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Abstract—In medical care, it is essential to assess and manage
acute painful conditions adequately. Heart rate variability (HRV)
analysis is based on the acquisition of electrocardiogram (ECG),
which is available from both patient monitor and wearable device.
As HRV analysis can reflect autonomic nervous system activity
which is unconsciously regulated, HRV analysis in ultra-short-
term is getting attention in indicating the reaction due to acute
pain. Different HRV features in different window lengths are
involved in pain monitoring studies as a signal index or part
of a multi-parameter model. In this work, seven HRV features
and median heart rate (HR) in ultra-short-term are evaluated for
their competence in indicating experimental acute pain. Also, the
choice of time window length in HRV analysis and its relation
with pain detection are discussed. The results of the normalized
HRV analysis from healthy volunteers show that the changes of
lnRMSSD, pNN20 and median HR associated with the intensity
of experimental electrical pain; and in the tests with experimental
thermal pain, lnLF and ln(LF/HF) changed along with pain
intensity. The fusion of the HRV features could tell pain from
no pain. With either experimental pain stimulation, optimal time
window length was observed around or larger than 40 seconds
with better correlation analysis result and HRV feature fusion
performance.

Keywords— Heart rate variability, pain assessment, wearable
device, experimental pain.

I. INTRODUCTION

Pain assessment, as one of the critical points in pain
management, relates closely to the quality of care in hospital
and quality of life. Pain is common with a large population
of people suffering from it. One in every four Americans was
reported suffering from pain that lasts longer than 24 hours and
a lot more suffered from acute pain in the year of 2006 [1].
Similarly, by the end of May in 2015, between one-third and
one-half of the population in the UK were affected by chronic
pain where pain lasts longer than three months. In addition,
the proportion is likely to increase because of population aging
[2]. Undertreatment of pain can lead to adverse consequences
physiologically, psychologically and financially. For example,
poorly management of acute pain may cause serious complica-
tions and progress to chronic pain; also, under-treated chronic
pain influences daily activities and lowers the quality of life
[3].

In pain assessment, pain intensity assessment is essential
for pain management intervention and its evaluation. Patients

are guided by caregivers to describe their pain intensities on
a scale from 0 to 10, where 0 represents no pain, and 10
denotes the worst pain imaginable. Such self-report method
is considered the ” gold standard ” as pain is believed to
be a highly subjective experience, whereas it is impossible
to obtain self-report in uncommunicatable situations from
sedated or delirious patients for instance. In these situations,
behavioral indicators of pain are observed by the nurse as
an alternative way. No matter use which assessment tool,
timely reassessment of pain by inquiry or observation is
needed to assess treatment efficacy, but it barely can be real-
time especially for acute pain. Furthermore, these tools rely
heavily on nurses, their knowledge, interviewing techniques
and physical assessment skill [4]. Therefore, an automatic
pain intensity assessment tool is needed for real-time and
continuous pain monitoring.

One potential approach towards automatic pain assessment
is the fusion of physiological parameters, as multi-parameter
analysis is superior to any individual physiological parameter
[5]–[8]. Automatic pain assessment with physiological param-
eters has the advantage of leveraging wearable devices. With
wearable devices, human physiological parameters are measur-
able and recordable even in everyday life. Wearable devices
provide the foundation of health monitoring especially when
integrated into an Internet-of-things system which enables
wearable devices network with mobile devices, fog [9], as
well as cloud servers. Such system may support various real-
time health monitoring services by continuously processing
and analyzing data from wearable devices.

Among the physiological signals available in wearable de-
vices, signals that influenced by sympathetic tone are consid-
ered useful to indicate the perception of pain, and electro-
cardiogram (ECG) is one of them. From ECG record, heart
rate (HR) and heart rate variability (HRV) can be derived to
index sympathetic and parasympathetic nervous system activ-
ity when internal body functions are involuntarily regulated.
HR, as one of the vital signs, is the most frequently observed
physiological signal in pain studies. While HRV features
measuring the variation time interval between heartbeats with
different methods are observed individually and selectively in
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some pain studies.
Therefore, HRV features in several categories are examined

in this paper with their intercorrelation and correlation with
pain for future physiological data fusion in pain detection
or pain intensity assessment, serving as a reference in HRV
features selection. In addition, HRV analysis in ultra-short-
term is performed in this study instead of classical short-term
in 5-minute windows and long-term in 24-hour time windows
to address timely assessment and reassessment of acute pain.

In the rest of paper, HRV analysis methods and their
relations with pain are introduced in Section II. Section III
presents the study protocol designed for this study, where 1-
lead ECG was recorded with a wearable strap around chest
from thirty healthy volunteers under two experimental pain
stimuli. Signal processing and data analysis methods are also
presented in Section III. The following Section IV reveals
the observations in HRV features as well as classification
performance with selected HRV features. In the end, Section
V concludes and discusses the study.

II. HRV ANALYSIS IN PAIN STUDIES

Extracting HRV features from ECG starts with QRS de-
tection. Only inter-beat intervals between adjacent normal R
peaks are kept for HRV analysis. Those normal inter-beat
intervals are usually referred as NN intervals in the literature.
HRV features are measured over a period, typically in short-
term over 5 minutes or in long-term over 24 hours. However,
some HRV features in less than 1 minute as ultra-short-term
analysis are also adopted, but in tracing acute psychologi-
cal and physiological changes [10]–[12]. Within each time
window, HRV features are calculated with numerous methods
falling in three categories and they are i) time domain analysis,
ii) frequency domain analysis and iii) nonlinear analysis [13].

HRV features in the time domain are statistically calculated
from the interval lengths within each time window. Some
common short-term time domain HRV features are:

• AVNN: average of NN intervals
• SDNN: standard deviation of NN intervals
• RMSSD: root mean square of differences between adja-

cent NN intervals
• pNNx: percentage of differences between adjacent NN

intervals that are greater than x milliseconds;

HRV features in the frequency domain analysis are extracted
from the spectrum of NN intervals in the corresponding time
axis. To get the power spectrum with fast Fourier transform,
the interval sequence can be evenly re-sampled. Alternatively,
Lomb-Scargle periodogram [14] can be used directly to un-
evenly sampled data. Some common short-term frequency
domain HRV features are:

• LF: low-frequency component, total spectral power be-
tween 0.01 and 0.15 Hz

• HF: high-frequency component, total spectral power be-
tween 0.15 and 0.04 Hz

• LF/HF: ratio of low to high-frequency power

where LF and HF are considered to index sympathetic and
parasympathetic activity, respectively [10], [15]. Besides, cor-
relations between SDNN and LF as well as RMSSD and
HF were observed in healthy subjects, and the former was
assumed as a surrogate for the latter [16]. The third category
of HRV features uses nonlinear methods, which are considered
more effective to describe the process generated by nonlinear
biological systems. Among these methods, entropy in NN
intervals is looked into in this study, where ApEn (approximate
entropy) measures the disorder in NN intervals and SampEn
(sample entropy) is similar to ApEn but better in studying the
dynamics of human cardiovascular physiology [13].

HRV analysis in ultra-short-term has been applied as a
path to measure pain in different types. For example, it was
observed that standard deviation of Poincare plot, HR, and
RMSSD in 1-minute windows were significantly different
between eight chronic low back pain patients and eight healthy
controls during movements [12]. Regarding acute pain, a
finding was presented in Sesay et al. ’s work [10], where LF
and LF/HF in 30-second epochs significant increased among
120 patients when pain intensity was larger than 3 (numeric
rating scale) after minor spinal surgery, but no significant
change was found in HF. HF in every 1 minute was involved
in [5] to monitor the clinical pain level with multi-parameter
regression method.

Relatively, more studies were carried out with experimen-
tally induced acute pain such as thermal pain or electrical pain.
By reviewing the studies on HRV features in experimentally
induced pain, LF was concluded to be valuable in response
to pain induction, whose increase indicated an increase in
sympathetic-baroreflex activity [15]. Also, the decrease of HF
was highlighted to index a decrease in vagal-parasympathetic
activity. In addition to extracting HRV features, a signal
processing approach was developed to recognize experimental
pain [17]. However, current studies also show that individual
HRV feature is not capable to differ pain intensities or the
subgroups of pain intensities although HRV analysis has
potential in indicating the presence of pain [10], [18].

In this study, tests with experimental pain were carried out
on healthy volunteers. From the gathered ECG records, ultra-
short-term HRV features in different lengths were extracted
to check the correlations between each of them and the
presence of pain and compare the result with the studies
mentioned above. HRV features were then compared and
selected for the fusion in pain detection. The performance
of HRV features fusion was presented as receiver operating
characteristic (ROC) curve of classification.

III. METHODS

Fifteen male and fifteen female volunteers in healthy con-
dition with an average age of 35 (SD = 8) and 33 (SD = 11.9)
were included in data analysis. The exclusion criteria include
chronic, acute somatic and mental illness. Besides, cases with
regular medication taken two weeks before or during the study
were avoided as well. This study was approved by the Ethics



Committee of the Hospital District of Southwest Finland. The
study was designed as follows:

A. Two experimental pain stimuli

Two types of experimental pain were employed in the tests
to stimulate two types of sensory receptor. Electrical pain
stimulus was delivered to the fourth finger of one hand with
a digital transcutaneous electrical nerve stimulation (TENS)
device [19]. The device generated biphasic rectangular pulses
with a width of 250 microseconds and a repeat frequency of
100 Hz to cause pain. The voltage of the pulse can be incre-
mented and decremented between 0 and 50, where the peak
to peak output voltage in full scale was 100 volts. The second
pain stimulus was thermal pain delivered to inner forearm skin
from a heating element with a diameter of 3 centimeters. The
temperature of the element surface was controlled to increase
approximately linearly from room temperature and up to 52
degrees centigrade to avoid skin burn injury.

Each experimental pain stimulus was applied to the right
and left side respectively, and thereby four tests were carried
out on each volunteer. The four tests were conducted succes-
sively in a random order. The following test proceeded only
when the HR of the subject was observed returning to his or
her baseline if there was any change.

B. Test process

The subject was guided to first settle down in an armchair
for around 10 minutes. After that, one pain stimulus was
applied to him or her as the start of one test. The process of
each test and data definition are presented in Figure 1. From
the start time at t0, the intensity of pain stimulus increased
with a speed of 1 TENS level every 3 seconds or 1◦C every
3 to 5 seconds until the volunteer reported reaching his or her
pain tolerance at t2 and the pain stimulus was then removed.
During this process, the volunteer could indicate his or her
pain threshold at t1 by pressing a button which activated a
buzzer.

Data in the time period without pain stimulus was defined
as No pain; data between t0 and t1 was defined as Mild pain,
which was equivalent to pain intensity below 3 and 4 in visual
analog scale [20]; data between t1 and t2 was defined as
Moderate/Severe pain, where the corresponding pain intensity
in visual analog scale was between 5 and 10.

C. ECG measurement

During the whole experiment, the volunteer was wearing
the Zephyr R© Bioharness 3 wearable sensor and sitting in
an armchair. The device can capture 1-lead ECG from chest
area at a sample rate of 250 Hz with 12-bit analog-to-digital
resolution. Its Bluetooth connection with a laptop and PC-
based software ensured real-time wireless data transmission
and real-time waveform visualization. Raw ECG records were
saved as files for off-line processing.

Fig. 1. Experimental study design

D. ECG signal processing

The aim of signal processing with ECG records in this study
was to detect QRS wave in ECG waveform to extract NN
intervals. Four steps were conducted in ECG processing:

1) 10-point moving average filter was applied to the whole
record to remove the baseline wander in low frequency.

2) R peaks were detected with a threshold-based method,
where the threshold was adaptively defined based on
the maximum amplitude of the waveform. Moreover, for
further precise R peak detection especially from P wave
and T wave, minimum peak distance was added as a
constraint according to normal heart rate range.

3) After the one round of detection, the detected R peaks
were marked in the plotted ECG waveform, and they
were manually validated in the third step. The distorted
parts of the ECG record were abandoned, which are
mostly at the beginning of the experiment due to device
adjustment. Also in this step, several omitted R peaks
were manually added.

4) Validated NN intervals were calculated from the po-
sitions of all detected R peaks. Meanwhile, all NN
intervals were labeled as 1-No pain, 2-Mild pain and
3-Moderate/Severe pain respectively according to time
stamps and the data definition in Figure 1.

E. HRV features extraction

Seven HRV features were evaluated including SDNN,
RMSSD, pNNx, LF, HF, LF/HF and ApEn, which were from
three categories as introduced in Section II. In the process
of feature extraction, NN intervals were HR normalized by
dividing by their average (AVNN) due to mathematical bias
in NN intervals when referring different HRs [21]. This
normalization is emphasized especially among people with
different average HRs or during interventions that change HR
[22]. The HR normalization narrows the gap between the big
NN interval change at low heart rate and small NN interval
change at high heart rate with the same amount of heart rate
change. When extracting frequency domain features, Lomb-
Scargle periodogram was applied as the spectral estimation



method. Besides these HRV features, median HR was also
observed.

As the intensity of each pain stimulus increased pro-
gressively, HRV features in ultra-short time windows were
extracted to track their dynamic change. HRV features in
different time window lengths were first observed separately
regarding their correlation with pain intensity. The window
length was defined from 10 seconds to 60 seconds increasing
in a step of 10 seconds. The HRV features were labeled as
the most frequently occurring label among NN intervals in
the time window. The sample sizes of each HRV feature in
different time lengths are listed in Table I, where the sample
size of 1-No pain was the largest and the sample size of 2-
Mild pain in electrical pain tests were small due to the short
transition from no pain to pain threshold.

TABLE I
SAMPLE SIZE OF HRV FEATURES IN DIFFERENT WINDOW LENGTH

Stimuli Label HRV features window length
type 10 s 20 s 30 s 40 s 50 s 60 s

Electrical
1 1903 964 646 481 389 321
2 89 44 21 16 11 11
3 220 109 77 60 48 40

Thermal
1 2251 1125 747 564 452 375
2 411 209 142 102 80 74
3 244 113 77 58 47 31

To achieve normal distributions among the HRV features,

SDNN, RMSSD, LF, HF and LF/HF were logarithmically
transformed with natural logarithm [18]. Therefore, they are
denoted as lnSDNN, lnRMSSD, lnLF, lnHF and ln(LF/HF)
in Section IV. The signal processing and HRV analysis were
implemented in Matlab.

IV. RESULTS

The root mean squares (RMSs) of HRV features in different
time windows were first checked for its change with pain
intensities. Several observations are obtained from Figure 2.
Firstly, HRV features in electrical tests reacted more dramati-
cally than those in thermal tests in general. Take median HR as
an example. It changed from 70 bpm during No Pain to around
85 bpm during Moderate/Severe pain in electrical tests, while
increased to around 75 bpm in thermal tests. This difference
may validate that different pain-conducting nerve fibers were
excited by these two different pain stimuli. Secondly, the
relative relations of HRV features in different pain intensities
may change with the length of the time window. In electrical
tests, RMS of 10 s lnSDNN increased as pain intensity
increase. However, it first went down and then went back to
a close value when the time window length was 50 s. Similar
pattern change can also be observed in ln(LF/HF) and median
HR in both types of tests. Thirdly, pNN20 was responsive
from No Pain to pain, but it tended to recover despite the
ongoing pain stimulus. Last but not least, lnRMSSD, lnHF and
median HR were found changing along with pain intensity in
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Fig. 2. Comparison of HRV features in different window lengths and different pain intensities. RMSs are compared in tests with the same pain stimulus.



TABLE II
PEARSON CORRELATION COEFFICIENT BETWEEN EACH HRV FEATURE AND PAIN INTENSITIES

Electrical pain, window length Thermal pain, window length
HRV feature 10 s 20 s 30 s 40 s 50 s 60 s 10 s 20 s 30 s 40 s 50 s 60 s
lnSDNN -0.1623* -0.1504 -0.1021 NR** NR NR -0.1115 -0.1333 -0.1458 -0.1491 -0.1280 -0.1086
lnRMSSD -0.2338*** -0.2545 -0.2400 -0.2617 -0.2766 -0.2334 -0.0897 -0.1044 -0.1266 -0.1123 -0.1175 -0.0953
pNN20 -0.1894 -0.2437 -0.2894 -0.3313 -0.3117 -0.3471 NR -0.0533 -0.0740 NR NR NR
lnLF -0.1094 -0.1309 -0.1309 -0.1268 -0.1528 -0.1036 -0.1354 -0.1785 -0.2080 -0.2192 -0.2119 -0.2280
lnHF -0.1569 -0.1696 -0.1596 -0.1667 -0.1546 -0.1403 NR NR NR NR NR NR
ln(LF/HF) NR NR NR NR NR NR -0.1406 -0.1919 -0.2060 -0.2369 -0.2064 -0.2551
ApEn 0.1355 0.1186 0.1522 0.1452 NR NR NR NR NR NR NR NR
median HR 0.3140 0.3363 0.3293 0.3226 0.3108 0.3495 0.1152 0.1198 0.1311 0.1327 0.1586 0.1106
Absolute val-
ues sum**** 1.0035 1.1350 1.1493 1.2090 1.2064 1.1738 0.5923 0.7278 0.8175 0.8502 0.8224 0.7976

* Underlined coefficient: statistically highly significant (p < 0.001)
** NR: not related. Hypothesis of no correlation: p > 0.05
*** Coefficient in bold: HRV features that were commonly correlated with pain intensities in all window lengths
**** lnRMSSD, pNN20, lnLF, lnHF and median HR in electrical tests; lnSDNN, lnRMSSD, lnLF, ln(LF/HF) and median HR in thermal tests.

electrical tests, while in thermal tests those were lnSDNN,lnLF
and median HR.

The correlations between each HRV feature and the three
pain categories in increasing pain intensities were then further
looked into with Pearson correlation coefficient r, which are
presented in Table II. The correlation whose p-value larger
than 0.05 was considered as not related, and was marked as
NR. The correlations that were statistically highly significant
(p< 0.001) were highlighted with underlines. Additionally,
for HRV features that were commonly correlated with pain
intensities with all window lengths, their coefficients were
highlighted with bold font. In electrical pain tests, HRV
features including lnRMSSD, pNN20, lnLF, lnHF and median
HR each showed small (r was between 0.1 and 0.29) to
medium (r was between 0.3 and 0.49) correlation with the
three pain categories. While there was a difference in the
thermal tests, where lnSDNN, lnRMSSD, lnLF, lnLF/HF and
median HR showed small correlation. The coefficients of these
correlated HRV features were marked in bold font, and their
absolute values in the same window length were summed.
The highlighted HRV features were roughly consistent with
the finding in Figure 2. pNN20 and lnLF in electrical tests

as well as lnRMSSD and ln(LF/HF) in thermal tests were
also found potentially useful from Table II in addition to
the finding in RMS change from Figure 2. The sum of the
highlighted HRV features showed that the overall correlation
between HRV features and pain detection increased along with
the increase of window length from 10 s to 40 s. After 40 s,
the absolute values sum dropped slightly, but still better than
that in shorter window length.

The relative relations among HRV features were next
analyzed with Pearson correlation and principal component
analysis (PCA). HRV features in 40 s window length were
analyzed as a representative, and the PCA biplots in separate
pain stimuli tests are presented in Figure 3. The similarity
between lnSDNN and lnLF can be observed in Figure 3
(r=0.87 in electrical tests and 0.89 in thermal tests). A similar
similarity was found between lnRMSSD and lnHF (r=0.90 in
electrical tests and 0.94 in thermal tests). However, normalized
lnSDNN and lnLF or lnRMSSD and lnHF in ultra-short-term
performed inconsistently in the tests, as summarized from
Figure 2 and Table II. Therefore, although there is strong linear
correlation between lnSDNN and lnLF as well as between
lnRMSSD and lnHF, the HRV analysis in time domain and in
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Fig. 3. Principal component analysis biplots of HRV features in 40 s time window



frequency domain are not equivalent.
Then, the HRV features highlighted in Table II were fused

with support vector machine (SVM) classifier. Multi-class
SVM classifier was first applied to the labeled HRV features
in three categories, but the result was unsatisfactory where
the overall classification accuracy in 10-fold cross validation
was around 50%. Relatively, the binary classification results
were more valuable in pain detection when rearranging the
data labels as No pain and Pain. The binary classification
results are shown in Figure 4 and Figure 5 with ROC curve
and area under ROC curve (AUC). In accordance with prior
observations, electrical pain stimulus was more predictable by
HRV analysis than thermal pain stimulus because AUC with
the former tests was higher than that with the latter tests in
the same length of the time window. Moreover, either pain
stimulus was better predicted with HRV features as the time
window length increased.
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Fig. 4. Results of No pain and Pain classification in electrical pain tests
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Fig. 5. Results of No pain and Pain classification in thermal pain tests

To observe how the combination of HRV features influences
the classification performance, each possible combination of
features in each window length was trained and tested by a

binary SVM classifier. AUC was calculated as the performance
measure. The results are presented as two heat maps shown
in Figure 6. The total number of all combinations is 255. It
includes the 8 cases of choosing 1 feature from the total 8
features (C1

8 ), 28 cases of choosing 2 features (C2
8 ), etc. The

ROC curves in Figure 4 and 5 are from one case in the C6
8

combinations. To highlight the combinations having the best
performance, AUCs higher than 0.8 in electrical pain tests and
AUCs higher than 0.75 in thermal pain tests are presented
in red color. Figure 6 shows that 40 s and 50 s windows
fit electrical pain tests better, while 60 s window fit thermal
pain tests better. In terms of different feature combinations,
the more features involved, the better chance to have good
performance. The combination of lnSDNN, lnRMSSD and
ln(LF/HF) reached similar good performance with the least
number of features in both pain tests, where AUC(40, 40)
= 0.8001 and AUC(40, 50) = 0.8066 in electrical pain tests,
AUC(40, 60) = 0.7539 in thermal pain tests.

V. DISCUSSION

Two experimental pain models in the skin are employed
in this study. Thermal stimulation by slow heating that
less than 1◦C/s gives a preferential activation of C fibers,
while electrical stimulation from TENS device activates non-
nociceptive nerve fibers and also nociceptive nerve fibers
directly bypassing nociceptors [23]. Human experimental pain
models offer the possibility to explore the pain system under
controlled settings and help understand pain mechanism [23],
[24]. Usually, experimental pain tests on healthy volunteers
are restricted in time with short pain stimulus in seconds
or several minutes and the choice of time window length in
HRV analysis is limited. For example, in BioVid database [6],
thermal pain stimulus was maintained for 4 s, and it stopped
for 8-12 s. In this case, 10 s time window was chosen for
HRV analysis in time domain [25]. In this study, the time
length of each test is determined by subject, so it varies among
subjects and between pain stimuli. In electrical pain tests,
Mild pain and Moderate/Severe pain took an average of 16
s and 37 s. In thermal pain tests, they took an average of
68 s and 50 s separately. With the same processing method,
electrical pain is better identified from no pain than thermal
pain when comparing Figure 4 and 5. In both types of tests,
classification performance improves slightly with the increase
of time window length in terms of AUC.

Independent of time window length in ultra-short-term
analysis, there are some HRV features showing potentials
in pain detection. Table II shows that lnRMSSD, pNN20,
and median HR are correlated with electrical pain stimulus
with high significance independent of time window length
and lnLF and ln(LF/HF) are correlated with thermal pain
stimulus with high significance. The decrease of RMSSD
and/or HF is in line with the previous conclusion that it indexes
a decrease in parasympathetic activity [15]. LF and LF/HF are
observed decrease with the increase of thermal pain, which is
contrary to previous studies where they increased [10], [15].
However, the consensus is reached that LF and LF/HF are



Fig. 6. AUCs of classifications with all possible feature combinations

potentially valuable HRV features in pain detection despite
the disagreement in trend.

VI. CONCLUSION

In healthy volunteers, several HRV features in ultra-short-
term within 1 minute changed accordingly with the intensity
of experimental acute pain stimulation. In the tests with elec-
trical stimulation activating nociceptive nerve fibers directly,
lnRMSSD, pNN20 and median HR showed correlation higher
than the others with the three pain categories. While in the
test with thermal stimulation where C fibers were activated,
lnLF and ln(LF/HF) showed a higher correlation with pain
intensity than the other HRV features. These HRV features
were small to medium linearly correlated to pain intensity.
However, the multiple feature classification results did not
show strong evidence in indicating pain intensity. Instead, they
can potentially indicate the change from No pain to Pain.
Furthermore, from a real-time point of view in acute pain
monitoring, a better HRV feature fusion performance were
achieved when time window length was around or larger than
40 s. The findings in this paper support ultra-short-term HRV
features in acute pain monitoring and also provide a reference
in HRV analysis method selection and time window length
selection when less than 1 minute.
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