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Abstract—Internet of Things (IoT) currently covers billions of
devices with identical internal software interfaces. This software
monoculture exposes the systems to the same security vulnerabil-
ities. Internal interface diversification, by introducing diverse and
unique interfaces on each device, is a solution for this problem.
In this paper, we discuss interface diversification in the context of
IoT operating system. We study internal interfaces of ten different
operating systems to gauge the feasibility of diversification in
IoT environment. This discussion brings us closer to practical
diversification implementations for IoT operating systems.

I. INTRODUCTION

The Internet of Things (IoT) is a network of interconnected
physical devices and other objects [33]. These ”things” are
incorporated with software, sensors and electronics. The net-
work connection allows the devices to gather and exchange
information. The IoT can be seen as a global infrastructure
offering advanced services with the aim of making human
life more effortless and comfortable. Today, IoT is used
by various public and private sectors from health care to
manufacturing and industrial applications. IoT is continuously
growing. More and more new devices are connected to Internet
daily. Estimates vary, but according to Gartner, there are over
6 billion ”things” in use right now and there will be about 20
billion of them by 2020 [16].

The recommendation by International Telecommunication
Union (ITU) states that ”IoT makes full use of things to
offer services to all kinds of applications, whilst ensuring that
security and privacy requirements are fulfilled.” [33] However,
security and privacy are still huge challenges for this new
environment. According to a report by HP, at least 70 percent
of IoT devices are vulnerable to exploits that may cause harm
to the users [15]. There is a great demand for improving
software security in this environment. In our previous work,
we have proposed obfuscation and diversification approaches
as potential solutions for alleviating the risk of malicious
attacks [19]. This paper continues our work on this front.

In this paper, we propose applying interface diversification
to different internal interfaces and software layers of operating
systems in the context of IoT. In order to gauge the feasibility
of diversification methods in different IoT environments, we
examine ten existing IoT operating systems and their diversi-
fiable internal interfaces. These novel ideas we present are
a step towards practical implementations of diversification
approaches for IoT operating systems.

The rest of the paper is structured as follows. Section 2 dis-
cusses the importance of operating system security in the IoT
and explains the concept of interface diversification. Section
3 presents our review of existing IoT operating systems and
their diversifiable internal interfaces that could be targets for
diversification. Section 4 discusses the benefits and drawbacks
of interface diversification. Section 5 concludes the paper.

II. INTERFACE DIVERSIFICATION

Diversification makes interfaces unique, and an adversary
is no longer able to exploit a large number of devices with
the same exploit. In order to launch a successful attack, the
attacker would need to design various versions of the exploit,
which is laborious and costly. Figure 1 illustrates diversifica-
tion of interfaces. Unique versions of an interface are created
and distributed to users. Even if the adversary manages to
compromise one version of the interface, the other replicas
are still safe. Obfuscation techniques [13] such as changing
the function names of an interface are used to accomplish
diversification. The functionality of code remains the same, but
the internal interfaces of generated unique software versions
are different.

When an interface has been diversified, only the trusted
programs in the system can use the interface, because
they know the diversification secret. In other words, the
diversification is propagated to the trusted programs so that
they know the implementation details of the diversified
interfaces they need to make use of. It is apparent that
diversification as a security mechanism bears a resemblance
to encryption. However, diversified code is still executable as
such whereas an encrypted program is not.
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Figure 1. Diversification creates multiple unique instances
from the original interface.



It is worth noting that diversification does not remove the
security holes present in software. However, the malware
injected into the system using the vulnerability will not
work because it would need to access services through the
diversified secret internal interfaces.

This is why diversification is a useful mechanism for pro-
tecting the systems against the dangers of prevailing software
monoculture (the same well-known internal interfaces in every
copy of the operating system). It is also useful in settings
like IoT, where the system is not regularly updated and
vulnerabilities are not patched.

The term interface is used quite broadly in this paper. Here,
interface doe not only refer to ordinary interfaces provided
by software components. Instead, we also see e.g. or memory
addresses (of services/resources) and commands of a language
as interfaces that can potentially be targets for diversification.
From this perspective, an interface is anything that can be used
to access the resources of the system.

As an example, a practical case of interface diversification
could be changing the mapping of the system call numbers
used in an operating system. System calls are used by ap-
plications to request a service from the operating system and
gain access to computer’s critical resources. It therefore makes
sense to diversify them to prevent the adversary from using
system calls.

We also make a distinction between external and internal
interfaces here. An application usually has an external inter-
face that it provides for users in order to offer the required
functionality. An example would be the set of valid HTTP
requests and responses provided by a web server. Aside from
the external interfaces, applications also usually expose other
details to the outsiders such as potential attackers, often as
a result of the way they are implemented. These internal
interfaces are not expected to be consumed by the outside
world.

Malware, however, often depends on internal interfaces.
This is due to the fact that if a malicious program only
utilizes an external interface – the functionality an application
is originally meant to provide – its capabilities would be
severely restricted as it could only employ the functionality
designed for an ordinary user. Malware therefore uses internal
interfaces accidentally exposed by applications. We therefore
concentrate on diversification of internal interfaces.

III. PROPOSED TARGETS OF DIVERSIFICATION

To determine the feasibility of diversification on different
IoT operating systems we looked at interfaces that are good
candidates for diversification in ten different operating sys-
tems. This section discusses the interfaces and presents our
findings.

A. Diversifiable Interfaces

Several different interfaces have been suggested as potential
targets for diversification in the existing literature. Note that
we use the term interface very broadly here. We do not only
mean interfaces provided by software modules, but also, for

example the command set of a language (like Bash) or memory
addresses are considered as interfaces that are candidates for
diversification. In other words, an interface is anything that
is used to get access to essential resources of a device. The
following interfaces were chosen as targets of our study:

1) System calls. A system call is the way programs use to
request a service from the operating system and access
the computer’s critical resources [30]. In order to prevent
the attacker from using system calls, we can uniquely
change the system call numbers [22], [20], [25]. This
diversification is then propagated to trusted binaries and
libraries, which are diversified accordingly so that they
are compatible with the diversified system and can call
new secret system call numbers.

2) Functions in shared libraries. System calls can also be
invoked indirectly by calling several wrapper functions
in many operating system libraries. Malware should
be prevented from accessing any critical resources by
diversifying these entry points. To this end, any library
functions that directly or indirectly issue system calls
are diversified [12], [21]. Diversification is also propa-
gated to libraries and applications that call these library
functions.

3) Command shell. Malware does not always use system
calls or library functions. Instead, it can make use of
interpreted languages such as shell scripts, to achieve
its goals. In a similar fashion as library functions, the
language interface of the shell is also an entry point
to the resources of a device. Many attacks such as
ShellShock [14] have seized this opportunity. If we
change the language interface – the set of tokens used by
the command line interpreter – the attacks based on this
known language interface will fail [32], [31], [24]. Shell
scripts in the system are then diversified to correspond
to the new secret language.

4) Memory space. Memory space can also be seen as a
diversifiable interface. Address space layout random-
ization (ASLR) is a security approach that provides
protection from buffer overflow attacks. In ASLR, the
address space positions of the most essential parts of
a process are randomly rearranged in order to make it
more difficult for the adversary to jump to a specific
position in the memory (such as an exploited function)
[35]. The chance of an attacker guessing the location of
certain randomly placed memory area is increased by
upping the amount of virtual memory space where the
diversification occurs. To achieve this, however, a mem-
ory management unit is needed. A memory management
unit (MMU) is a unit through which the memory refer-
ences are passed. It takes care of translating the virtual
memory addresses to physical addresses.

5) Protocols. As IoT devices operate in a network, they
need to use protocols to communicate. These protocols
can also be seen as targets for diversification [17]. For
example, the Constrained Application Protocol (CoAP)



TABLE I
DIVERSIFIABLE INTERFACES IN IOT OPERATING SYSTEMS

OS Source MMU support System calls Shell

GNU/Linux Available Required Yes Yes

Brillo Available Yes Yes [9] Yes

Contiki Available No No [1] Yes [18]

Integrity Closed Yes Yes [3] No

Neutrino Closed Yes [7] Yes [8] Yes

NuttX Available Partial Yes [6] Yes

mbed Available No / uVisor Partial [4] Yes

RIOT Available No No [11] Yes

TinyOS Available No No [10] Yes

VxWorks Closed Yes Yes [26] Yes

is a software protocol that enables simple electronics
devices to communicate with each other [29]. It is
an application layer protocol specifically designed for
resource-constrained devices such as ”things” in IoT. By
diversifying a protocol, we can create a large number of
uniquely diversified protocols from the original protocol.
Thinking of a protocol as a state machine, this means
that diversification can add new states and transitions
to the original. Of course, this protection comes at the
price of complication and some slowdown.

The first four diversification schemes have been suggested
for traditional operating systems whereas the fifth is more
IoT specific. In the context of IoT, things may be somewhat
different. For example, some IoT operating systems do not
provide an implementation of a system call interface or this
interface is not widely used by applications. Also, not all
IoT operating systems include a MMU. We will discuss these
interfaces in the context of IoT next.

B. Interfaces Found in IoT Operating Systems
We studied the previously discussed interfaces in ten IoT

operating system. Our findings are listed in Table I. We
included many notable IoT friendly operating systems in
the study, some commercial and many open-source. There
certainly are more operating systems and new ones may be
in the making as new use cases for IoT are found.

Table I shows the availability of MMU support, system
call interface and shell for each studied operating system.
Availability of source code is also listed as open-source
systems are generally better suited for diversification, although
diversification techniques can and often are also used on binary
level [23].

In some cases, for example in the cases of RIOT and
TinyOS, the number of interfaces to which we can apply
diversification appears to be limited without concrete use
cases. However, many operating systems like Linux and Brillo
contain several essential interfaces fit for diversification. It is
also an interesting observation that all the proprietary systems
we studied seem to contain many diversifiable interfaces.

Brillo, an operating system geared towards IoT by Google
is still in its infancy, but from a security and diversification

perspective it looks promising. This is achieved by requiring
hardware more rich in features [34] compared to most other
devices used in the IoT domain. Since having a MMU has been
rather scarce in the IoT environment, many other IoT operating
systems have not even considered the extra protection afforded
by potentially compatible devices that would support MMU.

In contrast to Brillo, the open-source operating system
Contiki requires little memory, but also has no support for
memory management units and therefore has no support for a
system call interface. Diversifiable interfaces are challenging
to study on an operating system as small as Contiki as there is
not a whole lot more within the system than the kernel itself.
Contiki does include a shell where the language of the shell
could be diversified, but the shell is not required by any part of
a normal system and is therefore optional. Another potentially
diversifiable feature on Contiki is the networking protocol
6loWPAN [28], where the protocol could be regarded as an
interface. Although 6loWPAN can be used with encryption
[27], diversfication can be used in combination with encryption
to provide additional security.

ARM’s mbed operating system can include a supervisor
to isolate system components from each other without a full
MMU in the hardware [5]. This isolation includes supervisor
calls that are mostly analogous to system calls and is therefore
an interesting subject of study concerning use of diversification
as an additional security reinforcement layer. The supervisor
allows different isolated components to communicate with
each other, which can be regarded as an internal interface that
then could be attacked. This interface could be diversified in
order to make it impossible for injected code to even be able
to reach the supervisor functions.

The proprietary operating systems listed – Integrity, Neu-
trino and VxWorks – claim to support MMU and appear to
have possibility for system calls. These calls could probably
be diversified for similar additional security as in ARM’s
mbed depending on how they are implemented. Licensing may
potentially limit the diversification of commercial systems due
to restrictions on modifications, but this is out of the scope of
this paper.

Most of the studied operating systems include a shell of at
least some type. Several vulnerabilities such as Imagemagick
CVE-20163714 [2] are based on unescaped input, which
makes it appealing to study the possibility of diversifying
the shell language. However, many IoT operating systems
currently do not expose the shell for use to the rest of the
system and the command shell is mainly geared towards
debugging.

Although not covered in this study in detail, on a more fine-
grained level there are also some operating system specific
APIs that could diversified. For example, Contiki has a device
driver API and a file system API. As these operating systems
mature, most of them will probably contain more diversifi-
able interfaces, such as shared libraries and operating system
APIs aimed to make building applications easier. Of course,
the interfaces and libraries available for diversification also
strongly depend on the application area and specific use case



of a particular device.
Finally, even though the software interfaces of the IoT oper-

ating systems we studied may not be perfect for diversification,
they all support some diversifiable protocols. For example,
Contiki offers a full IP stack which includes standard protocols
like UDP, TCP, and HTTP [18]. Also, most IoT operating
systems also support new low-power standards such as CoAP
and RPL. All of these protocols can be seen as targets for
diversification.

IV. BENEFITS AND LIMITATIONS OF DIVERSIFICATION

A. Benefits

Diversification has several benefits in the context of IoT
operating systems:

• Mitigate the threat of large-scale attacks: As we have
seen, billions of devices are currently distributed with
identical, well-known interfaces. This software monocul-
ture allows the adversary to build one exploit to attack
all instances of the software. Diversification, by breaking
this monoculture, is a promising proactive security mech-
anism for the widely distributed IoT operating systems.

• Negligible overhead: Resources of IoT devices are ex-
tremely limited, for example in terms of computational
power and memory. Diversification usually has very small
overheads or no overhead at all. For example, simply
replacing the system call mapping with a new one has no
performance penalties and no adverse effect on memory
consumption. On the other hand, many other protection
mechanisms like resource intensive anti-virus programs
are not such a good fit for IoT devices.

• Energy efficiency: The previous point directly leads to the
fact that diversification is also energy-efficient. With the
huge number of IoT devices, conserving energy is one of
the greatest challenges in IoT environment. Because its
modest resource requirements, diversification is an ideal
mechanism for providing a trade-off between the goals
of good security and low energy consumption.

• Alleviate the problem of irregular or absent updates: One
downside of embedded devices is that they often cannot
be updated. If a vulnerability is found, the devices are
exposed to malware. Diversification is an approach that
does not remove the software vulnerabilities, but makes
it difficult for the adversary to use them. Diversification
is therefore proactive in the sense that it also provides
protection for attacks that are currently unknown.

• Orthogonality: Diversification provides additional secu-
rity and can be used in combination with other security
measures like encryption.

• Mitigate the propagation of malware: Applying security
diversification to IoT devices stops malicious programs
from moving from node to node on the network. The
malware can no longer spread as effectively as before.

B. Limitations

It should be clear from above that diversification brings
great benefits to IoT systems. However, this security approach

also has some limitations.
While diversification protects the software from malware

by making its internal structure unexpected and hard to un-
derstand, some obfuscation techniques used for this purpose
introduce costs with respect to execution time overhead, mem-
ory consumption, and increased size of programs.

The need to propagate diversification in a system also poses
some challenges. For example, if system calls are diversified,
all the applications and libraries using them have to be diver-
sified accordingly. However, this can be done automatically
with great accuracy, and only rarely requires help from a
programmer [25].

Moreover, when diversification is applied to protocols, all
devices involved have to support the diversified protocol. That
is, the diversification in this context needs to be propagated
outside one device and the diversification secret has to be
shared. Still, we believe protocol diversification is applicable
within small groups of hosts.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have advocated applying diversification
techniques on the operating systems and internal interfaces of
the IoT devices to make it more difficult to successfully attack
the devices. Also, we have suggested diversifying protocols
used by these devices.

We have seen that because of the special characteristics of
IoT and insufficient attention software security has received
in this environment, security is more challenging compared
to traditional computer systems. Because its low overhead
and orthogonality, diversification of internal interfaces is a
protection mechanism very well suited for the limited capacity
and resources of IoT devices.

However, it seems that this method is not equally well ap-
plicable for all IoT operating systems, since some systems are
lacking the interfaces that diversification is usually applied to
in the existing literature. Still, we have seen that all operating
systems have some interfaces that are good candidates for
diversification, and many of them even seem to be fit for
full-fledged multilayer diversification schemes. Most notably,
diversification can be comprehensively applied on all devices
using Linux, and Google’s Brillo also looks very promising in
this respect. Protocols like CoAP also provide opportunities
for diversification.

For future work, it would be ideal to study how already ex-
isting IoT systems operate as a whole and determine interfaces
worth diversifying. Operating systems possessing capabilities
such as system calls and also, to some degree, of MMU
support, seem to be a great target for diversification.

Also, a thorough study of the most common attack vectors
used in exploits targeting IoT operating systems should be
conducted. This would help in gaining more confidence on
which operating systems and interfaces are good candidates
for diversification.

The next step is to create a proof-of-concept implementa-
tion of a diversified IoT operating system. While there are
certainly some challenges and differences to diversification of



traditional computer systems, we believe that diversification
is a feasible and usable security measure for IoT operating
systems.
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