
This article has been accepted for publication in a future issue of this
journal, but has not been fully edited. Content may change prior to final
publication.
Citation information: DOI 10.1109/TIT.2020.3016269, IEEE Transactions on
Information Theory

Â© 2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained
for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in other works.

1

On Levenshtein’s Channel and List Size in
Information Retrieval

Ville Junnila, Tero Laihonen and Tuomo Lehtilä

Abstract—The Levenshtein’s channel model for substitution
errors is relevant in information retrieval where information is
received through many noisy channels. In each of the channels
there can occur at most t errors and the decoder tries to recover
the information with the aid of the channel outputs. Recently,
Yaakobi and Bruck considered the problem where the decoder
provides a list instead of a unique output. If the underlying code
C ⊆ Fn

2 has error-correcting capability e, we write t = e + `,
(` ≥ 1). In this paper, we provide new (constant) bounds on
the size of the list. In particular, we give using the Sauer-Shelah
lemma the upper bound `+1 on the list size for large enough n
provided that we have a sufficient number of channels. We also
show that the bound `+1 is the best possible. Most of our other
new results rely on constant weight codes.

Index Terms—Levenshtein’s Channel, Information Retrieval,
Substitution Errors, List Decoding, Sauer-Shelah Lemma.

I. INTRODUCTION

In this paper, we consider the Levenshtein’s channel model
of substitution errors introduced in [2] for sequences recon-
struction problems. The original motivation came from biology
and chemistry where the usual redundancy method of error
correction is not feasible. Recently, it was pointed out that
this channel model is very relevant to information retrieval in
advanced storage technologies where the stored information is
either a single copy, which is read by many read heads, or the
stored information has several copies [3], [4]. As mentioned in
[3], this model is specifically applicable to DNA data storage
systems, [5]–[8]. In those systems, DNA strands give us a
large number of erroneous copies of the information and we
try to recover the information with the aid of these strands.
For various related sequences reconstruction problems (like
the deletion and insertion errors) see, for example, [2], [9],
[10].

Let us first introduce some notation. We denote the set
{1, 2, . . . , n} by [1, n]. Let F = F2 be a finite field of
2 elements, and denote the Hamming space by Fn. The
support of a word x = x1 . . . xn ∈ Fn is defined by
supp(x) = {i | xi 6= 0}. We denote the all-zero word
0 = 00 . . . 0 ∈ Fn and ei ∈ Fn is a word with 1 in the
ith coordinate and zeros elsewhere. The Hamming weight
w(x) of x ∈ Fn equals |supp(x)|. The Hamming distance

This paper was presented in part at 2019 IEEE International Symposium
on Information Theory (ISIT2019) (see [1]).

T. Lehtilä was supported by the University of Turku Graduate School
(UTUGS) and the Vilho, Yrjö and Kalle Väisälä Foundation.

The authors are with the Department of Mathematics and Statistics, Univer-
sity of Turku, Turku FI-20014, Finland (e-mail: viljun@utu.fi; terolai@utu.fi;
tualeh@utu.fi)

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

is defined as d(x,y) = w(x + y) for x,y ∈ Fn. We
denote the Hamming ball of radius t centered at x ∈ Fn
by Bt(Fn;x) = Bt(x) = {y ∈ Fn | d(x,y) ≤ t} and the
cardinality of the ball by V (n, t) =

∑t
i=0

(
n
i

)
. A nonempty

subset of Fn is called a code and its elements are called code-
words. The minimum distance of a code C ⊆ Fn is defined as
dmin(C) = minc1,c2∈C,c1 6=c2

d(c1, c2). Thus, the code has the
error-correcting capability e = e(C) = b(dmin(C)− 1)/2c.

Let us consider now the channel model in more detail. A
codeword x ∈ C ⊆ Fn2 is transmitted through N channels
where at most t substitution errors can occur in each of
them — in other words, we get N estimations of a stored
information unit. The set of output words is denoted by Y . (In
the model, it is assumed that all the outputs from the channels
are different from each other.) This is illustrated in Fig. 1. It is
also assumed that t > e(C), that is, there can be more errors
than the code C can cope with if it is considered only as an
error-correcting code. We denote

t = e(C) + ` = e+ `

for ` ≥ 1. For a recent generalization of the problem, see [3].

Fig. 1. The Levenshtein’s channel model.

Based on the N different outputs Y = {y1, . . . ,yN} of the
channels, we should be able to recover x. Clearly, if t ≤ e,
then only one channel is enough. In [11], [12], the authors
consider the situation where instead of always recovering x
uniquely, we obtain sometimes a short list of possibilities
for x. In other words, based on the different output words
y1, . . . ,yN and the code C, the list decoder D gives an
estimation TD = TD(Y) = {x1, . . . ,x|TD|} on the transmitted
word x. We denote by LD the maximum cardinality of the
list TD(Y) over all possible sets Y of output words. The
decoder is successful if the transmitted word x belongs to
TD. In this paper, we concentrate on the minimal value of
LD over all successful decoders D, that is, on the value
L = minD is successful{LD}. We denote

T = T (Y) = C ∩ (
⋂
y∈Y

Bt(y)).

2

Hence, we have

L = max{|T (Y)| | Y is a set of N output words}.

The value of L is studied for example, in [11]–[16]. Naturally,
we would like to have as small an L as possible. Notice that L
depends on e, `, n, C and N where C is an e-error-correcting
code. In this paper, we mainly fix e and ` and then consider
the relation between N and L for various n. In particular, we
bound N and see how large L can be for any e-error-correcting
code C.

There is also another closely related problem of information
retrieval in associative memory introduced by Yaakobi and
Bruck [11], [12]. In their model, an associative memory is
given as a (simple and undirected) graph G = (V,E). A vertex
in the graph corresponds to a stored information unit and if two
information units are associated, then there is an edge between
them. Moreover, two vertices are called t-associated, if the
distance between them is at most t. An unknown information
unit x ∈ V is retrieved from the associative memory using
input clues provided by an information seeker. The input clues
are t-associated to x and also belong to a code C ⊆ V serving
as a reference set. The reference set should be such that given
enough input clues, the sought information unit x can be found
unambiguously (or with some small uncertainty). Naturally,
we want the maximum number m of input clues, which are
needed to retrieve any information unit from the memory, to
be as small as possible. The two parameters L and m are
closely related (see, for instance, [13]).

The structure of the paper is as follows. In Section II, we
show some upper and lower bounds on L for an e-error-
correcting code when t = e+ `. We also show that there exist
e-error-correcting codes such that L is not a constant (i.e.,
depends on n) if the number of channels N ≤ V (n, ` − 1).
In Section III, we give an upper bound L ≤ ` + 1 for an
e-error-correcting code when n is large enough and N ≥
V (n, ` − 1) + 1. Moreover, in Theorem 9, we show that
there exist codes which attain this upper bound. Section IV
considers a case with at least two distant output words in Y
when e ≥ 2`−1. We show that having distant output words is
a reasonable assumption and in that case L is rather small (we
may even reach |T | ≤ 2). Finally, in Section V, we consider
the case with less than V (n, `−1)+1 channels. We especially
show that if V (n, ` − a − 1) + 1 ≤ N ≤ V (n, ` − a) where
0 ≤ a ≤ `−1 and if C is an e-error-correcting code such that
L is maximal, then L = Θ(na).

II. SOME UPPER AND LOWER BOUNDS ON L
For the rest of the section, let C be an e-error-correcting

code in Fn and t = e+ ` be the maximum number of errors
that might occur during the transmission. We will first consider
upper bounds on L and then lower bounds. The basic idea on
estimating the maximum length L of the decoded list is the
following: given the output words of the channels, we analyse
the number of codewords of C that locate in the intersection
of Hamming balls of radius t centered at the output words.
As expected, the length L of the decoded list in Levenshtein’s
channel model strongly depends on the number of channels.

In particular, as N increases, L decreases and vice versa.
We discuss more about the dependency between N and L
in Section V.

We focus on the case with N ≥ V (n, ` − 1) + 1. In
Theorem 10, we show that if the number of channels N
is at most V (n, ` − 1), then the maximum length L of the
decoded list depends on n for some e-error-correcting codes.
On the other hand, in Theorem 7 we see that if we have
N ≥ V (n, ` − 1) + 1 channels, then L ≤ 2`. Hence,
V (n, ` − 1) + 1 is the exact number of channels necessary
to have constant list size L on n. Previously, in [2] and [11],
Levenshtein’s channel model had been considered for L = 1
and L = 2, respectively. However, in both cases, the number
of channels is larger than N = V (n, ` − 1) + 1 which is
the focus of this paper. In [2], Levenshtein has given the
following lower bound for the number of channels in the case
L = 1. Originally, Levenshtein considered a case with a code
of minimum distance d. For easier comparison, we assume
that minimum distance d = 2e+ 1.

Theorem 1. [2] Let C ⊆ Fn be an e-error-correcting code
with minimum distance d = 2e+ 1 and t = e+ `. If

N ≥
`−1∑
i=0

(
n− 2e− 1

i

) t−i∑
k=e+1+i−`

(
2e+ 1

k

)
+ 1,

then we have L = 1.

Notice that if n is large enough, then the largest term of
the sum is 2

(
n−2e−1
`−1

)(
2e+1
e+1

)
which is roughly 2

(
n
`−1
)(

2e+1
e+1

)
when n � e. Hence, the number of channels given by this
theorem is notably larger than V (n, `−1)+1. The number of
channels required to have L ≤ 2 presented in [11, Theorem
6] is between our V (n, ` − 1) + 1 and Levenshtein’s result.
For example, when n = 20, ` = 3, e = 4 and minimum
distance d = 2e + 1, Levenshtein’s result for L = 1 requires
that N ≥ 18972, the result for L ≤ 2 given by Yaakobi and
Bruck requires that N ≥ 2712 and the bound L ≤ 2` = 8
presented in Theorem 7 requires that N ≥ 212. In particular,
the number of channels required to have L = 1 (Theorem 1)
or L ≤ 2 ([11, Theorem 6]) depends on e. However, in most
of our results V (n, ` − 1) + 1 channels are enough and this
bound does not depend on e. In [11, Theorem 12], Yaakobi
and Bruck have shown that if n is large enough, then we need
N = Θ(n`−1) channels to have constant list size L. Clearly,
V (n, `− 1) ∈ Θ(n`−1).

The results on the number of required channels in the cases
L = 1 and L = 2 are obtained by analysing cardinalities
of two and three intersecting Hamming balls centered at the
codewords of C, respectively. However, contrary to the cases
with two or three balls, if the intersection of four or more
balls is considered, then the size of the intersection no longer
depends on the distances of the centers of the balls (see [17,
p. 36]). Thus, we rather try to cover T (Y) with some k
copies of e-radius balls. Since C is an e-error-correcting code,
there can be at most one codeword in any e-radius ball and
thus |T (Y)| ≤ k. Hence, in this paper, we use the approach
presented in Lemma 2.

3

Lemma 2. Let C ⊆ Fn be an e-error-correcting code. If for
any set of output words Y = {y1, . . . ,yN} we have

T (Y) = C ∩

(
N⋂
i=1

Bt(yi)

)
⊆

k⋃
i=1

Be(βi)

for some words βi ∈ Fn (i = 1, . . . , k), then L ≤ k.

Proof. Observe, that we have d(c1, c2) ≥ 2e + 1 for any
distinct codewords in C. Therefore, we may have at most one
codeword in any e-radius ball. Thus, there can be at most k
codewords in a union of k copies of e-radius balls. Moreover,
since each word in T (Y) is a codeword and T (Y) is covered
by k copies of some e-radius balls centered at words βi, we
have |T (Y)| ≤ k for each choice of Y and thus, L ≤ k.

Notice that the previous lemma also gives a decoding
algorithm if we know how to choose the words βi. Indeed,
if the words βi are known, then each ball Be(βi) contains at
most one codeword and the decoding can be done by using
decoding algorithm of code C on words βi and then adding
these codewords to the list T .

A. Upper bounds on L
Now we are ready to examine the actual upper bounds on

L. The first upper bound is based on the following theorem
by Kleitman [18].

Theorem 3. If r is a positive integer, n ≥ 2r + 1 and S is a
subset of Fn such that d(x,y) ≤ 2r for any distinct x,y ∈ S,
then |S| ≤ V (n, r).

The following result is an immediate corollary of the
previous theorem.

Corollary 4. If n ≥ 2`− 1 and the number of channels N ≥
V (n, `− 1) + 1, then there exist two output words y1 and y2

such that d(y1,y2) ≥ 2`− 1.

In the following theorem, we show that the maximum length
L of the decoded list is at most

(
2`
`

)
. This result and its proof

can be seen as reformulations of a result by Yaakobi and Bruck
[11, Algorithm 18]. Moreover, this theorem is weaker than
Theorem 7. However, it illustrates the use of Lemma 2.

Theorem 5. Let n ≥ 2` − 1 and C be an e-error-correcting
code in Fn. If t = e + ` and N ≥ V (n, ` − 1) + 1, then we
have

L ≤
(

2`

`

)
.

Proof. Assume that N ≥ V (n, `−1)+1 and let x ∈ C be the
input word. By Corollary 4, we have two outputs y0,y ∈ Y
such that d(y0,y) ≥ 2`− 1. Trivially,

T (Y) = C ∩

 ⋂
yi∈Y

Bt(yi)

 ⊆ C ∩Bt(y0) ∩Bt(y).

Now, our goal is to find a set of k =
(
2`
`

)
such words βi that

we have C ∩Bt(y0)∩Bt(y) ⊆
⋂k
i=1Be(βi). If we find these

words, then Lemma 2 states that L ≤ k.

x = 1 0 1 0 0 1 0 1

βj = 1 0 1 0 0 1 1 0
y = 1 1 1 1 1 1 1 0

y0 = 0 0 0 0 0 0 0 0

︸ ︷︷ ︸
A

Fig. 2. Two output words y and y0 at distance 7 ≥ 2`− 1 when ` = 3 and
e = 2. We have d(βj ,x) = 2 ≤ e where j ∈ [

(2`−1
`

)
+ 1, 2

(2`−1
`

)
].

Without loss of generality, we may assume that y0 = 0.
Since w(y) ≥ 2` − 1, there exists a set A ⊆ supp(y) with
2` − 1 elements. Moreover, let us denote each distinct word
of weight ` with the support belonging to A by bi ∈ Fn, for
i ∈ [1,

(
2`−1
`

)
]. Furthermore, either y0 or y differs from the

input word x in at least ` coordinates in A. Suppose first that
this is the case with the word y0, i.e., |A ∩ supp(x)| ≥ `.
Let us have βi = bi + y0 = bi, for 1 ≤ i ≤

(
2`−1
`

)
. Since

|A ∩ supp(x)| ≥ `, there exists such a word βj , for some
j ∈ [1,

(
2`−1
`

)
], that supp(βj) ⊆ supp(x). Since d(y0,x) ≤ t,

we have d(βj ,x) = d(y0,x)− ` ≤ t− ` = e.
Let us then consider the case where |A∩ supp(x)| ≤ `− 1.

Hence, x differs from y in at least ` coordinates in A. We
have illustrated this situation in Figure 2. Now, we consider the
words βh = bi+y, where i ∈ [1,

(
2`−1
`

)
] and h = i+

(
2`−1
`

)
.

We have |A∩supp(βh)| = `−1 and supp(βh)\A = supp(y)\A
for each h ∈ [

(
2`−1
`

)
+ 1, 2

(
2`−1
`

)
]. Again, for some βj , j ∈

[
(
2`−1
`

)
+1, 2

(
2`−1
`

)
], we have such a word that supp(x)∩A ⊆

supp(βj) and hence, d(βj ,x) = d(y,x) − ` ≤ e. Therefore,
by Lemma 2, we obtain L ≤

(
2`−1
`−1
)

+
(
2`−1
`

)
=
(
2`
`

)
and the

claim follows.

In order to improve the previous upper bound (to 2`), we
present the well-known Sauer-Shelah lemma ([19], [20]). Let
F be a family of subsets of [1, n], where n is a positive integer.
We say that a subset S of [1, n] is shattered by F if for any
subset E ⊆ S there exists a set F ∈ F such that F ∩ S = E.
The Sauer-Shelah lemma states that if |F| >

∑k−1
i=0

(
n
i

)
, then

F shatters a subset of size (at least) k. Since the subsets of
[1, n] can naturally be interpreted as words of Fn, the Sauer-
Shelah lemma can be reformulated as follows. Notice that∑k−1
i=0

(
n
i

)
= V (n, k − 1).

Theorem 6 ([19], [20]). If Y ⊆ Fn is a set containing at
least V (n, k − 1) + 1 words, then there exists a set S of k
coordinates such that for any word w ∈ Fn with supp(w) ⊆ S
there exists a word s ∈ Y satisfying supp(w) = supp(s) ∩ S.
Here we say that the set S of coordinates is shattered by Y .

In the following theorem, we show that L ≤ 2`.

Theorem 7. Let n ≥ ` and C be an e-error-correcting code
in Fn. If t = e+ ` and N ≥ V (n, `− 1) + 1, then we have

L ≤ 2`.

Proof. Let Y be the set of output words and x be the
input word. Assume that N ≥ V (n, ` − 1) + 1. Now, by
Theorem 6, there exists a set S of ` coordinates which is

4

shattered by Y . Let s be the word such that supp(s) = S and
Y ′ = {y1, . . . ,y2`} be a subset of Y such that Y ′ shatters
S. Define then βi = s + yi ∈ Fn for 1 ≤ i ≤ 2`. By
the choice of Y ′, there exists a word yi ∈ Y ′ such that
supp(yi) ∩ S = supp(x + s) ∩ S, i.e., yi and x differ in `
coordinate places of S. Hence, we obtain d(βi,x) ≤ e for
βi = s + yi. Therefore, by Lemma 2, we have L ≤ 2` and
the claim follows.

Observe that when ` = 1 and N ≥ 2 or ` = 2 and N ≥
n+2, we have L ≤ 2 or L ≤ 4, respectively. Later, in Theorem
9, we show that the first upper bound is tight and then, in
Remark 21, we show that we can in some circumstances attain
the upper bound L ≤ 4.

B. Lower bounds on L
In the following, we concentrate on the lower bounds on L.

Here the main idea of the proofs is to find a (bad) set of output
words Y to maximize the possible input words that could have
been transmitted. In the following theorem, we give a lower
bound on the list size when the number of channels is bounded
from above.

Let x ∈ Fn and A ⊆ Fn. We call the set

x +A = {x + a | a ∈ A}

a translate of A.

Theorem 8. For an e-error-correcting code C ⊆ Fn and
radius t = e+ `, we have

L ≥
|C|(V (n, t− a+ 1)−

(
n−a
t−a+1

)
)

2n

if there exist at most N ≤ V (n, a−1)+1 channels, 1 ≤ a ≤ `
and n ≥ t+ 1.

Proof. Let us first consider the words of Ba−1(0). The in-
tersection of the balls with radius t centered at these words
gives ⋂

b∈Ba−1(0)

Bt(b) = Bt−a+1(0). (1)

Denote by s the word with supp(s) = [1, a]. Let Z denote the
set Ba−1(0)∪{s}. Our set of (bad) output words Y will be a
suitable translate of Z if N = V (n, a−1) + 1 and a subset of
size N of the translate if N < V (n, a− 1) + 1. Let P denote
the intersection of balls of radius t centered at the words of
Z. By (1), we get P = Bt(s)∩Bt−a+1(0). It is easy to verify
that

|P | = V (n, t− a+ 1)−
(

n− a
t− a+ 1

)
. (2)

Next we show that there exist u ∈ Fn such that the translate
u+P contains at least |C||P |/2n codewords of C. By double
counting the number M of pairs (u, c) such that u ∈ Fn,
c ∈ C and c ∈ u + P , we obtain∑

u∈Fn

|(u + P) ∩ C| = M = |C||P |.

Therefore, considering the average, there exists u ∈ Fn such
that |(u + P) ∩ C| ≥ |C||P |/2n. Notice that the set u + P

is the set of intersection of the balls of radius t centered at
the words of the corresponding translate u+Z of Z. Clearly,
u + Z = Ba−1(u) ∪ {u + s}.

Let c ∈ C be a codeword in u+P . If we transmit c through
the N channels with at most t errors occurring in each one,
then we can receive the set of output words Y = u + Z =
Ba−1(u)∪{s+u} if N = V (n, a−1)+1 or a subset Y of size
N of the translate u+Z if N < V (n, a−1)+1. In both cases,
the codewords of (u + P) ∩ C are a subset of the possible
input words that could have been transmitted. Therefore, we
get L ≥ |C||P |/2n. The claim follows by (2).

Next we give a lower bound on the list size when the number
of channels N ≤ V (n, `−1)+1. In other words, we show that
there exists an e-error-correcting code for which L ≥ ` + 1.
Later, in Section III, it is shown that the lower bound can be
attained for any e-error-correcting code if N = V (n, `−1)+1
and n is large enough.

Theorem 9. Let t = e+ `. There exists an e-error-correcting
code C ⊆ Fn such that L ≥ `+ 1 if n ≥ `+ `e+ e and the
number of channels satisfies N ≤ V (n, `− 1) + 1.

Proof. Let us consider a code C1 which consists of the
codewords ci (i = 1, . . . , `) satisfying

supp(ci) = {i, `+ e(i− 1) + 1, . . . , `+ e(i− 1) + e}

together with the word c`+1 where supp(c`+1) = [n−e+1, n].
Observe that w(c1) = · · · = w(c`) = e+ 1 and w(c`+1) = e.
Since the supports of these `+ 1 codewords are disjoint, they
form a code with minimum distance 2e+ 1.

Let s ∈ Fn be the word such that supp(s) = [1, `]. Assume
that the set Y of the N received output words from the
channels is a subset of B`−1(0) ∪ {s}. It is easy to see that
the codewords of C1 are included in Bt(s). Moreover, all the
codewords of C1 also belong to the intersection of the balls
of radius t centered at the output words of B`−1(0). Indeed,
by (1) (where now a = `), we have

Be+1(0) = Bt−`+1(0) =
⋂

b∈B`−1(0)

Bt(b) (3)

and the weights of the codewords are at most e + 1. Conse-
quently, for the code C1, we obtain L ≥ ` + 1 (actually, we
even have L = `+ 1).

Notice that Theorem 9 is not just an example suitable for
small codes. In fact, if n is large enough, we may take any
e-error-correcting code C ⊆ Fn, remove every codeword in
some (3e+ 1)-radius ball and insert the code C1 ⊆ Fn inside
it in such a way that the all-zero word in the proof of previous
theorem corresponds to the central word w of the (3e + 1)-
radius ball. Indeed, let C ′ = (C \ B3e+1(w)) ∪ (w + C1)
where w ∈ Fn. Let us next show that C ′ is still e-error-
correcting. Consider a pair (c1, c2) of distinct codewords of
C ′. If c1, c2 ∈ w + C1 or c1, c2 ∈ C \ B3e+1(w), we
immediately have d(c1, c2) ≥ 2e+ 1. Let then c1 ∈ w + C1

and c2 ∈ C \ B3e+1(w). We can write c1 = w + a where
e ≤ w(a) ≤ e + 1 and c2 = w + b, where w(b) ≥ 3e + 2.
Now d(c1, c2) = d(w+a,w+b) = d(a,b) = w(a)+w(b)−
2|supp(a) ∩ supp(b)| ≥ w(b) − w(a) ≥ 3e + 2 − (e + 1) =

5

2e+ 1. Therefore, C ′ is e-error-correcting. Now it is easy to
see that with set of output words corresponding to the one in
the proof of Theorem 9, that is, Y = B`−1(w)∪{s+w}, we
get L ≥ `+ 1 for the code C ′.

Next we show that the list size L can depend on n if the
number of channels is at most V (n, `−1). Let C be an e-error-
correcting code in Fn. Assume that the number of channels
N ≤ V (n, ` − 1) and that all the output words are located
inside B`−1(0). By (3), all the words of weight e+ 1 belong
to the intersection. Moreover, by [21, p. 525], there exists a
code with constant weight e+1 and minimum distance 2e+2
with bn/(e + 1)c words. This implies that L ≥ bn/(e + 1)c
and, hence, the list size depends on n when e is constant.
Consequently, we obtain the following result.

Theorem 10. If N ≤ V (n, `−1), then there exists an e-error-
correcting code such that L ≥ bn/(e+ 1)c.

III. OPTIMAL UPPER BOUND L ≤ `+ 1 FOR LARGE
ENOUGH n

In this section, our goal is to show that L ≤ ` + 1 when
N ≥ V (n, `− 1) + 1 and n is large enough. In Theorem 17,
we give the bound L ≤ `+ 1 where n depends exponentially
on e and `. Later, in Theorem 20, we improve on this result
by proving that the bound already holds when n is only of
polynomial size with respect to e and `. Although Theorem 20
can be viewed as an improvement of Theorem 17, we have
decided also to include the simpler result to the paper as the
proof of the other main theorem is highly complicated and
technical. The main ideas of the proof are more evident in
the simpler result. Moreover, observe that for some (sporadic)
small values of e and ` the requirement of Theorem 17 for n
can be smaller than the one of Theorem 20. In what follows,
we present a few lemmas in order to prove the main results
of the section.

The following lemma is a critical part in showing that L ≤
` + 1 when n is large enough. In particular, we show that
if there exists a word w close to every codeword in T =
T (Y), then the cardinality of T is rather small. Moreover, in
Theorems 17 and 20 we verify the existence of such a word
w.

Lemma 11. Let the set of outputs Y consist of N ≥ V (n, `−
1)+1 words and C be an e-error-correcting code. Further let
h be an integer and w ∈ Fn be a word such that 0 ≤ h ≤ `
and d(w, c) ≤ e+ h for each c ∈ T (Y). Then we have

|T (Y)| ≤
h∑
i=0

(
`

i

)
.

Proof. Let x be the transmitted codeword. Assume that w ∈
Fn is a word satisfying d(w, c) ≤ e+ h for every c ∈ T (Y);
in particular, d(w,x) ≤ e + h. Without loss of generality,
we may assume that w = 0. Since N ≥ V (n, ` − 1) + 1,
by Theorem 6, there exists a set S ⊆ [1, n] of ` coordinates
which are shattered by a subset Y ′ = {y1, . . . ,y2`} ⊆ Y .
Let s denote the word such that supp(s) = S. The proof
now divides into two cases based on the number of different
coordinates between x and w in S, that is, |supp(x) ∩ S|.

Assume first that |supp(x)∩ S| ≤ h− 1. Define Y = {y ∈
Y ′ | |supp(y) ∩ S| ≥ ` − (h − 1)} ⊆ Y ′ and B1 = {β =
y + s | y ∈ Y }. Notice that |Y | = |B1| =

∑`
i=`−(h−1)

(
`
i

)
=∑h−1

i=0

(
`
i

)
. Since |supp(x) ∩ S| ≤ h − 1, there exists a word

y ∈ Y such that supp(y +x)∩S = S, that is, x and y differ
in every coordinate of S. Then β = y + s ∈ B1. Therefore,
we have d(x, β) = d(x,y + s) = d(x,y)− ` ≤ t− ` = e.

Let us then assume that |supp(x) ∩ S| ≥ h. Define B2 =
{β ∈ Fn | w(β) = h and supp(β) ⊆ S}. Notice that |B2| =(
`
h

)
. Now there exists a word β ∈ B2 such that supp(β) ⊆

supp(x). Hence, we have d(x, β) = |supp(x)| − h ≤ (e +
h)− h = e. Therefore, we obtain that

x ∈
⋃

β∈B1∪B2

Be(β)

and the claim follows by Lemma 2 since |B1 ∪ B2| = |B1|+
|B2| =

∑h
i=0

(
`
i

)
.

The following corollary is immediately obtained by choos-
ing h = 1 in the previous lemma.

Corollary 12. Let the set of output words Y consist of N ≥
V (n, ` − 1) + 1 words, C be an e-error-correcting code and
let there exist a word w ∈ Fn such that d(w, c) ≤ e + 1 for
each c ∈ T (Y). Then we have

|T (Y)| ≤ `+ 1.

In Theorems 9 and 20 the aim is to show that a word
w occurring in the previous corollary indeed exists. For this
purpose, we first begin with the following lemma which shows
that if n is large enough and N ≥ V (n, `− 1) + 1, then there
exists an output word y ∈ Y such that y differs from the
transmitted codeword x in at least ` − 1 coordinate places
outside a small set of restricted coordinates (the set D in
the lemma). Observe that supp(a + b) denotes the set of
coordinates in which the words a and b differ. Moreover, we
have d(a,b) = |supp(a + b)|.

Lemma 13. Assume that Y ⊆ Fn, |Y | = N ≥ V (n, `−1)+1,
C is an e-error-correcting code and b is a positive integer. If
n ≥ ` − 2 + (` − 1)22b, then for any codeword c ∈ T (Y)
and for any set D ⊆ [1, n] with |D| = b, there exists a word
y ∈ Y such that

|supp(c + y) \D| ≥ `− 1.

Proof. Let D ⊆ [1, n] and |D| = b for some fixed b. Without
loss of generality, we may assume that c = 0. Suppose to
the contrary that there does not exist a word y ∈ Y such that
|supp(c+y)\D| = |supp(y)\D| ≥ `−1, i.e., |supp(y)\D| <
`− 1 for all y ∈ Y . This implies that the number of words in

6

Y is at most
`−2∑
j=0

min{b,t−j}∑
i=0

(
b

i

)(
n− b
j

)

≤
`−2∑
j=0

b∑
i=0

(
b

i

)(
n− b
j

)

=2b
`−2∑
j=0

(
n− b
j

)
≤(`− 1)2b

(
n

`− 2

)
=(`− 1)

(
n

`− 1

)
`− 1

n− `+ 2
2b

≤
(

n

`− 1

)
,

when n ≥ ` − 2 + (` − 1)22b. This contradicts with the
assumption that N = |Y | ≥ V (n, `− 1) + 1. Thus, the claim
follows.

In the following lemma, we show that if n is large enough
and N ≥ V (n, ` − 1) + 1, then the pairwise distances of
codewords in T are rather small.

Lemma 14. Let n ≥ ` − 2 + (` − 1)222t, C be an e-error-
correcting code and |Y | = N ≥ V (n, ` − 1) + 1. Then we
have d(c1, c2) ≤ 2e+ 2 for any two c1, c2 ∈ T (Y).

Proof. Let c1 and c2 be codewords in T (Y). Without loss of
generality, we may assume that c1 = 0. In order to show that
d(c1, c2) ≤ 2e+2, we suppose to the contrary that d(c1, c2) ≥
2e + 3, i.e., w(c2) ≥ 2e + 3. Since c1, c2 ∈ T (Y), we have
w(c2) = d(c1, c2) ≤ 2t. Hence, there exists a set D ⊆ [1, n]
such that |D| = 2t and supp(c2) ⊆ D.

Since n ≥ `− 2 + (`− 1)222t, by Lemma 13, there exists
an output y ∈ Y such that |supp(y) \ supp(c2)| ≥ ` − 1.
Since w(y) = d(y, c1) ≤ t, we have |supp(c2) ∩ supp(y)| ≤
e+ 1; indeed, if |supp(c2) ∩ supp(y)| ≥ e+ 2, then w(y) =
|supp(c2)∩supp(y)|+|supp(y)\supp(c2)| ≥ (e+2)+(`−1) =
t+ 1 (a contradiction). This further implies that

d(c2,y) ≥ (w(c2)− |supp(c2) ∩ supp(y)|) + `− 1

≥ (2e+ 3− (e+ 1)) + `− 1 = t+ 1.

This leads to a contradiction, and the claim follows.

Recall that if C is an e-error-correcting code, then the
pairwise distance of any codewords of C is at least 2e + 1.
By the previous lemma, we also know that for any two
codewords in T (Y) the distance is at most 2e + 2 when
|Y | = N ≥ V (n, ` − 1) + 1 and n is large enough. In the
following lemma, we discuss a couple of useful properties
for such codewords. For the lemma, notice that the word w
in (i) can also be viewed as obtained by majority voting on
the coordinates of the codewords c0, c1 and c2.

Lemma 15. Let C be a code and c0, c1 and c2 be codewords
of C such that 2e + 1 ≤ d(ci, cj) ≤ 2e + 2 for any distinct
i, j ∈ {0, 1, 2}.

(i) If the word w ∈ Fn is such that supp(w + c0) =
supp(c0 + c1) ∩ supp(c0 + c2), then |supp(w + ci)| =
d(w, ci) ≤ e+ 1 for any i ∈ {0, 1, 2}.

(ii) If there exists a word y ∈ Fn such that c0, c1, c2 ∈ Bt(y)
and |supp(y + c0) \ (supp(c0 + c1) ∪ supp(c0 + c2))| ≥
` − 1, then supp(y + c0) ∩ supp(c0 + c1) = supp(y +
c0) ∩ supp(c0 + c2) = supp(c0 + c1) ∩ supp(c0 + c2).

Proof. Recall first that for any z ∈ Fn the support supp(c0+z)
consists of the coordinate places in which c0 and z differ.
Therefore, we may without loss of generality assume that c0 =
0 (as the whole Hamming space can be translated by c0).
Denote now A = supp(c0 +c1)∩ supp(c0 +c2) = supp(c1)∩
supp(c2), and let w ∈ Fn be the word such that supp(w) = A.
Let y ∈ Fn be a word such that |supp(y) \ (supp(c0 + c1) ∪
supp(c0 + c2))| ≥ `− 1. This implies that

|supp(y) ∩ supp(ci)|
≤|supp(y) ∩ (supp(c1) ∪ supp(c2))|
≤e+ 1 for i ∈ {1, 2}

(4)

since otherwise w(y) ≥ |supp(y) ∩ (supp(c1) ∪ supp(c2))|+
|supp(y) \ (supp(c1) ∪ supp(c2))| ≥ (e + 2) + (` − 1) =
t+ 1 contradicting with the assumption w(y) = d(y, c0) ≤ t.
Observe further that the sum of the distances

d(c0, c1) + d(c1, c2) + d(c2, c0)

=2

2∑
i=0

w(ci)− 2|supp(c0) ∩ supp(c1)|

−2|supp(c1) ∩ supp(c2)| − 2|supp(c2) ∩ supp(c0)|

(5)

is even. Hence, we have two possibilities for the distances
among the three codewords: either each of them equals 2e+2
or exactly one of them equals 2e+ 2.

Consider first the latter case. We have illustrated that case
in Figure 3 for e = 2, ` = 3 and d(c1, c2) = 2e + 2. The
proof now further divides into the following two cases:

• Assume first that d(c1, c2) = 2e + 2. Then we have
d(c0, c1) = d(c0, c2) = 2e + 1, i.e., w(c1) = w(c2) =
2e+ 1. It is now immediate that |A| = e and |supp(ci) \
A| = e + 1 for each i ∈ {1, 2}. Hence, we clearly have

w = 0 0 0 1 1 0 0 0 0 0 0 · · · 0
c2 = 1 1 1 1 1 0 0 0 0 0 0 · · · 0
c1 = 0 0 0 1 1 1 1 1 0 0 0 · · · 0
c0 = 0 0 0 0 0 0 0 0 0 0 0 · · · 0
y = 0 0 0 1 1 0 0 0 1 1 0 · · · 0

}

A

︸︷︷︸

}

︸︷︷︸
supp(w + c2) supp(w + c1)

`− 1

Fig. 3. Three codewords c0, c1 and c2 with e = 2 and ` = 3. We have
d(w, ci) ≤ e+ 1 for 0 ≤ i ≤ 2 and A = supp(c0 + c1) ∩ supp(c0 + c2).

7

|supp(w + ci)| = d(w, ci) ≤ e+ 1 for i ∈ {0, 1, 2}, and
the claim (i) follows.
Notice then that |supp(y) ∩ supp(ci)| ≥ e for i ∈ {1, 2}
since otherwise d(y, ci) ≥ |supp(ci)\supp(y)|+(`−1) ≥
2e + 1 − (e − 1) + (` − 1) = t + 1 (a contradiction).
Therefore, by (4), we have e ≤ |supp(y) ∩ supp(ci)| ≤
e+ 1 for i ∈ {1, 2}. Moreover, if |supp(y)∩ supp(c1)| =
e+ 1, then d(y, c2) = |supp(y) \ supp(c2)|+ |supp(c2) \
supp(y)| ≥ ((` − 1) + 1) + e + 1 > t (a contradiction).
Hence, using analogous arguments to c2, we obtain that

|supp(y) ∩ supp(c1)| = |supp(y) ∩ supp(c2)| = e.

Now it can be shown that A = supp(y+c0)∩ supp(c0 +
c1) = supp(y) ∩ supp(c1) and A = supp(y + c0) ∩
supp(c0 + c2) = supp(y) ∩ supp(c2). Indeed, suppose
to the contrary that supp(c1) ∩ (supp(y) \ A) 6= ∅ or
supp(c2) ∩ (supp(y) \ A) 6= ∅. Now a contradiction fol-
lows since d(y, c2) = |supp(y) \ supp(c2)|+ |supp(c2) \
supp(y)| ≥ (1 + (` − 1)) + |supp(c2) \ supp(y)| ≥
`+ (2e+ 1− e) = t+ 1 or d(y, c1) ≥ t+ 1, respectively.
Thus, the claim (ii) follows.

• Assume then that d(c0, c1) = w(c1) = 2e+ 2. (The case
with d(c0, c2) = 2e + 2 is analogous.) Then we have
d(c0, c2) = w(c2) = 2e + 1 and d(c1, c2) = 2e + 1. It
is now immediate that |A| = e + 1, |supp(c1) \ A| =
e+ 1 and |supp(c2) \A| = e. Hence, we obviously have
|supp(w + ci)| = d(w, ci) ≤ e+ 1 for i ∈ {0, 1, 2}, and
the claim (i) follows.
Notice then that |supp(y) ∩ supp(c1)| ≥ e + 1 and
|supp(y) ∩ supp(c2)| ≥ e, since otherwise d(y, c1) ≥
|supp(c1)\supp(y)|+(`−1) ≥ 2e+2−e+(`−1) = t+1
and d(y, c2) ≥ |supp(c2)\ supp(y)|+(`−1) ≥ 2e+1−
(e− 1) + (`− 1) = t+ 1, respectively (a contradiction).
Together with (4), this implies that |supp(y)∩supp(c1)| =
e+ 1 and e ≤ |supp(y)∩ supp(c2)| ≤ e+ 1. Now it can
be shown that A = supp(y + c0) ∩ supp(c0 + c1) =
supp(y)∩ supp(c1). Indeed, suppose to the contrary that
supp(c1)∩(supp(y)\A) 6= ∅. This implies that |supp(y)∩
supp(c2)| = e (by (4)). Hence, a contradiction follows
since d(y, c2) = |supp(y) \ supp(c2)| + |supp(c2) \
supp(y)| ≥ (1+(`−1))+(2e+1−e) = t+1. Therefore,
we have A = supp(y) ∩ supp(c1). Hence, we have
|supp(y)∩supp(c2)| = e+1 and A = supp(y)∩supp(c2).
Thus, the claim (ii) follows.

Consider then the former case with d(c0, c1) = d(c0, c2) =
d(c1, c2) = 2e+ 2; in particular, w(c1) = w(c2) = 2e+ 2. It
is now immediate that |A| = e+ 1 and |supp(ci) \A| = e+ 1
for each i ∈ {1, 2}. Hence, we clearly have |supp(w + ci)| =
d(w, ci) = e+ 1 for i ∈ {0, 1, 2}, and the claim (i) follows.

Notice then that |supp(y)∩ supp(ci)| ≥ e+1 for i ∈ {1, 2}
since otherwise d(y, ci) ≥ |supp(ci) \ supp(y)| + (` − 1) ≥
2e+2−e+(`−1) = t+1 (a contradiction). Therefore, by (4),
we have

|supp(y) ∩ supp(c1)|
=|supp(y) ∩ supp(c2)|
=|supp(y) ∩ (supp(c1) ∪ supp(c2))| = e+ 1.

This immediately implies that supp(y)∩supp(c1) = supp(y)∩
(supp(c1) ∪ supp(c2)) = supp(y) ∩ supp(c2). Therefore, as
|A| = |supp(c1) ∩ supp(c2)| = |supp(y) ∩ supp(c1)| =
|supp(y) ∩ supp(c2)| = e + 1, we have A = supp(y) ∩
supp(c1) = supp(y) ∩ supp(c2). Thus, the claim (ii) fol-
lows.

Before the proof of the (simpler) main theorem, we still
need one auxiliary lemma which concerns the maximum size
of union of supports of words relatively close to each other.

Lemma 16. Let k be a positive integer. If z0, z1 and z2
are words of Fn such that d(zi, zj) ≤ 2k for any distinct
i, j ∈ {0, 1, 2}, then |supp(z0 + z1) ∪ supp(z0 + z2)| ≤ 3k.

Proof. Let z0, z1 and z2 be words of Fn such that d(zi, zj) ≤
2k for any distinct i, j ∈ {0, 1, 2}. Without loss of generality,
we may assume that z0 = 0 since for i ∈ {1, 2} the support
supp(z0 + zi) consists of the coordinate places in which z0
and zi differ. The proof divides into two parts depending on
the size of supp(z1) ∩ supp(z2):
• If |supp(z1)∩supp(z2)| ≥ k+m, where m ∈ {1, . . . , k},

then |supp(z0 + z1) ∪ supp(z0 + z2)| = |supp(z1) ∪
supp(z2)| = |supp(z1)\supp(z2)| + |supp(z2)\supp(z1)|
+ |supp(z1)∩supp(z2)| ≤ 2(k−m)+(k+m) = 3k−m
(as w(z1) ≤ 2k and w(z2) ≤ 2k) and the claim follows.

• If |supp(z1)∩ supp(z2)| ≤ k, then |supp(z1)∪ supp(z2)|
= (|supp(z1) \ supp(z2)| + |supp(z2) \ supp(z1)|) +
|supp(z1) ∩ supp(z2)| ≤ d(z1, z2) + k ≤ 2k + k = 3k
and the claim follows.

In Corollary 12, we have shown that if there exists a word
w such that it is close to every codeword in T , then |T | is
small. Furthermore, in Lemma 14, we have shown that every
codeword in T is pairwise close to each other. Therefore, it
seems that such a word w should indeed exist. The proof of
the following theorem is based on this idea.

Theorem 17. Let n ≥ `−2+(`−1)22b, b = max{2t, 4e+4},
|Y | = N ≥ V (n, ` − 1) + 1 and C be an e-error-correcting
code. Then we have

L ≤ `+ 1.

Proof. Observe first that the cases ` = 0 and ` = 1 follow
from Theorem 7 since 20 = 0 + 1 and 21 = 1 + 1. Therefore,
we may assume that ` ≥ 2. Hence, there exist codewords
c0, c1, c2 ∈ T (Y) (as we are immediately done if |T (Y)| ≤
2). Since C is an e-error-correcting code and c0, c1, c2 ∈ C,
the distance d(ci, cj) ≥ 2e+1 for any distinct i, j ∈ {0, 1, 2}.
Therefore, as the conditions of Lemma 14 are satisfied due the
choice of b ≥ 2t and n, we have

2e+ 1 ≤ d(ci, cj) ≤ 2e+ 2 for any distinct i, j ∈ {0, 1, 2}.
(6)

Without loss of generality, we may assume that c0 = 0. Thus,
we have w(c1) = d(c0, c1) and w(c2) = d(c0, c2). Let w ∈
Fn be the word such that supp(w) = supp(c1)∩ supp(c2). By
Lemma 15, we have d(w, ci) ≤ e + 1 for any i ∈ {0, 1, 2}.
Let c be an arbitrary codeword in T (Y) different from ci,
i = 0, 1, 2. In what follows, we show that also for c we have

8

d(w, c) ≤ e + 1. Thus, the word w can act as the one of
Corollary 12.

Observe first that (as in (6)) we 2e+ 1 ≤ d(c, ci) ≤ 2e+ 2
for any i ∈ {0, 1, 2}. Moreover, if |supp(c) \ (supp(c1) ∪
supp(c2))| ≥ e + 2, then |supp(c1) \ supp(c)| ≥ e + 1 (as
|supp(c1) ∩ supp(c)| ≤ e) and a contradiction follows as
d(c1, c) ≥ 2e + 3. Hence, we have |supp(c) \ (supp(c1) ∪
supp(c2))| ≤ e + 1. Furthermore, by Lemma 16, we have
|supp(c1) ∪ supp(c2)| ≤ 3e + 3. Thus, denoting D =
supp(c1) ∪ supp(c2) ∪ supp(c), we have |D| ≤ 4e+ 4.

By Lemma 13 (as b ≥ 4e+ 4), there exists an output word
y ∈ Y such that |supp(y)\D| ≥ `−1. (Observe that y depends
on the choice of c.) The word y satisfies the conditions of
Lemma 15(ii) for the codewords c0, c1 and c2. Therefore,
we have supp(w) = supp(c1) ∩ supp(c2) = supp(y) ∩
supp(c1) = supp(y)∩supp(c2). Similarly, the word y satisfies
the conditions of Lemma 15(ii) for the codewords c0, c1 and
c. Hence, we have supp(c1)∩supp(c) = supp(y)∩supp(c1) =
supp(y)∩supp(c). These two observations together imply that
supp(w) = supp(c1) ∩ supp(c). Thus, by Lemma 15(i), we
have d(w, c) ≤ e+ 1 concluding the proof.

In the previous theorem, we have shown that L ≤ ` + 1
when n depends exponentially on e and `. The proof utilizes
Lemma 13, in which we use rather rough estimations. In
what follows, we significantly improve the previous theorem
by showing that it is enough to require n to depend only
polynomially on e and `. We first present an improved version
of Lemma 13. The proof of the improved lemma is rather
technical and, therefore, it is postponed to Appendix.

Lemma 18. Let b ≥ 3t be an integer with t = e+ ` and C1

be an e-error-correcting code. Assume that n ≥ (`− 1)2(b−
e + (e + 1)(b − 3e − 2e2 + eb +

(
b−2e−1

2

)
)) + ` − 2, |Y | =

N ≥ V (n, ` − 1) + 1, |T (Y)| ≥ 3 and c0, c1, c2 ∈ T (Y). If
now D ⊆ [1, n] is a set such that |D| = b and

supp(c0 + c1) ∪ supp(c0 + c2) ∪ supp(c1 + c2) ⊆ D,

then for any word w ∈ Fn we have supp(w + c0) \ D =
supp(w + c1) \ D = supp(w + c2) \ D and there exists an
output word y ∈ Y such that

|supp(y + c0) \D| ≥ `− 1.

Proof. See Appendix.

Using the previous lemma, we show a result similar to
Lemma 14.

Lemma 19. Let n ≥ (` − 1)2(2t + ` + (e + 1)(3` − 2e2 +
3et +

(
t+2`−1

2

)
)) + ` − 2, |Y | = N ≥ V (n, ` − 1) + 1, C

be an e-error-correcting code and |T (Y)| ≥ 3. Then we have
d(c1, c2) ≤ 2e+ 2 for any two c1, c2 ∈ T (Y).

Proof. The proof is similar to the one of Lemma 14. Let
c1 and c2 be distinct codewords in T (Y) (|T (Y)| ≥ 3).
Without loss of generality, we may assume that c1 = 0.
In order to show that d(c1, c2) ≤ 2e + 2, we suppose to
the contrary that d(c1, c2) ≥ 2e + 3, i.e., w(c2) ≥ 2e + 3.
Since |T (Y)| ≥ 3, there exists another codeword c3 ∈ T (Y).
Recall that d(ci, cj) ≤ 2t for any distinct i, j ∈ {1, 2, 3}.

Therefore, by Lemma 16, we have |supp(c1 +c2)∪ supp(c1 +
c3) ∪ supp(c2 + c3)| = |supp(c2) ∪ supp(c3) ∪ supp(c2 +
c3)| = |supp(c2) ∪ supp(c3)| ≤ 3t. Hence, there exists a
set D ⊆ [1, n] such that |D| = b = 3t and supp(c2) ⊆
supp(c1 + c2) ∪ supp(c1 + c3) ∪ supp(c2 + c3) ⊆ D.

Since n ≥ (` − 1)2(2t + ` + (e + 1)(3` − 2e2 + 3et +(
t+2`−1

2

)
))+`−2 = (`−1)2(b−e+(e+1)(b−3e−2e2+eb+(

b−2e−1
2

)
))+ `−2, by Lemma 18, there exists an output word

y ∈ Y such that |supp(y)\supp(c2)| ≥ |supp(y)\D| ≥ `−1.
Since w(y) = d(y, c1) ≤ t, we have |supp(c2) ∩ supp(y)| ≤
e+ 1 as otherwise w(y) = |supp(y)\ supp(c2)|+ |supp(c2)∩
supp(y)| ≥ (` − 1) + (e + 2) = t + 1 (a contradiction). This
further implies that

d(c2,y) ≥ (w(c2)− |supp(c2) ∩ supp(y)|) + `− 1

≥ (2e+ 3− (e+ 1)) + `− 1 ≥ t+ 1.

This leads to a contradiction, and the claim follows.

The following theorem is an improved version of Theo-
rem 17; a version in which n is only required to depend
polynomially on e and `. Notice that in some (sporadic) cases
Theorem 17 is better than Theorem 20.

Theorem 20. Let n ≥ (`−1)2(b− e+ (e+ 1)(b−3e−2e2 +
eb +

(
b−2e−1

2

)
)) + ` − 2, b = max{3t, 4e + 4}, |Y | = N ≥

V (n, ` − 1) + 1 and C be an e-error-correcting code. Then
we have

L ≤ `+ 1.

Proof. As in the proof of Theorem 17, we may assume that
` ≥ 2 and that there exist codewords c0, c1, c2 ∈ T (Y).
Since C is an e-error-correcting code and c0, c1, c2 ∈ C, the
distance d(ci, cj) ≥ 2e + 1 for any distinct i, j ∈ {0, 1, 2}.
Together with Lemma 19 (due to the choice of b ≥ 3t and n),
this implies that

2e+ 1 ≤ d(ci, cj) ≤ 2e+ 2 for any distinct i, j ∈ {0, 1, 2}.
(7)

Without loss of generality, we may assume that c0 = 0. Thus,
we have w(c1) = d(c0, c1) and w(c2) = d(c0, c2). Let w ∈
Fn be a word such that supp(w) = supp(c1) ∩ supp(c2). By
Lemma 15, we have d(w, ci) ≤ e + 1 for any i ∈ {0, 1, 2}.
Let c be an arbitrary codeword in T (Y). Next, we show that
also for c we have d(w, c) ≤ e + 1. Therefore, the word w
for Corollary 12 is found.

Clearly, (as in (7)) we have 2e + 1 ≤ d(c, ci) ≤ 2e + 2
for any i ∈ {0, 1, 2}. Furthermore, if |supp(c) \ (supp(c1) ∪
supp(c2))| ≥ e + 2, then |supp(c1) \ supp(c)| ≥ e + 1
and a contradiction follows as d(c1, c) ≥ 2e + 3. Thus, we
have |supp(c) \ (supp(c1) ∪ supp(c2))| ≤ e + 1. Moreover,
by Lemma 16, we have |supp(c1) ∪ supp(c2)| ≤ 3e + 3.
Hence, denoting D = supp(c1)∪ supp(c2)∪ supp(c), we have
|D| ≤ 4e+ 4.

The requirements for b and n as well as the additional
requirement supp(c0 + c1)∪ supp(c0 + c2)∪ supp(c1 + c2) ⊆
D = supp(c0) ∪ supp(c1) ∪ supp(c2) of Lemma 18 are
clearly satisfied. Thus, there exists an output word y ∈ Y
such that |supp(y) \ D| ≥ ` − 1. The word y satisfies the
conditions of Lemma 15(ii) for the codewords c0, c1 and

9

c2. Hence, we have supp(w) = supp(c1) ∩ supp(c2) =
supp(y)∩supp(c1) = supp(y)∩supp(c2). Similarly, the word
y satisfies the conditions of Lemma 15(ii) for the codewords
c0, c1 and c. Therefore, we have supp(c1) ∩ supp(c) =
supp(y) ∩ supp(c1) = supp(y) ∩ supp(c). Together these
two observations imply that supp(w) = supp(c1) ∩ supp(c).
Hence, by Lemma 15(i), we have d(w, c) ≤ e+ 1 giving the
assertion.

Notice that Theorem 7 gives similar results as Theorem 17
and Theorem 20 in the case ` = 1. In the following remark,
we show that in order to have L ≤ ` + 1 when C is an e-
error-correcting and N = V (n, ` − 1) + 1 some restrictions
are needed on the values n, ` and e.

TABLE I
A POSSIBLE SET OF EIGHT OUTPUT WORDS WITH LIST SIZE |T | = 2` .

d(c1, ∗) d(c2, ∗) d(c3, ∗) d(c0, ∗)
c1 011100 0 4 4 3
c2 101010 4 0 4 3
c3 110001 4 4 0 3
c0 000000 3 3 3 0

y0 000000 3 3 3 0
y1 111000 2 2 2 3
y2 011000 1 3 3 2
y3 101000 3 1 3 2
y4 110000 3 3 1 2
y5 100100 3 3 3 2
y6 010010 3 3 3 2
y7 001001 3 3 3 2

Remark 21. In what follows, we give a couple of examples
of e-error-correcting codes such that L > ` + 1 when the
number of channels N ≤ V (n, ` − 1) + 1. Consider first a
code C = {c1, c2, c3, c0} ⊆ F6 and a set of outputs Y =
{y0, . . . ,y7} ⊆ F6 given in Table I. By the table, we observe
that C is a code with minimum distance 3 and, hence, it is a
1-error-correcting code. Assume x = c0 = 0 is the transmitted
word. Then notice by the table that Y ⊆ B3(x). Thus, with
e = 1, ` = 2 and t = 3, the set Y is a possible set of output
words for x. Therefore, as {c1, c2, c3, c0} ⊆

⋂7
j=0B3(yj),

we have |T | = 4 > `+ 1 = 3 with |Y | = V (n, `−1) + 1 = 8.
Hence, L > `+ 1.

Another example is the extreme situation with e = 0, C =
Fn, ` = n and N = V (n, ` − 1) + 1 = 2n. In this case,
we have Bt(y) = Fn for every y ∈ Y . Therefore, we obtain
that

⋂
y∈Y Bt(y) = Fn = C. Thus, L = 2` > ` + 1 with

N = V (n, `− 1) + 1.
Notice also that the previous examples attain the upper

bound L ≤ 2` of Theorem 7.

IV. SMALL LIST SIZE WITH DISTANT OUTPUT WORDS

Throughout the section, we assume that the errors occurring
in the transmission are uniformly and (almost) randomly
distributed with the exception that no two output words are
identical. We have previously assumed that we have at least
V (n, ` − 1) + 1 channels. However, as we will see in this
section, it is very likely that such a large number of channels
is unnecessary to get a small list size if n is large and e is
sufficiently large compared to `. Indeed, it is very likely that

we have two words among the outputs such that they give a
small list. In other words, although L might be large, |T (Y)|
is very likely small.

First in Subsection IV-A, we show that we are very likely to
either have two distant output words or to have |T | = 1. After
that, in Subsection IV-B, we use this observation together with
bounds on constant weight codes to derive bounds for |T |. In
Corollary 28, we show that if e ≥ 4`− 2, then distant output
words give |T | ≤ 2. Similarly, we derive bounds for |T | in
Corollaries 29 and 30 for cases with e ≥ 3`−2 and e ≥ 2`−1,
respectively. Notice that these results are improvements on the
results in the conference version of this paper [1].

A. Likelihood of distant output words

Let C be an e-error-correcting code and x ∈ C be the
transmitted word. In the following theorem, we see that if we
have an output word y in the vicinity of x, then there cannot be
any other codewords in Bt(y), thus, giving us exact knowledge
about the transmitted word.

Theorem 22. Let C be an e-error-correcting code in Fn and
x ∈ C. If t = e + ` and d(x,y) ≤ e − ` for some output
word y ∈ Y , then we have Bt(y) ∩ C = {x} and x is the
transmitted word.

Proof. Let x ∈ C and d(x,y) ≤ e − ` for some y ∈ Y .
Furthermore, we have d(x, c) ≥ 2e + 1 for every codeword
c ∈ C, c 6= x. Hence, if we have d(x,y) ≤ e − `, then the
triangular inequality gives us

2e+ 1 ≤ d(x, c) ≤ d(x,y) + d(y, c) ≤ e− `+ d(y, c).

Thus, we have d(y, c) ≥ t + 1 for each c ∈ C, c 6= x.
Therefore, Bt(y)∩C = {x}. Moreover, at most t errors occur
in each channel and hence, the transmitted word is in Bt(y)∩
C. Thus, x is the transmitted word and the claim follows.

Now we are going to show that if n is large, then we very
likely have two pairwise distant output words.

Theorem 23. Let C be an e-error-correcting code in Fn and
x ∈ C be the transmitted word. If t = e + ` and y1,y2 ∈ Y
are output words such that d(yi,x) ≥ e− `+ 1 for i = 1, 2,
then the probability that d(y1,y2) ≥ 2e − 2` + 2 tends to 1
as n tends to infinity.

Proof. Let us assume, without loss of generality, that x = 0,
w(y1) = e − ` + a1 and w(y2) = e − ` + a2 where
1 ≤ a2 ≤ a1 ≤ 2`. We encourage the reader to assume that
supp(y1) = [1, e−`+a1] in order to better visualize the proof.
Observe that if |supp(y1) ∩ supp(y2)| ≤ a1+a2

2 − 1, then we
have d(y1,y2) = w(y1) +w(y2)− 2|supp(y1)∩ supp(y2)| ≥
w(y1) + w(y2) − (a1 + a2 − 2) = 2e − 2` + 2. Notice
that a1+a2

2 − 1 ≥ 0 since a1 ≥ a2 ≥ 1. Let us denote by

10

Pn(a1, a2) the probability that d(y1,y2) ≥ 2e − 2` + 2, i.e.,
|supp(y1) ∩ supp(y2)| ≤ (a1 + a2)/2− 1. Now, we have

Pn(a1, a2) ≥
b a1+a2

2 −1c∑
i=0

(
e−`+a1

i

)(
n−e+`−a1
e−`+a2−i

)(
n

e−`+a2

)
≥
(
n−e+`−a1
e−`+a2

)(
n

e−`+a2

)
=

e−`+a2−1∏
i=0

n− e+ `− a1 − i
n− i

n→∞−→ 1.

Since Pn(a1, a2)
n→∞−→ 1 for each possible value of a1 and a2,

the claim follows.

Now, based on Theorems 22 and 23, we obtain that if n is
large, e ≥ ` and we have at least two output words in Y , then
we either have |T (Y)| = 1 or we are very likely to have two
output words which are far away from each other. Furthermore,
we only consider two output words in this section. However, if
we have more output words, say m, and none of them is close
to the transmitted word x, then the likelihood that at least two
of them are distant is naturally greater than we would have
with only two output words. More precisely, the probability is
greater than 1−

∏m
i=2(1− Pn(a1, ai)).

Note that quite modest n is enough for this approach to
work; especially, if we have multiple channels. For example,
assuming n = 250, e = 10 and ` = 3, we have P (a1, a2) ≥
0.768 if a1 = a2 = 1 and N = 2. However, if we have
a1 = a2 = 4 and N = 2, then P (a1, a2) ≥ 0.999 or if ai = 1
for i ∈ [1, N], then 1−

∏N
i=2(1−Pn(a1, ai)) ≥ 1−0.232N−1.

B. List size with distant output words

We have discussed about the likelihood of having distant
output words in IV-A. In this section, we use the assumption
that there are two distant output words to give small list sizes.
In what follows, we use known results for codes with a given
minimum distance to obtain upper bounds on the outputted list
of codewords. As usual, we denote by A(n, d) the maximal
cardinality among all codes in Fn with minimum distance
at least d. Similarly, we denote by A(n, d, w) the maximal
cardinality among all constant weight codes in Fn, in which
each codeword has weight w and of which minimum distance
is d. The maximum cardinalities A(n, d) and A(n, d, w) have
been widely studied. In what follows, we first present some
useful results regarding them. In the following theorem, the
well-known Plotkin bound on A(n, d) is given.

Theorem 24 (Plotkin bound [22]). If n < 2d + 1 and d is
odd, then

A(n, d) ≤ 2

⌊
d+ 1

2d+ 1− n

⌋
.

In the following theorem, we give some useful bounds on
A(n, d, w) from [23]. Inequality (i) immediately follows from
the definitions of A(n, d) and A(n, d, w). Inequalities (ii),
(iii) and (iv) have been shown in [23, Theorem 8], [23,
Corollary 5] and [23, Theorem 12], respectively.

Theorem 25 ([23]). We have

c = 1 1 0 0 0 0 1 1 0 · · · 0
y = 1 1 1 1 1 1 0 0 0 · · · 0
yc = 1 1 0 0 0 0 0 0 0 · · · 0

y0 = 0 0 0 0 0 0 0 0 0 · · · 0

}

Vc

}Sc }Ac

Fig. 4. Two output words at distance 6 when e = 4, ` = 2 and a = 0. Notice
that d(y,yc) = 4 = w(y)/2 + Vc and d(y0,yc) = 2 = w(y)/2 − Vc.
Moreover, it is easy to observe that Ac is maximal since d(y, c) ≤ t = 6.

(i) A(n, d, w) ≤ A(n, d),
(ii) A(n, 2δ − 1, w) = A(n, 2δ, w),

(iii) A(n, 2δ, w) ≤
⌊
δ
b

⌋
, if b ≥ δ

n where b = δ − w(n−w)
n and

(iv) A(n, 2δ, w) ≤ (n
k)

(w
k)

where k = w − δ + 1.

In the following theorem, we establish an upper bound
for |T (Y)| using A(n, d) and A(n, d, w) when we have two
remote output words. After that we get bounds for L as easy
corollaries of Theorems 24, 25 and 26.

Theorem 26. Let C ⊆ Fn be an e-error-correcting code in
Fn and y0 and y be words of Y such that d(y0,y) = 2e −
2` + 2 + a and 0 ≤ a ≤ 4` − 2. If t = e + ` ≥ 3` − 1, then
we have

|T | ≤ A
(

2e− 2`+ 2 + a, 2e− 4`+ 3 + 2
⌈a

2

⌉)
and

|T | ≤A (2e− 2`+ 2 + a,

2e− 4`+ 3 + a, e− `+ 1 +
⌊a

2

⌋)
.

Proof. Without loss of generality, we may assume that y0 = 0,
and w(y) = 2e − 2` + 2 + a. Moreover, we encourage the
reader to assume that supp(y) = [1, w(y)] in order to better
visualize the proof. Our first goal is to show that each pair of
codewords in T (Y) differs in at least d = 2e−4`+3+2da/2e
coordinates in supp(y). Hence, |T (Y)| ≤ A(w(y), d). After
that we show that we can modify the codewords to have a
constant weight of bw(y)/2c and then we can get the second
bound by considering cardinality of maximal constant weight
codes in Fw(y).

Notice that since the all-zero word is received as an output
word, we may restrict our investigation to codewords with
weight at most t. For a codeword c ∈ C ∩ Bt(y0) ∩ Bt(y),
we use the following notation: Sc = supp(c)∩ supp(y), Ac =
supp(c)\supp(y) and yc is the word such that supp(yc) = Sc.
Moreover, we denote Vc =

⌊
|w(yc)− w(y)

2 |
⌋

. In other words,
if w(y) is even, then Vc gives the difference of w(yc) and
w(y)/2, and if w(y) is odd, then it gives the difference of
w(yc) and bw(y)/2c or dw(y)/2e whichever is closer. We
illustrate these notations in Figure 4.

In order to show that max{d(y0,yc), d(y,yc)} =

max{w(yc), w(y)−w(yc)} =
⌈
w(y)
2

⌉
+Vc, we need to study

the following two cases:

11

• If w(yc) ≥ w(y)/2, then w(y) − w(yc) ≤ w(y) −
w(y)/2 ≤ w(yc) and

max{w(yc), w(y)−w(yc)} = w(yc) = dw(y)/2e+Vc.

• If w(yc) < w(y)/2, then w(y) − w(yc) > w(y) −
w(y)/2 > w(yc) and

max{w(yc), w(y)− w(yc)}
= w(y)− w(yc)

= w(y)− (bw(y)/2c − Vc)

= dw(y)/2e+ Vc.

Moreover, we have d(y0, c) = |Ac|+d(y0,yc) and d(y, c) =
|Ac|+d(y,yc). Furthermore, since max{d(y0, c), d(y, c)} ≤
t, we have |Ac| ≤ t − d(y0,yc) and |Ac| ≤ t − d(y,yc).
Since both of these upper bounds hold simultaneously, we
have |Ac| ≤ t−max{d(y0,yc), d(y,yc)}. Thus, we have

|Ac| ≤ t−
⌈
w(y)

2

⌉
− Vc. (8)

Assume then that c1, c2 ∈ C∩Bt(y0)∩Bt(y) and c1 6= c2.
We may trivially approximate the distance of c1 and c2 in
following way:

d(c1, c2) ≤ |Ac1 |+ |Ac2 |+ d(yc1 ,yc2). (9)

Now, by estimating the right side of Inequality (9) with
Inequality (8) and the left side of Inequality (9) by recalling
d(c1, c2) ≥ 2e + 1, we get the following lower bound for
d(yc1

,yc2
) (as w(y) = 2e− 2`+ 2 + a):

d(yc1 ,yc2) ≥ 2

⌈
w(y)

2

⌉
+ 1− 2`+ Vc1 + Vc2

= 2e− 4`+ 3 + 2da/2e+ Vc1 + Vc2 .

(10)

Observe that when e ≥ 2` − 1 this lower bound is positive
and yc1

and yc2
are distinct.

By Inequality (10), each pair of codewords in Bt(y0) ∩
Bt(y) differ in at least 2e−4`+3+2

⌈
a
2

⌉
coordinate positions

of supp(y) (as Vc1 , Vc2 ≥ 0). Thus, the words yc form a code
with minimum distance 2e− 4`+ 3 + 2

⌈
a
2

⌉
in Fw(y). Hence,

we have |T | ≤ A
(
w(y), 2e− 4`+ 3 + 2

⌈
a
2

⌉)
. This gives the

first bound of the theorem. However, the bound does not take
into account the values Vc1

and Vc2
in Inequality (10). In what

follows, we try to improve the previous bound by making use
of Vc1 and Vc2 .

y0 = 0 0 0 0 0 0 0 0 0 0 · · · 0
y = 1 1 1 1 1 1 0 0 0 0 · · · 0
c′1 = 1 1 0 0 0 0 1 1 0 · · · 00
c1 = 1 1 0 0 0 0

c′2 = 0 0 1 1 1 1 0 0 1 0 · · · 0
c2 = 0 0 1 1 1 1

Fig. 5. Two output words y0 and y at distance 6 when e = 4, ` = 2 and
a = 0. Codewords c1 ∈ Fw(y) and c2 ∈ Fw(y) are formed from c′1 and c′2
as in the code C′ defined in (11).

Let us define

C ′ = {c ∈ Fw(y) | c′ ∈ C ∩Bt(y0)∩Bt(y), supp(c) = Sc′},
(11)

that is, the code C ′ ⊆ Fw(y) is formed by taking each
codeword in Bt(y0)∩Bt(y) and then restricting their support
to supp(y). In Figure 5, we have presented how codewords
of the code C ′ are formed. Therefore, as d(yc1 ,yc2) > 0 by
Inequality (10), we have |C ′| = |C ∩ Bt(y0) ∩ Bt(y)|. The
proof now divides into two cases depending on the parity of
w(y).

Suppose first that w(y) is even, that is, a is even. Based on
C ′, form a new code D as follows:
• If c ∈ C ′ and w(c) = w(y)/2, then add c to D.
• If c ∈ C ′ and w(c) > w(y)/2, then delete Vc elements

from the support supp(c) and add the resulting word of
weight w(y)/2 to D.

• If c ∈ C ′ and w(c) < w(y)/2, then add Vc elements to
the support supp(c) and add the resulting word of weight
w(y)/2 to D.

Assume that c′1 and c′2 are codewords of D and that they
have been respectively formed from the codewords c1 and
c2 of C ′. By Inequality (10), we obtain that d(c′1, c

′
2) ≥

d(c1, c2) − Vc1
− Vc2

≥ 2e − 4` + 3 + a > 0 when
e ≥ 2` − 1. Thus, D is a code with minimum distance (at
least) w(y) + 1 − 2` and |C ′| = |D|. Therefore, we have
|T | ≤ |C ′| = |D| ≤ A

(
w(y), 2e− 4`+ 3 + a, w(y)

2

)
=

A
(
w(y), 2e− 4`+ 3 + a, e− `+ 1 +

⌊
a
2

⌋)
.

Suppose then that w(y) is odd, that is, a is odd. As in the
previous case, form a code D based on C ′ as follows:
• If c ∈ C ′ and w(c) ≥ dw(y)/2e, then delete Vc + 1

elements from the support supp(c) and add the resulting
word of weight bw(y)/2c to D.

• If c ∈ C ′ and w(c) ≤ bw(y)/2c, then delete Vc elements
from the support supp(c) and add the resulting word of
weight bw(y)/2c to D.

Thus, the resulting code D contains words of weight
bw(y)/2c. Assume that c′1 and c′2 are codewords of D
and that they have been respectively formed from the code-
words c1 and c2 of C ′. By Inequality (10) and recalling
the additional element deleted in the former case of the
construction of D, we obtain that d(c′1, c

′
2) ≥ d(c1, c2) −

Vc1
− Vc2

− 2 ≥ 2e − 4` + 2 + a > 0 when e ≥
2` − 1. Thus, D is a code with minimum distance (at least)
2e − 4` + 2 + a and |C ′| = |D|. Therefore, we have
|T | ≤ |C ′| = |D| ≤ A

(
w(y), 2e− 4`+ 2 + a, bw(y)

2 c
)

=

A
(
w(y), 2e− 4`+ 3 + a, e− `+ 1 +

⌊
a
2

⌋)
(where the last

equality is due to Theorem 25(ii)).

Notice that in the proof of the previous theorem, in the case
of odd a, we actually have a two-weight code, that is, a code
where every codeword has either weight w1 or w2. Then, in
order to obtain a constant weight code, the two-weight code
is slightly modified. Hence, it might be possible to gain a
slight improvement on the bound by investigating two-weight
codes. Observe that in the proof of Theorem 5 we have actually
considered a two-weight code (the set of words βi).

12

In what follows, we give a few corollaries of the previous
theorem. For this purpose, we first make the following simple
observation: if k, k′ and m are nonnegative integers such that
k ≥ k′, then

k

k′
=
k +m(k/k′)

k′ +m
≥ k +m

k′ +m
. (12)

Now we are ready to present the first corollary.

Corollary 27. If e ≥ 3`− 2, C ⊆ Fn is an e-error-correcting
code and d(y0,y) ≥ 2e − 2` + 2 with y,y0 ∈ Y , then we
have

|T | ≤ 2

⌊
2e− 4`+ 4

2e− 6`+ 5

⌋
.

Proof. Let a be an integer such that d(y0,y) = 2e−2`+2+a
and 0 ≤ a ≤ 4`− 2. By Theorem 26, we have |T | ≤ A(2e−
2`+ 2 + a, 2e− 4`+ 3 + 2da/2e). Since e ≥ 3`− 2, it can be
straightforwardly verified that the requirement n < 2d+ 1 of
the Plotkin bound is satisfied. Now the proof divides into the
following two cases depending on the parity of a:
• Suppose that a is even. By the Plotkin bound and Obser-

vation (12), we obtain that

|T | ≤ A(2e− 2`+ 2 + a, 2e− 4`+ 3 + a)

≤ 2

⌊
2e− 4`+ 4 + a

2e− 6`+ 5 + a

⌋
≤ 2

⌊
2e− 4`+ 4

2e− 6`+ 5

⌋
.

• Suppose that a is odd. By the Plotkin bound and Obser-
vation (12), we obtain that

|T | ≤ A(2e− 2`+ 2 + a, 2e− 4`+ 4 + a)

≤ 2

⌊
2e− 4`+ 5 + a

2e− 6`+ 7 + a

⌋
≤ 2

⌊
2e− 4`+ 4

2e− 6`+ 5

⌋
.

Thus, the claim follows.

When e ≥ 4` − 2, the previous corollary implies the
following result.

Corollary 28. If e ≥ 4`− 2, C ⊆ Fn is an e-error-correcting
code and d(y0,y) ≥ 2e − 2` + 2 with y0,y ∈ Y , then we
have

|T | ≤ 2.

Proof. Since e ≥ 4`− 2, we obtain by the previous corollary
and Observation (12) that

|T | ≤ 2

⌊
2e− 4`+ 4

2e− 6`+ 5

⌋
≤ 2

⌊
2(4`− 2)− 4`+ 4

2(4`− 2)− 6`+ 5

⌋
= 2

⌊
4`

2`+ 1

⌋
= 2.

Hence, the claim follows.

The previous corollaries have been obtained by applying
the Plotkin bound to Theorem 26. In some cases, this can
be improved by considering constant weight codes and Theo-
rem 25(iii).

Corollary 29. If e ≥ 3`− 2, C ⊆ Fn is an e-error-correcting
code and d(y0,y) ≥ 2e − 2` + 2 with y,y0 ∈ Y , then we
have

|T | ≤ 2

⌊
`+ 1

2

⌋

if a is odd and
|T | ≤ 2`

if a is even.

Proof. Let a be an integer such that d(y0,y) = 2e−2`+2+a
and 0 ≤ a ≤ 4`−2. Based on the parity of a, the proof divides
into the following cases:
• Suppose that a is odd. By Theorem 26, we have

|T | ≤ A(2e− 2`+ 2 + a, 2e− 4`+ 3 + 2da/2e)
= A(2e− 2`+ 2 + a, 2e− 4`+ 4 + a).

Further, by the Plotkin bound and Observation (12), we
obtain that

|T | ≤ 2

⌊
2e− 4`+ 5 + a

2e− 6`+ 7 + a

⌋
≤ 2

⌊
2(3`− 2)− 4`+ 5 + a

2(3`− 2)− 6`+ 7 + a

⌋
≤ 2

⌊
2`+ 2

4

⌋
= 2

⌊
`+ 1

2

⌋
.

• Suppose that a is even. By Theorems 26 and 25(ii), we
have

|T |
≤ A(2e− 2`+ 2 + a, 2e− 4`+ 3 + a, e− `+ 1 + a/2)

= A(2e− 2`+ 2 + a, 2e− 4`+ 4 + a, e− `+ 1 + a/2)

= A(n, 2δ, w),

where n = 2w, w = e − ` + 1 + a/2 and δ = e − 2` +
2 + a/2. In order to apply Theorem 25(iii), we observe
that

b = δ − w(n− w)

n

= δ − w

2

=
2e− 6`+ 6 + a

4

≥ 2(3`− 2)− 6`+ 6 + a

4
≥ 1

2

and
δ

n
=

1

2
− `− 1

n
≤ 1

2
.

Therefore, as b ≥ δ/n, we obtain by Theorem 25(iii)
and Observation (12) that

|T | ≤ A(n, 2δ, w)

=

⌊
δ

b

⌋
= 1 +

⌊
e− `+ 1 + a/2

e− 3`+ 3 + a/2

⌋
≤ 1 +

⌊
(3`− 2)− `+ 1

(3`− 2)− 3`+ 3

⌋
= 2`.

Thus, the claim follows.

In the three corollaries above, we have considered the cases
with e ≥ 3` − 2. However, Theorem 26 already holds for
e ≥ 2`− 1. In the following corollary, we complete this gap.

13

Corollary 30. If e ≥ 2`− 1, C ⊆ Fn is an e-error-correcting
code and d(y0,y) = 2e − 2` + 2 + a with y,y0 ∈ Y and
0 ≤ a ≤ 4`− 2, then we have

|T | ≤
(
2e−2`+2+a

`

)(e−`+1+b a2 c
`

) .
Proof. Let a be an integer such that d(y0,y) = 2e − 2` +
2 + a and 0 ≤ a ≤ 4` − 2. Theorem 26 gives |T | ≤
A (2e− 2`+ 2 + a, 2e−4`+3+a, e− `+ 1 + ba/2c). The
proof now divides into the following two cases depending on
the parity of a:
• Suppose that a is even. By Theorem 25(ii), we have
|T | ≤ A(2e−2`+2+a, 2e−4`+4+a, e−`+1+a/2) =
A(n, 2δ, w), where n = 2e−2`+2+a, δ = e−2`+2+a/2
and w = e−`+1+a/2. Now k = w−δ+1 = `. Hence,
by Theorem 25(iv), we obtain that

|T | ≤
(
2e−2`+2+a

`

)(
e−`+1+ba/2c

`

) .

• Suppose that a is odd. Now we have |T | ≤ A(2e− 2`+
2+a, 2e−4`+3+a, e−`+1+(a−1)/2) = A(n, 2δ, w),
where n = 2e− 2`+ 2 + a, δ = e− 2`+ 2 + (a− 1)/2
and w = e− `+ 1 + (a− 1)/2. Now k = w− δ+ 1 = `.
Hence, by Theorem 25(iv), we obtain that

|T | ≤
(
2e−2`+2+a

`

)(
e−`+1+ba/2c

`

) .

Thus, the claim follows.

Notice that if e = 2` − 1, then we are very likely to have
two output words with distance at least 2` by Theorem 23 (or
we have |T | = 1). Earlier, in Corollary 4, we have shown that
if N ≥ V (n, `− 1) + 1, then we have two output words with
distance at least 2`− 1. In Theorem 5, this is applied to give
the upper bound |T | ≤

(
2`
`

)
. Observe that Corollary 30 also

gives upper bound
(
2`
`

)
when e = 2`− 1 and a = 0.

V. LESS THAN V (n, `− 1) + 1 CHANNELS

In this section, we investigate some cases with N ≤
V (n, ` − 1). In the following, we consider the asymptotic
behaviour of L for different values of N when e and ` are
constants and C ⊆ Fn is such an e-error-correcting code that
L is maximal. First we give an upper bound on L and then a
lower bound.

Lemma 31. Let N ≥ V (n, `−a−1)+1 where 0 ≤ a ≤ `−1.
Then for any e-error-correcting code C ⊆ Fn, we have

L ≤ 2`−aV (n− e− `+ a, a).

Proof. Let x be the input word and Y be the set of output
words. We will use the Sauer-Shelah lemma to find a word at
distance e+ a from x. Then we correct the a errors by going
through each possible word containing those errors. Finally,
the upper bound follows from Lemma 2.

By Theorem 6 there exists a set S ⊆ [1, n] of size ` − a
which is shattered by some set Y ′ ⊆ Y such that |Y ′| = 2`−a.
Without loss of generality, we may assume that S = [1, `−a].

Moreover, let s be such a word that supp(s) = S. Furthermore,
as in the proof of Theorem 7, for each yi ∈ Y ′, 1 ≤ i ≤ 2`−a,
we denote βi = yi + s.

Let βj , j ∈ [1, 2`−a], be such a word that supp(x) ∩
S = supp(βj) ∩ S. This word βj exists because the set of
coordinates S is shattered by the set of words Y ′. Since
d(x,yj) ≤ e+ `, we have d(x, βj) ≤ e+ `− (`− a) = e+ a.
Hence, let d(x, βj) = e + a′ ≤ e + a. Now, x and βj differ
in e + a′ coordinates in the set [` − a + 1, n]. Thus, for
0 ≤ h ≤ V (n−e−`+a, a), we may consider words βj+wh,
where supp(wh) ∈ [` − a + 1, n − e] and 0 ≤ w(wh) ≤ a.
Since d(x, βj) = e + a′ ≤ e + a one of the words wh, say
wh′ , corresponds to a′ differences between x and βj (or to 0
differences if a′ is negative), i.e., supp(wh′) ⊆ supp(x + βj)
and w(wh′) = a′. Hence, we have d(x, βj + wh′) ≤ e.
Therefore, the upper bound for L follows from applying
Lemma 2 with e-balls centered at words βj + wh where
j ∈ [1, 2`−a] and h ∈ [1, V (n− e− `+ a, a)].

Lemma 32. Let N ≤ V (n, ` − a) where 0 ≤ a ≤ ` and
n ≥ 2e+a. Then there exists such an e-error-correcting code
C ⊆ Fn that

L ≥
(
n
e+a

)∑e
i=0

(
e+a
i

)(
n−e−a

i

) ≥ na

(e+ a)a
∑e
i=0

(
e+a
i

) .
Proof. Let S = {w ∈ Fn | w(w) ≤ `−a} and Y ⊆ S. We im-
mediately notice that if w(c) ≤ e+ a, then c ∈

⋂
y∈Y Bt(y).

Let us now consider a maximal e-error-correcting code C
with constant weight e + a. By [24, Theorem 7] (Gilbert
bound for constant weight codes) and Theorem 25(ii), we
have L ≥ |C| = A(n, 2e+ 1, e+ a) = A(n, 2e+ 2, e+ a) ≥

(n
e+a)∑e

i=0 (e+a
i)(n−e−a

i)
. Furthermore, we may give lower bound(

n
e+a

)∑e
i=0

(
e+a
i

)(
n−e−a

i

)
≥

(
n
e+a

)(
n−a
e

)∑e
i=0

(
e+a
i

)
=

n!e!(n− e− a)!

(n− a)!(e+ a)!(n− e− a)!
∑e
i=0

(
e+a
i

)
≥ na

(e+ a)a
∑e
i=0

(
e+a
i

) .
The last inequality is due to Observation (12).

In the following theorem, we give an asymptotic estimate
for L with exact dependency on N .

Theorem 33. Let V (n, ` − a − 1) + 1 ≤ N ≤ V (n, ` − a)
where 0 ≤ a ≤ ` − 1. Moreover, let C ⊆ Fn be such an
e-error-correcting code that L is maximal. Then we have

L = Θ(na).

Proof. Let V (n, `−a−1)+1 ≤ N ≤ V (n, `−a). By Lemma
31 we have L ≤ 2`−a

∑a
i=0

(
n−e−`+a

i

)
≤ 2`−a(a + 1)

(
n
a

)
≤

2`−a(a + 1)n
a

a! (for n ≥ 2a). Since e, ` and a are constants,
the claim follows by Lemma 32.

14

We have mostly considered situations where the e-error-
correcting code C gives us as large L as possible, that is,
in situations where C is as “bad” as possible. This is a
reasonable approach to give some general bounds for L.
However, we can construct large e-error-correcting codes such
that L is much smaller. Previously in Theorem 10, we have
shown that there exist such e-error-correcting codes that L
can be rather large (depends on n) when we have less than
V (n, `− 1) + 1 channels. In the following, we construct such
rather large e-error-correcting codes that L is constant on n
when N ≥ V (n, `− k) + 1 where k = 2.

Theorem 34. For any t = e+`, there exist e-error-correcting
codes C ⊆ Fn2 of length n = 2m − 1, where m > log2(e +
1)! + 3, and of size at least 22

m−(e+1)m with

L ≤ 2`

for
N ≥ V (n, `− 2) + 1.

Proof. Let us first consider a primitive narrow-sense BCH
code C with designed distance 2(e + 1) + 1, that is, error-
correcting capability at least e + 1 [21, p. 203]. Let α be a
primitive element of the finite field F2m . It is also a primitive
nth root of unity of the field. The BCH code is defined by

C = {c(x) ∈ R | c(α) = c(α3) = · · · = c(α2e+1) = 0}

where the ring R = F2[x]/〈xn − 1〉. Hence, C = {x ∈ Fn2 |
HxT = 0} where

H =


1 α . . . αn−1

1 α3 . . . α3(n−1)

...
...

1 α2e+1 . . . α(2e+1)(n−1)

 .

Let now {γ1, . . . , γm} be a basis of the field extension F2m

over F2. Thus, we can write the elements αi in H with the
aid of the basis as column vectors. Consequently, we obtain
an (e+ 1)m× n-matrix H2 with entries in F2 such that C =
{x ∈ Fn2 | H2x

T = 0}.
Let us write t = (e + 1) + (` − 1). Due to Theorem 7,

we know that for any set of at least V (n, ` − 2) + 1 outputs
Y = {y1, . . . ,yN} we have

|
⋂
y∈Y

Bt(y) ∩ C| ≤ 2`−1 (13)

for radius t. Notice that the error-correcting capability of C
can be better than e+ 1, but in that case we get a code with
even better parameters by writing t = (e+ i) + (`− i).

Since m > 2 log2(2e + 1), the rows of H2 are linearly
independent [21, p. 263]. Let us delete suitable linearly
independent rows among the rows in the matrix H2 which
correspond to the row

R = (1, α2e+1, . . . , α(2e+1)(n−1))

of the matrix H . We delete the smallest number of rows, say p
rows (p ≤ m), in such a way that the obtained matrix H ′ gives
us a code C ′ = {x ∈ Fn2 | H ′xT = 0} with error-correcting
capability exactly e. Notice that the error-correcting capability

of C ′ is at least e. Indeed, since m > log2(e + 1)! + 1, we
know [21, p. 259] that the code corresponding to H without
the row R has error-correcting capability exactly e and the
corresponding rows in H ′ remain intact. Let C2 be the code
which is obtained just before C ′, that is, using the matrix
where we have deleted only p − 1 rows from H2. Now the
error-correcting capability of C2 is at least e + 1, so it has a
list size at most 2`−1 according to (13). Due to the fact that
the code C ′ consists of C2 and one of its cosets, the code C ′

has list size at most 2 ·2`−1 = 2`. For the cardinality we have
[21, p. 203]

|C ′| ≥ 22
m−m(e+1).

We may improve the previous theorem for suitable values
of e and ` by using Theorem 20.

Theorem 35. For any t = e + ` such that e ≥ ` and e ≥ 7,
there exist e-error-correcting codes C ⊆ Fn2 of length n =
2m − 1, where m > log2(e + 1)! + 3, and of size at least
22

m−(e+1)m with
L ≤ 2`

for
N ≥ V (n, `− 2) + 1.

Proof. Consider the (e+1)-error-correcting code and Inequal-
ity (13) in the proof of the previous theorem together with
Theorem 20 instead of Theorem 7. Since e ≥ 7 and e ≥ `,
we have 3t ≤ 6e and 4(e + 1) + 4 ≤ 6e. Therefore, we may
choose b = 6e in Theorem 20. Together with the notation
t = (e+ 1) + (`− 1), we get

(`− 2)2(5e− 1 + (e+ 2)(12e2 − 9e+ 1)) + `− 2

for the lower bound of n in Theorem 20. Moreover, since
e ≥ 7, we have

n > 2log2(e+1)!+3 − 1

= 8 · (e+ 1)!− 1

≥ 8(e+ 1)e(e− 1)(e− 2)(e− 3)(e− 4)− 1

(∗)
≥ 12e5 − 33e4 − 24e3 + 109e2 − 51e+ 2

= (e− 2)2(5e− 1 + (e+ 2)(12e2 − 9e+ 1)) + e− 2

≥ (`− 2)2(5e− 1 + (e+ 2)(12e2 − 9e+ 1)) + `− 2.

Step (∗) is straightforward to verify as e ≥ 7. Hence, n
satisfies the requirements in Theorem 20 and we may modify
Inequality (13) to

|
⋂
y∈Y

Bt(y) ∩ C| ≤ `

and thus, the code C ′ in the proof of Theorem 34 has list size
at most 2 · ` instead of 2 · 2`−1.

Naturally, we can get corresponding results for shorter
lengths than n = 2m − 1 by applying the shortening method
[21, p. 29] to the code C ′ in the proof above provided that
the minimum distance of the code does not increase.

15

Example 36. Consider first a 2-error-correcting primitive and
narrow-sense BCH code C1 of length n = 15. By Theorem 7,
we know that for t = 4 (so ` = 2) using at least N = 17
channels C provides us a code with list size L ≤ 4. With
the method of Theorem 34 we get a code C ′ with L ≤ 4
for t = 4 when we have only N = 2 channels! Notice that
although here m does not satisfy m > log2(2 + 1)! + 3, we
have one linearly independent row to delete from H2 to get
C ′. The price we pay for this is that C1 has 128 codewords
and C ′ has 64.

VI. CONCLUSION

This paper studied a problem where we send a codeword
x ∈ C ⊆ Fn belonging to an e-error-correcting code through
multiple identical channels in which at most t = e+ ` errors
occur. Based on multiple output words we give a list of
codewords which were possibly transmitted. We have shown
in Theorem 7 that if we have at least N ≥ V (n, ` − 1) + 1
channels, then the list size L is constant on n for any e-
error-correcting code. Furthermore, if we have at most N ≤
V (n, `− 1) channels, then there exist such e-error-correcting
codes that L depends on n as we have seen in Theorem 10.
Moreover, the list size L is shown to be at most ` + 1 when
N ≥ V (n, ` − 1) + 1 and n is large enough in Theorems
17 and 20, and we have given a code which can achieve
this bound in Theorem 9. Notably, the number of channels
does not depend on e in these cases unlike in the previous
results by Levenshtein (Theorem 1) and Yaakobi and Bruck
([11, Theorem 6]).

We have also given tight asymptotic bounds for list size
when we have less than V (n, `−1)+1 channels in Lemmas 31
and 32 and in Theorem 33. Besides studying e-error-correcting
codes which give maximal decoded list size, we have also
constructed large codes giving smaller list sizes in Section V.
Moreover, we have shown in Section IV that the list T (Y) is
very likely (even when N is small) constant size when e is
sufficiently large compared to ` and n is large enough. In this
case, we get a small constant list with little work when we
have suitable words among the set of output words Y .

ACKNOWLEDGEMENT

The authors would like to thank the referees for many com-
ments which helped to improve significantly the readability of
the paper.

REFERENCES

[1] V. Junnila, T. Laihonen, and T. Lehtilä, “The Levenshtein’s channel
and the list size in information retrieval,” in Proceedings of 2019 IEEE
International Symposium on Information Theory, 2019, pp. 295–299.

[2] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans.
Inform. Theory, vol. 47, no. 1, pp. 2–22, 2001.

[3] M. Horovitz and E. Yaakobi, “Reconstruction of sequences over non-
identical channels,” IEEE Trans. Inform. Theory, vol. 65, no. 2, pp.
1267–1286, 2018.

[4] E. Yaakobi, J. Bruck, and P. H. Siegel, “Constructions and decoding of
cyclic codes over b-symbol read channels,” IEEE Trans. Inform. Theory,
vol. 62, no. 4, pp. 1541–1551, 2016.

[5] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and
K. Strauss, “A DNA-based archival storage system,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 2, pp. 637–649, 2016.

[6] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital infor-
mation storage in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628,
2012.

[7] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angewandte Chemie International Edition, vol. 54,
no. 8, pp. 2552–2555, 2015.

[8] S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and
O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Trans-
actions on Molecular, Biological and Multi-Scale Communications,
vol. 1, no. 3, pp. 230–248, 2015.

[9] V. Levenshtein, E. Konstantinova, E. Konstantinov, and S. Molodtsov,
“Reconstruction of a graph from 2-vicinities of its vertices,” Discrete
Applied Mathematics, vol. 156, pp. 1399–1406, 2008.

[10] R. Gabrys and E. Yaakobi, “Sequence reconstruction over the deletion
channel,” IEEE Trans. Inform. Theory, vol. 64, no. 4, pp. 2924–2931,
2018.

[11] E. Yaakobi and J. Bruck, “On the uncertainty of information retrieval in
associative memories,” IEEE Trans. Inform. Theory, vol. 65, no. 4, pp.
2155–2165, 2018.

[12] ——, “On the uncertainty of information retrieval in associative mem-
ories,” in Proceedings of 2012 IEEE International Symposium on
Information Theory, 2012, pp. 106–110.

[13] V. Junnila and T. Laihonen, “Information retrieval with varying number
of input clues,” IEEE Trans. Inform. Theory, vol. 62, no. 2, pp. 625–638,
2016.

[14] ——, “Codes for information retrieval with small uncertainty,” IEEE
Trans. Inform. Theory, vol. 60, no. 2, pp. 976–985, 2014.

[15] T. Laihonen and T. Lehtilä, “Improved codes for list decoding in the
Levenshtein’s channel and information retrieval,” in Proceedings of 2017
IEEE International Symposium on Information Theory, 2017, pp. 2643–
2647.

[16] T. Laihonen, “On t-revealing codes in binary Hamming spaces,” Infor-
mation and Computation, vol. 268, 2019.

[17] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering codes,
ser. North-Holland Mathematical Library. Amsterdam: North-Holland
Publishing Co., 1997, vol. 54.

[18] D. J. Kleitman, “On a combinatorial conjecture of Erdös,” Journal of
Combinatorial Theory, vol. 1, no. 2, pp. 209–214, 1966.

[19] N. Sauer, “On the density of families of sets,” Journal of Combinatorial
Theory, Series A, vol. 13, no. 1, pp. 145–147, 1972.

[20] S. Shelah, “A combinatorial problem; stability and order for models and
theories in infinitary languages,” Pacific Journal of Mathematics, vol. 41,
no. 1, pp. 247–261, 1972.

[21] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting
codes, ser. North-Holland Mathematical Library. Amsterdam: North-
Holland Publishing Co., 1977, vol. 16.

[22] M. Plotkin, “Binary codes with specified minimum distance,” IRE Trans.
Inform. Theory, vol. 6, no. 4, pp. 445–450, 1960.

[23] E. Agrell, A. Vardy, and K. Zeger, “Upper bounds for constant-weight
codes,” IEEE Trans. Inform. Theory, vol. 46, no. 7, pp. 2373–2395,
2000.

[24] R. Graham and N. Sloane, “Lower bounds for constant weight codes,”
IEEE Trans. Inform. Theory, vol. 26, no. 1, pp. 37–43, 1980.

APPENDIX
PROOF OF LEMMA 18

In the appendix, we give the rather technical proof of
Lemma 18. For the proof, we first present an auxiliary result.
In [17, Theorem 2.4.10], it has been shown that the size of
an intersection of three Hamming balls in Fn increases (or,
more precisely, does not decrease) as the pairwise distances
of the centers of the balls decrease. In the following lemma,
we show that an analogous result holds even though certain
restrictions are given to the words in the intersection. Recall
that Bt(Fn;x) = {w ∈ Fn | d(w,x) ≤ t} and that
supp(a+b) denotes the set of coordinates in which the words
a and b differ. Moreover, we have d(a,b) = |supp(a + b)|.

Lemma 37. Let b ≤ n be a positive integer, c0, c1 and c2
be words of Fn and set D ⊆ [1, n], |D| = b, be such that

16

supp(ci+cj) ⊆ D for any distinct i, j ∈ {0, 1, 2}. Further, let
c′0, c′1, c′2 be three such words in Fn that d(ci, cj) ≥ d(c′i, c

′
j)

and supp(c′i + c′j) ⊆ D for all i and j. Denote

S = {w ∈ Fn | w ∈
2⋂
i=0

Bt(ci) and

|supp(w + c0) \D| < `− 1}

and

S′ = {w ∈ Fn | w ∈
2⋂
i=0

Bt(c
′
i) and

|supp(w + c′0) \D| < `− 1}.

Then, we have |S| ≤ |S′|.

Proof. Observe first that c0 and c′0 could be replaced in
the definitions of S and S′ by ci and c′i with i ∈ {1, 2},
respectively. Indeed, notice that we have

supp(w+c0)\D = supp(w+c1)\D = supp(w+c2)\D (14)

and supp(w+c′0)\D = supp(w+c′1)\D = supp(w+c′2)\D
for any w ∈ Fn since supp(ci + cj) ⊆ D and supp(c′i +
c′j) ⊆ D for any i, j ∈ {0, 1, 2}. Hence, the codewords c0,
c1 and c2 differ only inside the set D and the same is true
for the words c′0, c′1 and c′2. In other words, the codewords
c0, c1 and c2 (c′0, c′1 and c′2) do not differ outside the set
D. Therefore, all the codewords ci and c′i have symmetrical
roles (albeit at first sight it might seem that c0 and c′0 have a
special role). Thus, we may without loss of generality assume
that c0 = c′0 = 0 and D = [1, b] since only the cardinalities
of S and S′ are considered and the distances between ci’s
and the distances between c′i’s do not depend on each other.
Observe that supp(ci) \D = supp(c′i) \D = ∅ for each i.

Consider first the intersections among the coordinates in
D. For this purpose, let cDi and c′Di be words of Fb such
that supp(cDi) = supp(ci) and supp(c′Di) = supp(c′i) for
i ∈ {0, 1, 2}. Notice that cDi and c′Di preserve the distances,
that is, d(cDi, cDj) = d(ci, cj) and d(c′Di, c

′
Dj) = d(c′i, c

′
j).

Then denote Sbh = Bh(Fb; cD0)∩Bh(Fb; cD1)∩Bh(Fb; cD2)
and S′bh = Bh(Fb; c′D0) ∩ Bh(Fb; c′D1) ∩ Bh(Fb; c′D2). Now
we have |S′hb| ≥ |Shb| by [17, Theorem 2.4.10].

Now, we are ready to determine |S| and |S′|. Notice that
|Sbt−i| is equal to the number of words y ∈ S such that
supp(y)\D is fixed and contains i ≤ `−2 elements. Therefore,
we obtain that |S| =

∑`−2
i=0

(
n−b
i

)
|Sbt−i|. Similarly, we get

|S′| =
∑`−2
i=0

(
n−b
i

)
|S′bt−i|. Thus, as |Shb| ≤ |S′hb|, we have

|S| ≤ |S′|.

Now we are ready to present the proof of Lemma 18.

Lemma 18. Let b ≥ 3t be an integer with t = e+ ` and C1

be an e-error-correcting code. Assume that n ≥ (`− 1)2(b−
e + (e + 1)(b − 3e − 2e2 + eb +

(
b−2e−1

2

)
)) + ` − 2, |Y | =

N ≥ V (n, ` − 1) + 1, |T (Y)| ≥ 3 and c0, c1, c2 ∈ T (Y). If
now D ⊆ [1, n] is a set such that |D| = b and

supp(c0 + c1) ∪ supp(c0 + c2) ∪ supp(c1 + c2) ⊆ D,

then for any word w ∈ Fn we have supp(w + c0) \ D =
supp(w + c1) \ D = supp(w + c2) \ D and there exists an
output word y ∈ Y such that

|supp(y + c0) \D| ≥ `− 1.

Proof. Let c0, c1 and c2 be codewords of T (Y) (with respect
to C1). Indeed, such codewords exist as |T (Y)| ≥ 3. Observe
that ` ≥ 2 by Theorem 7 as L ≥ |T (Y)| ≥ 3. Let D be a
subset of [1, n] such that |D| = b and supp(c0+c1)∪supp(c0+
c2) ∪ supp(c1 + c2) ⊆ D. In other words, all differences
between codewords c0, c1 and c2 are contained in the set
D. Without loss of generality, we may assume that D = [1, b]
(by rearranging the coordinate positions if needed). Further,
denote D = [1, n] \D = [b+ 1, n].

In order to show that there exists an output word y such
that |supp(y + c0) \D| ≥ `− 1, we prove that

N > |S|, (15)

where

S = {w ∈ Fn | w ∈
2⋂
i=0

Bt(ci) and

|supp(w + c0) \D| < `− 1}

(when n is large enough). Moreover, if such y exists, then by
Equation (14) we have supp(y + c0) \ D = supp(y + c1) \
D = supp(y + c2) \D. Therefore, all the codewords ci have
symmetrical roles (albeit at first sight it might seem that c0 has
a special role). By Lemma 37, |S| obtains its maximum value
when the codewords c0, c1 and c2 are as close to each other
as possible. Recalling that d(ci, cj) ≥ 2e+ 1 for any distinct
i, j ∈ {0, 1, 2} and the parity of all the distances cannot be odd
(see Equation (5)), we may without loss of generality assume
(by the symmetry of c0, c1 and c2) that d(c1, c2) = 2e + 2
and d(c0, c1) = d(c0, c2) = 2e + 1. Furthermore, we may
without loss of generality assume that c0 = 0 (as the whole
Hamming space can be translated by c0).

c0 = 0 0 0 0 0 0 0 0 0 0 0 · · · 0
c1 = 1 1 1 1 1 0 0 0 0 0 0 · · · 0
c2 = 0 0 0 1 1 1 1 1 0 0 0 · · · 0
y : i2 i1 i′3 i5 i4

B A C ′ E D
e+ 1 e e+ 1 n− b︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷ ︸︸ ︷
︷ ︸︸ ︷

︸ ︷︷ ︸

D

C = C ′ ∪ E
Fig. 6. An illustration of the proof of Lemma 18 when e = 2.

17

Denote then A = supp(c1) ∩ supp(c2), B = supp(c1) \
supp(c2), C ′ = supp(c2)\ supp(c1) and E = D \ (supp(c1)∪
supp(c2)) (see Figure 6 for illustration of these sets). Notice
that A∪B ∪C ′ contains every coordinate in which the words
c0, c1 and c2 differ. Straightforwardly, we obtain that

|A| = e,

|B| = |C ′| = e+ 1,

|E| = b− |A| − |B| − |C ′| and
|D| = n− b.

(16)

For a word y ∈ S, we further denote |supp(y) ∩ A| = i1,
|supp(y) ∩B| = i2, |supp(y) ∩ C ′| = i′3, |supp(y) ∩D| = i4
and |supp(y) ∩ E| = i5. In what follows, we prove our goal
(15), that is,

|S| < V (n, `− 1) + 1 ≤ N.

For this purpose, we first present some bounds on the values
i1, i2, i′3, i4 and i5.

Immediately, by the definition of S, we obtain that

0 ≤ i4 ≤ `− 2. (17)

Furthermore, as d(y, ci) ≤ t for i ∈ {1, 2}, we have

i4 + i5 + (|A| − i1) + (|B| − i2) + i′3 ≤ t
and

i4 + i5 + (|A| − i1) + (|C ′| − i′3) + i2 ≤ t.
(18)

Now, by adding these two inequalities, and recalling (16) and
t = e+ `, we get

e+ 1 + i4 + i5 − ` ≤ i1 ≤ |A| = e. (19)

This further implies that

0 ≤ i5 ≤ `− 1− i4. (20)

By (18), the value |i2 − i′3| can be bounded from above as
follows: by combining the inequalities, we obtain i4 + i5 +
(|A| − i1) + (e + 1) + |i2 − i′3| ≤ t implying |i2 − i′3| ≤
` − i4 − i5 − (|A| − i1) − 1. It is straightforward to verify
that i2 − |i2 − i′3| ≤ i′3 ≤ i2 + |i2 − i′3|. Hence, combining
this inequality with the previous one for |i2− i′3| and recalling
|A| = e, we obtain that

i2 + i4 + i5 + e+ 1− `− i1
=i2 − (`− i4 − i5 − (|A| − i1)− 1)

≤i′3
≤i2 + (`− i4 − i5 − (|A| − i1)− 1)

=i1 + i2 + `− e− 1− i4 − i5.

(21)

Finally, as d(y, c0) ≤ t, we have i1 + i2 + i′3 + i4 + i5 ≤ t.
Therefore, as i′3 ≥ i2−|i2−i′3|, we obtain that t−i1−i4−i5 ≥
i2 + i′3 ≥ 2i2 − |i2 − i′3| ≥ 2i2 + i4 + i5 + e + 1 − ` − i1.
Hence, we get

0 ≤ i2 ≤ `− 1− i4 − i5. (22)

In the following sums, we agree that
(
p
q

)
= 0 when

q < 0. The size of S can now be approximated based on
the bounds (17), (19), (20), (21) and (22).

|S| ≤
`−2∑
i4=0

`−1−i4∑
i5=0

e∑
i1=i4+i5+e+1−`

`−1−i4−i5∑
i2=0

i1+i2+`−e−1−i4−i5∑
i′3=i2+i4+i5+e+1−`−i1(

|D|
i4

)(
|E|
i5

)(
|A|
i1

)(
|B|
i2

)(
|C ′|
i′3

)
(i)

≤
`−2∑
i4=0

e∑
i1=i4+e+1−`

`−1−i4∑
i2=0

`−1−i4∑
i5=0

i1+i2+`−e−1−i4−i5∑
i′3=i2+i4+i5+e+1−`−i1(

|D|
i4

)(
|A|
i1

)(
|B|
i2

)(
|E|
i5

)(
|C ′|
i′3

)
(ii)

≤
`−2∑
i4=0

e∑
i1=i4+e+1−`

`−1−i4∑
i2=0

i1+i2+`−e−1−i4∑
i3=i2+i4+e+1−`−i1(

|D|
i4

)(
|A|
i1

)(
|B|
i2

)(
|C|
i3

)
.

In Step (i), we first relax the restrictions set by i5 for i1
and i2. Furthermore, in Step (ii), we denote C = C ′ ∪ E
and combine the binomial sums considering i′3 and i5. Indeed,
this can be done since on the left-hand side i5 elements are
chosen from E and i′3 elements from C ′ while on the right-
hand side i′3 + i5 elements are chosen from C ′ ∪ E. In order
to further estimate the binomial sum on the right-hand side of
the previous inequality (after Step (ii)), we partition it into
smaller pieces using the following notations:

G(i4) =

e∑
i1=i4+e+1−`

`−1−i4∑
i2=0

i1+i2+`−e−1−i4∑
i3=i2+i4+e+1−`−i1(

|A|
i1

)(
|B|
i2

)(
|C|
i3

) (23)

and

g(i4) =

(
|D|
i4

)
G(i4). (24)

Thus, we have

|S| ≤
`−2∑
i4=0

g(i4) =
`−2∑
i4=0

(
|D|
i4

)
G(i4). (25)

Recall the assumption

n ≥ (`− 1)2
(
b− e+ (e+ 1)

(
b− 3e− 2e2 + eb

+

(
b− 2e− 1

2

)))
+ `− 2

(26)

(which is needed for n to be large enough). Now we outline
the rest of the proof:

Part (a) We first show that

G(i4 − 1) ≤
(

1 +
e(|B||C|+ 4)

8
+ |C|

+
|B|(|C|+ 1)2

12

)
G(i4).

(27)

Part (b) Then, based on this approximation, we prove that
g(i4− 1) ≤ g(i4) for any i4 = 1, . . . , `− 2. There-
fore, for any j ∈ [0, `−2], we have g(j) ≤ g(`−2).

18

Part (c) Thus, we have |S| ≤ (`−1)
(|D|
`−2
)
G(`−2). Finally,

it can be shown that |S| ≤ (`−1)
(|D|
`−2
)
G(`−2) <

N , so our goal (15) follows. Therefore, there exists
an output word y ∈ Y such that |supp(y + c0) \
D| ≥ `− 1.

Part (a): By comparing the sums G(i4) and G(i4− 1), we
first notice that the sum G(i4−1) contains every term in G(i4).
The sum G(i4 − 1) may contain only three different types of
additional terms: (I) the ones with i1 = (i4− 1) + e+ 1− ` =
i4 + e − `, (II) the ones with i1 ∈ [i4 + e + 1 − `, e] and
i2 = ` − 1 − (i4 − 1) = ` − i4 and (III) the ones where
i1 ∈ [i4 + e + 1 − `, e], i2 ∈ [0, ` − 1 − i4] and i3 is either
equal to i2 + (i4 − 1) + e+ 1− `− i1 = i2 + i4 + e− `− i1
or i1 + i2 + `− e− 1− (i4 − 1) = i1 + i2 + `− e− i4. For
the additional terms (I), (II) and (III), we respectively use the
notations f(i4), s(i4) and h(i4):

f(i4) =

(
|A|

i4 + e− `

) `−i4∑
i2=0

(
|B|
i2

)(
|C|
i2

)
,

s(i4) =

(
|B|
`− i4

) e∑
i1=i4+e+1−`

(
|A|
i1

) i1+2`−e−2i4∑
i3=e−i1

(
|C|
i3

)
and

h(i4) =

e∑
i1=i4+e+1−`

(
|A|
i1

) `−1−i4∑
i2=0

(
|B|
i2

)
·
((

|C|
i1 + i2 + `− e− i4

)
+

(
|C|

i2 + i4 + e− `− i1

))
.

Thus, we have

G(i4 − 1) ≤ G(i4) + f(i4) + h(i4) + s(i4). (28)

In order to prove Inequality (27), we first present upper
bounds for f(i4), h(i4) and s(i4) with the aid of G(i4). For
this purpose, we first present the following auxiliary result:

(
n

a+ 1

)
=
n− a
a+ 1

(
n

a

)
⇐⇒

(
n

a

)
=
a+ 1

n− a

(
n

a+ 1

)
. (29)

Now an upper bound for the f(i4) can be obtained as follows:

f(i4) =

(
|A|

i4 + e− `

) `−i4∑
i2=0

(
|B|
i2

)(
|C|
i2

)
(29)
=

i4 + e+ 1− `
`− i4

(
|A|

i4 + e+ 1− `

)
·

(
`−i4−1∑
i2=0

(
|B|
i2

)(
|C|
i2

)
+
i4 + |B|+ 1− `

`− i4

· i4 + |C|+ 1− `
`− i4

(
|B|

`− i4 − 1

)(
|C|

`− i4 − 1

))
(iii)

≤ i4 + e+ 1− `
`− i4

·
(

1 +
i4 + |B|+ 1− `

`− i4
· i4 + |C|+ 1− `

`− i4

)
·
(

|A|
i4 + e+ 1− `

) `−1−i4∑
i2=0

(
|B|
i2

)(
|C|
i2

)
(iv)

≤ i4 + e+ 1− `
`− i4

·
(

1 +
i4 + |B|+ 1− `

`− i4
· i4 + |C|+ 1− `

`− i4

)
G(i4)

(v)

≤ e(|B||C|+ 4)

8
G(i4).

Here, in Step (iii), we estimate
(|B|
`−i4−1

)(|C|
`−i4−1

)
≤∑`−i4−1

i2=0

(|B|
i2

)(|C|
i2

)
. Then, in Step (iv), we observe that the

terms of (
|A|

i4 + e+ 1− `

) `−1−i4∑
i2=0

(
|B|
i2

)(
|C|
i2

)
appear in G(i4) when i1 = i4 +e+1− `. Finally, in Step (v),
we approximate i4 ≤ ` − 2 (i.e. ` ≥ i4 + 2) and disregard
some small negative constants.

The value h(i4) can be approximated as follows:

h(i4)
(29)
=

e∑
i1=i4+e+1−`

(
|A|
i1

) `−1−i4∑
i2=0

(
|B|
i2

)
·
(
|C|+ i4 + e+ 1− `− i1 − i2

i1 + i2 + `− e− i4

·
(

|C|
i1 + i2 + `− e− 1− i4

)
+

i2 + i4 + e+ 1− `− i1
|C|+ i1 + `− e− i2 − i4

(
|C|

i2 + i4 + e+ 1− `− i1

))
(vi)

≤ |C|
e∑

i1=i4+e+1−`

(
|A|
i1

) `−1−i4∑
i2=0

(
|B|
i2

)
·
((

|C|
i1 + i2 + `− e− 1− i4

)
+

(
|C|

i2 + i4 + e+ 1− `− i1

))
(vii)

≤ |C|G(i4).

19

For Inequality (vi), we first observe that |C| − i2 = b− 2e−
1 − i2 ≥ t + ` > i2 since b ≥ 3t and ` − 1 ≥ i2 by (22).
Therefore, as i2 ≥ 0 and i1 ≥ i4 + e+ 1− `, we obtain that

i2 + i4 + e+ 1− `− i1
|C|+ i1 + `− e− i2 − i4

<
|C|+ i4 + e+ 1− `− i1 − i2

i1 + i2 + `− e− i4

≤|C|+ i4 + e+ 1− `− i1
i1 + `− e− i4

≤|C|.

Then, in Step (vii), we observe that the terms of
e∑

i1=i4+e+1−`

(
|A|
i1

) `−1−i4∑
i2=0

(
|B|
i2

)
·
((

|C|
i1 + i2 + `− e− 1− i4

)
+

(
|C|

i2 + i4 + e+ 1− `− i1

))
appear in G(i4) when either i3 = i1 + i2 + `− e− 1− i4 or
i3 = i2 + i4 + e+ 1− `− i1.

Finally, we derive the following upper bound for s(i4):

s(i4)
(29)
=
|B|+ i4 + 1− `

`− i4

(
|B|

`− i4 − 1

)
·

e∑
i1=i4+e+1−`

(
|A|
i1

) i1+2`−e−2i4∑
i3=e−i1

(
|C|
i3

)
=
|B|+ i4 + 1− `

`− i4

(
|B|

`− i4 − 1

)
·

e∑
i1=i4+e+1−`

(
|A|
i1

)(i1+2`−e−2−2i4∑
i3=e−i1

(
|C|
i3

)
+
|C|+ 2i4 + e+ 2− 2`− i1
i1 + 2`− e− 1− 2i4

·
(
|C|+ 2i4 + e+ 1− 2`− i1

i1 + 2`− e− 2i4
+ 1

)
·
(

|C|
i1 + 2`− e− 2− 2i4

))
(viii)

≤ |B| − 1

2

(
1 +
|C| − 1

2

(
1 +
|C| − 2

3

))
·
(

|B|
`− 1− i4

) e∑
i1=i4+e+1−`

(
|A|
i1

) i1+2`−e−2−2i4∑
i3=e−i1

(
|C|
i3

)
(ix)

≤ |B| − 1

2

(
1 +
|C| − 1

2

(
1 +
|C| − 2

3

))
G(i4)

<
|B|(|C|+ 1)2

12
G(i4).

Here, in Step (viii), we bound from above the fractional
multipliers by first estimating i1 ≥ i4+e+1−` (see (19)) and
then approximating i4 ≤ `− 2 (see (17)). Then, in Step (ix),
we observe that the terms of(

|B|
`− 1− i4

) e∑
i1=i4+e+1−`

(
|A|
i1

) i1+2`−e−2−2i4∑
i3=e−i1

(
|C|
i3

)

appear in G(i4) when i2 = `− 1− i4.

Thus, in conclusion, Inequality 27 is obtained by combin-
ing (28) and the previous estimations for f(i4), h(i4) and
s(i4):

G(i4 − 1)

≤G(i4) + f(i4) + h(i4) + s(i4)

≤
(

1 +
e(|B||C|+ 4)

8
+ |C|+ |B|(|C|+ 1)2

12

)
G(i4).

Part (b): By (24), (27) and (29), we now obtain that

g(i4 − 1)

=G(i4 − 1)

(
|D|
i4 − 1

)
≤
(

1 +
e(|B||C|+ 4)

8
+ |C|+ |B|(|C|+ 1)2

12

)
·G(i4)

(
|D|
i4

)
i4

|D| − i4 + 1

=

(
1 +

e(|B||C|+ 4)

8
+ |C|+ |B|(|C|+ 1)2

12

)
· i4
|D| − i4 + 1

g(i4).

Thus, we have g(i4 − 1) ≤ g(i4) if

|D| − i4 + 1

≥i4 ·
(

1 +
e(|B||C|+ 4)

8
+ |C|+ |B|(|C|+ 1)2

12

)
,

i.e.

n ≥i4 ·
(

1 +
e(|B||C|+ 4)

8
+ |C|+ |B|(|C|+ 1)2

12

)
+i4 + b− 1.

Therefore, we have g(j) ≤ g(`− 2) for any j ∈ [0, `− 3] if

n

≥
(

1 +
e(|B||C|+ 4)

8
+ |C|+ |B|(|C|+ 1)2

12

)
· (`− 2) + (`− 2)− 1 + b.

(30)

In order to show that n satisfies this condition, we obtain by

20

recalling the assumption (26) for n and Equation (16) that

n ≥ (`− 1)2 (b− e+ (e+ 1)

·
(
b− 3e− 2e2 + eb+

(
b− 2e− 1

2

)))
+ `− 2

=(`− 1)2
(
|C|+ |B|

(
2 + |C|+ e|C|+

(
|C|
2

)))
+ `− 2

≥(`− 2)

(
|C|+ |B|

(
2 + |C|+ e|C|+

(
|C|
2

)))
+`− 3 + b

=

(
2|B|+ 4e|B||C|+ 4e|B||C|

8
+ |C|+ 6|B| |C|

2 + |C|
12

)
· (`− 2) + `− 3 + b

(x)
>

(
1 +

e(|B||C|+ 4)

8
+ |C|+ |B|(|C|+ 1)2

12

)
· (`− 2) + `− 3 + b.

(31)

Here, in Step (x), we use the following estimations: 2|B| > 1,
(4e|B||C|+ 4e|B||C|)/8 > e(|B||C|+ 4)/8 and 6|B|(|C|2 +
|C|)/12 = 3|B|(2|C|2 +2|C|)/12 > |B|(|C|2 +2|C|+1)/12.
Thus, we have g(j) ≤ g(` − 2) for any j ∈ [0, ` − 3]. This
concludes Part (b).

Part (c): Substituting i4 = `− 2 to G(i4) in Equation (23)
gives: G(`− 2) = |C|+ |B|(1 + |C|+ e|C|+

(|C|
2

)
) + e+ 1 =

|C|+ |B|(2+ |C|+e|C|+
(|C|

2

)
) (recall here that |B| = e+1).

Therefore, as g(i4) ≤ g(`− 2) for any i4 ∈ [0, `− 3] when n
is large enough, we may estimate |S| using Inequality (25):

|S| ≤
`−2∑
i4=0

g(i4) ≤ (`− 1)g(`− 2)

=(`− 1)

(
|D|
`− 2

)
G(`− 2)

<(`− 1)

(
n

`− 2

)
G(`− 2)

=
(`− 1)2

n− `+ 2

(
n

`− 1

)
·
(
|C|+ |B|

(
2 + |C|+ e|C|+

(
|C|
2

)))
.

Therefore, (recall our goal (15)), |S| <
(
n
`−1
)

<
N since the assumption n ≥ (` − 1)2

·
(
|C|+ |B|

(
2 + |C|+ e|C|+

(|C|
2

)))
+` − 2

(31)
= (` − 1)2

·(b−e+(e+1)(b−3e−2e2 +eb+
(
b−2e−1

2

)
))+`−2 implies

n − ` + 2 ≥ (` − 1)2
(
|C|+ |B|

(
2 + |C|+ e|C|+

(|C|
2

)))
.

Thus, in conclusion, there exists an output word y ∈ Y such
that y 6∈ S since |S| < N .

Ville Junnila received the M.Sc. and Ph.D. degrees in mathematics from
the University of Turku, Finland, in 2007 and 2011, respectively. He was a
Postdoctoral Researcher on a grant in 2011–2014. Then, in 2014, he joined
the faculty of the Department of Mathematics and Statistics at the University
of Turku, where he is currently a University Lecturer. His research interests

include combinatorial coding and graph theory as well as related areas of
discrete mathematics.

Tero Laihonen received the M.Sc. and Ph.D. degrees in mathematics from the
University of Turku, Turku, Finland, in 1995 and 1998, respectively. He was
a Postdoctoral Researcher in 1999-2002 and an Academy Research Fellow in
2003-2008 at the Academy of Finland. He joined the faculty of the Department
of Mathematics and Statistics at the University of Turku in 2008 where he is
currently a Full Professor in discrete mathematics and theoretical computer
science. His research interests include coding theory, graph theory and related
areas of discrete mathematics.

Tuomo Lehtilä received the M.Sc. degree in mathematics from the University
of Turku, Turku, Finland, in 2016. He is currently pursuing the Ph.D. degree in
mathematics with University of Turku. His current research interests include
coding theory, graph theory and related areas of discrete mathematics.

	Introduction
	Some upper and lower bounds on L
	Upper bounds on L
	Lower bounds on L

	Optimal upper bound L+1 for large enough n
	Small list size with distant output words
	Likelihood of distant output words
	List size with distant output words

	Less than V(n,-1)+1 channels
	Conclusion
	References
	Appendix: Proof of Lemma 18
	Biographies
	Ville Junnila
	Tero Laihonen
	Tuomo Lehtilä

