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ABSTRACT

Coarse cross-terrain point clouds are gathered by aerial
laser scan (ALS) and dense point clouds by unmanned
vehicle (UAV) operation. These two data sources have
complementary nature and should be combined for vari-
ous applications. This paper uses minimum description
(MDL) length approach to detect individual stones and
their physical dimensions from UAV data. The MDL pro-
cedure is spatially targeted by a two-step heuristics: local
stoniness likelihood derived from ALS data and the cur-
vature detection on UAV data. Comparison of the per-
formance of MDL principle and a geometric approach,
namely mean square error (MSE) minimization is pre-
sented. The MDL approach can be applied to cloud point
densitiesρ ≥ 3 m−2.

1. INTRODUCTION

The problem of estimating terrain surface stoniness is re-
lated to locating automatically potential gravel deposits
nearby infrastructure sites in Northern Finland. One can
produce a 20× 20 m raster file about stoniness likelihood
[1]. Also, geomorphological models are getting more com-
plex using many micro-topological features, and it seems
that the stone size distribution and stone coverage ratio
could serve as two new, ubiquitous features.

Publicly available nation-wide aerial laser scan (ALS)
3D point clouds have the ground point densityρ = 0.7 m−2,
which does not allow the detection of individual stones.
At some sites higher ground point densitiesρ = 42 m−2

are produced by unmanned aerial vehicles (UAV). The
minimum description length principle (MDL) is proposed
to detect individual stones and their radius from these dense
clouds. The MDL process needs a good initial guess of
each stone location, and a spatial angle filtering (SAF) al-
gorithm is suggested to produce a list of most likely stone
positions at each site with a high stoniness likelihood.

The encoding cost approximation of the point cloud
points is based on so called crude MDL [2], where the
model and data are encoded separately. A further assump-
tion is made at the proximity of an object about normal
distribution of point cloud points in orthogonal direction
from the object, and about uniform distribution along the
surface of the object. This assumption is common in point
cloud research, see e.g. [3].

The Section 2 introduces the crude version of the MDL
principle applied to detecting the ground as a planar object
and stones as hemispherical objects in the 3D point cloud.
A generic ”potato” shape is addressed in Section 2.2. Choo-
sing the likely stony areas for further analysis and pin-
pointing MDL check to likely stone locations is briefly
outlined in Section 3. A comparison between geometric
stone parameter fitting and MDL, and some early results
from a test site with a dense point cloud and known geom-
etry of some stones is presented in Section 4. Conclusions
are provided in Section 5.

2. MDL OF VARIOUS POINT SETS

In this treatise a point setX gets associated to an object
X, if the set has an advantageous distribution at the nor-
mal of the surface of the objectX. One has to compare
the cost of encoding a point setQ ⊂ [0, R]3 ⊂ R3 asso-
ciating points either to a symbolic outliers objectO or to
the objectX. The first case is assumed to have uniform
distribution (even it is known to be too pessimistic). A
pixel accuracyε and a nominal lengthR define the encod-
ing costφ3 = 3 lb(G) of one 3D point, whereG = R/ε
is the characteristic pixel amount andlb(.) = log2(.) is an
abbreviation of a binary logarithm.

Now, the encoding length of whole cloud assuming all
points belonging to an outlier objectO, is: Φ(G|O) =
|G|φ3, where |G| stands for the size of the local point
cloud G. Assuming an objectX included to the model,
the encoding length becomes:

Φ(G|O, X) = C|G| + φ3|O| + Φ(X) + Φ(X|X), (1)

whereC = 2 is the encoding length to distinguish the
point classes. In this caseQ has to be divided to two dis-
tinct sets, outliersO and the setX : Q = O ∪ X . The
object parameter encoding lengthΦ(X) and the object-
specific point informationΦ(X|X) are also needed. A
summary of objects and their parameter encoding lengths
is given in Table 1. The only 2D objects is the lineL2.
The rest are 3D objects:L3, C,P ,S andE as a line, a cir-
cle, a plane, a hemisphere and an ellipsoid, respectively.
A generic smooth objectM (potato) will be introduced in
Section 2.2. The shapesS, E ,M are alternative represen-
tations of a stone.

The question is, which encoding is shorter:Φ(G|O) or
Φ(G|X,O)? Initially any encoding based on the presence
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Figure 1. An example of 2D lineL2 and the point setL2

it encodes. Point projection distancesv have normal and
tangential componentst have uniform distribution.

of an objectX is more costly, but there is a break-even
point at |X | = n2. There is also a geometric definition
limit |X | = n1 < n2, at which the objectX becomes
geometrically defined and where the geometric error of a
fit equals zero.

Each pointp ∈ X will be projected on the object sur-
face byproj(p,X) over an orthogonal distanced(p, X) =
||p − proj(p,X)||2. Both components will be encoded
separately by tangential and vertical encoding with point-
specific costsφv(.) andφv(.), respectively:

Φ(X|X) =
∑

p∈X

{φt(proj(p,X)) + φv(d(p,X))}. (2)

The costφv(v) of vertical encoding of a single real value
v ∼ N(0, σ2

v) is the classical Huffman encoding result [3]:

φv(v) = 1
2 ln(2) (

v
σv

)2 + lb(σv

ε ) + 1
2 lb(2π) (3)

φv ≈ Ep∈X [φv(d(p,X))] = 2
ln(2)π2 + 2,

where the expected encoding costφv of vertical distances
v follows by choosingσv = 1.5 ε which leads toE[v/σv] =√

2/π. The choice is for informal consideration only, and
it can be justified by the observed ground height distribu-
tion in the dense point cloud.

The tangential part is uniform distributed, and the cost
φt = Ep∈X [proj(p,X)] for expressing one point projec-
tion can be derived case by case (see Table 1). Derivation
of φt of a line L2 and a D3 planeP have been given in
[3]. Other cases are similar, and the derivation is excluded
from this presentation due the space considerations. The
break-even point cloud sizen2 in Table 1 can now be cal-
culated by:

Φ(X|X) = Φ(X|O)

Φ(X) + n2 (φt + φv) = n2 φ3 (4)

A summary of minimum detectable stone radii with sparse
and dense data is given in Table 2. One can see that
the MDL principle cannot be used for nation-wide sparse
data! A rather typical stone with radiusr = 0.6 m would
need a point densityρ ≥ 11/m2 to be detected as a hemi-
spherical object (ρ ≥ 23/m2 for an ellipsoid).

An efficient implementation of stone detection con-
sists of two tasks: to properly initialize an objectX (its
location and radius) and to improve the initial parameter
choice in MDL sense by addressing points to two possi-
ble classes: outliersO and object-specific pointsX . We

Table 1. An informal summary of some geometric objects
and their model costs. Uniform horizontal point cloud dis-
tribution has beenassumed.

X Φ(X) φt(p) n1 n2

O 0 - 1 1
L2 2φ3/3 φ3/3 2 6
L3 5φ3/3 φ3/3 2 4
C 2φ3 + 1 φ3/3 3 5
P φ3 + 1 2φ3/3 3 6
S 4φ3/3 2φ3/3 + 1 4 12
E 3φ3 1...2φ3/3 + 1 9 26

Table 2. Minimum size of detectablestones.
ground point densityρ (1/m2) 0.7 42

hemisphere min.radius 2.3 0.3
ellipsoid min.axis 3.5 0.5

propose a heuristical likelihood for a stone derived from
coarse point cloud for the first task. The second task is
best done by a random sample consensus (RANSAC) al-
gorithm [4]. Note that actually there are three possible
models: Φ(G|O), Φ(G|P, O) andΦ(G|S, P, O), for out-
liers only, a plane (as the local ground surface) and out-
liers, and for a stone, a plane and outliers, respectively.
The class encoding lengthC equals0, 1 and2 for each
three cases. A basic RANSAC needs to be modified for
the last case, details are not included in this presentation.

2.1. The striped point cloud

The vertical projection of the point cloud is very seldom
uniformly distributed. The laser scan process produces
stripes, therefore the tangential encoding cost will be af-
fected. The projectionproj(p, X) changes to a projection
to a nearest sweep lineL3. Lines are at regular intervals
and one can associate points to correct line by assuming
continous tangential co-ordinate on subsequential lines or
circles. Thus following changes are needed in Table 1:

φt = Φ3/3 for planeP and sphereS (5)

Also, one has to encode the indexing of the sweep planes
by φi = lb(R′/Δ), whereR′ > R is an approximate
width of the potential stone location andΔ the stripe sep-
aration.

2.2. A generic continuous shapeM

MDL can be understood as an alternative regularization
methodology for usual geometric fitting by minimizing
the mean square error (MSE) of orthogonal distances
d(p, M), p ∈ M. From various possible geometric reg-
ularization terms, the minimization of Gaussian curvature
κG leads to a very close relation to MDL minimization
results. Equation 6 defines theκG regularization:

l(M |M) =
∑

p∈M

[d(p,M)]2 + λ

≈
∫

M
κGdA

︷ ︸︸ ︷∑

p∈M

κGpAp, (6)
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where the last sum represents an approximate integration
of Gaussian curvatureκG over the surface ofM via dis-
crete differential geometry (DDG) approach using a tri-
angularizationT of the generic surfaceM produced by
the SAF algorithm of [1]. Approximation of the curva-
ture κG can be based on spatial angles of SAF using so
called spherical excess (see [1]) or so called angle defect
(see[5]). The curvatureκG is not available (or is not mean-
ingful) for other objects in Table 1. This equals setting
the regularization weightλ ≡ 0 for other target functions
l(X|X ) of the geometric fit. There are alternatives to the
geometric regularization term, e.g. the number of trian-
gles|T | can be a cost term.

The MDL principle requires projectionproj(p,M) to
the nearest surface triangle applied just as in Equations 2
and 3. The projectional encoding lengthΦt(.) is based on
the parameterization of each trianglet ∈ T separately:

Φt(proj(M,M)) =
1

|M|lb(|T |) +
2

3|T | lb(|M|) + (7)

+2
3

|M|lb(
√
|M |/ε),

where|M | =
∑

t∈T area(t) is the total surface area of
the objectM . The term 1 of 7 refers to allocating of|M|
points to|T | triangles. The term 2 is the encoding of the
triangle information; each triangle consists of 3 points.
The term 3 is about the encoding of each point by two
local planar coordinates of some trianglet ∈ T .

For a practical implementation, one has to limit the
shapes of trianglest ∈ T . The current attempt has tri-
angles selected from a subsetMT of pointsM while so
called Delaunay property [6] is being enforced. Details of
this approach are still a topic of research.

3. TARGETING OF MDL TESTS

The site selection process is described in Figure 3). The
first box generates a stoniness likelihood [1] map, which
consists of20× 20 m2 pixels. This likelihood map can be
produced at areas where the ground hits exceed 60-70%
of all ALS cloud points. This condition holds on most
of the northern Finland. The first phase uses sparse ALS
data and second phase dense UAV or ALS data (where
available). The criterion for starting the MDL check at
a specific point is based on the Gaussian curvature of the
ground triangulation to have approximately constant value
at neighboring ground points. Details are omitted in this
presentation, and will be published later in an expansion
paper. Red dots at Figure 2 represent prominent places
to perform the MDL test. The quality of the local stone
map shown in Figure 2 can be improved by neighborhood
voting. Details of this process are still being developed.
There are many possibilities and the goal is to develop a
non-parametric adaptive process.

4. EXPERIMENTS AND RESULTS

A 220 × 320 m test site with high-density point cloud
has been used. The site is located at Harakkakallio at
Turku, Finland. The coordinates are:60.44o N, 22.2o E.

Figure 2. Point cloud pre-processing pipeline. Likely lo-
cations are scanned by a Gaussian curvature filter to pin-
point the MDL test spots. The scale of operations pro-
ceeds from 500 km to 20 m and 3 m.

Figure 3. Unfiltered Gaussian curvature distribution.
Neighborhood voting would focus red stripes (possible
stones) to red dots. The test site is in the city of Turku,
Finland.

A ground detail of this cloud is depicted in Figure 3. The
cloud is exceptionally striped limiting the detection and
radius estimation of the smallest stones. The stone B at
Figure 3 has radius ofr = 0.4m, and it extends over one
stripe only. The stone C is larger (r = 1.2m), but the sam-
ple suffers from sparse ground hits because of the local
thick canopy. There are some other small stones visible in
the Figure 3.

The following treatise compares the root mean square
error (RMSE) valuese to the average MDL encoding lengths
φ = Φ(G|...)/|G| with different point cloud densities. The
upper density limitρ = 120 m−2 is typical for local pho-
tometric UAV scans. The site is covered byρ = 80 m−2

helicopter ALS scan, and the low limit is the nationwide
open cloud withρ = 0.8 m−2. The low densities are sim-
ulated by uniform removal of points. In reality low density
ALS scanners have larger beam radius and higher power
thus having better penetration. This leads to somewhat
different ground hit height distributions on each point cloud
densities. The test side has s.d.σz = 0.01...0.04 m. The
low range is for an urban grass field and the upper range
is met at the thicket areas with high ground vegetation.
Three stones were selected and both MSE and the average
MDL encoding lengthφ calculated.

The top part of the Figure 4 shows that the assump-
tion of a plane is simply a wrong one, when the analysis is
tightly centered on a stone. But even the planarity assump-

28



Figure 4. Curvature summary from circled spot of Fig-
ure 2. A: a non-stone shape. B: A small stone with radius
0.4 m. C: A large stone on many scan stripes, but deterio-
rated by canopy hits. D: Noisy curvature by vegetation.
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Figure 5. The encoding length per point on different
point cloud densitiesρ. A set of three stones of radii
r ∈ {0.5, 0.8, 1.3}m encoded by 3 different assumptions:
sphere and outliers, plane and outliers, outliers only.

tion Φ(G|P ) is better than encoding all points as outliers.
The MDL test for sphere is usable at densitiesρ > 3 m−2

when the average encoding lengthφ < 0.9 φ3.

The lower part of Figure 4 shows the root mean square
error (RMSE) of a spherical fit from the same three stones.
There are many possible geometric model tests, see e.g [7].
RMSE is closely related to maximum likelihood estima-
tion (MLE) approach, that is why RMSE was used as a
measure of geometric fit. Initially, at low densities the
spherical fit is not logically possible. The geometric fit-
ting is much too optimistic at densitiesρ = 2...3 m−2,
where cases of 4 hits per stone (and perfect fit!) are com-
mon. The MDL principle is more conservative and begins
to detect stones only later, when it is meaningful. The
curves are averaged and s.d.’s are not indicated, but the
behaviour of MDL test is systematic in this respect by the
very definition of MDL principle.

5. CONCLUSION

This study is only rudimentary probing the possibilities
of combining the existing stoniness likelihood pipeline
of [1], preliminary narrowing of MDL test by neighbor-
hood voting and the usability of the MDL test compared to
MLE. Results, although preliminary, indicate that ground
hit densitiesρ ≥ 3 m−2 can be analyszed by the existing
pipeline and MDL principle.

Another preliminary result is the size limit of the indi-
vidually detectable stones in Table 2. To extend this trea-
tise to have concrete scientific significance, the following
tasks must be completed:

• Locating and measuring a set of stones at the test
site for validation purposes.

• Choosing between various neighborhood voting meth-
ods to improve the likely stone locations seen in
Figure 2.

Also, one has to experiment with the generic smooth shape
M either for detection of prominent ground objects or for
generating an information theoretically justifiable alterna-
tive to the current triangulated ground model produced by
SAF.
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