
Exploring Spiking Neural Network on Coarse-Grain
Reconfigurable Architectures

Hassan Anwar
Polytechnique Montreal

hassan.anwar@polymtl.ca

Syed M. A. H. Jafri
University of Turku, Finland

Royal Institute of Technology
jafri@kth.se

Sergei Dytckov
University of Turku

Sergei.dytckov.utu.fi

Masoud Daneshtalab
University of Turku, Finland

Royal Institute of Technology
masdan@utu.fi

Masoumeh Ebrahimi
University of Turku, Finland

Royal Institute of Technology
mebr@kth.se

Ahmed Hemani
Royal Institute of Technology

hemani@kth.se

ABSTRACT
Today, reconfigurable architectures are becoming increas-
ingly popular as the candidate platforms for neural net-
works. Existing works, that map neural networks on re-
configurable architectures, only address either FPGAs or
Networks-on-chip, without any reference to the Coarse-Grain
Reconfigurable Architectures (CGRAs). In this paper we
investigate the overheads imposed by implementing spiking
neural networks on a Coarse Grained Reconfigurable Ar-
chitecture (CGRAs). Experimental results (using point to
point connectivity) reveal that up to 1000 neurons can be
connected, with an average response time of 4.4 msec.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Connectionism and neural
nets; B.1.4 [Hardware]: Microcode Applicaitions—Special-
purpose; B.1.4 [Hardware]: Interconnections—Topology

1. INTRODUCTION
The capability of learning has been always an important

topic in different areas [3]. Among them, neural networks
becoming an increasingly popular technique to realize learn-
ing robotics. Use of neural networks in robotics requires a
fast and efficient implementation platform. Recently, the in-
creasing speed and high performance requirements, coupled
with the demands for flexibility and low non-recurring en-
gineering costs, have made reconfigurable hardware a very
popular implementation technology for neural networks [4].
Today reconfigurable architectures enable partial and dy-
namic runtime self-reconfiguration [12]. This feature allows
the substitution of neural network on a hardware design im-
plemented on this reconfigurable hardware, and therefore,
a single device can be adapted to implement various func-
tionalities by simply uploading a new configuration based
on neural network application. The reconfigurable archi-
tectures can be classified depending on their granularity,
i.e., the number of bits which can be explicitly manipu-
lated by the programmer. Coarse-Grained Reconfigurable
Architectures (CGRAs) provide operator level configurable
functional blocks, word level datapaths, and powerful and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Mes ’04 June 15 2014, Minneapolis, MN, USA
Copyright 2014 ACM 978-1-4503-2822-7/14/06 ...$15.00
http://dx.doi.org/10.1145/2613908.2613916

very area-efficient datapath routing switches. Compared to
fine-grained architectures (like FPGAs) CGRAs enjoy mas-
sive reduction of configuration memory and configuration
time (two or more orders of magnitude) as well as consid-
erable reduction in routing and placement allocation. All
this also results in a significant reduction of the overall area
(from 66% to 99.06%) and energy consumed per computa-
tion (from 88% to 98% [10]), though at the cost of a loss
in flexibility compared to bit-level operations. Therefore,
CGRAs have been a subject of intensive research since the
last decade.

Most of the existing works that attempt to speed up the
neural network algorithm employ FPGAs [9]. They speed
up computations by exploiting the parallel processing offered
by the FPGAs. However, the FPGAs require fine-grained
connectivity that is inefficient to handle the complex inter-
connections required by the neural networks [5]. Compared
to FPGAs, Networks-on-Chip (NoCs) simplify the connec-
tivity [5], thereby enhancing scalability. However, the NoC-
based solutions (using processor with every node) are in-
efficient and require complex switches. Therefore, while
NoC-based solutions provide high scalability, they are un-
able to provide the high speed parallel processing offered
by FPGA. In this paper we explore the feasibility of imple-
menting the neural networks on a CGRA. The proposed so-
lution combines the parallel processing of FPGA-based im-
plementations with that of the scalability similar to generic
NoCs. Specifically, we consider a phenomenon known as
Spike-Timing-Dependent Plasticity (STDP). To evaluate ex-
perimentally the efficiency of the proposed solution on a
CGRA, we have chosen the Dynamically Reconfigurable Re-
source Array (DRRA) [10]. Nevertheless, the results ob-
tained in this paper should essentially be applicable to most
grid based CGRAs as well.

This paper has two major contributions:

1. We present the architecture and implementation of the
spiking neural networks on a coarse grained reconfig-
urable array (CGRA).

2. We analyze the scalability and overhead of the pro-
posed technique, on an actual CGRA called Dynami-
cally Reconfigurable Resource Array (DRRA).

2. RELATED WORK
Implementation of SNN on FPGA is explored in [6], show-

ing that even the highly optimized digital emulation of neu-
ron consumes significant area on FPGA. With 1 to 100 con-
nectivity, only 18 neurons could be implemented in parallel.
To utilize larger network sizes time-multiplexing schemes
can be used. The MicroBlaze soft processor with dedicated
synaptic and neuron IPs was proposed to manage time-
multiplexing and off-chip memory access. Instantiation of

multiple processors on two parallel FPGA chips was capa-
ble of emulating 268,656 neurons in real time. SIMD array
of neural processing elements connected through a bus was
utilized in [7]. With the maximum connection rate of 1 to
16, 7000 of LIF neurons with inter-neural propagation de-
lays and noisy synaptic integration could be emulated at
real time. However, the maximum spiking rate was limited
to 50 Hz. Experiments with 32 neurons connected through
an AER bus with the included STDP learning showed the
speedup of 3125 over the real time in [2]. By moving neural
variables to off-chip memory and applying time-multiplexing
on that architecture, the implementation of a million of neu-
rons in real time was established, but learning possibility was
excluded [1].

3. PRELIMINARIES
In this paper we will attempt to implement a phenom-

ena known as Spike-Timing-Dependent Plasticity (STDP)
using Spiking Neural Networks (SNN). In order to verify
our results, we used the CGRA platform named Dynami-
cally Reconfigurable Resource Array (DRRA). The compu-
tational systems based on SNN is getting critical, demanding
improved and faster computations. The CGRA becomes a
promising solution for providing a scalable and robust inter-
connection fabric.

3.1 Spiking Neural Network (SNN)
Spiking Neural Networks (SNN) are the latest generation

of neural networks that emulate the behavior of biological
neurons. For this work, we have chosen the simplest and the
most widely used SNN model, called Leaky Integrate and
Fire, given by Equation dv/dt = I + a− bV . Where the po-
tential V integrates input spikes I and leaks over time with
−bV component. Coefficient a determines equilibrium point
and coefficient b the speed of leakage. When the threshold
potential reaches a neuron output, a spike and its potential
is reset. The neurons are connected in one-to-many fashion
with weighted connections (called synapses). Spikes carry
the events while synapses are responsible for learning and
generating weighted inputs. Learning is performed by ad-
justing synaptic weights. In this paper we have modeled
Hebb’s learining technique called Spike-Timing-Dependent
Plasticity (STDP), shown in Equation 1 [11]. This rule in-
creases a synaptic weight if the time difference (4t) between
an output (post- synaptic) and an input (pre- synaptic) spike
is positive (i.e. when a pre- synaptic spike arrives before a
post- synaptic one) and vice versa.{

A+exp(−4 t/τ+), if 4t > 0.
A−exp(−4 t/τ−), if 4t < 0.

(1)

3.2 Dynamically Reconfigurable Resource Ar-
ray (DRRA)

DRRA computational layer is shown in Fig. 1. It is
composed of four elements: (i) Register Files (reg-files), (ii)
morphable Data Path Units (DPUs), (iii) circuit-Switched
Boxes (SBs), and (iv) sequencers. The reg-files store data
for DPUs. The DPUs are functional units, responsible for
performing computations. SBs provide interconnectivity be-
tween different components of DRRA. The sequencers hold
the configware, which corresponds to the configuration of
the reg-files, DPUs, and SBs. Each sequencer can store up
to 64 36-bit instructions and can reconfigure the elements
only in its own cell. As shown in Fig. 1, a cell consists of a
Reg-file, a DPU, SBs, and a sequencer, all having the same
row and column number as a given cell. The configware
loaded in the sequencers contains a sequence of instructions
(reg-file, DPU, and SB instructions) that implements the
DRRA program.

DPU

Reg-file

SB

SB

SB

SB

Cell1 Cell2

Sequencer

DPU

Reg-file

Sequencer

Figure 1: DRRA computation Layer

4. MODELLING SPIKING NEURAL NET-
WORKS ON DRRA

Table 1 summarizes how various spiking neural network
components, described in Section 3.1, are implemented on
DRRA platform. To mimic the neuron functionality, we
have enhanced the functionality of the Data Path Unit (DPU)
and the reg-files. Using the reg-file to receive data from
other neurons, the DPU performs the computations on the
received data. Since the spiking neural networks require tim-
ing information, we have added a counter and a SNN unit
(explained later in Section 4.2). To allow communications
between neurons, we exploit the circuit network provided
by DRRA, unchanged. Finally, since the spiking neural net-
works require point to point connectivity (while DRRA reg-
ister files have only two ports), we have used sequencers to
implement point to point communication between multiple
neurons (the architecture is discussed in detail in Section
4.1).

Table 1: Summary of how various neural network
components are realized

Neural network entity DRRA implementation

Neuron/Synapse DPU + Regfile
Inter neural communications Circuit switched interconnect+ sequencer

4.1 Inter Neural Communication
Neural networks require point to point communication be-

tween multiple neurons. To implement these connections on
DRRA, we have to consider two architectural properties: (i)
every DRRA component has only two read/write ports and
(ii) a DRRA component can be directly connected to a com-
ponent at most three hops away. Since these architectural
characteristics were designed after a careful evaluation of
area/power trade-off, we decided not to modify them. The
point to point connectivity was realized by using time divi-
sion multiplexing. In the proposed approach a specific time
slot was assigned to each pair of neurons. To allow a scalable
solution, we have chosen a hierarchical clustered approach
shown in Fig. 2.

1 2 3

64 5

Intermediate

node

Input nodes

(a) Cluster of DRRA

cells

(b) Inter-cluster

connections

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Figure 2: Inter neural communication realization

Fig. 2 (a) shows a cluster of 6 DRRA cells. In the cluster,
one of the cells is chosen as an intermediate node. The inter-
mediate node receives data from the 6 cells in the cluster (in-
cluding itself). To allow connections with 6 cells on a 2-port
component, we exploit time division multiplexing combined
with partial and dynamic reconfiguration. In the overall pro-
cess the intermediate cell receives data from 2 cells at a time
and then shifts to the other cells. The process continues till
the data from all the cells is received. Once every cluster
has received inputs, the intermediate nodes communicate
with each other serially to ensure point to point connec-

tivity. Fig. 3 shows the instructions in DRRA sequencers
(i.e. needed to implement the time division multiplexing).
The figure shows that 5 cycles are needed to collect infor-
mation from four DRRA cells in the cluster. It should be
noted that 2 additional cycles are required to reconfigure the
circuit switched network. The inter cluster communication
takes two cycles for reconfiguration and an additional cycle
to transmit data.

Connect port A to cell 1

Connect port B to cell 2

Read data cell1

Read data cell 2

Combine cell1 and cell2

Connect port A to cell 3

Connect port B to cell 4

Read data cell3

Read data cell 4

Combine cell3 and cell4

Sequencer

instructions

1 cycle

1 cycle

1 cycle 2 cycles

1 cycle

1 cycle

1 cycle 2 cycles

Figure 3: Sequencer instructions to implement time
division multiplexing for four DRRA cells

4.2 Neuron/Synapses Realization
4.2.1 Processing requirements formalization

When a signal is received (or sent) by a neuron, additional
processing is required. The processing requirements are de-
pendent on whether a signal is received (pre-synapse spike)
or transmitted (post- synapse spike). In this section, we will
formulate the processing requirements of each spike sepa-
rately. To formulate processing requirements of pre-synapse
spike, let Spre be the received pre-synapse spike received by
neuron Ni from a neuron Ni−1. Upon occurrence of Spre,
four operations are performed sequentially: (i) the spike ar-
rival time, Tpre, is stored in N th

i−1 index of a dedicated pre-
synapse array, A[N], where N is the number of neurons,
(ii) the time when last post-synaptic spike was transmit-
ted, Tpost, is retrieved, (iii) the difference between the spike
times, 4T = Tpre − Tpost, is calculated, and (iv) the re-
sult is stored in a weights array W [N]. Where τ determines
the time intervals when changes of a weight occur and A is
constant that determines the maximal change. When the
post-synaptic spike, Spost, is transmitted, three sequential
steps follow: (i) the spike transmitting time, Tpost, is stored
N th

i−1 index of a dedicated register. (ii) the difference be-
tween the spike times, 4T = A[i]−B, is calculated for each
entry in A[N], and (iii) the result calculated by Equation 1
is stored in a weights array W [N].

4.2.2 Pre/post-synapse spike realization
Figures 4, 5, and 6 show how the spiking neural network

was realized on a DRRA platform. The data path needed
to process the pre/post-synaptic spikes is shown in Figures
4 and 5. We have used the reg-files to mimic A[N]. Since
each reg-file is composed of 64 registers, to realize a system
greater than 64 neurons, we have used DiMArch memory
(Explained in [8]). Therefore, for connecting more than 64
neurons, an additional overhead of 8 cycles is incurred to
send and receive data from the DiMArch. Implementing
SNN, requires a divider, that was missing in the existing
DRRA implementation. To realize a divider, we consid-
ered two alternatives: (i) to implement the divider using
shift registers at the cost accuracy or (ii) to implement a
divider in hardware. Since for the real-time robotics (tar-
geted in this paper) speed and power (per computation) are
far more significant than silicon efficiency, we opted for a
dedicated double precision floating point divider (shown in

STDP block Figure 4) to allow quick convergence at low
power. In addition, we implemented counters that allows to
transmit the spikes in terms of the time stamps. Finally, the
state machine that realizes the sequential steps of pre/post
synaptic spikes is implemented.

Post-synaptic
table

STDP Weight
table

Value>0

Pre_spike Post_spike

en
Pre_spike

Figure 4: Dedicated hardware for pre-synaptic spike
analysis

Time Value

Counter Neuron

Post-synaptic
table

Neuron fires a spike

Value>0

Output

1

en

Figure 5: Dedicated hardware for post-synaptic
spike analysis

Idle

STDP

Pre_synaptic

spike

Weight

update

Fetch

post

spike

Post_synaptic

spike

Fetch

pre

spike

Ctr

start

STDP

Ctr++

Weight

update

Ctr=Nern

Ctr<Nern

Figure 6: State machine for pre/post-synaptic spike
analysis

5. EXPERIMENTAL RESULTS
To investigate the efficacy of the proposed approach, we

implemented SNNs on the enhanced DRRA platform. Specif-
ically we evaluated the scalability of the proposed approach
and its overheads.

5.1 Scalability analysis
To determine the scalability of implementing massively

parallel neural networks, we measured the cycles needed to
realize point to point connectivity using time division mul-
tiplexing. We mapped the solution using different Cluster
Sizes (CS). A cluster is defined as the number of neurons that
can communicate directly with each other in parallel (using
space division multiplexing). Since DRRA only permits up
to 3 hop connectivity, the maximum cluster size was lim-
ited to 5 cells. The scalability was analyzed by calculating
the latency for different number of neurons as shown in Fig.
7. As expected, a completely serial implementation (clus-
ter size=1) for 200 neurons required maximum latency of
336,000 clock cycles compared to latency with cluster size=5
(i.e. 67,200 for 200 neurons). Considering that DRRA op-
erates at a frequency of 400 MHz, the connectivity for 200
neurons can be achieved in 1.68 msec. Extrapolating the re-
sults a connectivity of up to 1000 neurons can be achieved in
4.4 msec. To evaluate additional cells needed for parallel im-
plementation, we analyzed the additional intermediate cells
needed for different cluster sizes as shown in Fig. 8. From

these figures, it can be concluded that the minimum area
consumption is observed for cluster size=1 running 20 par-
allel neurons and maximum area consumption is observed
at cluster size=5 running 200 neurons.

Figure 7: Parallel neurons computational latency

Figure 8: Cells consumption

6. OVERHEAD ANALYSIS
To estimate the area and power overhead of implementing

SNNs, we synthesized the DRRA fabric with enhanced hard-
ware support for 65 nm technology at 400 MHz frequency
using Synopsys Design Compiler. Fig. 9 illustrates the total
area and power (pow) usage of the design. The maximum
area utilization is for DRRA cells and the area overhead
of the system is about 39 % (divider, datapath, and state
machine). Similarly, the maximum power consumption is
achieved by the DRRA cells and the power consumption for
divider, datapath, and state machine is 27 % of the overall
design.

Figure 9: Area consumption of the design.

7. CONCLUSION
In this paper, we presented the architecture and imple-

mentation of neural networks on a CGRA. The motivation
for choosing CGRA as an implementation platform is that it
has potential to dominate its counterpart FPGA in near fu-
ture (for applications needing high performance). The neu-
ral networks were realized by connecting dedicated hard-
ware blocks (to mimic the neurons functionality) in a time-
multiplexed manner. To tackle complexity, we proposed

clustering. Experimental results revealed that 1000 neurons
can be connected in one to all fashion, with a net response
time of 4.4 msec.

8. ACKNOWLEDGMENTS
This work was supported by Regroupement Strategique

en Microsystemes du Quebec (ReSMiQ), Nokia Foundation,
and VINNOVA (Swedish Agency for Innovation Systems)
within the CUBRIC and ERoT projects.

9. ADDITIONAL AUTHORS
Additional authors: Juha Plosila (University of Turku,

Finland, email: juplos@utu.fi), Hannu Tenhunen (Univer-
sity of Turku, Finland, email: hannu@kth.fi) and Giovanni
Beltrame (Polytechnique Montreal, Canada, email: gio-
vanni.beltrame@polymtl.ca).

10. REFERENCES
[1] A. Cassidy, A. Andreou, and Georgiou. Design of a

one million neuron single fpga neuromorphic system
for real-time multimodal scene analysis. In 45th
Annual Conference on Information Sciences and
Systems (CISS), 2011.

[2] A. Cassidy, S. Denham, P. Kanold, and A. Andreou.
Fpga based silicon spiking neural array. In Biomedical
Circuits and Systems Conference, 2007.

[3] M. Ebrahimi and A. Jahangireyan. Aerodynamic
optimization of airfoils using adaptive
parameterization and genetic algorithm. Optimization
Theory and Applications, 2013.

[4] P. Garcia, K. Compton, M. Schulte, E. Blem, and
W. Fu. An overview of reconfigurable hardware in
embedded systems. EURASIP J. Embedded Syst.,
2006(1):13–13, Jan. 2006.

[5] J. Harkin, F. Morgan, S. Hall, P. Dudek, T. Dowrick,
and L. McDaid. Reconfigurable platforms and the
challenges for large-scale implementations of spiking
neural networks. In Field Programmable Logic and
Applications, 2008. FPL 2008. International
Conference on, pages 483–486, 2008.

[6] L. Maguire, T. McGinnity, B. Glackin, A. Ghani,
A. Belatreche, and J. Harkin. Challenges for
large-scale implementations of spiking neural networks
on fpgas. JNEUCOM, 71:13–29, 2006.

[7] M. Pearson, A. Pipe, B. Mitchinson, K. Gurney,
C. Melhuish, I. Gilhespy, and M. Ni-bouche.
Implementing spiking neural networks for real-time
signal-processing and control applications: A
model-validated fpga approach. IEEE Transactions on
Neural Networks,, 18:1472–1487, 2007.

[8] Removed for blind review. In Proc. Application
Specific Systems Architectures and Processors
(ASAP), Washington, D.C., USA, 5–7 June 2013.

[9] H. Rostro-Gonzalez, G. Garreau, A. Andreou,
J. Georgiou, J. Barron-Zambrano, and
C. Torres-Huitzil. An fpga-based approach for
parameter estimation in spiking neural networks. In
Circuits and Systems (ISCAS), 2012 IEEE
International Symposium on, pages 2897–2900, 2012.

[10] M. A. Shami. Dynamically Reconfigurable Resource
Array. PhD thesis, Royal Institute of Technology
(KTH), Stockholm, Sweden, 2012.

[11] S. Song and L. Abbott. Cortical development and
remapping through spike timing-dependent plasticity.
Neuron, 32(2):339 – 350, 2001.

[12] Syed M. A. H. Jafri, K. Paul, A. Hemani, J. Plosila,
and H. Tenhunen. Compact generic intermediate
representation (CGIR) to enable late binding in coarse
grained reconfigurable architectures. In Proc.
International Conference on Field-Programmable
Technology (FPT), pages 1–6, Dec. 2011.

