8Þ

where jXj is the number of measurements and d is the
dimension of the Hilbert space. The dual of this reads

1 −WFðMAÞ ¼ min
Y≥0

X

i;x

trMijxYijx

s:t:∶
X

i;x

trTijxYijx ≥ 1 ∀ fTijxg ∈ F; ð9Þ

where Y ¼ ⨁i;xYijx is again a witness. With a similar
argument as in the case of state assemblages, one checks
that the Slater condition is valid. To get an expression similar
to Eq. (6), we decompose thewitness as Yijx ¼ Ñpði; xÞϱijx,
where ϱijx ≔ Yijx=trYijx, pði; xÞ ≔ trYijx=Ñ, and Ñ ≔P

i;x trYijx. Noting again that scaling does not affect the
desired expression, we write

inf
A

psuccðA;MAÞ
minOA∈FpsuccðA;OAÞ

¼ 1 −WFðMAÞ; ð10Þ

where the optimization is performed over those state
assemblages A for which the l.h.s. is finite. We arrive at
our second observation.
Observation 2.—Let F be a convex subset of sets of

POVMs. For any set of POVMs MA ∉ F there exists a
state exclusion task where MA outperforms any set of
POVMs in F. Moreover, the relative advantage is exactly
quantified by the convex weight of A with respect to F.
As examples of convex sets of measurements we

mention joint measurability, informativity of a POVM
(see Supplemental Material [20] for the explicit form of
the weight), and simulability with projective (or any fixed
subset of) POVMs. Note that in the case of sets of POVMs,
the task includes the classical communication of the label x
from the preparing party to the measuring party. This
allows the measuring party to choose the measurement

setting after receiving the label. In the case of discrimina-
tion tasks, such sacenario is referred to as state discrimi-
nation with premeasurement information [16].
In the case of quantum channels, i.e., completely positive

trace-preserving maps, we start by writing the cone pro-
gram in the Choi picture

1 −WFðΛÞ ¼ max trJΓ̂

s:t:∶ JΛ − JΓ̂ ≥ 0; JΓ̂ ∈ CJF ; ð11Þ

where JΛ is the Choi state of Λ, and similarly for Γ̂. The
above optimization problem is an instance of a cone
program. Such a program comes with a dual formulation
given by

1 −WFðΛÞ ¼ min
Y

trYJΛ

s:t:∶ Y ≥ 0; trYT ≥ 1 ∀ T ∈ JF; ð12Þ

where Y is a dual variable constituting a witness for the set
JF. Once again, the Slater condition can be validated as in
the case of state assemblages.
One can decompose the witness as Y¼d

P
ijωijpðiÞϱTi ⊗

Mj for some state ensemble fpðiÞϱig, POVM fMjg, and set
of real numbers fωijg. (The transpose is taken in the
computational basis.) This decomposition shows that the
weight WFðΛÞ is related to a payoff PðΛ;GÞ of a specific
input-output game:

trYJΛ ¼
X

ij

dωijpðiÞtrðϱTi ⊗ MjÞJΛ

¼
X

ij

ωijpðiÞtrΛðϱiÞMj ¼ PðΛ;GÞ: ð13Þ

See Supplemental Material in [20] for more details.
To get our result for channels, note that an optimal

decomposition for Λ from Eq. (1) with devicesDF ¼ Γ and
D̃ ¼ Λ̃ gives a lower bound for the payoff of any canonical
input-output game as

PðΛ;GÞ ¼ ½1 −WFðΛÞ�PðΓ;GÞ þWFðΛÞPðΛ̃;GÞ
≥ ½1 −WFðΛÞ�min

Γ∈F
PðΓ;GÞ: ð14Þ

Note further that an input-output game given by an optimal
witness Y is up to scaling in the canonical form. This can be
seen by putting Eq. (1) into the Choi picture and applying
an optimal witness on both sides of the resulting equation.
It follows that the payoff for the channel Λ̃ is zero. Putting
this together with Eqs. (12)–(14) and noting that the last
equation is invariant under scaling of the games we get

inf
G

PðΛ;GÞ
minΓ∈FPðΓ;GÞ

¼ 1 −WFðΛÞ; ð15Þ
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where the infimum is taken over all canonical input-output
games. We are ready to state our third result.
Observation 3.—Let F be a convex subset of channels.

For any channel Λ ∉ F there exists an input-output game in
which the channel results in a lower payoff than
any channel in F. Moreover, the relative advantage is
exactly quantified by the convex weight of Λ with respect
to F.
Note that this observation can be directly generalized to

the level of sets of channels and sets of quantum instru-
ments by considering the involved completely positive
maps as a direct sum and having individual input-
output games for each block. More precisely, for a set
of instruments I ≔ fI ijxgi;x one gets an extra coefficient
1=jXj and the Choi states become direct sums of
the individual (subnormalized) ones, i.e., ⨁i;xJI ijx in
Eq. (11). The dual is simply a direct sum of the duals of
the form Eq. (12) and the witnesses get the decomposition
Yijx ¼

P
a;b pða; i; xÞωabixϱaji;x ⊗ Mbji;x. The payoff is

then defined as the sum of all individual payoffs
PðI;GÞ ≔ P

a;b;i;x pða; i; xÞωabixtr½Iajxðϱijx;aÞMjjx;a�.
Using Eq. (12) it is straightforward to show that

inf
G

PðI;GÞ
minΓ∈FPðΓ;GÞ

¼ 1 −WFðIÞ: ð16Þ

As examples of free sets F we mention entanglement
breaking channels, incompatibility breaking channels,
compatible channels, compatible instruments, random uni-
taries, and finite rounds of LOCC protocols.
Conclusions.—We showed that the convex weight,

a natural measure for quantum resrouces, has all the
desirable properties. Besides the basic requirements of
faithfulness, convexity, and monotonicity, the convex
weight also exactly captures the relative advantage of a
quantum resource in an exclusion (or anti-distinguish-
ability) task. This correspondance is fully general and
can be applied in principle to any type of quantum resource.
As examples we have discussed the cases of state assemb-
lages, sets of POVMs, and sets of transformations.
Moreover, these ideas could be directly applied to

experiments (similarly to those of Refs. [28,29]), as the
exclusion task requires only control of the input state and
the output measurements.
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Note added.—Recently, we became aware of the related
work by Ducuara and Skrzypczyk [30]. The authors prove a
connection between exclusion tasks, convex weight, and
single-shot information theory for resource theories of
measurements and states.

[1] E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001
(2019).

[2] E. Chitambar and M.-H. Hsieh, Phys. Rev. Lett. 117,
020402 (2016).

[3] M. F. Pusey, J. Opt. Soc. Am. B 32, A56 (2015).
[4] F. Buscemi, E. Chitambar, and W. Zhou, Phys. Rev. Lett.

124, 120401 (2020).
[5] M. Piani and J. Watrous, Phys. Rev. Lett. 114, 060404

(2015).
[6] R. Gallego and L. Aolita, Phys. Rev. X 5, 041008 (2015).
[7] N. H. Y. Ng and M. P. Woods, Resource theory of quantum

thermodynamics: Thermal operations and second laws, in
Thermodynamics in the Quantum Regime: Fundamental
Aspects and New Directions (Springer International
Publishing, Cham, 2018), pp. 625–650.

[8] M. Ahmadi, D. Jennings, and T. Rudolph, New J. Phys. 15,
013057 (2013).

[9] A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404
(2016).

[10] R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää, Phys.
Rev. Lett. 115, 230402 (2015).

[11] C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N.
Johnston, and G. Adesso, Phys. Rev. Lett. 116, 150502
(2016).

[12] S. Designolle, M. Farkas, and J. Kaniewski, New J. Phys.
21, 113053 (2019).

[13] R. Takagi, B. Regula, K. Bu, Z.-W. Liu, and G. Adesso,
Phys. Rev. Lett. 122, 140402 (2019).

[14] R. Takagi and B. Regula, Phys. Rev. X 9, 031053 (2019).
[15] M. Oszmaniec and T. Biswas, Quantum 3, 133 (2019).
[16] C. Carmeli, T. Heinosaari, and A. Toigo, Phys. Rev. Lett.

122, 130402 (2019).
[17] P. Skrzypczyk, I. Šupić, and D. Cavalcanti, Phys. Rev. Lett.

122, 130403 (2019).
[18] R. Uola, T. Kraft, J. Shang, X.-D. Yu, and O. Gühne,

Phys. Rev. Lett. 122, 130404 (2019).
[19] R. Uola, T. Kraft, and A. A. Abbott, Phys. Rev. A 101,

052306 (2020).
[20] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.125.110402 for addi-
tional proofs and calculations, which includes Refs. [21–
23].

[21] J.-P. Pellonpää, J. Phys. A 46, 025302 (2013).
[22] J.-P. Pellonpää, J. Phys. A 47, 052002 (2014).
[23] J.-P. Pellonpää, Positivity 18, 61 (2014).
[24] X. Yuan, Y. Liu, Q. Zhao, B. Regula, J. Thompson, and

M. Gu, arXiv:1907.02521.

PHYSICAL REVIEW LETTERS 125, 110402 (2020)

110402-5

https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/PhysRevLett.117.020402
https://doi.org/10.1103/PhysRevLett.117.020402
https://doi.org/10.1364/JOSAB.32.000A56
https://doi.org/10.1103/PhysRevLett.124.120401
https://doi.org/10.1103/PhysRevLett.124.120401
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1103/PhysRevLett.114.060404
https://doi.org/10.1103/PhysRevX.5.041008
https://doi.org/10.1088/1367-2630/15/1/013057
https://doi.org/10.1088/1367-2630/15/1/013057
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.115.230402
https://doi.org/10.1103/PhysRevLett.115.230402
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1088/1367-2630/ab5020
https://doi.org/10.1088/1367-2630/ab5020
https://doi.org/10.1103/PhysRevLett.122.140402
https://doi.org/10.1103/PhysRevX.9.031053
https://doi.org/10.22331/q-2019-04-26-133
https://doi.org/10.1103/PhysRevLett.122.130402
https://doi.org/10.1103/PhysRevLett.122.130402
https://doi.org/10.1103/PhysRevLett.122.130403
https://doi.org/10.1103/PhysRevLett.122.130403
https://doi.org/10.1103/PhysRevLett.122.130404
https://doi.org/10.1103/PhysRevA.101.052306
https://doi.org/10.1103/PhysRevA.101.052306
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.110402
https://doi.org/10.1088/1751-8113/46/2/025302
https://doi.org/10.1088/1751-8113/47/5/052002
https://doi.org/10.1007/s11117-013-0231-y
https://arXiv.org/abs/1907.02521


[25] B. Gärtner and J. Matoušek, Approximation Algorithms
and Semidefinite Programming (Springer Verlag, Berlin,
Heidelberg, 2012).

[26] S. Boyd and L. Vandenberghe, Convex Optimization
(Cambridge University Press, Cambridge, 2004).

[27] B. Regula, J. Phys. A 51, 045303 (2018).

[28] K. Sun, X.-J. Ye, Y. Xiao, X.-Y. Xu, Y.-C.Wu, J.-S. Xu, J.-L.
Chen, C.-F. Li, and G.-C. Guo, Quantum Inf. 4, 12 (2018).

[29] W. Zheng, Z. Ma, H. Wang, S.-M. Fei, and X. Peng,
Phys. Rev. Lett. 120, 230504 (2018).

[30] A. F. Ducuara and P. Skrzypczyk, preceding Letter, Phys.
Rev. Lett. 125, 110401 (2020).

PHYSICAL REVIEW LETTERS 125, 110402 (2020)

110402-6

https://doi.org/10.1088/1751-8121/aa9100
https://doi.org/10.1038/s41534-018-0067-1
https://doi.org/10.1103/PhysRevLett.120.230504
https://doi.org/10.1103/PhysRevLett.125.110401
https://doi.org/10.1103/PhysRevLett.125.110401

