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Abstract: This study describes the design and control algorithms of an IoT-connected photovoltaic
microgrid operating in a partially grid-connected mode. The proposed architecture and control design
aim to connect or disconnect non-critical loads between the microgrid and utility grid. Different
components of the microgrid, such as photovoltaic arrays, energy storage elements, inverters, solid-
state transfer switches, smart-meters, and communication networks were modeled and simulated.
The communication between smart meters and the microgrid controller is designed using LoRa
communication protocol for the control and monitoring of loads in residential buildings. An IoT-
enabled smart meter has been designed using ZigBee communication protocol to evaluate data
transmission requirements in the microgrid. The loads were managed by a proposed under-voltage
load-shedding algorithm that selects suitable loads to be disconnected from the microgrid and
transferred to the utility grid. The simulation results showed that the duty cycle of LoRa and its bit
rate can handle the communication requirements in the proposed PV microgrid architecture.

Keywords: IoT; PV microgrid; partially grid-connected mode; LoRa gateway; smart-meter; ZigBee

1. Introduction

Electric power systems have been developed over the past century until they became
integrated systems in terms of planning, management, operation, and control. These
systems are characterized by central bulk power generation power plants connected to
consumers through high-, medium-, and low-voltage transmission and distribution net-
works. This complex power system forms the backbone of modern human civilization.
The existing infrastructure uses strategies and technologies that were developed many
decades ago, which utilize limited control and digital communication technologies of the
21st century [1]. Moreover, climate change concerns and environmental issues urged many
countries to adopt new strategies for reducing the dependency on fossil fuels to reduce car-
bon dioxide emissions. Clean energy production is achieved through enabling renewable
energy generation and integration into electrical energy systems. Power systems need to
meet changes in generation profiles to create intelligent tools that rely on advanced sensors,
ICT (information and communication technologies), and digital control technologies that
can distribute electricity effectively, economically, and securely.

Renewable power integration can provide many advantages such as lowering cost and
increasing system reliability, power quality, and energy efficiency [2,3]. The integration of
renewables is achieved in the form of either mega-sized renewable energy parks connected
to the main grid or small-sized units connected to distribution systems. Besides these,
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other forms of distributed small-size energy resources include fuel cells, microturbines,
reciprocating engines, storage systems, and controllable loads. Such power generation
resources require power-electronic interfaces, communications, and control systems to deal
with and dispatch within the constraints of the uncertainty of renewable generation [4].
The concept of a Smart Grid has emerged as the vision of the future generation of power
systems [5]. The smart grid’s attributes can be summarized in the following [6]: (1) optimal
cost electricity generation considering dispatchable demands, (2) maximizing low-carbon
generation, (3) resiliency of both physical and cyber-attacks, (4) ensuring the best power
quality for consumers, and (5) monitoring of components and devices to prevent component
outages or even system blackouts. It is important to mention herein that the cost of an
electric system blackout is very high and results in severe economic and social impacts [7].

Smart grid enabling requires innovative solutions and technologies that include dig-
ital smart meters, sensors, actuators, controllable charging, intelligent circuit interfaces,
phasor measurements units, communication systems, cloud computing, wide and local
area controllers, home automation, etc. [8]. Smart grid technologies and associated in-
frastructures continue to grow tremendously, which requires associated approaches and
methods to improve system performance and energy efficiency [9]. Demand response (DR)
is the most economical and reliable solution for smart power systems [9–12]. The IEEE Std.
2030.6–2016 defines the DR as: The participation of customers in electricity markets by changing
their electricity consumption patterns in response to the price signals or incentive mechanisms from
DR service providers. [13]. The DR implementation allows the use of electricity with changes
in the customer’s load profile according to their needs. Also, it allows dealing with the vari-
ation of renewable energy sources (RES) generation [14]. The DR implementation is relying
on advances in ICT [15]. The DR implementation offers many opportunities for market
agents to provide cost-effective solutions [14,16]. Demand response programs involve a
series of control strategies to fulfill both end-users as well as specific requirements. In a
typical DR scheme, a balancing strategy could be implemented to provide load flexibility
during stress periods of the grid. The implementation of DR is still limited due to the lack
of deploying smart technologies as well as the corresponding regulations [17].

The current Saudi Electricity Company (SEC) billing structure still utilizes traditional
flat tariffs with no incentive packages to decrease their demand during peaks. In a re-
cent study, a pricing scheme that includes time-of-use tariffs (TOU) is discussed and
analyzed [18–20]. The TOU could increase billing during summer to 42~57% higher. In
this study, the households were assumed to respond in different ways: (1) regulate their
thermostat set-point to lower air conditioning demand, (2) either shift unneeded appliances
to different periods of the day, or (3) invest in energy measures. Meanwhile, the SEC
has started an ambitious project towards digital transformation by installing 10 million
smart meters throughout the Kingdom by the year 2021 G. The most interesting feature
is that customers can access real-time data about their consumption and hence, adjust
their consumption patterns as needed [21]. Furthermore, regulations and bylaws that
govern small-scale photovoltaic integration into distribution systems have been approved
by Electricity and Cogeneration Regulatory Authority’s Administrative [22]. This shows
the Saudi Electricity Company’s commitment to the objectives of the Kingdom’s Vision
2030 on renewable and sustainable energy [23,24].

Smart grid systems rely heavily on communication facilities to function. Power-line
communication, wireless mesh networks, Cellular, satellite communication, fiber-optics,
and short-range communication, are among the communication technologies projected to
be used in the smart grid. The use of modern communication technologies in the smart
grid is influenced by a variety of factors including geographic locations, application re-
quirements, regulations, environmental issues, pricing, security, reliability, and many other
factors [25]. Since the smart grid is currently receiving widespread usage from modern
communication technologies, cyber security has become more essential for secure prac-
tices [26,27]. The cyber security measures aim to prevent data eavesdropping, prevent
hazardous malware from running on smart grid embedded devices in addition to protect-
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ing customer privacy. A cyber-physical system (CPS) generally consists of a three-layer
architecture (application, communication, and physical sensor devices) considered to em-
ploy contemporary ICT to manage physical system components remotely. The current use
of CPS has been extended to many vital sectors including: construction, transportation,
E-health, military, and smart-grids [28].

The emerging internet of things (IoT) technology interconnects the CPS system
whereas its architecture can be modeled as a multilayer system. Integration of IoT technol-
ogy has provided comparable potentials and several benefits to the electricity industry [29].
The whole process of power generation, transmission, distribution, consumption, and man-
agement may be made more efficient and intelligent by integrating the IoT components
in power system nodes. By making autonomous decisions and taking reliable actions
based on monitored situations, the performance of these intelligent nodes can be greatly
enhanced. They can also interact with each other and coordinate the efforts to more effec-
tively achieve system-wide goals. Communication infrastructure is a vital element in the
design of the microgrid. There are two types of information that need to be transmitted
across the microgrid: control signals and raw data. Each category should be treated with a
given quality of service (QoS) and security level. Furthermore, the transmission distance,
frequency of transmissions, and cost are also key parameters that need to be accounted
for to choose the suitable communication protocol [26,30]. Various reports have been
published that compare and contrast the existing communication standards to fulfill the
requirements for each smart grid application [31,32].

An IoT communication network comprises different layers such as application, se-
curity, transport, network, and link layer. The communication protocols at the link layer
can be classified into three categories: (1) short-range protocols include Bluetooth and
ZigBee, (2) medium-range protocols include Wi-Fi, 4G/LTE, and 5G, and (3) Long-range
protocols include Narrowband-IoT (NB-IoT), and LoRa (Long Range). The LoRa network
is a low-power wide-area network that uses the spread-spectrum modulation technique.
In this work, the LoRa network is proposed to implement a microgrid architecture based
on IoT connectivity.

A voltage-based droop control method for the transition from grid-connected mode
to the standalone mode was developed in Refs. [33,34]. The authors of [35] designed
(active-reactive power) PQ and (voltage-frequency) VF control algorithms to minimize
voltage and current spikes, there predominantly appear when the microgrid is switched
between grid-connected and islanded operating modes.

This manuscript is an extension of the work published in [36], by means of the
following contributions:

1. A proposed design of a partially grid-connected microgrid based on the IoT commu-
nication network.

2. A comprehensive simulation model using Matlab/Simulink was designed to eval-
uate the performance of the load-shedding algorithm and the associated communi-
cation protocol.

3. A prototype design of IoT-based smart meter using ZigBee communication protocol.
4. A LoRa based communication network is proposed to link the smart meters with the

microgrid controller.

The rest of the paper is organized as follows. Section 2 describes the operation, control,
and modeling of modern microgrids. Section 3 demonstrates the simulation models and
designs used to describe the control of each component in the PV microgrid. Section 4
elaborates the architecture and design of the IoT communication network in addition
to the communication protocol requirements. Finally, Section 5 displays the results and
discussion followed by the conclusions.
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2. Microgrid Operation and Control

Normal operation of a power system requires a perfect balance of active and reactive
powers between generation and load as given using:

Ng

∑
G=1

PG =
NL

∑
L=1

PL + Ploss (1)

Ng

∑
G=1

QG =
NL

∑
L=1

QL + Qloss (2)

where PG and PL are the generated and load demand active power, respectively. QG and
QL are the generated and load reactive power, respectively. Ng and NL are numbers of
distributed generators and distributed loads, respectively. Ploss and Qloss are the active
and reactive power losses, respectively. Also, there is a considerable power generation
reserve that is used to compensate for any violation in generation scheduling during the
operational planning phase. Basically, the power system involves continuous transition
among three different states as shown in Figure 1. The steady state describes the normal
operation of the electrical power system in which there will be a perfect balance of active
and reactive powers between generation and demand. The frequency and voltage are used
as the indicators for this balance and set to operate within specific allowable limits. The
system operates in the emergency state for a specific time according to the type and nature
of the disturbance. The emergency state involves a change in either voltage or frequency
beyond the allowable limits. The power system control includes mechanisms that respond
by fixing the problems and providing restorative actions that may include isolating faulted
parts or shedding some loads from the system.
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Microgrids are quite different from classical power systems due to the intermittent
nature of generation resources. The operation of microgrids in both grid-connected and
islanded modes has been investigated in the literature [37–39]. Microgrid operation empha-
sizes the supply of critical loads during power outages. In this case, some loads are usually
disconnected using shedding algorithms that are classified into three main types namely:
traditional, semi-adaptive, and adaptive algorithms [37]. The under voltage load shedding
(UVLS) algorithm is simple to use and widely used in the literature [40–43]. In this paper,
the UVLS algorithm is used to initiate the load shedding process. However, instead of
disconnecting the load from the microgrid, it is transferred to the grid using fast solid-state
transfer switches controlled by wireless signals transmitted through a LoRaWAN network
and IoT control.

Figure 2a shows a simple two-node system with a source or a distributed generation
(DG) unit, which feeds a reactive power load through a line segment of resistance and
reactance R and X, respectively [44]. Since the load is a reactive power load, the current is
lagging the voltage at the load terminal by an angle θ. Hence, the source voltage must lead
the load voltage by an angle δ, which is usually referred to as the torque or power angle.
This system is also represented by the phasor diagram shown in Figure 2b with the source
voltage considered as a reference. In this system, the source voltage is given by Vs∠0, the
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line impedance is Z∠θ = R + jX, the AC bus voltage is V∠− δ, and the load at the AC bus
is P + jQ, the current I flowing in this circuit is computed as follows:

I =
Vs∠0−V∠− δ

R + jX
(3)
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The active and reactive powers delivered by the source are calculated as follows:

PS + jQS = Vs∠0
Vs∠0−V∠δ

R− jX
(4)

Reducing (4) yields:

PS =
Vs

R2 + X2 (R(VS −V cos δ) + XV sin δ)) (5)

QS =
VS

R2 + X2 (−RV sin δ + X(VS −V cos δ)) (6)

In high voltage power systems, usually R� X, and considering a small value of the
angle δ, hence the above equations can be reduced to the following:

PS =
VsV

X
δ, and QS =

VS(VS −V)

X
(7)

The two last equations develop the classical active and reactive power droop controls,
which are usually used to control voltage and frequency in modern power systems [44–47].
The above equations show the dependency of both active and reactive powers on the
power angle and voltage magnitude, respectively [48]. The droop control characteristics
are expressed by the following equations [49]:

fS = f0 − kPPs, where kP =
fm − f0

Pm
(8)

Similarly

VS = V0 − kQQS, where kQ =
Vm −V0

Qm
(9)
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However, in low voltage networks, such as microgrids, R� X, in this case, Equations (5)
and (6) are expressed as follows:

PS =
VS (VS −V)

R
, and QS = −VSV

R
δ (10)

The last two equations and are usually referred to as reverse droop control character-
istics which are expressed as follows:

VS = V0 − kPRPs, where kPR =
Vm −V0

Pm
(11)

Similarity,

fS = f0 + kQRQS, where kQR =
fm − f0

Qm
(12)

Figure 3 shows plots of both conventional and reverse frequency and voltage droop
characteristics. Droop characteristics must ensure that the generated power is distributed
evenly throughout various DG units. This is accomplished mostly through an accurate
adjustment of the droop characteristics, taking system stability into consideration. In
the following section, a variety of essential components required for microgrid design
and operation, including the controlling method of each component, are described and
modeled. Simulation results are presented and discussed in Section 5.
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3. Microgrid Modeling and Design

The proposed microgrid architecture includes distributed smart-meters, solid-state
transfer switches, circuit breakers, three-phase inverters, PV panels, energy storage system
(ESS), DC bus, AC feeders, critical and non-critical loads, and a centralized controller, as
illustrated in Figure 4. PV systems are designed to supply all loads within the microgrid
coverage area utilizing sizing methodologies in which batteries, PV panel rating, and panel
numbers are predicted for the worst-case scenario. The effect on the weather variation
on PV panels production was taken into account. The smart power meters, static transfer
switches, and microgrid centralized controller are the main components of the proposed
microgrid. The controller monitors the power available from the microgrid in addition to
that required for the connected loads. If the overall load demand exceeds the microgrid
capacity, the controller determines the number and location of loads that need to be
transferred to the utility grid. When the microgrid conditions improve and its capacity and
voltage attain their nominal values or higher, the transferred load can be restored to the
microgrid again.
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Detailed modeling and design parameters of the microgrid components were imple-
mented including the PV array, battery array, converters, inverters, solid-state transfer
swishes, and microgrid centralized controller. In the following subsections, each compo-
nent is comprehensively described.

3.1. PV Array

PV Array is typically modeled based on a combination of a number of solar cells
connected in series to form a string (NS), in addition to a number of strings connected in
parallel (NP) [50]. The building block of the array is the single-diode equivalent circuit
of solar cells. The performance of this circuit mainly depends on a five-parameter model
including diode ideality factor (n), light-induced current (IL), diode reverse saturation
current (Io), series resistance (Rs), and shunt resistance (Rsh). Therefore, the irradiance- and
temperature-dependent current-voltage (I-V) characteristics of a solar cell can be computed
using the equation [51]:

I = IL − Io

[
exp

(
q

V + IRs

nKT

)
− 1
]
− V + IRs

Rsh
(13)

where K denotes the Boltzmann constant and T is the cell temperature in Kelvin. The PV
array current (IPV) and voltage (VPV) with NS series cells/string and NP parallel strings are
calculated by [51]:

IPV = NP IL − NP Io

[
exp

(
q

VPV + IPV
NS
NP

Rs

nNsKT

)
− 1

]
−

VPV + IPV
NS
NP

Rs
NS
NP

Rsh
(14)

In this regard, the input model parameters for a 100-kW PV array were set based on a
315 W module (Sun Power; SPR-315E-WHT-D). The module specifications, evaluated at
the stranded test conditions (STC), are listed in Table 1. The number of PV modules used
to implement this array was set to 320 modules, each module was composed of 96 cells.
The modules were arranged in 64 strings; each string consisted of 5 modules. Therefore, in
Equation (14), NS is set to be 480 cells/string (96 cells × 5 modules) and NP is 64 strings.
The I-V and power-voltage (P-V) characteristics of one module and the whole array, are
plotted as shown in Figure 5.
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Table 1. Technical specifications of the PV module used in array modeling.

Parameter Value (Unit)

Rate power 315 W
Short-circuit current 6.14 A
Open-circuit voltage 64.6 V

Peak current 5.75 A
Peak voltage 54.7 V

Peak efficiency 19.3%
Surface area 1.63 m2
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Weather fluctuations have a great impact on the PV panels’ yield. Referring to the
power yield measured at the STC, the PV maximum output power (PPVm) is calculated
using [52]:

PPVm =
G

1000
Pre f (1 + λ(TC − 25)) (15)

where G represents incoming solar irradiance in W/m2, Pref represents the maximum
output power measured by the module manufacture at the STC, λ is a correction factor,
and TC represents the temperature in degrees Celsius.

3.2. Boost Converter

To maximize the PV array power yield for variable loads, the DC/DC boost converter
controlled by a maximum power point tracking (MPPT) algorithm is generally used. The
converter circuit is designed to adjust the operating point always at the maximum power
point of the P-V characteristics of the array. As shown in Figure 6, the converter circuit
tracks both, the array voltage and current that are typically measured by DC voltage and
current sensors. The output of the controller is a duty-cycle ratio (D) that controls the gate
of a switching active device (typically it is IGBT). The converter is used to effectively link
the PV array to DC-AC inverter(s) and/or to charge a battery array. The extracted PV
power using the converter is related to the switch duty-cycle and the load resistance (RL)
using the following equation [53]:

PPV =
1

RL

(
VPV

1− D

)2
(16)



Appl. Sci. 2021, 11, 11651 9 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 29 
 

where Vmpp and Impp are the PV array voltage and current at the MPP. In this design, the 
duty-cycle ratio was set from 0.1 to 0.9 and the load resistance limits are obtained to be 
0.93 to 73.3 Ω, computed at the STC. The converter parameters considered here are listed 
in Table 2. Regarding the control algorithm of the circuit, the Perturb and Observe (P&O) 
approach was selected here due to its simplicity, robustness, and small numbers of com-
puted variables required to implement the power tracking process. The P&O tracking 
method can continuously track the MPP, in different weather conditions, regardless of the 
kind and location of the PV panels. This is accomplished by analyzing real-time monitor-
ing of PV voltage and current measurements. Because the needed circuitry for implement-
ing MPPTs is more expensive, they are often used for large projects. A pseudocode of the 
P&O is shown in Algorithm 1. A slight change (perturbation) in the duty-cycle (ΔD) is 
injected into the circuit throughout the gate of the switch, then PV voltage and current are 
read (observed) by the sensors. After the change of the power (ΔP) is continuously com-
puted and its sign is checked if it is positive (ΔP > 0) or negative (ΔP < 0), the perturbation 
continues to increase (Dk + ΔD) or decrease (Dk − ΔD). The performance of the MPPT al-
gorithm is commonly evaluated based on several criteria including (1) time response to 
rapid and slow variations in irradiance, (2) amount of power fluctuations around the max-
imum power point and tracking efficiency (TE). The latter parameter can be computed by 
[54]: 𝑇𝐸 = 𝑃௉௏ି௔௩௔௥௔௚௘𝑃௉௏ି௔௩௔௜௟௔௕௟௘ × 100 (18)

where PPV-average is the average output power of the array that is actually collected by the 
tracking circuit, and PPV-available is the available power of the array at a certain level of irra-
diance, which is the maximum power that may be obtained and targeted by the MPPT 
controller. 

 
Figure 6. Schematic diagram of boost converter with MPPT controller. 

Table 2. Design parameters of the boost converter circuit. 

Parameter Value 
Rated power  100 kW 

Input voltage range 200~300 V 
Output voltage (Vo) 800 V 

Input current at MPP 363 A 
Switching frequency 10 kHz 

Figure 6. Schematic diagram of boost converter with MPPT controller.

Owing to limitations of the switch characteristics, D must be kept within some range
(Dmin < D < Dmax). Consequently, the load resistance limits are calculated by [53]:

Vmpp/Impp

(1− Dmin)
2 ≤ RL ≤

Vmpp/Impp

(1− Dmax)
2 (17)

where Vmpp and Impp are the PV array voltage and current at the MPP. In this design,
the duty-cycle ratio was set from 0.1 to 0.9 and the load resistance limits are obtained to
be 0.93 to 73.3 Ω, computed at the STC. The converter parameters considered here are
listed in Table 2. Regarding the control algorithm of the circuit, the Perturb and Observe
(P&O) approach was selected here due to its simplicity, robustness, and small numbers of
computed variables required to implement the power tracking process. The P&O tracking
method can continuously track the MPP, in different weather conditions, regardless of the
kind and location of the PV panels. This is accomplished by analyzing real-time monitoring
of PV voltage and current measurements. Because the needed circuitry for implementing
MPPTs is more expensive, they are often used for large projects. A pseudocode of the P&O
is shown in Algorithm 1. A slight change (perturbation) in the duty-cycle (∆D) is injected
into the circuit throughout the gate of the switch, then PV voltage and current are read
(observed) by the sensors. After the change of the power (∆P) is continuously computed
and its sign is checked if it is positive (∆P > 0) or negative (∆P < 0), the perturbation
continues to increase (Dk + ∆D) or decrease (Dk − ∆D). The performance of the MPPT
algorithm is commonly evaluated based on several criteria including (1) time response
to rapid and slow variations in irradiance, (2) amount of power fluctuations around the
maximum power point and tracking efficiency (TE). The latter parameter can be computed
by [54]:

TE =
PPV−avarage

PPV−available
× 100 (18)

where PPV-average is the average output power of the array that is actually collected by
the tracking circuit, and PPV-available is the available power of the array at a certain level
of irradiance, which is the maximum power that may be obtained and targeted by the
MPPT controller.
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Algorithm 1 Pseudocode of P&O control

1: Initialization; Dmin, Dmax, ∆D (duty cycle step), Dk, Vk, Ik, Pk
2: Read input values of voltage and current Vk+1, Ik+1
3: Calculate: Pk+1 = Vk+1 * Ik+1; ∆V = Vk+1 − Vk; ∆P = Pk+1 − Pk;
4: If ∆P 6= 0→ If ∆P < 0→ If ∆V < 0→ Dk+1 = Dk − ∆D
5: else Dk+1 = Dk + ∆D end
6: else→ If ∆V < 0→ Dk+1 = Dk + ∆D
7: else Dk+1 = Dk +∆D end
8: End
9: else Dk+1 = Dk end
10: If D ≤ Dmin or D ≥ Dmax → Dk+1 = Dk end
11: Dk = Dk+1; Vk = Vk+1; Pk = Pk+1; end
12: Goto step 2

Table 2. Design parameters of the boost converter circuit.

Parameter Value

Rated power 100 kW
Input voltage range 200~300 V
Output voltage (Vo) 800 V

Input current at MPP 363 A
Switching frequency 10 kHz
Inductor value (L1) 5 mH
Input capacitor (C1) 1000 µF

Output capacitor (C2) 1000 µF

3.3. Battery Array and Bidirectional Converter

ESS is essential to compensate for energy shortage and power fluctuations in stan-
dalone PV systems. In this design, the battery model was implemented as a controlled
voltage source [55].

VBatt =

[
V0 − k

AH
AH −

∫
idt

+ Aexp
(
−B

∫
idt
)]
− IBattRo (19)

where V0 is the open-circuit voltage of a battery, AH is battery capacity in Ah unit, k
denotes the polarization voltage (V), A is the exponential zone amplitude (V), B is the
exponential-zone time-constant inverse (in the unit (Ah)−1), Ibatt is the battery current
(A), Ro is the battery internal resistance (Ω), and the integral

∫
idt is the charge drawn

or supplied to the battery. The state-of-charge (SOC) is a key variable of a rechargeable
battery, representing the percentage of the charge level of a battery as compared to its
total capacity. Ampere-hour (Ah) counting is a simple and low-complexity method for
estimating a battery SOC. To integrate the discharging or charging current and compute
the remaining charge in the battery, the Ah counting estimate technique is employed.
Therefore, the SOC of a battery is computed as follows [56]:

SOC = SOCinit −
∫ IBatt × 100

α× 3600
dt (20)

where SOCinit is the initial value of SOC, α represents the usable capacity of the battery.
IBatt represents the current which is, by definition, negative during charge and positive
during the discharge state. The discharge characteristics of a battery bank with a rated
capacity of 3 kAh are illustrated in Figure 7. The typical discharge curve includes three
distinguished regions. The first region, at the initial time, represents the exponential decay
of the battery voltage when the battery is charged. The second one indicates the battery
nominal voltage. The third represents the region at which the voltage drops rapidly, and
the battery is discharged.
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In the present microgrid architecture, the DC bus is linked to the battery array through-
out a buck-boost bidirectional converter circuit, as demonstrated in Figure 8. The controller
of that converter is responsible for maintaining a regulated DC bus voltage, in addition to
charging and discharging the battery array as required [57]. The design parameters of the
bidirectional converter are listed in Table 3. The first proportional-integral (PI) controller
was used to obtain a constant DC bus voltage (800 V) as compared to the measured bus
voltage. The controller parameters were tuned to be kp = 10 and ki = 100 s−1, and the
controller output was limited by the maximum charging/discharging current of the battery.
The obtained current was used as a reference value and compared with the monitored
battery current (IBatt). The error signal was fed to another PI controller to obtain the duty-
cycle required to complementary drive the two switching transistors (Q1 and Q2). The
parameters of the latter PI controller were optimally tuned at kp = 1 and ki = 10 s−1 with
duty-cycle limits of 0.1 and 0.9.
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Table 3. Design parameters of the bidirectional converter circuit.

Parameter Value

Rated Power 100 kW
Battery nominal voltage 192 V (4 × 48 V)

Battery maximum charging/discharging current 500 A
Output voltage (VDC-ref) 800 V

Switching frequency 10 kHz
Inductor value (L1) 0.5 mH
Input capacitor (C1) 500 µF

Output capacitor (C2) 500 µF

3.4. Three-Phase Inverter

At the load end, a three-phase space-vector controlled voltage source inverter (VSI)
serves as a link between the DC-bus and the system loads. The inverter control is utilized to
regulate the voltage and frequency at the load side. As the system is not directly connected
to the utility grid, the AC-bus voltage amplitude and frequency must be well regulated.

Figure 9 illustrates a schematic representation of the inverter and its control scheme.
Generally, a three-phase VSI inverter contains six IGBT power switches in a bridge configu-
ration, interconnected via regulated DC bus voltage through shunt capacitor(s). The in-
verter harmonic is filtered by an LCL-type filter, which is commonly used in grid-connected
and standalone PV systems. The vector control technique is based on a synchronously
rotating reference frame. The controller sets the angular velocity (ω) of the rotating axis
system, which determines the voltage frequency at the load side [58,59]. The voltage
balance across the inductor, Lf in the LCL filter circuit, can be calculated as follows:

vo a,b,c = r f ia,b,c + L f
dia,b,c

dt
+ vi a,b,c (21)

where vo a,b,c are output voltages of the inverter, rf and Lf are the resistance and inductance
values of the inverter filter, and ia,b,c are the inverter currents. In a rotating direct-quadrate
d-q reference frame, the vector representation of a balanced three-phase system and their
corresponding vectors can be written as:

vd = vid − r f id + L f
did
dt

+ ωL f iq (22)

vq = viq − r f iq + L f
diq
dt
−ωL f iq (23)

If the reverence voltage of the output in the d-axis is set to a constant value
vd-ref = |V| representing the required peak voltage at the AC-Bus feeder (|V| =

√
2 Vrms),

and that of the q-axis (vq-ref) is set to zero. Then the inverter active and reactive power can
be calculated by:

P =
3
2
|V|id (24)

and
Q = −3

2
|V|iq (25)

The parameters of voltage PI controllers were tuned at kp = 0.1 and ki = 10 s−1 and
those of the current PI controllers were set to kp = 30 and ki = 200 s−1. Table 4 shows the
most important design parameters of the inverter.
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Table 4. Design parameters of the inverter.

Parameter Value

Rated Power 100 kW
Line-to-line output voltage (Vrms) 400 V

Switching frequency 10 kHz
Filter Inductor values (Lf) 0.25 mH
Filter capacitor values (Cf) 100 µF

3.5. Solid-State Transfer Switches

Recent research has identified solid-state transfer switches (SSTS) as a potentially
cost-effective solution to power control and power quality issues [60]. Figure 10 depicts the
basic concept of the SSTS application, to switch selected loads between the microgrid and
utility grid. The SSTS commonly contains a pair of thyristor switches for each phase, that
assists in power transmission from the primary source, considered here as the microgrid,
and the alternative source, considered as the utility-grid, to prevent load power disruptions.
The coordinate system is created by instantly transforming the three-phase voltages va,b,c(t)
into a bi-axial coordinate system vd,q,0(t). The following equations are used to express the
transfer switch operation [60]: vd

vq
v0

 =

√
2
3

 sin(θ) sin
(
θ − 2π

3
)

sin
(
θ + 2π

3
)

cos(θ) cos
(
θ − 2π

3
)

cos
(
θ + 2π

3
)

1√
2

1√
2

1√
2


 va

vb
vc

 (26)

θ = θ(0) +
∫ t

0
ω(τ)dτ (27)

vdq =
√

v2
d + v2

q (28)
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As shown in the above equations, θ(t) is the angle of conversion utilized to determine
the amplitude of the vd,q,0(t) vector. The voltage vdq(t) is the continuously monitored voltage
that has to be compared to a predetermined threshold voltage in the control algorithm of
the microgrid operation. In case the microgrid fails to power the connected loads, a control
signal is used to start the transfer process of the assigned loads from the microgrid to the
utility grid. Algorithm 2 illustrates the pseudocode used to activate the transfer process by
the SSTS.

Algorithm 2 Pseudocode of SSTS transfer process

1: Initialization; threshold voltage of vdq-th
2: Read actual vdq voltage of the microgrid
3: Is Vdq ≤ Vdq-min?

4:
If YES→ select the loads to be shed from the microgrid→ generate transfer
signals→ transfer the loads

5: Goto step 2
6: If NO→ Goto step 2

3.6. Smart Meters

Smart metering aims to provide effective and continuous monitoring of resource
usage, and it sends the collected data to the Internet or local server through IoT technology.
Smart meters are the most common name for these metering devices. While there is a
wide range of devices on the market today, the most difficult part is integrating them into
a useful smart metering solution for a specific application. The IoT-based smart meter
should be able to accommodate all smart meter features in near real-time in addition to
guaranteeing two-way communication with a sample rate of roughly 1 s. In residential
load demand settings, two types of electric loads are commonly used: linear and non-linear
loads. The present design of the smart meter accounts only for monitoring residential
linear loads (lighting, refrigerator, air conditioner, fan, heater, etc.). The expressions for
voltage and current in the AC time domain can be represented by the following equations:

V(t) = Vmcos(ωt) (29)

and
I(t) = Imcos(ωt + θ) (30)
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where Vm denotes the maximum voltage amplitude and ω denotes the voltage’s angular
frequency, which should be fixed by the utility provider. Im is the current amplitude, and
θ is the phase angle between the voltage and current. The apparent power (S) can be
calculated using the root-mean square (rms) values of the voltage and current as follows:

S = Vrms Irms (31)

The rms values of the current and voltage can be estimated after the instantaneous
values of the current and voltage have been collected, using discretization techniques:

Vrms =

√√√√ 1
N

N

∑
n=1

v2
n and Irms =

√√√√ 1
N

N

∑
n=1

i2n (32)

where N denotes the sample size of the discrete voltage and current values vn and in,
respectively. On the other hand, the real power (P) is simply the average value of the
multiplied discrete values of the voltage and current:

P =
1
N

N

∑
n=1

vnin (33)

Therefore, the power factor (PF) is obtained by:

PF = cos(θ) =
P
S

(34)

The reactive power (Q) is calculated by:

Q = S× sin(θ) =
√

S2 − P2 (35)

Figure 11a illustrates the prototype design of the smart meter, which was imple-
mented using ZMPT101B voltage sensor and ACS712-30A current sensor. Microcontroller
(ATmega328) and microcomputer (Raspberry Pi 3 model B) devices each equipped with
XBEE-S1C module, using ZigBee communication protocol, were set up to transmit the
measured data to an IoT server. The Raspberry Pi 3 model B was chosen here because of
its features, which include a quad-core 64-bit ARM Cortex-A53 clocked at 1.2 GHz along
with 1 GB RAM. Moreover, it is equipped with graphics capabilities provided by its GPU
VideoCore IV. Regarding its compact size, ease of configuration, low cost, high speed,
and low power consumption, which makes it is suitable for many IoT applications and
prototyping. More recently, Pi 4 model with 8 GB RAM is also available with improved
capability and reliability. The metering data were saved and pre-processed at the edge
before being uploaded to an application operating on a cloud middleware platform (Blynk
IoT). The platform has all the needed functions to remotely manage IoT devices such
as provisioning, over-the-air firmware update, secure data storage, data analytics, and
visualization. Blynk supports many hardware devices including Arduino and Raspberry
Pi. We used the Blynk mobile application to display the manipulated data for consumer
load profiling, energy demand, and appliance remote control in the dashboard shown in
Figure 11b. The data collected by the meter are represented by 10-bit accuracy and sent a
reading every 1 s. The results of measuring and assessing the data transmission bit rate of
the designed smart meter are displayed and discussed in Section 5.
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3.7. Microgrid Control

Figure 12 demonstrates the detailed architecture of the PV-ESS microgrid equipped
with a centralized controller used for power management. The connected loads are classi-
fied into two groups: group1 includes the high priority loads that must be permanently
connected to the microgrid, while the other group includes fewer priority loads that can
be islanded from the microgrid and reconnected to the utility grid through SSTS. The con-
troller runs an algorithm that requires a set of consents and variables such as: number of
loads (N), the threshold voltage (VµG-min = vdq-min) that can be extracted from voltage-power
characteristics (V-P) of the microgrid, the real-time monitored microgrid voltage at the
AC-bus (VµG), and a power margin (∆P) used to adjust the amount of load shedding, as
described in Algorithm 3. At regular intervals, the algorithm checks the power demands
(PD) and compares them with the power produced by the renewable resources (PDER).
If the demands exceed the microgrid capacity and the microgrid voltage falls below the
predetermined threshold voltage, the algorithm classifies the loads and calculates the
number and location of loads that must be removed from the microgrid. Upon receiving
the transfer signal from the microgrid controller, the selected loads are momentary and
seamlessly transferred to the utility grid. The LoRa communication network is used to
communicate between the transfer switches, power smart-meters, and grid controllers.
When the operating conditions of the microgrid get improved or the demand is reduced,
the transferred load(s) can be restored to the microgrid.
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Algorithm 3 Pseudocode of loads selecting and transferring to the utility-grid

1: Initialization N, VµG-min, VuG–nominal, ∆P
2: Read VµG, PDER, [PL1,PL2, . . . PLi,..,PLN]

3: Calculate present power demand PD ←
N
∑

i=1
PLi

4: If VµG ≤ VuG–min then
5: Calculate Pdiff = PD − PDER + ∆P
6: Find the load m such that PLm is the nearest value to Pdiff
7: Disconnect Load m from the microgrid and transfer it to the utility-grid
8: Else if VµG > VuG–nominal then
9: Restore the Load m to microgrid
10: Else Return
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4. Design of the IoT Communication Network

IoT technologies offer three classes of communication standards: PAN (Personnel
Area Network), LAN (Local Area Network), and WAN (Wide Area Network). For instance,
compared with Wi-Fi technology, the ZigBee communication protocol is very effective in
creating a home area network (HAN). The communication link between smart meters and
the centralized controller can be assured by wireless or wireline WAN/LAN communi-
cation protocol. The classifications and comparisons among these protocols have been
discussed in [61]. The LoRa communication protocol is a very attractive solution for build-
ing private, secure, and low-power communication infrastructure for microgrids [62,63].
LoRa uses spread spectrum technology which employs a low-complicity receiver, making
it a suitable choice for machine-to-machine (M2M) communication, IoT, wireless sensor
networks, and many other applications. Nodes in a LoRaWAN network are not linked
to a single gateway. Therefore, data sent by a node are usually received via a number of
gateways. Through some downlink, each gateway will transfer the received data from the
end-node to the cloud-based network server. That server could be Wi-Fi, Ethernet, cellular,
or satellite-based network. The server handles the complexity and intelligence required to
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administrate the network, filtering redundant incoming data packets, doing security checks,
scheduling acknowledgments through an optimized gateway, and performing adaptive
data rate, among other things. The nodes in a LoRaWAN network are asynchronous, which
means that they communicate to each other only when they have data to be broadcasted,
whether the data transfer is scheduled or event-driven. This technique can greatly save the
energy required to operate LoRaWAN devices (i.e., increase battery lifetime).

The incorporation of security into any low-power wide-area network (LPWAN) is
critical. LoRaWAN has two security layers: one for the application and another for the
network. The security application layer guarantees that the network operator does not
have access to the end-user application data, while network security assures that each node
in the network is legitimate. The key exchange is encrypted using an advanced encryption
standard (AES) and an IEEE EUI64 identifier. Because of regional spectrum allocations
and regulatory restrictions, the LoRaWAN specifications differ somewhat from region
to region.

End-node devices are used for different purposes and have varying requests. Lo-
RaWAN uses multiple device classes to optimize a range of end-node device applications.
The device classes compromise network downlink communication latency versus battery
life. In many applications, communication latency is a crucial element in any actuator-type
or control-type application. The latency requirements for implementing the DR program
have been studied in research and industrial trends [62–64]. However, in the context
of smart grids, there have been limited efforts devoted to using them in isolated-mode
microgrids. The features of LoRa are summarized in Table 5.

Table 5. Summary of LoRa features.

Modulation Spread Spectrum

Transmission mode Half-duplex
Frequency band ISM

Maximum data rate 50 Kbps
Payload length 243 bytes

Transmission range Up to 20 Km

LoRa supports three classes of devices A, B, and C, as listed in Table 6. Each uplink end-
device data transmission is followed by two short downlink reception windows, allowing
for bi-directional communications. The end-transmission interval is determined by its own
communication requirements, with a slight variance depending on a randomized time
basis. In LoRa, class A device consumes low energy, most of the time in sleeping mode,
transmits data to the gateway. These devices are used mainly to design battery-operated
IoT sensor nodes. Bidirectional communication between a LoRa class A device and a
gateway is supported. At any moment, uplink communications (from the device to the
gateway) can be initiated. After an uplink transmission, the device opens two receive
windows at predetermined periods. If the gateway server does not answer in any of these
receive windows, the device’s next opportunity will be after the next uplink transmission.
In Class B devices, additional receive windows are open at predetermined time intervals.
The end-device gets a time-synchronized signal from the gateway in order to open its
receive window at the predetermined time. This informs the server about the end-listening
device status. Class C devices always have open receive windows and only close when they
are in the data sending mode. Figure 13 shows the architecture of the LoRaWAN network.
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Table 6. LoRa device classes.

Class A B C

Energy consumption Low Moderate High
Down link latency High Low No latency

Mode of operation Bi-directional with the
gateway

Bidirectional with
scheduled receive slots

Bidirectional
communication

Source of energy Battery Battery Main
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The smart meters in our proposed microgrid architecture can be implemented using
LoRa end-node class B or class C devices. Figure 14 illustrates a representation of IoT
LoRa-based communication network within the proposed microgrid design. In this context,
low-cost microcomputers, such as the Raspberry Pi devices, can be used to implement the
end-nodes, gateways, and the centralized controller. The smart meter features continuous
monitoring to load power in addition to microgrid bus voltage. Management of the battery
bank and its SOC can be also taken into consideration. A Raspberry Pi-compatible LoRa
shield is used to construct the LoRaWAN-based fog computing, while the gateways can be
designed using LoRa GPS HAT along with Raspberry Pi devices. The gateways directly
communicate to the network server using TCP/IP protocol. The microcontroller LoRaWAN
gateway collects the incoming data from smart meters and sends it to the TCP/IP server
for further processing. The load power is calculated based on collected data from accurate
voltage and current sensors. At the same time, the SSTS transfer signals are generated by
the end-node devices based on event-based control signal directed from the network server.
The smart meter operates as a LoRaWAN node, collecting data from smart controllers and
charge controller agents and sending it through LoRaWAN. Using the LoRaWAN class B
node and LoRaWAN gateway, the results showed that a latency of within 1 s is attainable.
The power meter at the load side (prosumer) of the microgrid, sends the microgrid voltage
and load power data every second. The required latency is then below 1 s and the payload
is 1000 bytes.
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The physical layer of LoRa network mainly depends on the chirp spread spectrum
(CSS) transmission technique, which can achieve both low power and long-range com-
munication. In addition, the modulation in LoRa devices is highly adaptable and can be
configured to provide data at speeds of up to 50 kbps. On the other hand, the un-optimized
settings of operation can lead the data transmission rate to be extremely low. Therefore,
customizable settings define the LoRaWAN characteristics and performance. The key
parameters that greatly affect LoRa network performance, especially the data transmission
rate are: operating frequency, bandwidth, spreading factor, and correction rate. Regarding
the modulation frequencies, LoRa communicates over license-free radio frequency bands
that differ from one region to another. For example, in North America, the 915 MHz
frequency is used, while in Europe it is 868 MHz, and in Asia the 169 MHz, 433 MHz are
used. The bandwidth (BW) determines the range of frequencies that coded information is
spread within. Higher BW gives a faster data transmission rate however it increases noise
sensitivity. In LoRa, the BW sets are typically 125, 250, and 500 kHz. Spreading Factor
(SF) is the proportion of the symbol rate to the chip rate, and commonly takes a value of
between 7 to 12. A higher SF increases the signal-to-noise ratio, transmission range (to be
in the km range), and Time-On-Air (TOA) of a data packet. The coding rate CR can take the
following values: 4/5, 2/3, 4/7, and 1/2. Increasing CR would increase data transmission
rate; however, this can reduce the TOA, and therefore, data transfer becomes less reliable.
Based on the above-mentioned parameters, the transmission rate (Rb) in bps for the LoRa
network is given by:

Rb = SF
BW
2SF CR (36)

In the following section, a suitable configuration setting of a LoRa-based commu-
nication network that fulfills efficient communication link within the microgrid is to
be discussed.
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5. Results and Discussion

We used Matlab/Simulink software 2020a edition, equipped with a powerful toolbox
for designing and simulating microgrid components utilizing specialized power systems
libraries. In this section, we explore the most important results of the above-mentioned
microgrid design, starting with the PV array and its power tracking unit. The MPPT circuit
is tested in both conditions: the transient and steady-state change in the irradiance. The
simulated PV output power (PPV), voltage (VPV), and current (IPV) waveforms are shown
in Figure 15a. The system performance was initially tested at a sudden reduction in the
solar irradiance from 1000 to 200 W/m2 in three steps and then suddenly raised from 200 to
1000 W/m2 in one step. The results show that the designed tracking circuit exhibits a high
tracking efficiency, TE, that reached 99.5% at PPV = 100 kW in addition to a fast response
that is less than 25 ms to reach the steady-state conditions. At these abrupt changes in the
irradiance, the simulation results proved that the system achieved minimal fluctuations in
tracked PPV that is less than 4% in the worst case. Moreover, regardless of the irradiance
level, the output power fluctuations are mostly eliminated at the steady-state operating
point. In most applications, the progressive increase or decrease of irradiation is the
practical condition. Therefore, the tracking performance of the designed MPPT circuit was
also tested for gradual change in the irradiance as shown in Figure 15b. The irradiance was
gradually reduced from 1000 to 200 W/m2 and then increased from 200 to 1000 W/m2 with
raising and falling rates of +1600 and 800 W/m2/s, respectively. As a result, the designed
controller clearly accomplished the slow variations of the irradiance with a considerable
tracking accuracy in a short period of time, of less than 25 ms, with a minimal fluctuated
power, that is less than 2.5% in the worst case.
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Owing to using many power electronic switches in the power conditioning units
within the microgrid, harmonic distortion commonly occurs. The total harmonic distortion
(THD) is a critical issue in power systems, especially microgrids operating in islanded and
partially grid-connected modes. Therefore, THD must be kept to a minimum to be less
than 5% in order to meet the standards. Reduced THD in microgrids results in a greater
power factor and lower electricity expenditures, resulting in improved power conversion
efficiency. It is worth it here to figure out how much harmonic distortion is present in the
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designed system. Figure 16 depicts waveforms of instantaneous voltage and current of
the AC-bus of an islanded microgrid at a load power of 100 kW. The waveforms indicate
nearly pure sinusoidal with low harmonic distortion. The FFT analyzer was used to do
the THD analysis, as depicted in Figure 16b,c. The analysis revealed that the THD of the
voltage and current waveforms were computed to be 1.24% and 1.27%, respectively. This
implies the good performance of the inverter controller and its related design parameters.
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Figure 16. (a) Waveform of instantaneous voltage and current of microgrid computed at a load power of 100 kW, (b,c) THD
analysis of load voltage and current, respectively.

Figure 17a depicts the variation of PV power, SOC, and battery power when chang-
ing of load power computed at different irradiance levels. At higher irradiance levels
(1000 W/m2) and lower power consumption by the loads, PV power is maximized to
100 kW, while the battery power is negative indicating the charging state of the batteries.
When the load power increases and at the same time the irradiance level decreases, the
power delivered from the PV array is reduced and compensated by the batteries. At a very
low irradiance level and full load, most of the power is delivered from the batteries and its
state is mainly discharging. The main objective of the battery in this system is to supply
critical loads during the night and temporarily support the load demand during cloud
trainsets which usually take a few minutes.
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In the case of the persistence of clouds for long periods or during the night, the
demand is partially supplied by the battery bank and the non-critical loads are switched to
the utility grid. To study this case, a load profile of an academic institute is adopted [65].
The critical load is chosen to be 20% of the peak power (20 kW) of the load demand. With
a total absence of irradiance for one day, a suitable size of the battery is calculated to be
480 kWh. If the SOC of the battery is nearly fully charged (95%) and under the assumption
of the total absence of irradiance in the next day, the battery power should be increased
up to 600 kWh. Therefore, the battery bank with this rated capacity is capable to provide
power to the critical loads for 24 h, as shown in Figure 17b. The above case represents the
most extreme conditions to operate the system. However, for weather conditions, like in
Saudi Arabia which has a clear sky condition for most of the year, the battery bank is sized
to supply the critical loads at the night and during short cloud periods during the day. This
means the suitable size of the battery for the above-mentioned case can be reduced to be in
the range of 240 kWh.

Figure 18 displays voltage power curve of the microgrid in which the voltage regula-
tion action of the controllers is clearly achieved. The controllers succeeded in regulating
the voltage to be within 10% of its nominal value for load power change up to 200 kW.
After this limit, a load shedding action should be taken to prevent the unstable operation
of the microgrid. However, instead of load shedding, some loads are carefully selected
to be transferred to the utility grid in the partially grid-connected mode. The selection
procedure is achieved by the above-mentioned algorithm. An example to verify the pro-
posed algorithm result is displayed in Figure 19. In this case, the algorithm is applied
on five non-critical loads of 40, 20, 20, 60, 25 kW. The loads are sequentially connected to
the microgrid at times of 1, 2, 3, 4, and 5 s, respectively. As displayed in the figure, the
connection of load#4 resulted in a significant voltage drop below the accepted limits (10%
of the nominal voltage). In this situation, one or more loads have to be disconnected from
the microgrid and transferred to the utility grid. The selection of this (or these) load (s)
depends on the power difference between the load demand and the available power of
the microgrid. In this case, load# 4 was selected to be transferred to the utility. When the
load demand decreases or the microgrid conditions were improved, the voltage attained
its nominal value, therefore the disconnected load was restored to the microgrid again.
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Figure 19. Change of microgrid voltage, microgrid power and utility-grid power versus time. Five non-critical loads were
sequentially connected to the microgrid, a selected load (load4) was disconnected from the microgrid and momentary
connected to utility grid.

Regarding the IoT network, the designed smart-meter prototype was evaluated from
the data transmission point of view. The measured data throughout boosted mode commu-
nication is depicted in Figure 20. The measured results show that ZigBee with a bit rate of
6.7 kbps is capable of handling the bit rate and latency required for effective reporting of
the load demands to the microgrid controller through the designed IoT connection. The
latency for the communication between the smart meter and the controller in this measure-
ment was within 10 s. To assess the effectiveness of the LoRa communication protocol in
handling the communication requirements (bitrate, latency, and coverage) between smart
meters and the microgrid controller, the LoRa physical layer was simulated using Matlab.
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The smart-meter has been modeled using LoRa class B, whereas the microgrid controller
has been modeled as a class C device.
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Figure 21 displays bit rate versus SF of LoRa physical layer in which different configu-
rations can be customized for end-node and gateway LoRa devices. In a microgrid, loads
do not change very often, therefore microgrid voltage and power, in addition to load power,
are monitored by smart meters and sent to the gateway at a sampling rate of 600 samples
per second. The data are collected by voltage and current sensors, then converted into
digital samples using an analog-to-digital (ADC) converter of 10-bit accuracy, which makes
the data bit-rate equal to 6 kbps. Taking into account the communication overheads, a LoRa
device should offer a bit rate of 8 kbps. Accordingly, LoRa parameters can be configured as
follows: carrier frequency of 433 MHz, BW of 250 kHz, SF of 7, and CR of 2/3.
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6. Conclusions

This paper provides a proposed design and control method for a partially grid-
connected PV microgrid. The control and architecture are designed to connect or detach
non-critical loads between the microgrid and the utility grid. PV arrays, energy storage
elements, inverters, solid-state transfer switches, smart-meter, and communication network
of the microgrid were modeled, designed, and simulated using the Matlab/Simulink soft-
ware. The LoRa communication network was used to design the IoT-based communication
system between the smart meters and the microgrid controller. An IoT-enabled smart-
meter with ZigBee connectivity has been built for comparison with the proposed LoRa
end-node communication protocol requirements. For microgrid applications, appropriate
configurations of LoRa physical layer devices were suggested to be with a bandwidth of
250 kHz, spreading factor of 7, and correction rate of 2/3.

7. Future Work

We intend to implement the design proposed here in a down-scale experimental
model. The main focus is to test the performance of the proposed system under different
communication system requirements and configurations for microgrid applications.
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