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The article presents a proposed customized genetic algorithm ( CGA ) to find the Pareto frontier for a bi- 

objective integer linear programming (ILP) model of routing in a dynamic network, where the number of 

nodes and edge weights vary over time. Utilizing a hybrid method, the CGA combines a genetic algorithm 

with dynamic programming (DP); it is a fast alternative to an ILP solver for finding efficient solutions, 

particularly for large dimensions. A non-dominated sorting genetic algorithm (NSGA-II) is used as a base 

multi-objective evolutionary algorithm. Real data are used for target trajectories, from a case study of 

application of a surveillance boat to measure greenhouse-gas emissions of ships on the Baltic sea. The 

CGA ’s performance is evaluated in comparison to ILP solutions in terms of accuracy and computation 

efficiency. Results over multiple runs indicate convergence to the efficient frontier, with a considerable 

computation speed-up relative to the ILP solver. The study stays as a model for hybridizing evolutionary 

optimization and DP methods together in solving complex real-world problems. 
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. Introduction 

The traveling salesman problem (TSP) has become a widely 

tudied classical routing problem ( Applegate, Bixby, Chvâtal, & 

ook, 2006; Lawler, Lenstra, AHG, & Shmoys, 1985; Reinelt, 1994 ) 

ecause of the frequent occurrence of its variants both in the- 

ry and in practical applications. Dynamic TSP (DTSP) is a class 

f problems with time-varying characteristics; it reflects the adap- 

ation of the TSP to many real-world applications of routing prob- 

ems. The dynamic features in the DTSP may refer, for instance, 

o target demand ( Bertsimas, 1992; Smith, Pavone, Bullo, & Fraz- 

oli, 2010 ), time windows for visits ( Pavone & Frazzoli, 2010 ), de-

ivery of goods to a distribution system ( Archetti, Feillet, Mor, & 

peranza, 2020; Klapp, Erera, & Toriello, 2018 ), target locations 

 Bertsimas & Ryzin, 1991; Hammar & Nilsson, 2002; Helvig, Robins, 

 Zelikovsky, 2003 ), and edge costs ( Laporte, Louveaux, & Mer- 

ure, 1992; Secomandi, 2003; Toriello, Haskell, & Poremba, 2014 ). 

rior work includes surveys of dynamic vehicle-routing problems 
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 Flatberg, Hasle, Kloster, Nilssen, & Riise, 2007; Pillac, Gendreau, 

uéret, & Medaglia, 2013 ). 

This article pertains to the Moving-Target TSP (MT-TSP), which 

oes back to the problem introduced in 1993 by Kryazhimskiy 

nd Savinov (1993) . Their work was followed by that of Helvig, 

obins and Zelikovsky (2003) , who developed an exact algorithm 

ased on dynamic programming for a number of MT-TSPs where 

he targets move with constant velocities along straight lines to- 

ard or away from the origin. Their objective was to find the 

astest tour, starting and ending at the origin, that intercepts all 

argets. They showed for this particular MT-TSP that waiting does 

ot occur in an optimal solution of minimizing travel time. How- 

ver, waiting may be optimal in models with time windows when 

he vehicle arrives at a location before that location’s time win- 

ow opens ( Vu, Hewitt, Boland, & Savelsbergh, 2020 ). We will 

how that, in the case of minimizing travel distance, waiting can 

e beneficial even within the time window. Several other studies 

 Choubey, 2013; Hammar & Nilsson, 2002; Hassoun, Shoval, Sim- 

hon, & Yedidsion, 2020; Helvig, Robins & Zelikovsky, 2003; Jiang, 

arker, & Abbass, 2005; Moraes & Freitas, 2019 ) have considered 

he particular case of MT-TSP defined by Helvig, Robins and Ze- 

ikovsky (2003) , which requires intercepting all moving targets un- 

er the assumption that targets move linearly at constant veloci- 

ies. However, in recent literature the definition of the MT-TSP is 
 under the CC BY-NC-ND license 
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eneralized to a variant in which the target locations can be de- 

ned more freely. Recently, Cambella, Naoum-Sawaya, and Ghad- 

ar (2018) addressed a dynamic vehicle-routing problem in which 

he pick-up locations of the targets are non-stationary. They pro- 

osed a mixed-integer second-order cone program formulation for 

he problem, along with valid inequalities for strengthening the 

ontinuous relaxation. 

Although there is a vast body of work on the DTSP, the MT- 

SP variant is less frequently addressed in the literature. Neverthe- 

ess, several studies of the MT-TSP do exist, mostly ones of real 

pplications with problem-specific assumptions about the intrin- 

ic features of the target dynamics. For instance, for the on-orbit 

ervicing model by Bourjolly, Gurtuna, and Lyngvic (2006) , the tra- 

ectories of satellites (targets) are determined by orbital mechan- 

cs; an exhaustive search suffices for solving the problems since 

he number of targets is small. Regarding methods based on ge- 

etic algorithms (GAs), Groba, Sartal, and Vázquez (2015) proposed 

 GA for the retrieval of fish-aggregating devices attached to float- 

ng buoys whose movements are predicted by Newton’s motion 

quation, to assess target dynamics. They extended their model for 

he multiple traveling salesman problem with moving targets to be 

pplied for multiple tuna vessels ( Groba, Sartal, & Vázquez, 2018 ). 

iel, Vaultier, Wan, and Jaulin (2019) extended the GA ( Groba, Sar- 

al & Vázquez, 2015 ) to take into account wind direction and wind 

peed for purposes of a fleet of sailboats picking up buoys on the 

ea. Other work Li, Yang, and Kang (2006) ; Zhou, Kang, and Yan 

2003) considers a DTSP wherein the number of targets in addi- 

ion to their locations changes with time. The time discretization 

s applied and evolutionary algorithms are proposed for finding a 

equence of solutions to a static TSP within each time slot, which 

akes the class of problem different from the one discussed in 

his paper. Several ant colony optimization methods exist for solv- 

ng an ordinary single-objective dynamic vehicle-routing problem 

 Gao, Wang, Cheng, Inazumi, & Tang, 2016; Xu, Pu, & Duan, 2018 )

y using standard crossover and mutation operators, which can be 

oo generic for solving large-scale problems. Moreover, handling a 

ulti-objective moving-target version of these problems is com- 

utationally expensive. In all MT-TSP cases cited above, a single 

riterion is optimized subject to a requirement of visiting all tar- 

ets in a given set. Research on evolutionary multi-criterion op- 

imization (EMO) methods has progressed significantly since the 

arly 1990s in designing efficient algorithmic methods and mea- 

uring the quality of approximations, as well as in hybridization 

ith other strands of optimization ( Ehrgott, Fonseca, Gandibleux, 

ao, & Sevaux, 2009 ). The EMO methods are flexible for customiza- 

ion and have strong adaptation capabilities for solving complex 

roblems, such as DTSPs. Their operators can be modified with 

nowledge from past environments ( Chowdhury, Marufuzzaman, 

unc, Bian, & Bullington, 2019; Mavrovouniotis, Müller, & Yang, 

016; Viel, Vaultier, Wan & Jaulin, 2019 ). They can be infused with 

roblem-specific local search methods in a hybrid manner. Further- 

ore, their population approach allows facilitating implicit parallel 

earch in exploring multiple good search regions ( Goldberg, 1989; 

olland, 1975 ). A survey of evolutionary dynamic optimization is 

rovided by Nguyen, Yang, and Branke (2012) . 

The problem addressed in our case study arises from a real- 

orld application of a surveillance boat measuring greenhouse-gas 

GHG) emissions of ships navigating in a specific area of the Baltic 

ea, referred to as the work area . We introduce a general case of 

he MT-TSP with the following additional features: (i) The num- 

er of targets changes over time. (ii) Targets have time windows 

ithin which they can be visited; this time starts when the ship 

nters the work area and ends when it leaves the area. (iii) The 
2 
rajectories 1 of the moving targets (ships) and their varying veloc- 

ties can be defined arbitrarily. (iv) The total number of targets α
to be visited) is endogenous since visiting all targets is not possi- 

le given the time windows of targets, time horizon, limited work 

rea, and surveillance-boat speed. (v) The problem is bi-objective; 

he number of measurements α is chosen by the decision-maker 

n the basis of the Pareto frontier, which shows the shortest pos- 

ible travel distance at each level of α. Features (i) to (v) distin- 

uish our problem from the published works on the MT-TSP dis- 

ussed above. Case studies of maritime surveillance are reported 

lsewhere also ( Grob, 2006; Marlow, Kilby, & Mercer, 2007 ). In 

he surveillance routing problem, a patrol aircraft is equipped with 

lose-range sensors, and the positions of ships are discovered as 

he route is flown. The speed and the number of ships in the work 

rea vary over time in a manner unknown beforehand. The course 

nd speed of a ship is determined only when it is located within 

he radar detection range of the surveillance aircraft. The aim is 

o find a tour with the objective of detecting the maximum num- 

er of ships such that it optimizes the cost of servicing, such as 

ravel time or other quality metrics. The problem settings in the 

wo studies mentioned above are quite different from ours. Using 

imulated scenarios for ships, the authors proposed on-line search 

euristics adapted for the dynamic environment under various as- 

umptions, some of which differ from those in our case. Were pre- 

ictions of ship trajectories available, our approach could provide 

n efficient routing solution addressing part of the problem consid- 

red in those two studies. Bullo, Frazzoli, Pavone, Savla, and Smith 

2011) provided a survey of adaptive algorithms that enable real- 

ime task allocation and dynamic vehicle routing, motivated by ap- 

lication for unmanned aerial vehicles with random target loca- 

ions and demands. Our GA approach does not employ an on-line 

lgorithm; our goal is to find efficient routes in a dynamic network 

hen given a priori knowledge of the target trajectories, by means 

f predictions. Prior work offers classification of the literature on 

ehicle-routing problems ( Eksioglu, Vural, & Reisman, 2009 ). 

It is worth noting also that Jaillet (1988) considered a DTSP 

ith n targets where the number of targets to be visited is a ran- 

om variable ˜ α with a known probability distribution; i.e., given a 

ealization α of ˜ α, with α ≤ n , not all n targets need be visited. The 

roblem is to find a complete tour (intercepting all n targets) de- 

ermining the order of visits in each sub-tour (of α targets) such 

hat the expected travel distance of sub-tours is minimized. In- 

tead, we consider a case of endogenous α. 

The primary contribution of the research presented in this pa- 

er is to propose a customized genetic algorithm ( CGA ) for solving 

he extended MT-TSP case (characterized by items i–v above) in a 

omputationally fast manner, so that the approach can be of practi- 

al use. Our CGA is a new hybrid evolutionary optimization method 

ombining operators of a genetic algorithm with concepts adopted 

rom dynamic programming (DP)( Bellman, 1957 ) to approximate 

he efficient frontier under two criteria. Two customized operators 

re designed for mutating the offspring after the GA ’s crossover 

peration. We propose two variants of DP-based approaches (op- 

rators), one for generating initial feasible tours and the other 

or recovery from possible infeasibility in offspring tours. To sort 

on-dominated solutions, NSGA-II ( Deb, Pratap, Agarwal, & Meyari- 

an, 2002 ) for evolutionary multi-criterion optimization is used as 

 core algorithm. We also formulate an exact integer linear pro- 

ramming (ILP) model, which is a simplification of the model in- 

roduced in prior work ( Maskooki & Nikulin, 2020 ). The simpli- 

ed model allows use of fast DP-based techniques. In real-world 

pplications, exact methods often become prohibitively costly be- 

ause of the huge number of binary variables. The CGA finds effi- 
1 The time-ordered set of locations of a dynamic system. 
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Fig. 1. Schematic representation of the bi-objective routing problem in a dynamic 

network. Circles show the locations of ships moving in the work area within the 

time horizon. The dashed line denotes the optimal route of the surveillance boat, 

starting at the harbor, visiting five ships in the sequence of optimal time slots de- 

termined by the dynamic ship-scheduling model, and returning to the harbor: (har- 

bor,time0) → (ship1,time10) → (ship7,time23) → (ship2,time24) → (ship6,time26) 

→ (ship5,time29) → (harbor,time30). 
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ient alternatives for the number of targets α (to be visited), as 

ell as the time and location of each visit. For our case study, 

arget trajectories are predicted via a k -nearest neighbor method 

 Virjonen, Nevalainen, Pahikkala, & Heikkonen, 2018 ) over a 16- 

our time horizon. In another contribution, we show that the DP- 

ased approach generates fast and high-quality solutions with po- 

ential to be used stand-alone or in connection with other heuris- 

ics for solving large-size vehicle-routing problems. 

The discussion proceeds as follows. In Section 2 , the bi-criteria 

T-TSP problem is defined and the ILP model for finding the ef- 

cient frontier is introduced. Section 3 presents the steps of the 

GA for finding the efficient frontier. Then, with Section 4 , we de- 

cribe results from the CGA for a case study using real data sets, 

nd we compare the results with those obtained from ILP solu- 

ions. Section 5 summarizes our conclusions. 

. A model for routing in a dynamic network 

Reduction of GHG emissions from ships is a key topic for the 

arine Environment Protection Committee of the International 

aritime Organization ( Finnish Governmnet, 2020 ). Regulations re- 

uire Finland to reduce the GHG emissions of its sectors involved 

n the effort by a minimum of 39% from 2005 levels by 2030 

 Ministry of Economic Affairs & Employment, 2020 ). The environ- 

ental measurements considered in this article are intended to 

eet the requirements of GHG regulations for Finnish marine traf- 

c. Our study worked with the company in charge of developing 

n application for a surveillance boat’s measurement of SO 2 , CO 2 , 

nd NO x emissions from ships. The boat can perform mobile mea- 

urements when it is in the vicinity of ships; the exhaust-gas trail 

s measured from a distance of 20 0–30 0 m from the target ship in

 process that takes approximately 2–3 minutes. Throughout the 

rocess, the target ship and the surveillance boat stand almost still. 

he speed of the ships (targets) ranges from 8 to 25 knots, with an

verage of 13 knots. The preferred speed of the surveillance boat 

s 20 to 30 knots (46.3 km/h); however, it is allowed to increase 

ts speed for short periods. The work area is approximately 27 × 32 

autical miles. Marine traffic is predicted daily, up to 16 hours in 

dvance. 

The goal for our task is to optimize the route (tour) of the 

urveillance boat by maximizing the number of ships subject to 

easurement ( α) and minimizing the total travel distance ( z) 

ithin a working day of one to two shifts (8–16 hours). The two 

bjectives are defined in collaboration with the company in ques- 

ion, with the choice of objectives being supported by two observa- 

ions. Firstly, there is a trade-off preference between α and z that 

eflects the perceived value of a single measurement among thou- 

ands of ships to be inspected annually. Therefore, increasing α by 

ne further ship is not justified if the cost is too high. Secondly, the 

oute optimization is based on predicted locations of ships. Imple- 

entation of such an off-line-calculated optimal tour in practice 

ith the actual ship locations may result in a risk of traveling ex- 

ra distances, which grows with increasing α since the schedule for 

arge α becomes time-wise tight. For a comprehensive treatment 

f risk assessment related to the prediction uncertainty that may 

ffect the optimal solutions obtained from the route-optimization 

odel discussed in Section 2 , see Maskooki, Virjonen, and Kallio 

2020) . 

We formulate the problem as a network flow model over a lay- 

red graph, where each layer corresponds to a (discrete) time slot. 

he nodes correspond to locations of ships, and edges to feasible 

ransitions of the surveillance boat from one node (location) to an- 

ther, both depending on the time slots of transition. One unit of 

ow passing through the network is defined as a tour of the boat 

hat starts at the harbor (depot), visits a number of ships, and re- 

urns to the harbor. In all feasible tours, each ship is visited once 
3 
t most. Fig. 1 shows a schematic illustration of a Pareto-optimal 

tinerary found by solving the dynamic ship-scheduling problem 

escribed above. 

Consider a time horizon [0 , T ] over T working hours of the 

urveillance boat. The prediction of ship trajectories is carried out 

efore the start of the planning horizon for the full duration, 

 hours. Regarding how the predicted locations are calculated, we 

xplain the method briefly in Section 4.1 . Assume that a set of n 

hips N = { 1 , 2 , . . . , n } is predicted to appear in the work area dur-

ng [0 , T ] . Let index i refer to the ships and i = 0 refer to the depot.

 standard approach for modeling the problem as a combinatorial 

ime-dependent TSP is time discretization. We subdivide the time 

orizon into m time slots (intervals) of equal length w such that 

 = mw . For k = 1 , . . . , m , time slot k is the interval [(k − 1) w, kw )

ith starting time s k = (k − 1) w . Let k = 0 refer to the initial time

 and s 0 = 0 . In the model, the location of each ship i ∈ N is fixed

t the predicted location over each time slot k given by the coor- 

inate vector v ik . The length of time slots w is chosen to be short

nough to not allow more than one ship being processed in a sin- 

le time slot. The length w is chosen to take into account the aver- 

ge speed of ships. A shorter length indicates more accurate loca- 

ions in the optimal plan but also more time slots within the given 

ime horizon and, as a result, a more complex model to solve. The 

hoice of w is based on a trade-off between accuracy and compu- 

ational complexity. 

For i ∈ N, let S i denote the set of time slots for which ship i

s in the work area. The depot i = 0 is present in all time slots

 ; hence, S 0 = { 0 , 1 , . . . , m } , and the surveillance boat can set off

rom and return to the depot in any time slot to complete the tour. 

et p i denote the service time that ship i requires for performing 

missions measurement. In line with current practice, we assume 

p i = p, for all i ∈ N; for the depot, we have p 0 = 0 . Given locations

 ik and v jl of, respectively, ship i in time slot k and ship j in time

lot l, the distance from v ik to v jl is d 
jl 

ik 
= ‖ v ik − v jl ‖ and the travel

ime to move from v ik to v jl with constant speed c is t 
jl 

ik 
= d 

jl 

ik 
/c.

 notation list is provided in Appendix A . For the given time slots 

 = 0 , 1 , 2 , . . . , m and ships i ∈ N ∪ { 0 } , we define nodes v ik only if i

s present in time slot k (i.e., k ∈ S ). A directed arc (ik, jl) indicates
i 
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ossible travel from node v ik to v jl ; it is defined only if i � = j (each

hip i ∈ N is to be visited, at most, once) and both node v ik and

ode v jl are present (i.e., k ∈ S i and l ∈ S j ). The arc (ik, jl) connects

he two nodes in layers k and l; the layers are distinct with k < l,

ecause no more than one processing is feasible in one time slot. 

ence, nodes of the same layer are not connected. 

For timing constraints of a tour, we provide a minor simplifica- 

ion of the model proposed by Maskooki and Nikulin (2020) . Our 

ormulation proves valuable for the genetic algorithm proposed be- 

ow for solving the scheduling problem. Consider arc (ik, jl) of 

raveling from node v ik to v jl . Measurement for a ship j in location 

 jl is feasible if the surveillance boat arrives at v jl before the end 

f time slot l (before time wl). Hence, recalling that s k = (k − 1) w

s the starting time of time slot k , we find that traveling along arc

ik, jl) is not feasible if s k + p i + t 
jl 

ik 
≥ wl, so arc (ik, jl) is omitted

rom the network (in the preprocessing phase). For admissible arcs 

ik, jl) , we require s k + p i + t 
jl 

ik 
< wl. For s k ≤ t < wk , assume that

denotes the starting time of the measurement for ship i in time 

lot k . If t + p i + t 
jl 

ik 
< wl, then the service for ship j starts in time.

or t = s k , this is implied by admissibility. For t > s k , the time of ar-

ival ( t + p i + t 
jl 

ik 
) at location v jl may be delayed beyond time slot l;

owever, the delay is no more than t − s k < w : the delay is always

horter than one time slot. To avoid such delay, we may redefine 

 k = wk to point to the end of time slot k , for all k , so that the

evised admissibility conditions s k + p i + t 
jl 

ik 
< wl always guarantee 

n-time service for all ships along the tour. We abandoned this op- 

ion, however, because it is unnecessarily restrictive and leads to 

oss of efficiency. Instead, we rely on the hypothesis that small de- 

ays (of less than one time slot) can always be avoided via occa- 

ional minor adjustment in the speed of the surveillance boat dur- 

ng the process of implementing an itinerary. 2 

Proceeding from the conditions above, we define the set of ad- 

issible arcs � in the network as follows: 

= { ( ik , jl ) | i, j ∈ N ∪ { 0 } , i � = j, k ∈ S i , l ∈ S j , k < l, s k + p i 

+ t jl 
ik 

< wl} . (1) 

For the two criteria, let α denote the number of measurements 

visits to ships) and z denote the travel distance within a tour 

tarting at the depot, visiting α ships, and returning to the depot. 

n the bi-criteria problem, α is to be maximized and z to be min- 

mized. For expressing the routing model, we define binary vari- 

bles based on admissible arcs in (1) as follows. For all (ik, jl) ∈ �,

he binary variable x 
jl 

ik 
takes the value 1 if and only if the arc

ik, jl) is included in the tour. For summation over binary vari- 

bles, it is convenient to use dot notation: a dot replacing an index 

enotes summation over the index it replaces. For example, for bi- 

ary variables x 
jl 

ik 
, x ••

ik 
= 

∑ 

jl x 
jl 

ik 
where the set of pairs of indices jl

s defined by (ik, jl) ∈ �. 

Given endogenous variables α, z, and binary variables x 
jl 

ik 
, for 

ik, jl) ∈ �, the routing model satisfies the following constraints: 

For the first objective, α (total number of visits), the goal con- 

traint is as follows: 

 

••
•• = α + 1 , (2) 

here x •••• counts all entries for ships i ∈ N ∪ { 0 } but returning to

he depot, i = 0 , is not counted in α. 

For the second objective, z (total travel distance), we have 

z = 

∑ 

(ik, jl) ∈ �
d jl 

ik 
x jl 

ik 
. (3) 
2 We carried out a test of the validity of this hypothesis and achieved a positive 

esult. For brevity, we have omitted the test results from this report. 

s

m  

i

t

4 
he following constraint ensures exactly one exit from depot node 

 = 0 : 

 

••
0 • = 1 . (4) 

or i ∈ N, if ship i is visited in time slot k ∈ S i , then the immediate

redecessor ship j � = i , j ∈ N ∪ { 0 } , is visited in time slot l ∈ S j with

 < k , and the immediate successor ship j � = i , j ∈ N ∪ { 0 } , is visited

n time slot l ∈ S j with l > k . This is ensured by the following flow-

onservation constraints: 

 

ik 
•• = x ••

ik , ∀ i ∈ N, k ∈ S i . (5) 

o ensure that each ship i ∈ N is visited no more than once within 

he time horizon set, we need the following constraint: 

 

••
i • ≤ 1 , ∀ i ∈ N, (6) 

here the left-hand side counts all departures from ship i ∈ N. 

We are now ready to state the bi-criteria moving-target TSP as 

he following vector-maximization problem of finding α, z, and bi- 

ary variables x 
jl 

ik 
, for all (ik, jl) ∈ �: 

-max { (α, −z) | (2) − (6) } . (7) 

he Pareto frontier for problem 7 can be obtained by finding 

he minimum distance z given α and letting α vary over the set 

 1 , . . . , n } . Given that parameter α is known, the problem is to

inimize the travel distance by finding binary variables x 
jl 

ik 
, for all 

ik, jl) ∈ �, as follows: 

in { z | (2) − (6) } , (8) 

hich is an ILP problem after substitution of z from (3) into prob- 

em (8) . 

As mentioned earlier, in our case of minimizing travel distance, 

aiting can occur when ship i is visited in time slot k , followed by

he immediate successor ship j in time slot l, and the surveillance 

oat may reach location v jl from location v ik before the beginning 

f time slot l with the given constant speed c. Such waiting time 

an be interpreted as traveling from v ik at a sufficiently reduced 

peed to reach node v jl precisely at time (l − 1) w instead of trav- 

ling at speed c from location v ik to v jl . 
An optimal solution of the ILP problem (8) provides a Pareto- 

ptimal result (α, z) with respect to the chosen value of α. Thus, 

o find multiple Pareto-optimal solutions, multiple ILP applications 

ust be made by systematically changing α. However, in practice, 

arge-scale problems are most common, and standard ILP solvers 

re not expected to produce a solution within the available time 

rame, due to the presence of increasingly large number of vari- 

bles with increasing α. To tackle this issue efficiently, we propose 

 customized population-based optimization approach, in the ge- 

etic algorithm framework. 

. The customized genetic algorithm ( CGA ) 

This section lays out the customized genetic algorithm we de- 

eloped to estimate the efficient frontier for the bi-criteria vector- 

aximization problem (7) . The estimation is based on the pre- 

icted ship trajectories as input parameters, which are available 

efore the start of the planning horizon (see Section 2 ). Here, a 

hromosome is a tour (a Hamiltonian circuit) defined by an or- 

ered sequence I = { (i 1 , k 1 ) , . . . , (i α, k α) } ; for ν = 1 , 2 , . . . , α, ship

 = i ν is visited (measurement is conducted) in time slot k = k ν ∈ S i 
t node v ik . A tour sets off from and ends at the harbor ( i = 0 is

ot shown in the sequence I). The population P is a finite set of 

uch tours. Two performance measurements are assigned for each 

ember I ∈ P : α(I) is the number of ships to be visited, and z(I)

s the travel distance of tour I. For each tour I, the fitness func- 

ion V (I) = λα(I) − z(I) is defined as the regularized aggregation of 



A. Maskooki, K. Deb and M. Kallio European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; June 10, 2021;16:14 ] 

t

m

t

τ  

s

3

b

t

A

 

 

 

 

 

3

d

m

o

i

d

a

t

m

m  

t  

t

t  

a  

a

Algorithm 2 Dynamic Programming for Initial Population Genera- 

tion ( DP 0 ). 

Input: predicted trajectories during T , set of admissible arcs �, 

weight λ, probability p ∗

Output: I , V (I ) 

1: for all time slots k ∈ { m − 1 , . . . , 1 } going backward in time, do 

2: for all ships i ∈ N that are present in time slot k , do 

3: if arc (ik, 0 m ) ∈ � then 

4: Set the value function V ik = λ − d 0 m 

ik 
, and set sub-tour 

σik = { i } 
5: else 

6: Set V ik ← −∞ 

7: Save the node v 0 m 

(depot) as the successor node of v ik 
8: for all ships j ∈ N and time slots l > k , l < m , such that 

i / ∈ σ jl , do 

9: if (ik, jl) ∈ � then 

10: Save the value V ← λ − d 
jl 

ik 
+ V jl 

11: else 

12: Set V ← −∞ 

13: Let a be a random draw from uniform distribution 

U(0 , 1) 

14: if V > V ik and a < p ∗ then 

15: Update the value function V ik ← V and save v jl as 

the successor node of v ik 
16: Update the set of sub-tour ships σik ← { i } ∪ σ jl 

17: ( Back to depot node v 00 )Let V 00 ← −∞ 

18: for all ships j ∈ N and time slots l, 0 < l < m , at which j is 

present, do 

19: if (00 , jl) ∈ � then 

20: Save the value V ← −d 
jl 

ik 
+ V jl 

21: else 

22: Set V ← −∞ 

23: if V > V 00 then 

24: Update the value function V 00 ← V and save node v jl as 

the successor of depot node v 00 

25: On the basis of the saved successor nodes, rebuild the tour I 

and assign V (I) ← V 00 

t
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s  

t  
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v
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t
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f
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he two values; i.e., V (I) is a linear value function for the vector- 

aximization problem (7) with a weighting parameter λ> 0 . For 

he proposed algorithm, let P τ denote the population in iteration 

, for τ = 0 , 1 , 2 , . . . , ̂  τ . The iteration’s limit ˆ τ and the population

ize π = | P τ | are exogenously given parameters. 

.1. The steps in the CGA 

The algorithmic steps of the proposed technique are presented 

y Algorithm 1 ; the details of the operators in italics are discussed 

hereafter. 

lgorithm 1 Steps in the CGA . 

Step 0 : Set iteration counter τ = 0 and create an initial popula- 

tion P 0 at random, using 

Algorithm 2 (Subsection 3.2). 

Step 1 : Define front sets F κ , κ = 1 , 2 , . . . ,for P τ and assign front

number n F (I) and crowding 

distance δ(I) for all I ∈ P τ (Subsection 3.3). 

Step 2 : If τ = ˆ τ then stop else copy P τ to an auxiliary population 

P ′ τ . 

Step 3 : Choose two parents I 1 and I 2 at random from P τ ,using

front number and crowding 

distance(Subsection 3.4). 

Step 4 : Apply the crossover operation among I 1 and I 2 to create 

two offspring O 1 and O 2 

(Subsection 3.5). 

Step 5 : For each of the offspring O o , o = 1 , 2 , 

Step 5 . 1 : For each ship appearing twice in O o , remove the

latter one. 

Step 5 . 2 : Optionally, perform replacement mutation on 

O o ,using Algorithm 3 

(Subsection 3.6.1). 

Step 5 . 3 : Optionally, perform insertion mutation on O o ,using 

Algorithm 4 

(Section 3.6.2). 

Step 5 . 4 : Recover feasibility of O o by using the DP r algo-

rithm(Subsection 3.7). 

Step 5 . 5 : Append O o to auxiliary population P ′ τ . 

Step 6 : If | P ′ τ | < 2 π then return to Step 3 else 

Step 6 . 1 : Apply survival selection to P ′ τ to reduce its size to

π for creating new population 

P τ+1 (Subsection 3.8). 

Step 6 . 2 : Increment τ by 1, and return to Step 1 . 

.2. Creating an initial population 

Often the initial population for a GA is generated either ran- 

omly or by a computationally fast problem-specific heuristic 

ethod aimed at starting the algorithm’s iterations with a good set 

f solutions. We generate the initial population for the CGA by us- 

ng an operator DP 0 , which is a minor modification from standard 

ynamic programming ( Bellman, 1957 ). In each round with DP 0 , we 

im to maximize the regularized aggregation V (I) = λα(I) − z(I) of 

our I with two objectives, α(I) (to be maximized) and z(I) (to be 

inimized), using a randomly drawn weighting parameter λ > 0 . 

In a standard DP backward recursion over time slots k = 

, . . . , 1 , 0 , for all i such that k ∈ S i , let V ik denote the value func-

ion at node v ik and let σik be the set of ships j ∈ N along the sub-

our (chosen in backward recursion) from node v ik to the end of 

he tour (at the depot). At the end of the time horizon, for i = 0

nd k ≤ m let V 0 k = 0 and let σ0 k be empty. The algorithm’s steps

re presented in Algorithm 2 . 
5 
Standard DP steps are modified in Algorithm 2 for generating 

he initial population as follows. At each node v ik , the algorithm 

P 0 searches among feasible nodes v jl (each being a location of 

hip j in time slot l > k with admissible arcs (ik, jl) ∈ �) such

hat i �∈ σ jl , avoiding multiple visits to ship i . Unlike in standard

P, the node providing the maximal value for V ik is not necessarily 

hosen; instead, a probability p ∗ is assigned to each feasible node 

 jl , for eligibility to participate in maximizing V ik . In the numerical 

ests shown in Section 4 we use p ∗ = 0 . 8 . The backward recursion

ields a tour I with the aggregate value V (I) = V 00 . In each run of

P 0 , given a randomly drawn parameter λ, a feasible tour I is pro- 

uced with a sequence of ships to be visited. Said procedure vio- 

ates the dynamic programming principles, and, consequently, the 

our I produced by DP 0 may not be optimal under the objective 

 (I) . Nevertheless, such solutions can be good enough to create 

ast favorable members for the initial population. 

Random selection of weights λ and eligible successor nodes 

from the set of feasible nodes) are adopted to diversify the solu- 

ions obtained from DP 0 . Another option for achieving heterogene- 

ty is to apply replacement mutation (introduced in Section 3.6.1 ) 

or tour I. Furthermore, to enhance the chance of getting large- 

ardinality | I| = α(I) for the tour, an insertion mutation, intro- 

uced in Section 3.6.2 , may be used. 
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3 If t 12 + t 21 is small or negative, we have a safeguard level of 1 min. in the de- 

nominator of (15) . 
.3. Front sets, front numbers, and crowding distance 

The proposed CGA is based on the non-dominated sorting 

pproach proposed for evolutionary multi-objective optimization 

 Deb, 2002 ). For selection of efficient members from a population 

 (the current population P τ or an auxiliary population P ′ τ ), P is 

ubdivided into front sets on the basis of Pareto domination, and a 

ront number is assigned to each member of P as follows. 

Front-set determination Let P denote a population with α(I) 

nd z(I) given for all members I ∈ P . We subdivide P into non-

verlapping subsets, front sets F κ , for κ = 1 , 2 , 3 , . . . , such that

 = ∪ κF κ . For κ = 1 , F 1 is the set of non-dominated members of P ,

here dominance is defined in terms of the two criteria α(I) and 

(I) within P . For κ > 1 , let P κ−1 be the set obtained after removal

f members of F ξ for all ξ < κ from P . If P κ−1 is non-empty, then

 κ is the set of non-dominated members within P κ−1 . 

Front number For all I ∈ P , if I ∈ F κ , then κ is the front number

f I and we state that n F (I) = κ . 

For some competitive selections of population members, the 

rowding distance ( Deb, 2002 ) is used as a tie-breaker. For a popu-

ation P with front sets F κ , the crowding distance δ(I) for I ∈ F κ is

 measure quantifying the density of other solutions (tours) sur- 

ounding I in F κ . Thus, crowding distance is determined by the 

ront set for all I ∈ F κ . 

Crowding-distance computation For I ∈ P , to define the crowding 

istance δ(I) , we let κ be such that I ∈ F κ ⊆ P , and we define �α
nd �z thus: 

α = min 

J∈ F κ
{ α(J) | J � = I, α(J) ≥ α(I) } − max 

J∈ F κ
{ α(J) | J � = I, 

α(J) ≤ α(I) } , (9) 

z = min 

J∈ F κ
{ z(J) | J � = I, z(J) ≥ z(I) } − max 

J∈ F κ
{ z(J) | J � = I, 

z(J) ≤ z(I) } . (10) 

hen the crowding distance is 

(I) = 

�α

r α
+ 

�z 

r z 
, (11) 

here r α = max J∈ F κ α(J) − min J∈ F κ α(J) and r z = max J∈ F κ z(J) −
in J∈ F κ z(J) . 

Crowding distances δ(I) are used to determine the tournament 

inner in the event of a tie (by using front numbers); also, δ(I) 

s used as a criterion (larger is better) for choosing members from 

he auxiliary population P ′ τ for the subsequent population P τ+1 . Us- 

ng such a survival selection ensures preservation of diversity in 

he evolving populations, for finally arriving at a well-distributed 

et of near-Pareto-optimal solutions ( Deb, 2002 ). 

.4. Choosing parents by tournament 

Two independent tournaments To find two parents for a 

rossover, we run two tournaments . In each tournament, a parent 

s chosen as follows: 

- Randomly draw two members I , I ′ ∈ P τ for a tournament. En- 

sure that the parents are not identical ( I � = I ′ ) and that their

cardinalities are at least 2 ( | I| > 1 and | I ′ | > 1 ). 

- Choose the member with larger front number n F . 

- If I and I ′ have the same front number, choose the one with the 

larger crowding distance. 

Mating restriction We introduce, as an option, a mating restric- 

ion for choosing the second parent I ′ for the crossover operation. 

he first parent I is chosen as described above, while the second 

arent I ′ is chosen from the population P τ so as to minimize the 
6 
bsolute difference in cardinality (the number of ships to be vis- 

ted) between the two parents. If there is a tie, the choice is based 

n minimizing the total travel distance of I ′ . Thus, I ′ solves the fol-

owing problem: 

in 

I ′ ∈ P τ
{| α(I ′ ) − α(I) | + 0 . 001 z(I ′ ) | I ′ � = I , | I ′ | > 1 } . (12)

ere the goal is to mate two members I and I ′ having almost the 

ame number of ships in their tour. This will increase the chance 

f creating two feasible offspring after application of the crossover 

perator. 

.5. Crossover-point selection and offspring 

Consider tournaments resulting in parents I = { (i ν , k ν ) } αν=1 
and

 

′ = { (i ′ ν , k ′ ν ) } α′ 
ν=1 

with cardinalities | I| = α and | I ′ | = α′ . Crossover

s performed between parents I and I ′ to generate two offspring. 

or choosing the crossing point ν for each parent, we discuss three 

lternative options (i–iii). 

(i) Firstly, for 1 < ν < α, let (i, k ) = (i ν , k ν ) and ( j, l) =
i ν+1 , k ν+1 ) refer to two successive visits to nodes v ik and v jl 
n I. Similarly, for 1 < ν ′ < α′ , let (i ′ , k ′ ) = (i ′ 

ν′ , k ′ ν′ ) and ( j ′ , l ′ ) =
i ′ 
ν′ +1 

, k ′ 
ν′ +1 

) be two successive visits in I ′ . Given that ν and ν ′ are

he chosen crossing points, let 

 12 = l ′ w − (k − 1) w − (p + t j 
′ l ′ 

ik 
) , (13) 

 21 = lw − (k ′ − 1) w − (p + t jl 
i ′ k ′ ) . (14) 

hen the value t 12 (in minutes) indicates the additional time dur- 

ng crossing from I after processing of ship i (at v ik ) to I ′ be-

ore subsequent processing, of ship j ′ (at v j ′ l ′ ). A similar definition 

olds for t 21 . Crossover points ν and ν ′ are chosen as an optimal 

olution to the following problem: 

min 

 <ν<α
min 

1 <ν ′ <α′ 
max (α/ 2 − ν, α′ / 2 − ν ′ ) 

max (1 , t 12 + t 21 ) 
. (15) 

The selection rule (15) tends to keep the crossover points near 

he middle of tours I and I ′ . Furthermore, to improve the chance 

f getting feasible offspring after the crossover operation, that rule 

ends to maximize the extra time during crossing between I and I ′ . 
ere, we neglect the issue of the feasibility of the offspring tours; 

or instance, in case the conditions t 12 ≥ 0 and t 21 ≥ 0 may be vio- 

ated. 3 Feasibility of offspring will be recovered in Step 4.4 of the 

GA via a DP approach; see Section 3.7 . 

(ii) For the second option, note that with the crossover oper- 

tor described above, crossing points ν and ν ′ are chosen on the 

asis of the optimal solution to a min-max problem (15) . To reduce 

omputations, we suggest a modified crossover, wherein the cross- 

ng point ν of parent I is chosen by a random draw from a uniform 

istribution in [2 , α − 1] and crossing point ν ′ of parent I ′ is based 

n problem 15 with ν fixed within I. 

(iii) In the third option, we choose the crossing point ν of par- 

nt I randomly as in option ii and simplify the crossing rule for I ′ 
y 

max 
 <ν ′ <α′ (1 , t 12 + t 21 ) , (16) 

here t 12 and t 21 (in minutes) are defined as above ( 13 , 14 ). This

etermines the crossing point ν ′ of I ′ , such that the total wait- 

ng time at the crossing points (for the two offspring) is maxi- 

ized. The goal is to increase the likelihood of obtaining feasible 

ffspring. 
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Algorithm 4 Insertion Mutation. 

Input: predicted trajectories, sequence I 

Output: extended sequence I and V (I) 

1: Initialize with the depot node (i, k ) = (0 , 0) and let a be a ran- 

domly drawn integer from { 0 , 1 , 2 } 
2: if a ≥ 1 then 

3: repeat 

4: Let ( j, l) ∈ I be the immediate successor of (i, k ) 

5: Let t r ← ∞ 

6: for all ships r not in the sequence I and all time slots s 

such that k < s < l, do 

7: Let t i ← t rs 
ik 

and t j ← t 
jl 
rs 

8: if (ik, rs ) , (rs, jl) ∈ � and t i + t j < t r then 

9: Save (r, s ) as a candidate for insertion and let t r ← 

t i + t j 

10: if t r < ∞ (there is a candidate for insertion) then 

11: Update I by inserting (r, s ) between (i, k ) and ( j, l) , 

and let V (I) ← V (I) + λ − c(t r − t 
jl 

ik 
) 

12: Update (i, k ) to be the next node in the updated se- 

quence I 

13: until the end node (0 , m ) (the depot) is reached or a ships 

are inserted 

14: Return extended sequence I with the updated value function 

V (I) 
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Generating offspring After the crossover points ν and ν ′ are 

ound, two offspring 

O = { (i 1 , k 1 ) , . . . , (i ν , k ν ) , ( j ′ ν ′ +1 , l 
′ 
ν ′ +1 ) , . . . , (i ′ α′ , k ′ α′ ) } , 

 

′ = { (i ′ 1 , k ′ 1 ) , . . . , (i ′ ν ′ , k ′ ν ′ ) , ( j ν+1 , l ν+1 ) , . . . , (i α, k α) } , 
ith cardinalities α(O ) = ν + α′ − ν′ and α(O 

′ ) = ν′ + α − ν , are 

enerated. Thereafter, each of the offspring has options for two 

ypes of mutation (replacement and insertion), discussed in 

ection 3.6 . Irrespective of mutations, offspring may be infeasible. 

e attempt to repair the sequence in the following ways. First, 

ome ships may appear twice in a sequence of visits; in such a 

ase, the second visit is omitted. Second, the crossing-point selec- 

ion may leave insufficient time to travel from one ship to the next 

or the relevant crossover point; i.e., the new crossing arcs might 

ot be in the admissible set �. Recovery from such infeasibility is 

andled by means of the DP r algorithm, introduced in Section 3.7 , 

hereby making the approach hybrid between population-based 

nd point-based. After possible mutations and recovery of feasibil- 

ty, the two offspring are appended to the auxiliary population P ′ τ
o be considered for inclusion in the subsequent population P τ+1 . 

.6. The mutation operator 

For a tour I (for instance, offspring O or O 

′ ), we propose two 

utation operators, replacement and insertion, as follows. 

.6.1. Replacement mutation 

Random replacement is a simple operator intended to increase 

iversity among the offspring. The following steps are applied 

here replacement is performed for the offspring I: 

Replacement is done independently for each of the offspring 

ith the chosen probability p R without checks for feasibility af- 

er replacement. Recovery of feasibility is performed as described 

n Section 3.7 . 

.6.2. Insertion mutation 

The insertion operator is aimed at increasing the cardinality of 

ach offspring sequence I. Insertion can take place at one or sev- 

ral points, each time with insertion of an additional ship to be 

isited. Insertion is done independently for each of the offspring, 

ith a chosen probability p I . To avoid bias of creating long se- 

uences only, we restrict the number of insertions to a randomly 

hosen number from the set { 0 , 1 , 2 } . The steps of the insertion

peration are provided in Algorithm 4 . 

lgorithm 3 Replacement Mutation. 

nput : predicted trajectories, sequence I 

utput : modified sequence I and V (I) 

1: On the basis of a uniform distribution,choose randomly (i, k ) ∈ 

I, indicating a visit to ship i in time slot k at node v ik 
2: Find the ship j ∈ N nearest the location v ik in time slot k such

that j is not scheduled in I 

3: Replace (i, k ) with ( j, k ) in tour I and update V (I) 

4: Return the modified I and V (I) 

A brief explanation of the idea behind the insertion algorithm 

s in order. Let (i, k ) ∈ I (ship i being visited in time slot k ), and let

j, l) ∈ I denote the immediate successor of (i, k ) . The algorithm

nds all feasible sub-tours from node v ik through an additional ad- 

issible node v rs to node v jl such that ship r is not in the sequence

and time slot s satisfies k < s < l. All such potential added visits

o nodes v rs are recorded as candidates for insertion, and, if some 

xist, the one providing minimal travel time from location v ik to 

 jl via v rs is chosen. 
7 
.7. Recovering feasibility 

Consider tour I to be the offspring after possible mutations. 

uppose the tour I = { (i ν , k ν ) } αν=1 
visits each ship i ∈ N no more

han once but may be still be infeasible because not all arcs along 

he tour I are in the admissible set �. Let N 

′ = { i 1 , i 2 , . . . , i α} be

he ordered set of ships to be visited in I. We now develop an op-

imization model to find a feasible tour by adjusting the time slots 

n I and possibly omitting one or more ships from the sequence if 

o required. The task is to find optimal time slots for visiting some 

r all of the α ships while obeying the order of ships specified in 

 

′ . For notational convenience, for ν = 1 , 2 , . . . , α, we relabel the

hips i ν in terms of ν , so that the sequence of ships after rela-

eling is given by N 

′ = { 1 , 2 , . . . , α} . The depot is again denoted as

 = 0 . After relabeling of the ships, regarding the set of admissible

rcs � (1) , we define the subset �′ ⊆ � as follows: 

′ = { ( ik , jl ) ∈ � | 0 ≤ i, j ≤ α and (i < j or j = 0) } . (17)

ence, �′ pertains only to ships i ∈ N 

′ and i = 0 (the depot) and

he condition (i < j or j = 0) for arc (ik, jl) obeys the ordering

iven by N 

′ . The routing problem for recovering feasibility employs 

inary variables x 
jl 

ik 
with (ik, jl) ∈ �′ so that x 

jl 

ik 
= 1 if and only if

rc (ik, jl) ∈ �′ is included in the tour. Again, for summation over 

inary variables we use dot notation. For example, x •••• = 

∑ 

(ik, jl) x 
jl 

ik 
, 

here the set of pairs of indices is defined by (ik, jl) ∈ �′ . A pa-

ameter λ > 0 is chosen such that it is large enough to maintain 

aximizing α as the primary objective. The problem is to find bi- 

ary variables x 
jl 

ik 
for all (ik, jl) ∈ �′ to 

ax λx ••
•• −

∑ 

(ik, jl) ∈ �′ 
d jl 

ik 
x jl 

ik 
, (18) 

he first term above yields the value λ(α + 1) and the second term 

etermines the travel distance z. The following constraint ensures 

xactly one exit from the depot node: 

 

••
0 • = 1 . (19) 

or i ∈ N 

′ , if ship i is visited in time slot k , k ∈ S i , then the flow en-

ers node v ik from some node v jl with 0 ≤ j < i at an earlier time

lot l < k with l ∈ S j , and it exits the node v ik for some node v jl 
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4 The prediction model ( Virjonen et al., 2018 ), the route-optimization model 

( Maskooki & Nikulin, 2020 ) and the risk assessment for the route-optimization 

model ( Maskooki et al., 2020 ) are addressed in publications related to the research 

project explained in this paper. Our research collaborators provided the best avail- 

able data for predictions of ship trajectories with regard to the work area of our 

case study. 
5 In a practical setting, the surveillance-boat operator is expected to have, at 

most, 2 h to find a reasonably good schedule, before launching the trip from the 

harbor; therefore, we limit our solver time to two hours. 
ith j > i or j = 0 at a later time slot l > k with l ∈ S j . This is en-

ured by the following flow-conservation constraints: 

 

ik 
•• = x ••

ik ∀ i ∈ N 

′ , k ∈ S i . (20) 

The problem 18–20 is a network flow problem for which the 

inary variables can be relaxed to continuous variables in [0 , 1] 

nd any optimal basic solution for the resulting linear program- 

ing problem is binary-valued. The tour denoted by I ′ , a mutant 

f I, is determined by the binary variables x 
jl 

ik 
, whose optimal value 

s 1. 

Dynamic programming procedure for recovering feasibility Using a 

tandard linear-programming solver for the problem 18–20 for all 

nfeasible tours in each iteration of the CGA increases the compu- 

ation time significantly. To speed up the execution, we solve 18–

0 by means of a pure DP procedure referred to as DP r . 

The DP r algorithm is similar to DP 0 ; however, N 

′ determines the 

umber of ships, and the tour obeys the order of ships in N 

′ . In ad-

ition, the probability p ∗ (of accepting successor nodes) is not con- 

idered further. Therefore, the DP r algorithm becomes standard DP 

ith backward recursion. The problem is to find an optimal tour of 

isiting some or all of the α ships in N 

′ by maximizing the value 

unction (18) . If no feasible time slot is found for a ship i ∈ N 

′ , that

hip is omitted. We can simplify DP r by excluding the possibility of 

mitting visits to some ships in N 

′ . This procedure might be use- 

ul for enhancing members of the initial population obtained from 

P 0 . 

.8. The auxiliary population based on NSGA-II 

After generating π offspring, we have an auxiliary population P ′ τ
f 2 π feasible members consisting of π members of current pop- 

lation P τ and π offspring. The population P ′ τ is then sorted into 

front sets in accordance with NSGA-II ( Deb, 2002 ), and a front 

umber n F (I) is assigned to each tour I ∈ F ξ , for ξ ≤ κ . Crowding

istances (11) are determined for members of front set F κ only. 

For generating the subsequent population P τ+1 for the next iter- 

tion τ + 1 , let κ ≥ 1 be the smallest integer such that | ∪ 

κ
ξ=1 

F ξ | ≥
. If | ∪ 

κ
ξ=1 

F ξ | = π , then P τ+1 = ∪ 

κ
ξ=1 

F ξ ; otherwise P τ+1 is ∪ 

κ−1 
ξ=1 

F ξ

lus the π − | ∪ 

κ−1 
ξ=1 

F ξ | members of F κ with the largest crowding 

istances, appended to P τ+1 . 

.9. The hybrid customized GA 

As discussed above, to make our overall CGA computation- 

lly efficient, we introduced DP-based methods (to replace an ILP 

olver) within the CGA operators, as follows: 

• To generate the initial population, we solve the DP 0 model via 

Algorithm 2 . Although the Bellman optimality principle is vio- 

lated in this case and the resulting solutions may not be op- 

timal, DP 0 provides good starting solutions and is computa- 

tionally quick to evaluate. Furthermore, as stated at the end 

of Section 3.2 , for diversification of the solutions obtained af- 

ter each run of DP 0 , when a potentially improved candidate is 

found during intermediate steps of the recursion, it is adopted 

with a given probability. 
• For recovering feasibility after crossover and mutation, the ILP 

model ( 18–20 ), introduced in Section 3.7 , is solved by means 

of the dynamic programming procedure of DP r for adjusting 

the time slots of a given sequence and, if necessary, omitting 

ships from the sequence to make the solution feasible. Using 

DP r leads to the optimal solutions of the ILP model ( 18–20 ). 

We will show that quick dynamic programming methods within 

ur proposed CGA operators introduce potentially good properties 

n the evolving population members. 
8 
. Results 

This section presents an implementation of the customized ge- 

etic algorithm introduced in Section 3 , using real data sets. We 

ompare the performance of the CGA and an ILP model (8) for ob- 

aining the Pareto solutions for the bi-criteria MT-TSP defined in 

roblem 7 . 

.1. Data for numerical tests 

Automatic Identification System (AIS) data are fetched from 

he open interface of the Finnish Transport Infrastructure Agency 

 Finnish Transport Infrastructure Agency, 2019 ) for ships (equipped 

ith a class-A AIS transmitter) in a region of the Baltic sea with 

usy marine traffic. A k -nearest neighbor method, described by 

irjonen, Nevalainen, Pahikkala and Heikkonen (2018) , is used for 

rediction of ships’ trajectories. The Maritime Mobile Service Iden- 

ity (MMSI) number of the ship, the location (latitude and longi- 

ude), and the time are employed for prediction. 4 The prediction 

odel is trained with historical data from May to June 2018. The 

rained model is used to predict ships’ trajectories over the 16 h 

ime horizon (7am–11pm UTC+3) for all ships passing through the 

ork area on July 1, 2018. Each predicted trajectory is interpolated 

ith w = 5 -minute time spacing. 

The estimated data are used separately for seven time horizons, 

f T = 4, 6, 8, 10, 12, 14, and 16 hours. They all start at 7am, which

ndicates the starting time t = 0 of the planning period. These data 

ets provide a range of problems from small to large size for ex- 

erimenting and evaluating the performance of the CGA and ILP 

odels. The dimensions of the seven ILP problems (8) , in terms 

f the number of binary variables and constraints, are shown in 

able 1 . 

Interestingly, the 16 h problem involves nearly a million binary 

ariables, which makes this study instance one of the very large- 

imensional problems solved with optimization algorithms, includ- 

ng genetic algorithms ( Deb & Myburgh, 2017 ). 

The speed of the surveillance boat is assumed to be 25 knots 

46.3 km/h) on average, and the processing time for measurement 

s p = 3 minutes for each ship. For all cases of T = 4 , . . . , 16 , the

ength of the time slots is w = 5 minutes. 

.2. Estimating Pareto-optimal frontiers via ILP 

For each of the seven cases of T = 4 , . . . , 16 h, Pareto-optimal

rontiers can be estimated using the ILP model (8) as described in 

he latter portion of Section 2 . However, the number of binary vari- 

bles shown in Table 1 ranges from tens of thousands to almost a 

illion. Thus, solving the problems with common ILP solvers, par- 

icularly for a horizon T large enough for meeting the needs that 

rise in practice, becomes a challenge. 

For test runs, we used the MOSEK solver ( MOSEK ApS, 2019 ), 

ith default settings except that the relative gap tolerance was set 

o 0 . 01 with a two-hour time limit for obtaining each Pareto so- 

ution separately. 5 All implementations are done in an AMPL envi- 

onment ( Fourer, Gay, & Kernighan, 2003 ) on a standard HP Z230 

orkstation with 32 GB of RAM. To find the maximum feasible α, 
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Table 1 

Dimensions (after preprocessing) of ILP problems (8) for finding Pareto-optimal itineraries. T is 

the time horizon (h), n is the total number of ships in the work area during [0 , T ] , and m is the 

number of time slots during [0 , T ] . 

T = 4 T = 6 T = 8 T = 10 T = 12 T = 14 T = 16 

n 22 28 33 40 42 52 63 

m 48 72 96 120 144 168 192 

ILP problem dimensions 

Constraints 263 469 705 889 1,053 1,153 1,338 

Binary vars. 27,432 96,606 239,338 395,722 576,449 710,694 964,276 

Table 2 

Summary statistics for the number of α levels, accuracy of the CGA , and speed-up with the CGA relative to ILP. 

T : time horizon (hours); n max : number of feasible α levels; n GA : number of final α levels from the CGA ; n 0 
GA 

: 

number of initial α levels from the CGA ; n lim : number of α levels at which the ILP solver hits the 2 h time 

limit; �z 0 = (z 0 
GA 

− z ILP ) /z ILP : initial average relative difference in total travel distance, a positive value indicating 

better performance for ILP); �z = (z GA − z ILP ) /z ILP : final average relative difference; �H V 0 = (H ILP − H V 0 
GA 

) /H V ILP : 

initial relative hypervolume difference, a positive value indicating better performance for ILP; �H V = (H V ILP −
H V GA ) /H V ILP : final relative hypervolume difference; sec ILP : total time (wallclock sec.) of the ILP solver; sec GA : total 

time (CPU sec.) of the CGA ; and speed-up: sec ILP /sec GA . 

Number of levels α Differences Solution time 

T n max n GA n 0 
GA 

n lim � z 0 � z � HV 0 � HV sec ILP sec GA Speed-up 

4 15 15 13 0 0.006 0.002 0.0158 0.0015 93 663 < 1 

6 20 19 9 1 0.030 0.018 0.0449 0.0076 13,868 1659 8 

8 25 25 10 3 0.053 0.020 0.0927 0.0150 39,592 2418 16 

10 31 31 12 9 0.038 0.012 0.0514 0.0005 85,945 3438 25 

12 36 36 17 14 0.028 0.016 0.0477 0.0023 122,215 5052 24 

14 40 40 16 13 0.056 0.031 0.0455 0.0057 107,479 6105 18 

16 48 46 20 16 0.064 0.042 0.0481 0.0031 141,579 7106 20 
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tarting with α = 1 , we let α increase by 1 each time until the 

olver declares infeasibility for the ILP problem. 

The smallest problems with a four-hour time horizon could be 

olved rapidly; for a six- and eight-hour horizon with some of the 

argest α levels, the solution time (wallclock time) exceeded 4 h, 

hich already is prohibitive for practical use. For instance, with 

 = 6 h and α = 18 , even 10 hours was insufficient for confirmed

ptimality. The percentage of problems for which optimality was 

ot confirmed by the solver within two hours ranges from 29% to 

9% over the T > 8 h time horizons. For each T , the number of

uch cases is shown in Table 2 . Table B.3 (in Appendix B ) shows

he ILP solver’s solution time for each horizon T and for each fea- 

ible level of α. 

.3. Implementing the CGA 

The proposed CGA is executed for all seven cases of time hori- 

on, T = 4 , . . . , 16 h. Before discussing the results (in Section 4.4 ),

e summarize the implementation details for the CGA . 

The population size is set to π = 50 and the iteration limit 

o ˆ τ = 50 for all experiments. For generating the initial popu- 

ation in iteration τ= 0, we use the modified dynamic program- 

ing procedure DP 0 (introduced in Section 3.2 ). For each run of 

P 0 , the weighting parameter λ (the weight for the objective α in 

lgorithm 2 ) is set to − log (u ) / 0 . 03 , where u is a random num-

er drawn from a uniform distribution U(0 , 1) . Random drawing 

f weights yields a wide range of α levels. In the recursive steps 

f DP 0 , a probability p ∗ = 0 . 8 is used to randomly accept feasible

uccessor nodes (see Section 3.2 ), and thereby to increase the di- 

ersity in the initial population. The algorithm DP 0 repeats until 

= 50 distinct members are generated for the initial population 

 0 . No replacement or insertion mutation is applied to the mem- 

ers (tours) produced by DP 0 . 

After this, at the beginning of each iteration τ , (i) the popula- 

ion P τ is subdivided into front sets, (ii) the front numbers are as- 

igned, and (iii) the crowding distances are calculated for all mem- 

ers of P τ as is described in Section 3.3 . 
9 
Parents for crossover are selected through two tournaments de- 

ned in Section 3.4 , where two non-identical parents are selected 

t random from the population P τ and the better is chosen as the 

inner. We also tested the mating restriction operator in which two 

arents with equal cardinality are allowed to participate in the re- 

ombination operation, as per rule (12) . For T = 8 h, the mating-

estriction rule improved convergence and average error. However, 

or T > 8 h, the outcome was unfavorable when this restriction 

as employed; for instance, for the maximum level of α, the two- 

ournaments approach yields the optimal solution for T = 10 h and 

 near-optimal solution for T = 12 h. While the mating-restriction 

ule led to feasible solutions in each case, they were far from op- 

imal. Therefore, in our tuned CGA , we use two independent tour- 

aments for choosing two parents I and I ′ for crossover. 

For crossing-point selection, we consider three rules, mentioned 

n Sections 3.5 (i–iii). Rule (i), using problem 15 , is symmetric for 

arents I and I ′ . The rule is designed to choose crossing points near 

he center of each sequence I and I ′ . The crossing point in rule (ii)

s chosen randomly for I, after which the rule in problem 15 is ap-

lied for I ′ . Comparisons of rules (i) and (ii) reveal that rule (ii)

eads to a greater diversity of the population and produces a bet- 

er coverage of α levels among the solutions. Therefore, rule (ii) 

s chosen for crossing-point selection. Also, we use rule (iii) which 

pplies problem 16 to I ′ in the aim of improving the chance of 

enerating feasible offspring. Experimental results with rule (iii) do 

ot show much difference in solution accuracy relative to rule (ii), 

ut the latter generally leads to a better distribution of α levels 

nd faster convergence to the Pareto-optimal frontier. 

After crossover, each offspring solution is checked for possible 

uplication of visits in the sequence; if duplicates are detected, the 

atter visit is omitted. Other types of infeasibilities are also checked 

ater as explained in Section 3.7 . 

With regard to the mutation phase, see Section 3.6.1 . For 

ach of the offspring, a single replacement mutation is performed 

ith probability p R = 0 . 2 , and the insertion mutation is applied

ith probability p I = 1 ; however, we restrict the number of in- 

ertions to 0, 1, or 2 ships at most, each with equal probabil- 
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6 Surface area here refers to points (α, z) with α ≥ 0 and z maz ≥ z ≥ 0 weakly 

dominated by P. Alternatively, if only values α = 1 , 2 , 3 , . . . are considered, then we 
ty, 1/3. Hence, there is a probability of 1 / 3 of omitting any

nsertion. 

After mutations, to recover feasibility of the offspring, we solve 

roblem 18–20 by using DP r with a large weight λ= 1,0 0 0 for the

bjective α. If the final offspring solution is not a duplicate of an 

xisting population member, it is appended to the auxiliary popu- 

ation P ′ τ . Offspring are generated until P ′ τ has 2 π = 100 members. 

At the final stage of iteration τ , the set P ′ τ is subdivided into 

ront sets and the members are ranked as described in Section 3.8 . 

rowding distances are calculated for members of the last front 

et of interest. By means of NSGA-II, π = 50 distinct members of 

 

′ 
τ are copied into the subsequent population P τ+1 on the basis of 

ront number and/or crowding distance. 

.4. Comparing the tuned CGA and ILP 

In this section, we discuss how the tuned CGA described in 

ection 4.3 fares in comparison with the ILP model outlined in 

ection 4.2 for estimating the Pareto-optimal frontier of the bi- 

riteria problem (7) . Performance is compared between the two 

ethods in terms of Pareto-efficiency and computation time. The 

ccuracy of the final efficient frontier obtained by the CGA is eval- 

ated via two proximity metrics, average relative error in travel 

istance and relative difference in hypervolume ( Beume, Fonseca, 

ópez-Ibáñez, Paquete, & Vahrenhold, 2009 ) – a metric that com- 

utes the collective dominated region by the obtained Pareto set, 

n the basis of the solution obtained by the ILP model. Further- 

ore, the initial frontier from the CGA is compared with the effi- 

ient frontiers of the ILP model in light of both measurements. 

For the challenging ILP problem instances, an optimal solution 

ay not be confirmed by the solver within the 2 h time limit. 

herefore, the relative error is not necessarily non-negative. In 

ther cases too, (where optimality is confirmed), negative errors 

an arise, if the CGA solution falls within the 0.01 gap tolerance. 

Comparisons of the front set F 1 obtained from the CGA and the 

areto frontier obtained by the ILP model for T = 4 , . . . , 16 h are

hown in Figs. 2–4 . We now turn to the performance of the CGA in

etail for each time-horizon case separately. 

For the T = 4 h case, we observe that 13 of the 15 possible lev-

ls of α, including the maximum α = 15 , are generated already by 

P 0 in the front set F 1 of the initial population ( Fig. 2 (a)). The aver- 

ge relative error in the initial front set F 1 is 0.06 ( Fig. 2 (b)). After

0 iterations, the average relative error falls to 0.002 and all 15 

evels of α are covered by front set F 1 . However, for such a small

roblem, the ILP solver is fast enough to find the Pareto-optimal 

olutions while the CGA with its population-based approach per- 

orms more slowly (see Table 2 ). 

For the T = 6 h case, the CGA does not find a dominant solution

or the maximum level, α = 20 ; however, large levels, including 

5, . . . ,19, are generated by DP 0 in the initial population ( Fig. 2 (c))

ith good accuracy. The average errors in terms of travel distance 

nd the hypervolume metric, alongside the number of α levels 

ound by DP 0 , are shown in Table 2 in the “differences” columns. 

fter 40 iterations, all α levels (except the largest) are in F 1 and 

areto points are estimated quite accurately, with an average rela- 

ive error of 0.02 ( Fig. 2 (d)). For the CGA , the speed-up values are

lready rather high. Speed-up values are shown in Table 2 under 

solution time.” Fluctuation in the average error visible in Figs. 2–

 is explained by new α levels appearing in F 1 over the iterations. 

or example, in the T = 6 h case, the levels α = 13 and 14 are not

roduced in the initial population by DP 0 , but both are generated 

t iteration 1 with average error 0.03, whereas the average error in 

he initial iteration was 0.025. 

For the case T = 8 h, the CGA generates a complete range of 25

evels for α in the front set F 1 at iteration 10 with an average rela-

ive error of 0.03 (see Fig. 2 (e) and Fig. 2 (f)). Hence, after iteration
10 
0, the relative error monotonically decreases, and it reaches 0.02 

t iteration 50. For the maximum level α = 25 , the relative error is 

.02 at iteration 50. The largest error appears in the (less impor- 

ant) case α = 2 , for which the relative error is 0.12. For T = 8 h,

he CGA is at least 16 times faster than ILP in obtaining an entire 

areto-frontier estimate. 

For the case T = 10 h, the 2 h time limit is hit by the ILP solver

or all cases with α > 22 (see Table B.3 in Appendix B ). For such α
evels, optimality is not confirmed for ILP problems. Consequently, 

s can be seen from Fig. 3 (a), for some cases with α ≥ 26 , the rel-

tive error is negative (the solution obtained by the CGA is bet- 

er than the ILP solution). This holds, for instance, in the extreme 

ase of α = 31 , for which the relative error is −0 . 005 . At iteration

4, the CGA produces 30 of the 31 possible α levels in front set 

 1 ( α = 3 is missing in F 1 , although it exists in other front sets)

ith an average error of 0.017 ( Fig. 3 (b)). In the final iteration, all

1 possible levels α are produced in F 1 and the average error is 

.012. As for the computation time, the CGA produces the greatest 

peed-up, at 25 times the speed of the ILP solver (see Table 2 ). Ac-

ordingly, we identify a clear advantage of using the proposed CGA 

nstead of ILP for large-dimension versions of the problem. 

For the case T = 12 h, the solver hits the time limit for all cases

ith α ≥ 23 and the CGA obtains a negative relative error for some 

f the levels α ≥ 26 . After 19 iterations, 34 out of the 36 possible 

levels are produced in F 1 (the missing levels are α = 3 and 14). 

he complete set of α levels is generated after 42 iterations, with 

n average relative error of 0.017 (see Fig. 3 (c–d)). 

For the case T = 14 h ( Fig. 3 (e)), 38 out of 40 possible α lev-

ls are present in F 1 after iteration 16 (the missing α levels are 4 

nd 20). Complete coverage is reached at iteration 39. The average 

elative error is 0.03 in iteration 50, the final iteration ( Fig. 3 (f)).

n this case, CGA computations are at least 18 times faster than 

he ILP solver (see Table 2 ). The relative error at the largest level,

= 40 , is 0.01. 

Finally, the T = 16 h case, representing the largest problem in 

ur study, has an average error of 0.04 ( Fig. 4 (b)) at the final iter-

tion (no. 50). At the maximum level, α = 48 , the relative error is 

0 . 006 ; i.e., the solution produced by the CGA is better than the

ne obtained by the ILP solver in two hours. The complete set of α
evels is not produced in F 1 ; however, after 50 iterations only two 

levels are missing ( α = 18 and α = 20 ) ( Fig. 4 (a)). The speed-up

alue for the CGA is 20 times in comparison with the ILP technique 

 Table 2 ). 

Table 2 summarizes the results for all horizons T in terms of 

he number of α levels, average relative error, hypervolume, and 

omputation time. The number of feasible α levels ( n max ) varies 

rom 15 to 48 across the T values. In our results, the number of 

levels in the first front of the final population produced by the 

GA ( n GA ) is equal to n max , the largest possible, in all cases except

 = 6 h (one level missing) and T = 16 h (two levels missing). For

ll T values, the number of α levels in the first front of the initial 

opulation with the CGA ( n 0 
GA 

) is less than half of the full count

 GA , except for T = 4 h. The number of α levels for which the ILP

olver hits the time limit ( n lim 

) increases steadily with T , reaching

6 levels (out of 48) for T = 16 h. 

For the tour travel distance z GA s produced by the CGA and the 

 ILP s from the ILP, the average relative differences (z GA − z ILP ) /z ILP 

over α levels) in early iterations are in the range 0.6 to 6.4% and 

ecrease with further iterations to the final range of 0.2% to 4.2% 

f the ILP solutions. 

Given a reference point (α, z) = (0 , z max ) , the hypervolume

 HV ) of a given frontier set P is the surface area (volume 6 ) of
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Fig. 2. The figures on the left show comparison of the CGA ’s front set F 1 with the Pareto frontier obtained by the ILP model for the cases T = 4, 6, and 8 h. Iteration -1 

indicates the ILP-model-produced optimal frontier, in blue dots. The right-hand figures show the average relative-error rate for the CGA ’s front set F 1 over the iterations. 

11 
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Fig. 3. The figures on the left plot the CGA ’s front set F 1 against the Pareto frontier obtained by the ILP model for the cases T = 10, 12, and 14 h. Iteration -1 indicates the 

optimal frontier yielded by the ILP model, in blue dots. The figures on the right show the average relative-error rate for the CGA ’s front set F 1 over the iterations. 
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Fig. 4. The left-hand figures show comparison of the CGA ’s front set F 1 with the Pareto frontier obtained by the ILP model for the case T = 16 h. Iteration -1 indicates the 

ILP-produced optimal frontier, in blue dots. The right-hand figures show the average relative-error rate for the CGA ’s front set F 1 plotted against iterations. 
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oints (α, z) that (i) are dominated by some point in P and (ii)

atisfy α ≥ 0 and z ≤ z max Deb (2002) . For each T , we consider

hree frontier sets: the set of Pareto points P ILP obtained from the 

LP model, the set P 0 
GA 

obtained from DP 0 for the initial population 

rom the CGA , and P GA obtained via the CGA for the final popula-

ion; for each T separately, z max is the largest travel distance ob- 

erved in the three sets of Pareto frontiers. The respective hyper- 

olumes are denoted by H V ILP , H V 0 
GA 

, and H V GA . Table 2 shows that

he relative difference (H ILP − H V 0 
GA 

) /H V ILP initially is in the 1.6% to

.3% range. At the final iteration, (H V ILP − H V GA ) /H V ILP lies within

.05% to 1.5% of the ILP solutions. 

The values under “Solution time” in Table 2 show the total so- 

ution time of the ILP solver ( sec ILP in wallclock sec.), the solution 

ime for the CGA ( sec GA in CPU sec.), and the speed-up sec ILP /sec GA 

f the CGA over ILP solutions. The speed-ups are indicative for the 

ollowing reasons. Firstly, a large share of ILP problems related to 

ifferent α levels proves unsolvable within a two-hour time limit 

et for the MOSEK solver; for all such cases, we count only two 

ours for solution time sec ILP in Table 2 . Secondly, the solution 

ime sec GA for the CGA is given in CPU seconds, whereas solu- 

ion time sec ILP for ILP is in wallclock seconds, so may be smaller 

han the CPU-time value on account of use of multiple processors. 

herefore, we interpret the speed-up figures in Table 2 as under- 

stimates for the proposed CGA method in comparison to the ILP 

ethod. 

The observation in all cases above attests that large α levels in- 

luding the maximum often get produced by DP 0 in the front set 

 1 of the initial population with a good accuracy (as indicated by 

he values of �z 0 and �HV 0 ). Therefore, we find that DP 0 provides 

 fast and high-quality starting point for converging to a complete 

fficient frontier in later iterations. Convergence in terms of accu- 

acy often starts after a nearly complete set of Pareto points is pro- 

uced in F 1 . This occurs in the moderate-size problems with T = 6 

nd 8 h after 11–13 iterations and in larger problems with T = 10 ,

2, and 14 h after 17–23 iterations. After 50 iterations, an accept- 

ble accuracy level is achieved in all cases, and large α levels are 

btained with high efficiency. Importantly, the speed-up of the CGA 

elative to the ILP is remarkably large for moderate to large-size 
efine the hypervolume by 
∑ 

α> 0 h α where h α is the length of the line segment of 

oints (α, z) dominated weakly by some point in P. However, the numerical value 

f the hypervolume is the same between the two cases. 

n

r

l

m

t

13 
roblems; it is between 16 and 25 times faster for larger problems 

 T ≥ 8 h). The CGA is able to achieve an efficient solution with a

egligible sacrifice in total travel distance but with a much smaller 

omputation time. From the results in Table 2 , in a sample work 

ay, the total (CPU) time for determining the entire Pareto fron- 

ier via CGA is under 30 minutes for the T = 6 h time horizon and

ncreases with T to about two hours for the T = 16 h horizon; the

orresponding computing times for the ILP model are 4–39 hours 

or the same problem set. For example, in the case of the largest- 

ize problem, after a 2 h run, the ILP solver would have solved 

 to 6 out of 48 different α levels for the available ships, while 

he CGA is able to find a solution covering 46 of the 48 available

hips in the same amount of computation time. A fast computa- 

ion of multiple near-optimal solutions, trading-off a wide range 

f distance traveled and ships covered by using the proposed hy- 

rid evolutionary-DP approach, makes it pragmatic and is the main 

ighlight of this study. This study also stays as one of the largest 

ractical problems solved by a genetic algorithm approach. 

. Conclusions 

We have presented an efficient hybrid evolutionary algorithm 

esigned to find the efficient frontier of a bi-criteria moving- 

arget TSP. Variants of dynamic-programming-based approaches 

ave been employed for generating the initial population and for 

epairs to address infeasible members of the offspring set. The 

ustom mutation operators, insertion and replacement, along with 

ther local optimizations, have led to a new hybrid customized GA 

proposed CGA ), for solving the bi-criteria MT-TSP. 

Experimental evaluations with large-scale data sets from a case- 

tudy problem have confirmed that the CGA is capable of gen- 

rating a wide range of high-quality Pareto solutions trading off

he two conflicting objectives. The CGA has been observed to be 

ignificantly faster in solving large-sized cases than an ILP solver. 

e have tested the CGA on problems with extremely large dimen- 

ions, ranging from tens of thousands of binary variables to nearly 

 million, and demonstrated that it can solve such problems sig- 

ificantly more rapidly than the ILP solver, with negligible average 

elative error. Importantly, some Pareto solutions of interest (with 

arge sequences of targets to be visited) obtained via the CGA are 

ore efficient than the solution found by the ILP solver within a 

wo-hour time limit. In addition, the experimental results have re- 
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Table B.3 

The ILP solution (wallclock) times in seconds for each case T and each level of 

α. Figures above 7,200 s indicate hitting the 2 h solver time limit. 

α T = 4 T = 6 T = 8 T = 10 T = 12 T = 14 T = 16 

1 3 6 13 19 26 33 53 

2 3 48 1072 278 527 742 94 

3 2 76 194 290 872 1554 2284 

4 5 36 127 305 591 970 2277 

5 3 41 136 514 426 712 1453 

6 2 17 89 209 281 278 1346 

7 3 18 51 121 197 295 1186 

8 3 11 61 134 172 252 809 

9 3 13 28 74 148 175 753 

10 6 8 25 68 113 151 403 

11 8 8 29 39 63 103 228 

12 9 26 16 25 46 61 186 

13 14 48 26 41 33 44 168 

14 18 53 53 25 63 70 177 

15 11 108 1167 47 32 81 125 

16 88 480 91 63 45 120 

17 86 718 1170 207 43 73 

18 35,857 530 1033 2810 211 104 

19 5977 3774 1126 3233 472 104 

20 1888 522 3278 2526 438 74 

21 6919 6547 2474 314 73 

22 1962 5518 6230 282 147 

23 21,755 7267 7219 337 427 

24 15,997 7218 7221 471 670 

25 16,268 7213 7219 550 631 

26 7212 7219 1961 438 

27 7214 7220 2909 545 

28 7216 7221 7224 528 

29 7217 7220 7224 723 

30 7218 7220 7225 837 

31 7218 7220 7225 3269 

32 7220 7224 5444 

33 7219 7225 7249 

34 7220 7227 7249 

35 7223 7225 7251 

36 7221 7226 7252 

37 7224 7250 

38 7226 7254 

39 7225 7251 

40 7225 7249 

41 7256 

42 7248 

43 7250 

44 7249 

45 7250 

46 7250 

47 7250 

48 7250 
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ealed that the probabilistic dynamic program DP 0 , proposed for 

enerating the initial population, can provide high-quality start- 

ng solutions, and thereby clearly indicate its potential as a stand- 

lone or in combination with other heuristics for solving large- 

ized problems for which DP-based techniques are under consid- 

ration. 

Future work could examine whether the results might be im- 

roved through inclusion of a priori information based on the fea- 

ures of the traffic pattern, such as clusters of ships along the 

redicted trajectories, and testing variants of the operators in- 

roduced could yield further benefits. One possible extension to 

ur work that is especially interesting with regard to practice is 

o consider multiple surveillance boats and more than one de- 

ot ( Groba et al., 2018; Montoya-Torres, Franco, Isaza, Jiménez, & 

erazo-Padilla, 2015 ). In this case, a home depot for each surveil- 

ance boat could be specified, and joint constraints must be estab- 

ished for all boats such that each ship gets visited no more than 

nce. In continuation to this study, we plan to examine the effect 

f uncertainty in the ship movement, service time, and other un- 
14 
voidable circumstances on the MT-TSP problem for arriving at ro- 

ust solutions. 
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ppendix A. List of Notations 

T = time horizon (hours) 

w = time discretization interval 

m = number of time slots of length w 

k = 0 , 1 , 2 , . . . , m , time-slot index 

n = total number of ships to appear in the work area during 

[0 , T ] 

i = 1 , 2 , . . . , n , ships to appear in the work area during [0 , T ] ;

i = 0 refers to the depot 

v ik = coordinate vector of the location of ship i in time slot k 

S i = { a i , . . . , b i } , set of time slots for which ship i is in the work

area 

d 
jl 

ik 
= ‖ v ik − v jl ‖ = distance (km) from v ik to v jl 

c = speed (km/h) of the emissions-measurement boat 

t 
jl 

ik 
= d 

jl 

ik 
/c = time (h) taken to move from v ik to v jl with con-

stant speed c

p = service time (h) of ships performing the emissions mea- 

surement 

ppendix B. Computation time for solving the ILP model 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2021.05.018 . 
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