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ABSTRACT

Observations of thermonuclear X-ray bursts from accreting neutron stars (NSs) in low-mass X-ray binary systems can be used to
constrain NS masses and radii. Most previous work of this type has set these constraints using Planck function fits as a proxy: the
models and the data are both fit with diluted blackbody functions to yield normalizations and temperatures that are then compared
with each other. For the first time, we here fit atmosphere models of X-ray bursting NSs directly to the observed spectra. We present a
hierarchical Bayesian fitting framework that uses current X-ray bursting NS atmosphere models with realistic opacities and relativistic
exact Compton scattering kernels as a model for the surface emission. We test our approach against synthetic data and find that for
data that are well described by our model, we can obtain robust radius, mass, distance, and composition measurements. We then
apply our technique to Rossi X-ray Timing Explorer observations of five hard-state X-ray bursts from 4U 1702−429. Our joint fit to
all five bursts shows that the theoretical atmosphere models describe the data well, but there are still some unmodeled features in the
spectrum corresponding to a relative error of 1–5% of the energy flux. After marginalizing over this intrinsic scatter, we find that at
68% credibility, the circumferential radius of the NS in 4U 1702−429 is R = 12.4±0.4 km, the gravitational mass is M = 1.9±0.3M�,
the distance is 5.1 < D/kpc < 6.2, and the hydrogen mass fraction is X < 0.09.
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1. Introduction

The masses and radii of neutron stars (NSs) encode valuable in-
formation about the properties of the matter in their cores (Lat-
timer 2012; Lattimer & Steiner 2014), which reaches several
times nuclear saturation density and has strong isospin asym-
metry, and which therefore cannot be analyzed in terrestrial lab-
oratories. Hence, detailed measurements of NS masses and radii
are invaluable in the study of cold dense matter, and in particu-
lar, in the equation of state (EoS) of the matter, that is, the rela-
tion between thermodynamic quantities such as the pressure and
the energy density (see Miller 2013; Özel 2013; Miller & Lamb
2016 for recent discussions). The reliability of such constraints
depends on the degree to which systematic errors can be con-
trolled (in many current analyses, these errors are significantly
larger than the formal statistical uncertainties; see Miller 2013;
Miller & Lamb 2016), as well as on the precision of the astro-
physical models that are applied to the data.

One type of source that has attracted considerable attention
in this context are low-mass X-ray binaries (LMXBs) that exhibit
frequent thermonuclear X-ray bursts (for reviews, see Lewin
et al. 1993; Strohmayer & Bildsten 2006). By collecting obser-
vations from these bursts and modeling how they cool down, we

can set constraints on the size of the emitting area (for early work
in this field, see, e.g., Ebisuzaki 1987; Damen et al. 1990; van
Paradijs et al. 1990; Lewin et al. 1993). It was, however, only
the Rossi X-ray Timing Explorer (RXTE) that was able to pro-
duce a large catalog of observations to study (see, e.g., Galloway
et al. 2008). Since then, a large number of bursts from differ-
ent sources have been put to use (for recent reviews, see Miller
& Lamb 2016; Suleimanov et al. 2016). Two principal meth-
ods are currently used to infer the gravitational mass M and the
circumferential radius R from burst cooling tails, both of which
stem from the earlier work: the touchdown method (e.g., Özel
2006; Özel et al. 2009; Güver et al. 2010; Özel et al. 2016), and
the cooling tail method (e.g., Suleimanov et al. 2011a; Pouta-
nen et al. 2014; Nättilä et al. 2016; Suleimanov et al. 2017).
Both methods fit the observed emission using the Planck func-
tion and then compare the evolution of the observed tempera-
ture and normalization to the model predictions (see, however,
Kuśmierek et al. 2011, for an early attempt to circumvent the
usage of Planck function fits alone). These fits significantly sim-
plify model comparison because the observed spectra are rel-
atively well described by thermal emission. However, because
neither model atmosphere spectra (e.g., Suleimanov et al. 2012)
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nor the most accurately measured observed spectra (Miller et al.
2011) are exactly Planckian, using Planck fits as proxies throws
away information and could even introduce biases.

Here we present for the first time simultaneous direct atmo-
sphere model fits to a set of X-ray burst observations. We begin
by studying the constraints that can be obtained from synthetic
data, for which our model is a good description. This allows us
to assess the accuracy of our method and to explore possible bi-
ases in the results. We then apply our method to data from five
hard-state bursts of 4U 1702−429. We obtain interesting con-
straints on the mass and radius of this star and also study some
of the previously neglected physical assumptions present in the
fitting procedures. The LMXB system 4U 1702−429 is a particu-
larly good testbed for the fitting as the cooling tail has previously
been modeled for the five hard-state bursts from this source (Nät-
tilä et al. 2016). Our initial analysis suggests that direct fitting of
detailed atmosphere models to data is a promising avenue to ex-
tract neutron star masses and radii from X-ray burst data.

In Sect. 2 we present the theoretical basis for our analysis.
This section is split into two parts: in Sect. 2.1 we model the
emerging radiation and couple it to the actual observations, and
in Sect. 2.2 we formulate the Bayesian framework and present
our hierarchical fitting model. We apply our model to synthetic
data in Sect. 3.1 and then to real X-ray burst observations from
4U 1702−429 in Sect. 3.2. In Sect. 3.2 we also present our new
improved mass, radius, distance, and composition constraints for
the source. In Sect. 4 we discuss our results. Finally, we present
our summary in Sect. 5.

2. Methods

2.1. Model for the emerging radiation

We assume that radiation from a point on the surface of an NS is
initially emitted with a local specific intensity I′E′ at energy E′,
as measured in the local frame of the emission. Assuming that
the radiation propagates through vacuum to a distant observer,
this observer will detect this radiation at energy E, where the
energies are related by

E
E′

=
1

1 + z
, (1)

where z takes into account the rotation-induced Doppler shifts
and the gravitational redshift. In the limit of low spin frequency,
ν→ 0, the external spacetime is Schwarzschild and there are no
Doppler shifts, and therefore the net redshift approaches

lim
ν→0

(1 + z) =

(
1 −

2GM
c2R

)−1/2

, (2)

where G is the gravitational constant, c is the speed of light, and
M and R are the gravitational mass and the circumferential ra-
dius of the NS, respectively. A distant observer will measure a
specific (monochromatic) intensity IE that is related to the orig-
inal specific intensity I′E′ (Liouville’s theorem for photons, see,
e.g., Misner et al. 1973; Rybicki & Lightman 1979) by

IE =

( E
E′

)3

I′E′ . (3)

The total observed monochromatic flux from the star, as seen by
a distant observer, is then (see, e.g., Nättilä & Pihajoki 2017)

Fobs(E) =

∫
IEdΩ, (4)

where dΩ is the solid angle that the surface element occupies on
the observer’s sky. In this paper we consider a uniformly emitting
slowly rotating NS. In this limit, the observed flux is related in a
simple way to the flux F′ emitted at the NS surface:

Fobs(E) =
F′(E′)
(1 + z)3

(R∞
D

)2

=
F′(E′)
1 + z

( R
D

)2

, (5)

where R∞ = R(1 + z) is the apparent NS radius, D is the dis-
tance to the source, and F′(E′) = 2π

∫ 1
0 I′E′ (µ)µdµ, where µ is

the cosine of the angle between the local normal direction and
the direction of emission of radiation.

In general, a burster is not expected to emit uniformly, and
rotation rates of known bursters extend up to 620 Hz (Muno
et al. 2002; Watts 2012). Rotation introduces Doppler shifts that
vary over the surface of the star and therefore smear sharp spec-
tral features such as emission lines. These shifts also broaden
the continuum spectra, but such broadening can usually be ne-
glected (Nättilä & Pihajoki 2017). Moreover, the assumption of
uniform emission combined with slow rotation means that the
observed flux depends on the surface flux and distance, but not
on the angular dependence of the spesific intensity. This is not
true in more general situations. We employ these approximations
because they allow us to simplify the general equation (4) and
avoid the usage of computationally costly ray tracing to combine
the flux from different parts of the star. They also allow us to ne-
glect a few potentially important but often unknown parameters,
such as the NS rotation frequency and the observer’s inclination
angle and the unknown latitude dependence of the flux.

The gravitational acceleration at the NS surface is given by

g =
GM
R2 (1 + z) . (6)

The shape of the emerging spectrum has a weak dependence on
g. The composition of the atmosphere also affects the spectrum
via the energy dependence of the opacity κ, which includes con-
tributions from true absorption and scattering. For example, for
an atmosphere with a hydrogen mass fraction X, the Thomson
scattering opacity is

κT ≈ 0.2(1 + X) cm2 g−1. (7)

When we assume Thomson opacity and a spherically symmet-
ric flux, the outward radiative acceleration balances the inward
gravitational acceleration at the stellar surface when the stellar
luminosity reaches the Eddington luminosity LEdd, which is de-
fined by

LEdd =
4πGMc
κT

(1 + z). (8)

The actual critical luminosity is reached when the radiative ac-
celeration

grad =
κR

c
F (9)

equals the surface gravitational acceleration g. Here κR is the flux
mean opacity (equal in our case to the Rosseland mean opacity),

F =

∫
F′(E′)dE′ = σSBT 4

eff (10)

is the bolometric surface flux, Teff is the effective temperature
of radiation, and σSB is the Stefan-Boltzmann constant. At high
temperatures close to the critical luminosity, the opacity is dom-
inated by Compton scattering and is lower than κT because of

Article number, page 2 of 15



J. Nättilä et al.: Atmosphere model fits of X-ray burst spectra

the Klein-Nishina effect (Poutanen 2017), resulting in a critical
luminosity exceeding LEdd by 5–10% (Suleimanov et al. 2012).
We use the ratio grad/g to measure the escaping flux from the
star.

Using Eq. (8), we can also introduce the bolometric Edding-
ton flux

FEdd =
LEdd

4πR2 = σSBT 4
Edd =

gc
κT
, (11)

which is characterized by the corresponding Eddington temper-
ature TEdd. The corresponding observed Eddington flux then can
be obtained by integrating Eq. (5) over energies:

FEdd = A
FEdd

(1 + z)4 = A σSBT 4
Edd,∞, (12)

where A = (R∞/D)2 is related to the apparent angular size of
the star and TEdd,∞ = TEdd/(1 + z) is the redshifted Eddington
temperature.

For the flux escaping from the NS surface F′(E′), we
used the spectra from the atmosphere models computed in
Suleimanov et al. (2011b, 2012) and Nättilä et al. (2015). These
calculations were based on the stellar modeling program atlas
(Kurucz 1970, 1993), but were modified to deal with high tem-
peratures (Ibragimov et al. 2003; Suleimanov & Poutanen 2006;
Suleimanov & Werner 2007) and to take into account Compton
scattering (Suleimanov et al. 2012) using an exact relativistic re-
distribution function (see, e.g., Poutanen & Svensson 1996). The
models were computed in hydrostatic equilibrium, using local
thermodynamic equilibrium, and assuming a plane-parallel at-
mosphere structure. Because of these approximations, our model
is only valid when the atmospheric scale height is much smaller
than the stellar radius, which means that grad/g must be lower
than and not too close to unity.

Here we limited our model spectra to the range grad/g =
0.2−0.98 to avoid any physical complications occurring at low or
high temperatures: at high temperatures, the scale height is too
large, and at low temperatures (relevant late in the burst tails),
it is likely that ongoing accretion breaks the assumption that the
observed radiation emerges only from the passively cooling neu-
tron star surface. In practice, limiting grad/g to this range implies
focusing on the first approximately 10 seconds of the cooling
tail. The compositions computed by Suleimanov et al. (2012)
were pure hydrogen (X = 1), pure helium (X = 0, Y = 1), and so-
lar hydrogen-to-helium ratio X = 0.738 with different metallici-
ties (0.01, 0.1, 0.3, and 1.0 of solar). For simplicity, we here con-
sidered atmospheres with a metallicity that is 0.01 of solar. This
selection is possible and does not introduce a considerable error
because metals will only affect the spectra at the very late stage
of the burst, when the atmosphere has a sufficiently low effective
temperature (Suleimanov et al. 2011b, 2012). On the other hand,
we did not consider observations on a stage so late that this ef-
fect would play a role. We also note that an exact selection of the
metallicity does not play a key role here because we did not con-
sider cold atmosphere models (we used grad/g > 0.2), for which
photoionization edges start to dominate the spectral features. In
addition, we considered surface gravities of log10 g = 14.0, 14.3,
and 14.6 (with g in cgs units).

We used these models to obtain spectra with any given
grad/g, log g, and X by linearly interpolating (or in the case of
log g also linearly extrapolating) the logarithm of the monochro-
matic fluxes on the model photon energy grid. The model pa-
rameter limits were grad/g = 0.2 − 0.98, log g = 13.7 − 14.9,
and X = 0 − 1. We checked the accuracy of our interpolations

by comparing our results against actual model spectra that were
computed between the original grid points, and found that the
relative accuracy of the spectral energy flux was better than 1%.

Of course, what we observe is not energy flux but rather pho-
ton counts in energy channels. We therefore converted our model
spectra into photon counts by convolving them with a response
function R(I, E) of a detector:

CM,i = tD

∫ ∞

0
M(E)R(I, E) dE, (13)

where M(E) is the photon number flux of the model at energy
E and tD is the observing time. Here the response function R is
proportional to the probability that an incoming photon of energy
E will be detected in channel i and is a discrete function (i.e., a
response matrix) such that

RD(i, j) =

∫ E j

E j−1
R(i, E) dE

E j − E j−1
, (14)

for an energy range E j−1 to E j. In addition, we must take into
account that the data might have a non-zero background. In this
case, we fit the observed background with some spectral model
Fbkg(E), so that our total model photon flux at energy E is

M(E) =
Fbkg(E)

E
+

Fobs(E)
E

. (15)

The background flux is often estimated by observations be-
fore or after the burst, but observational (Yu et al. 1999; van
Paradijs & Lewin 1986; Kuulkers et al. 2003; Chen et al. 2011;
in’t Zand et al. 2011; Serino et al. 2012; Degenaar et al. 2013;
Worpel et al. 2013; Peille et al. 2014; Worpel et al. 2015; Dege-
naar et al. 2016; Koljonen et al. 2016; Kajava et al. 2017c) and
theoretical work (Walker 1992; Miller & Lamb 1996; Ballantyne
& Strohmayer 2004; Ballantyne & Everett 2005) suggests that
the burst can increase or decrease the background rate and even
change its spectrum. Thus background estimates from times near
the burst are unreliable and use of them could introduce bias.
This is one reason why we focused on bursts that occur during
the hard spectral state: for such bursts, the persistent background
emission is very weak (. 1% of the peak flux). Therefore, al-
though in practice we estimate the background using a 16 s ob-
servation before the burst, which we find is described well by
blackbody plus power-law components (bbodyrad and power-
law in xspec), the background modeling is unimportant because
the emission is dominated by the burst radiation. Results sup-
porting this kind of static persistent emission treatment were also
presented in Kajava et al. (2017c), where it was concluded that
even if the background emission varies during the burst, it is un-
likely to contribute more than 1% of the burst flux in the hard
state. In the soft state, on the other hand, one of the persistent
emission components can brighten more than tenfold during the
bursts (Kajava et al. 2017a). Finally, we note that we multiplied
both the background and the theoretical burst spectra by an in-
terstellar absorption model (similar to phabs in xspec) to account
for the non-zero neutral hydrogen column depth.

2.2. Hierarchical fitting model for M and R constraints

Next, we construct a framework for comparing the emission
models to the actual observations of X-ray bursts. In order to
do this, we formulate a hierarchical model for an NS that has
been observed to have NB bursts Bk, where k = 1, . . . ,NB. We
denote the set of all bursts as GB ≡ {Bk}

NB

k=1. Each of these bursts
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Bk has NS
k spectra, which we label as S jk, one for each time bin j.

The set of all spectra in Bk is similarly denoted as GS
k ≡

{
S jk

}NS
k

j=1
.

Each spectrum S jk consists of a set GC
jk ≡

{
CD,i jk

}NC
jk

i=1
with NC

jk
measurements of counts CD,i jk, measured in the detector chan-
nel i.

For a single channel we can define the likelihood function as
L(M)i = P(D | M,H) so that P(D | M,H) is the probability
of the data D given the model M and a set of assumptions H .
When the source of experimental noise is due to the number of
events arriving at the detector, the counting statistics are Poisson
distributed. Hence, to estimate the model goodness-of-fit for one
element CD,i = CD,i jk in some arbitrary burst Bk and spectrum
S jk, we compute the likelihood for a Poisson distributed data as

Li =
(CM,i)CD,i e−CM,i

(CD,i)!
. (16)

The joint likelihood for a single spectrum is then

LS(M) = P(
{
CD,i

}imax
i=imin

| M,H) =
∏

i

Li, (17)

where i ranges from the first detector channel imin to the last de-
tector channel imax used in the analysis. We note that because in
practice likelihoods can be extremely large or small, we instead
used log likelihoods in our analysis. The joint likelihood for a
burst is LB =

∏
S LS, and the total joint likelihood for all bursts

is L =
∏

B LB.
In the limit of high count rates, the Poisson distribution is

well approximated by a Gaussian distribution. In this case, the
likelihood is proportional to exp(−χ2/2), where

χ2 =
∑

i

(CD,i −CM,i)2

CM,i
. (18)

This is known as Pearson’s weighting when the statistical error
in the denominator is taken from the model. Similarly, we could
describe the error with the help of the data counts, as is done with
Neyman’s weighting. Both of them are biased (in the opposite
directions) estimators of the model parameters (see Humphrey
et al. 2009). Because χ2 is proportional to the log likelihood, the
joint log likelihood for the spectra in a burst, and the joint log
likelihood for all bursts, is the sum of the individual χ2 values.
We caution that particularly in the higher-energy channels, there
may not be enough counts for the Poisson distribution to be well
approximated by a Gaussian. In this case, χ2 is not a good ap-
proximation to the log likelihood, and this could contribute to the
formally poor χ2 we find in Section 3.2 when we analyze data
from 4U 1702−429.

It is also possible that we have underestimated the uncertain-
ties in our data. In this case it is typical, in a Bayesian analysis, to
introduce an intrinsic scatter σint into the system. Physically the
intrinsic scatter can be understood to originate either from the
instrument calibration error or from the uncertainty in the actual
model used, which as we recall is interpolated from tabulated
points in the space of composition, surface gravity, and temper-
ature. The addition of intrinsic scatter is similar to the error ex-
pansions in frequentist methods where data errors are increased
until the total χ2/d.o.f. is around unity. The underlying idea is
that intrinsic scatter acts to quantify and penalize our ignorance
of the model: by increasing σint, the possible credible regions for
other parameters also inflate to take into account that the data are
not fully described by the model. Mathematically this is done by

convolving the original Gaussian distribution, Nσ(x) (where σ
can be taken to be

√
CM in relation to the χ2 formulation), with

another normal distribution with undefined error σint. It is stan-
dard to assume, given no other knowledge, that the errors can be
added in quadrature: σ2

tot = σ2 + σ2
int. The likelihood in Eq. (16)

can then be replaced with

Li = Nσ ∗ Nσint (CD,i −CM,i)

=
1√

2π(σ2 + σ2
int)

exp
−1

2
(CD,i −CM,i)2

σ2 + σ2
int

 , (19)

where the asterisk marks the convolution of the two functions.
Taking the logarithm simplifies the latter expression to

ln Li = const −
1
2

ln (σ2 + σ2
int) −

1
2

(CD,i −CM,i)2

σ2 + σ2
int

. (20)

From this we see that the expression reduces to χ2 whenσint → 0
and σ =

√
CM,i, as the first two terms in the likelihood expres-

sion can then be ignored as constants. It is important to note that
σint cannot be increased infinitely to obtain a better likelihood
because the ln term in the log-likelihood expression compen-
sates for the last term. Hence, there exists some balance between
the two terms and σint can only grow to some finite value where
the previously unexplained scatter in the observations is then ex-
plained by the model.

The actual model spaces are then constructed hierarchically
in addition to different clusters of nested data groups. Such a
model with nested hierarchy can be physically motivated by con-
sidering our problem at hand: we have a neutron star that has
some model parameters that can characterize it (such as size and
distance). This neutron star will then exhibit bursts that could
also have some model parameters (such as composition and ig-
nition depth). The bursts, however, all share the parameters that
the neutron star has and, hence, in the model parameter hierar-
chy the burst parameters appear lower. The bursts, on the other
hand, are constructed of a series of snapshots in time that we call
energy spectra. Again, one individual spectrum could have pa-
rameters dedicated only to that one particular spectrum or share
some parameters among the other spectra in the burst. This nest-
ing of parameters we then call a hierarchical nested model in this
paper.

We here consider four hierarchical models, A, B, C, and D,
presented in Table 1. As an example, we next describe the mod-
els in more detail. At the top level of model A, we define three
shared global parameters: NS mass M, radius R, and distance D
to the star. The combination of M and R then gives us the surface
gravity g and the redshift 1 + z. These can be combined with the
distance to give the quantity A, which is proportional to the solid
angle occupied by an NS on the sky. In addition to these basic
parameters, we can set a global composition of the accreted mat-
ter via the hydrogen mass fraction X, as is done in Model B. The
next level in the model involves the different bursts Bk ∈ G

B for
which we do not introduce any cluster-specific subparameters
in this work. Proceeding in the hierarchy tree, each spectrum
of the burst S jk ∈ G

S
k ∈ Bk has always at least one individual

parameter to sample: the effective temperature of the emerging
spectrum as expressed through the parameter grad/g. In Model C,
we also introduce the fraction S f , which emits (and we assume
that the emitting portion emits uniformly). S f is a free parameter
that enters the flux equation by modifying the apparent angular
size A′ = S f A. As we show below, the real data are not fully
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Table 1. Parameters of hierarchical fitting models.

Model name Global parameters Burst parameters Spectrum parameters Assumptions
GB GS

k H

Model A M, R, D — grad/g X = 0, S f = 1
Model B M, R, D, X — grad/g S f = 1
Model C M, R, D — grad/g, S f X = 0
Model D M, R, D, X, σint — grad/g S f = 1

described by the model. To accommodate this deviation, in the
end, we expanded model B by introducing a free intrinsic scatter
to the system on the global scale. We labeled this model D. In
contrast to models A to C, for D we chose a non-uniform phe-
nomenological distance prior; this choice was motivated by the
synthetic data results. Intrinsic scatter was always, when present,
sampled as lnσ2

int, as it is a scale parameter in the model.
When a parameter is not free, but has some fixed value, our

model is said to have a set of physical assumptions H that im-
plicitly enter the likelihood calculations. The strictest set of as-
sumptions H was imposed for model A, which assumes a con-
stant (uniform) emitting area S f = 1 and a known non-varying
chemical composition (X = 0 or 0.73 in this work). In Model B,
the assumption of the chemical composition was relaxed. Simi-
larly, in Model C, we tested the validity of the constant emitting
area assumption.

On a purely theoretical basis, we would expect a model in
which every parameter is defined as free in the lowest hierarchy
level to be the least informative: by allowing the hydrogen frac-
tion X and the surface fraction S f both to evolve freely in time
for each spectrum, we could check the assumption of constant
uniform emitting area and constancy of the chemical composi-
tion. In practice, such freedom in the model is not possible, how-
ever, as X and S f are strongly correlated because they both af-
fect the normalization of the flux. While composition does have
a slight effect on the shape of the spectral energy distribution,
the current data do not allow any meaningful constraints without
the additional normalization dependency. These freedoms could
be slightly limited by making the composition vary only from
burst to burst. This would then allow us to study the time evolu-
tion of the composition on much longer timescales from burst to
burst. Another possibility would be to introduce a burst-specific
S f term into the model to allow variations between bursts, for
example, by a changing inner radius of the accretion disk.

Finally, we sampled the parameter model space using
Bayesian inference. We introduced uniform prior distributions
for M and R in the range 1.0 − 2.2 M� and 8 − 16 km, respec-
tively. For the distance, a uniform prior was taken in between
D = 2−10 kpc For modelD, we chose to sample not D, but D3/2,
corresponding to a weakly informative prior of

√
D for the dis-

tance, which slightly favors higher values. This selection seems
to remove the otherwise strong preference for lower masses.1
We discuss this selection further in Sect. 3.1. When the hydrogen
mass fraction was not fixed, we assumed a flat prior ranging from
0 (pure helium) to 1 (pure hydrogen). For the spectrum-specific
nuisance parameters, we took similarly uniform limits so that

1 In our case, asserting an informative distance prior leads to a flat
posterior in mass. However, this will most likely also affect physical
observables such as the flux. Thus, even though we appear unbiased in
mass, we are now biased in the flux. Because of this, the aforementioned
distance prior was only imposed for this one model to study the possible
effects it might have.
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Fig. 1. Synthetic spectra (crosses) with corresponding best-fit atmo-
sphere models (solid lines) for A. Different colors show spectra for
varying grad/g. Individual spectra are shifted by factors of 2 in the y-
direction for clarity.

grad/g = 0.2 − 0.98 and S f = 0.5 − 1.5. We note that values of
S f > 1 were also allowed, as it might be possible that the appar-
ent emitting area exceeds the one inferred from the star’s angular
size A because of reflection from the accretion disk (Lapidus &
Sunyaev 1985). We also did not impose any time relation in any
of our models between neighboring time bins via adjacent grad/g
values: every spectrum was free to attain any value in the prior
range regardless of the adjacent spectra. We then constrained the
model parameters by sampling from the posterior distributions
using Markov chain Monte Carlo (MCMC) sampling. To ex-
plore the parameter spaces, we implemented an affine-invariant
ensemble sampler, as discussed in Goodman & Weare 2010 (see
also Guillot et al. 2013). The actual implementation is heavily
based on the bamr code (Steiner 2014a), which in turn relies
on the o2scl library (Steiner 2014b). The ensemble sampler is
similar to a normal Metropolis-Hastings algorithm, but evolves
not one, but many parallel sample values, called walkers, to-
gether. The random step for each walker is then performed using
a so-called stretch move algorithm, where each walker makes a
small step in the parameter space in relation to the whole ensem-
ble. Acceptance is still performed using a Metropolis-Hastings
scheme. With correlated distributions, this will improve the au-
tocorrelation times of the chains tremendously, allowing us to
sample the parameter space more thoroughly in a shorter time.
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Fig. 2. Evolution of the normalized luminosity grad/g for burst 1 of the
synthetic data. Constraints on the surface fraction S f are also shown for
model C, which is the only one of our models in which this parame-
ter is free. The dotted black line with the scale on the right axis shows
the corresponding standard deviation of the obtained parameter distri-
butions. The blue dashed line shows the input value used to create the
data. The intensity of the red coloring is proportional to the probability
density. This figure shows that when the fitting model is consistent with
the model used to produce the data, we obtain parameter values that are
accurate and precise.

3. Analysis

3.1. Synthetic data

We begin our analysis by applying the methods described above
to synthetic data. The mock data were created to resemble the
observations from NASA’s RXTE Proportional Counter Array
(PCA) (Jahoda et al. 2006). We produced data using R = 12 km,
M = 1.5 M�, D = 6.0 kpc, and X = 0. These values are similar
to those inferred from the five bursts of 4U 1702−429 that we
analyze later (see Nättilä et al. 2016). We also studied similar
NS configurations, but with X = 0.73, which thus corresponds
to solar composition, to determine how the composition affects
the results. The mock observations were created by computing
the actual model spectra using the atmosphere models described
in Sect. 2.1. In this process, 20 spectra for each burst were cre-
ated for five bursts in total so that grad/g was linearly spaced be-
tween values of 0.2 and 0.95. For each spectrum we convolved
the model with an actual RXTE/PCA response matrix, computed
the number of observed counts in each energy channel, and then
drew the observed number of counts from a Poisson distribu-
tion centered around the real value. For the background spectra,
we used the real background files from 4U 1702−429 hard-state
bursts. We increased the exposure time from 0.25 seconds to 0.5
seconds after ten time bins; this procedure is commonly used
for real data to keep the signal-to-noise ratio level per time bin
approximately constant despite the decreasing flux. We fixed the
neutral hydrogen column depth to NH = 1.87×1022 cm−2, which

again is similar to that of 4U 1702−429 (Worpel et al. 2013).
Figure 1 shows a set of spectra from one such synthetic burst.

Next we fit these synthetic data with different models to as-
sess how well we expect to constrain each model parameter.
This also gives us information about the possible biases in the
method, given that we know the input values of the parameters.
From here on, when we discuss credible regions, we always re-
fer to the highest posterior density regions. First we study how
well we can obtain information about nuisance parameters such
as the normalized gravity grad/g and the fraction S f of the sur-
face that emits. Figure 2 shows the evolution of these parame-
ters. We also note that our other parameters, such as M, R, and
D, were allowed to vary freely. When the surface fraction was
fixed, we obtained the correct grad/g with a precision of about
0.02 (in units of grad), as can be seen from the width of the 68%
posterior distributions for models A and B. If S f was taken to be
free (model C), the uncertainty in grad/g increased by an order of
magnitude, although the input value was within the uncertainty
region. S f is determined with a precision of about 10%. The pre-
cision for S f is lower because only the spectral shape, rather than
the amplitude, was used to match the model to the data.

As a next step, we consider the parameters of greatest inter-
est. Figure 3 shows the marginalized parameter distributions for
M, R, D, and X (when sampled) along with the two-dimensional
posterior space projections. Figure 4 shows the M-R projection
in more detail. Model A is able to recover the correct radius
R = 12 km with an accuracy of about 0.7 km after marginal-
ization over all other parameters. The mass, on the other hand, is
always underestimated and shows a bimodal structure that is fa-
miliar from cooling tail fits (Suleimanov et al. 2011a; Poutanen
et al. 2014; Nättilä et al. 2016; Suleimanov et al. 2017). The input
(M,R) value is just at the boundary of the 95% credible region.
We determined the distance with a 68% scatter of about 0.6 kpc
and no bias. The sharp spike in the marginalized distance dis-
tribution near the maximum value originates from the solutions
near the critical line where R = 4GM/c2. Mass and radius values
on this line correspond to the solutions that are close to the max-
imum distance attainable for the system (see, e.g., Appendix A
of Poutanen et al. 2014, for more discussion).

When the hydrogen fraction X is a free parameter and the
data are analyzed using model B, the radius and the mass are
both underestimated. This effect originates from the asymmetric
X distribution, which arises because the lower limit of X = 0 is
set by physical assumptions. For larger X we obtain lower values
of M and R than what we obtain using X = 0. In the M−R plane,
our proper solution is now only inside the 95% credible regions
of the posteriors because of the strong bias toward lower masses.
For similar reasons, the distance in this case is underestimated.
The hydrogen fraction is constrained to be X < 0.2 with 95%
credibility.

When X = 0.73, there is a similar underestimation of the
values of the parameters. This is again caused by the connec-
tion between X, D, and M. In this case, the posterior for X is
not symmetric around the true value because the distance has a
maximum set by the observed flux level. This causes X to favor
higher values (i.e., X > 0.73) and so the constraints on M and
D are similar to the results from the analysis of model B when
X = 0.

Ideally, we would like the method to be free of any bias in
M,R,D, or X. These parameters are not our observables, how-
ever. Quantities closer to the observations include the redshift
given in Eq. (2), which depends on M and R, and the surface
gravity g defined by Eq. (6), which is also a function of M and
R. The distance D and the hydrogen fraction X enter the system
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Fig. 4. Mass and radius posteriors for synthetic data created for R = 12 km and M = 1.5 M�, which are shown here with cyan crosses. The left
panel shows a spectral fit with fixed emitting area S f = 1 and hydrogen mass fraction X = 0 (model A). The right panel shows a spectral fit with
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of equations via the flux (Eq. (5)), which in turn is limited by
the Eddington flux (12). What we observe directly is the num-
ber of counts, which is related to the photon (number) flux of
the source by Eq. (13). Because of this, all of our parameters are
interconnected in a complicated fashion. In Bayesian inference,
it is typical to study such a system by defining some information
criterion and then to minimize its value given the fit parameters.
This would then give us a description of the least informative, of-
ten multidimensional, priors. We elected instead to impose sim-
ple unidimensional priors for the system based on experience

with our analysis of synthetic data. We found that M, X, and D
are the most tightly connected parameters in the system. Hence,
imposing a prior distribution for one of them will strongly affect
the rest. We here decided to optimize our results for M and X at
the cost of introducing a non-flat prior for D. Based on our dif-
ferent test runs, we concluded that a prior of P(D) ∝ D1/2 (which
therefore slightly favors higher values of D) produces the least
biased constraints for M and X.

This leads us to propose a fourth and final model, model D,
which is an extension of model B. In modelD the hydrogen frac-
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Fig. 5. Posterior distributions for the MCMC run with synthetic data for model D with helium and solar compositions. The red solid line in the D
panel shows the prior distribution (

√
D) that we used. Other symbols and legends are the same as in Fig. 3. With the inclusion of the weak distance

prior, the fit is better at recovering the original values. When the hydrogen mass fraction is not exactly zero, the true R, M, and X are recovered
when a correct family of solutions is considered. In many cases, the incorrect high-mass small-radius family of solutions is easy to discard on a
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Fig. 6. Mass and radius posteriors for synthetic data created for R = 12 km and M = 1.5 M�, which are shown here with cyan crosses. The left
panel shows the results for a pure helium composition (X = 0), whereas the right panel shows the results for a solar composition (X = 0.73). The
symbols and legends are the same as in Fig. 4. Even with a free hydrogen mass fraction X, the true M −R values are now more consistent with the
constraints coming from the fits.

tion X was a free parameter, but we also incorporated intrinsic
scatter σint into the analysis and chose P(D) ∝ D1/2. Using these
assumptions, we recovered the input parameters for the synthetic
data, without any significant bias when X , 0. This is evident in
Figs. 5 and 6, where we used model D with synthetic data that
have X = 0 (left-hand panels of both figures) and X = 0.73
(right-hand panels of both figures). We find that when X is not
exactly 0, we are able to reproduce the input radius without bias.
Additionally, if the second cluster of solutions at high masses is
neglected, we also reproduce the input mass, hydrogen fraction,
and distance. In practice, this can be done by imposing a mass
cutoff of M < 2.0 M� or by selecting only the low-mass solu-
tions below the critical radius R = 4GM/c2. For a pure helium

atmosphere, the sharp boundary at X = 0 leads to asymmetric
posteriors around the real value, and so the estimates are always
biased towards lower or higher values. An additional check is
that the intrinsic scatter is driven toward low values, which it
must be because we created the data without any additional scat-
ter.

For pure helium (X = 0, model A) we constrained the ra-
dius to be R = 11.3 ± 0.4 (0.7) km at 68% (95%) credibility.
The mass was similarly constrained to be M = 1.2+0.2 (0.4)

−0.2 (0.2) M�.
Thus the input values were inside the 95% credible intervals.
The distance is found to be D = 5.4+0.3 (0.7)

−0.4 (0.5) kpc. The hydrogen
mass fraction is constrained to be X < 0.05 (0.09), which is con-
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sistent with the input value X = 0. Similarly, for the synthetic
solar data (X = 0.73), the radius, distance, and hydrogen mass
fraction results are R = 12.0+0.7 (1.1)

−0.9 (2.1) km, M = 2.2+0.1 (0.1)
−0.7 (1.0) M�,

D = 6.9+0.3 (0.4)
−0.8 (1.6) kpc, and X = 0.59+0.16 (0.33)

−0.04 (0.06). Most impor-
tantly, we see that the correct radius is obtained without any
bias. When the second high-mass cluster of solutions is omit-
ted by asserting an additional M < 2 M� prior, we obtain
R = 12.0+0.6 (1.0)

−0.9 (2.2) km, M = 1.5+0.4 (0.4)
−0.3 (0.4) M�, D = 6.9+0.4 (0.4)

−1.0 (1.6) kpc,

and X = 0.59+0.15 (0.31)
−0.05 (0.07). In this case, both the radius and the mass

are correctly recovered with 0.9 km and 0.4 M� precision, re-
spectively. Even accounting for the mass imprecision when the
composition is pure helium, model D is still the best of our mod-
els in producing precise and unbiased estimates of the parame-
ters.

3.2. 4U 1702−429

We now study the RXTE data from 4U 1702−429. The bursts we
use are from obsid 50025-01-01-00, 80033-01-01-08, 80033-01-
19-04, 80033-01-20-02, and 80033-01-21-00, starting at MJDs
of 51781.333039, 52957.629763, 53211.964665, 53212.794286,
and 53311.806086, respectively. The data were reduced in a way
similar to the reduction in Galloway et al. (2008) (see also Ka-
java et al. 2014; Poutanen et al. 2014; Nättilä et al. 2016). As
we described in Sect. 3.1, we binned the data in time: each time
the count rate decreased by a factor of approximately

√
2, we

doubled the exposure time so that the number of counts in each
bin remained relatively high. The RXTE data were also deadtime
corrected (see, for example, Nättilä et al. 2016), which was of
course not necessary for the synthetic data. We also note that
unlike the synthetic data, the real observations have a varying
“quality” because of the varying number of PCUs between the
five bursts (ranging from 2 to 5 active PCUs). Some sample spec-
tra from one of the bursts are shown in Fig. 7. We also show the
evolution of each individual spectral parameter of each burst in
Fig. 8. Just as with the synthetic data, we see that the normalized
luminosity grad/g is well constrained, and the evolution of this
parameter is strikingly similar to its evolution in the mock data.
In the model C fits we see that the surface emitting fraction is
constrained to be very close to unity for the entirety of this burst,
which provides some evidence that the full surface emits close
to uniformly in this case.

As a final test of our atmosphere model goodness-of-fit, we
can study possible systematic deviations from the model spectra
in an individual energy channel level. In Fig. 9 we show the ratio
of the data and the best-fit model flux (from the model D run) to-
gether with a channel-specific ∆χ value (defined as (D−M)/σ,
that is, the difference between data D and modelM in units of
standard error σ) for each of the five analyzed bursts. Addition-
ally, Table 2 shows the sum of χ2 values for the best-fit models.
There do not appear to be any significant persistent structures in
the residuals. There is a slight deficit of flux around 10− 14 keV
in the burst tails, which corresponds to a ∼ 5% difference be-
tween the model and the data (∆χ ∼ 0.4). No such features are
seen in the synthetic data fits. It is therefore possible that this
deficit has a physical origin. We discuss these deviations fur-
ther in Sect. 4. Our total χ2 (for model D) is 3103.5 with 2438
degrees of freedom (reduced χ2

r of 1.27) for the set of all five
bursts, when all spectral energy bins with fewer than 20 counts
are ignored. The quality of the fit is, however, decreased drasti-
cally by the low-count channels, and when we instead select 50

3 4 5 6 7 8 9 10 12 14 16 18 20 22

Energy E (keV)

100

101

102

103

104

105

106

107

108

109

E
F
E
 [

k
e
V

2
 c

m
−

2
 s
−

1
 k

e
V
−

1
]

×20

×22

×24

×26

×28

×210

×212

×214

×216

×218

×220

×222

×224

Fig. 7. Spectra for one X-ray burst from 4U 1702−429 (crosses) with
corresponding best-fit atmosphere models (solid lines) for A. Different
colors show spectra for varying grad/g. Individual spectra are shifted in
powers of 2 in the y-direction for clarity.

0.0
0.2
0.4
0.6
0.8
1.0

g r
a
d
/g

0 1 2 3 4 5 6
0.000

0.005

0.010

0.015

0.020

σ

0.0
0.2
0.4
0.6
0.8
1.0

g r
a
d
/g

0 1 2 3 4 5 6

#1
M

o
d

e
l 

0.0
0.2
0.4
0.6
0.8
1.0

g r
a
d
/g

0 1 2 3 4 5 6
0.000

0.005

0.010

0.015

0.020

σ

0.0
0.2
0.4
0.6
0.8
1.0

g r
a
d
/g

0 1 2 3 4 5 6

#1

M
o
d

e
l 

0.0
0.2
0.4
0.6
0.8
1.0

g r
a
d
/g

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

σ

0.0
0.2
0.4
0.6
0.8
1.0

g r
a
d
/g

#1

0.6
0.8
1.0
1.2
1.4

S

0 1 2 3 4 5 6
0.00
0.05
0.10
0.15
0.20
0.25
0.30

σ

0.6
0.8
1.0
1.2
1.4

S

0 1 2 3 4 5 6

M
o
d

e
l 

0.0
0.2
0.4
0.6
0.8
1.0

g r
a
d
/g

0 1 2 3 4 5 6

Time (s)

0.000

0.005

0.010

0.015

0.020

σ
0.0
0.2
0.4
0.6
0.8
1.0

g r
a
d
/g

0 1 2 3 4 5 6

Time (s)

#1

M
o
d

e
l 

Fig. 8. Evolution of the normalized luminosity grad/g for burst 1 from
4U 1702−429. The surface fraction S f constraints are also shown for
model C, which is the only one of our models in which this parameter is
free. The dotted black line with the scale on the right axis shows the cor-
responding standard deviation of the obtained parameter distributions.
The intensity of the red coloring is proportional to the probability den-
sity. The constraints we find using these real RXTE data bear a clear
similarity to the constraints from our synthetic data fits seen in Fig. 2.

as our channel count cutof,f we obtain χ2 = 2541.0 with 2122
degrees of freedom (χ2

r = 1.20).
For our actual parameter constraints we considered only

models A and D, because model B produced somewhat biased
constraints with synthetic data and model C has too much free-
dom in its parameters (particularly with the inclusion of the
surface emitting fraction S f as a free parameter). Figure 10
shows the full posterior distributions, and Fig. 11 shows the two-
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Fig. 9. Upper panel: ratio of the data to the best-fit model for the time-resolved spectra of five bursts from 4U 1702−429 for Model D. Lower
panel: deviation ∆χ of the data from the model. Only energy bins where the number of counts exceeds 50 are shown.

dimensional M−R posterior distributions in more detail for each
model. The precision of constraints is similar to what it was for
the synthetic data. We find that R = 12.4 ± 0.4 (0.6) km and
M = 1.4 ± 0.2 (0.4) M� for model A (which has fixed chem-
ical composition X = 0), where we list the 68% (and 95% in
parentheses) error regions. In model D the constraints are simi-
lar: R = 12.4+0.3 (0.6)

−0.4 (2.6) km and M = 1.9+0.1 (0.3)
−0.3 (0.5) M�. We also find

that X < 0.09 (0.16) at 68% (95%) credibility. The most prob-
able value is X = 0.06 instead of X = 0. We find a distance of
D = 5.5 ± 0.4 (0.7) kpc with model A or D = 5.9+0.2 (0.3)

−0.3 (0.8) kpc
with model D. We note that in the model D fits, the second
non-physical high-mass small-radius family of solutions is now
mostly located inside the causality region, so it is naturally ruled
out by physical considerations. Some small group of solutions,
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Table 2. χ2 values for the atmosphere model best-fits for model D.

Bin Burst 1 Burst 2 Burst 3 Burst 4 Burst 5 Synthetic burst 1

1 25.4 / 21 (1.21) 35.8 / 21 (1.70) 19.6 / 19 (1.03) 19.3 / 21 (0.92) 17.7 / 19 (0.93) 27.3 / 21 (1.30)
2 23.3 / 22 (1.06) 27.5 / 21 (1.31) 13.4 / 20 (0.67) 17.8 / 22 (0.81) 14.4 / 20 (0.72) 20.6 / 21 (0.98)
3 42.6 / 21 (2.03) 32.7 / 22 (1.49) 18.2 / 19 (0.96) 9.9 / 22 (0.45) 13.9 / 20 (0.69) 22.5 / 21 (1.07)
4 16.0 / 18 (0.89) 19.3 / 21 (0.92) 21.3 / 19 (1.12) 24.4 / 22 (1.11) 12.3 / 19 (0.65) 16.7 / 21 (0.79)
5 20.0 / 22 (0.91) 22.4 / 21 (1.06) 43.9 / 20 (2.19) 15.4 / 21 (0.73) 20.7 / 17 (1.22) 17.8 / 20 (0.89)
6 17.4 / 22 (0.79) 31.1 / 21 (1.48) 19.6 / 18 (1.09) 22.9 / 21 (1.09) 25.5 / 19 (1.34) 15.3 / 20 (0.77)
7 21.6 / 20 (1.08) 34.3 / 21 (1.63) 24.4 / 18 (1.36) 27.8 / 19 (1.46) 19.0 / 18 (1.06) 22.6 / 19 (1.19)
8 16.7 / 16 (1.04) 23.2 / 20 (1.16) 14.6 / 18 (0.81) 25.2 / 20 (1.26) 22.1 / 14 (1.58) 18.9 / 18 (1.05)
9 33.5 / 21 (1.60) 18.7 / 21 (0.89) 23.5 / 17 (1.38) 18.0 / 20 (0.90) 28.1 / 17 (1.66) 24.8 / 19 (1.30)
10 23.6 / 20 (1.18) 22.7 / 20 (1.14) 23.0 / 16 (1.44) 19.8 / 20 (0.99) 10.0 / 17 (0.59) 31.7 / 18 (1.76)
11 21.5 / 19 (1.13) 21.3 / 18 (1.18) 30.0 / 20 (1.50) 29.1 / 19 (1.53) 17.8 / 19 (0.94) 20.0 / 21 (0.95)
12 12.0 / 14 (0.86) 34.1 / 20 (1.71) 25.3 / 19 (1.33) 20.5 / 21 (0.98) 19.0 / 18 (1.06) 12.1 / 19 (0.64)
13 23.2 / 21 (1.11) 34.3 / 22 (1.56) 9.7 / 18 (0.54) 30.4 / 20 (1.52) 27.3 / 18 (1.52) 29.4 / 20 (1.47)
14 37.3 / 20 (1.86) 22.4 / 21 (1.07) 21.7 / 18 (1.20) 22.4 / 19 (1.18) 21.7 / 17 (1.28) 24.2 / 18 (1.34)
15 30.8 / 20 (1.54) 14.4 / 20 (0.72) 19.0 / 16 (1.18) 18.6 / 18 (1.03) 24.7 / 16 (1.55) 26.3 / 18 (1.46)
16 26.4 / 20 (1.32) 25.8 / 19 (1.36) 14.3 / 16 (0.89) 20.3 / 18 (1.13) 33.5 / 16 (2.10) 16.0 / 16 (1.00)
17 17.8 / 18 (0.99) 31.1 / 19 (1.64) 14.1 / 14 (1.01) 8.7 / 18 (0.48) 30.3 / 16 (1.90) 10.7 / 16 (0.67)
18 36.0 / 18 (2.00) 27.1 / 19 (1.43) 8.1 / 14 (0.58) 18.7 / 18 (1.04) 8.2 / 15 (0.55) 7.2 / 16 (0.45)
19 36.6 / 18 (2.04) 17.7 / 18 (0.98) 21.7 / 15 (1.45) 12.3 / 16 (0.77) 16.8 / 16 (1.05) 17.9 / 15 (1.19)
20 24.6 / 17 (1.45) 14.2 / 18 (0.79) 32.9 / 15 (2.19) 14.0 / 16 (0.88) 18.2 / 14 (1.30) 10.1 / 14 (0.72)
21 13.8 / 16 (0.86) 26.6 / 18 (1.48) 17.0 / 12 (1.42) 26.0 / 16 (1.62) 10.0 / 14 (0.71)
22 21.1 / 16 (1.32) 16.3 / 17 (0.96) 18.5 / 14 (1.32) 18.5 / 16 (1.16) 20.2 / 14 (1.44)
23 17.2 / 18 (0.95) 16.9 / 11 (1.54)
24 18.9 / 18 (1.05)
25 24.1 / 17 (1.42)
26 27.2 / 17 (1.60)
27 16.8 / 16 (1.05)

Total 541.3 / 420 (1.29) 657.4 / 524 (1.25) 453.7 / 375 (1.21) 440.0 / 423 (1.04) 448.6 / 384 (1.17) 392.3 / 371 (1.06)

Note: Each column reports the total χ2 / d.o.f., and the value in the parentheses is the reduced χ2
r . For the 4U 1702−429 the best-fit values are

M = 1.57 M�, R = 12.17 km, D = 5.47 kpc and X = 0.10. In the case of synthetic data, we have M = 1.5 M�, R = 12 km, D = 6 kpc and X = 0.
When computing the χ2 values, we require that the number of counts in each spectral energy bin exceeds 50.

however, remains at M = 2.2 M� and R = 10 km, which then
shifts the lower limit of the 95% radius credibility interval down
to 10 km instead of 11.4 km, which would be obtained by omit-
ting it entirely. In contrast to the synthetic data, the real bursts
also have a non-zero intrinsic scatter of lnσ2

int = 3.2. This cor-
responds to about 30 counts per second per energy channel. In
reality, the intrinsic scatter accommodates more local deviations
such as those between 10 − 14 keV, as seen in Fig. 9. Such an
error in the observed counts reflects a ∼ 1 − 5% deviation from
the model flux, depending on the grad/g value (higher grad/g cor-
responds to higher temperature, i.e., higher count rate, for which
the deviation is closer to the 1% level, whereas the opposite is
true for a small grad/g).

4. Discussion

The measurements we presented here result from the use of full
atmospheric spectral models of thermonuclear X-ray burst cool-
ing, not from the usual use of diluted blackbody fits. This gives
us access to additional information via the surface redshift and
the surface gravity. Our new method also allows us to validate
many of the assumptions that underlie previous work. For exam-
ple, we find that the Eddington limit is reached (and exceeded)
near the beginning of the cooling tail (see Fig. 8, which shows
the fit results for the first burst in our sample; the remaining four
bursts are almost identical). Hence, this is the most direct val-
idation yet (assuming that the atmosphere models are correct)
that at least the bursts that we analyzed here are photospheric

radius expansion bursts. Moreover, the dependence of the spec-
tral shape evolution on the atmosphere composition allows us
for the first time to set reliable limits on the hydrogen mass frac-
tion in the photosphere. This is made possible by the fact that
the temperature evolution of the atmosphere is dependent on the
composition.

4.1. Uncertainties and systematic errors

By fitting the atmosphere models directly to the data, we can
also assess the degree to which the models represent the data.
Although we reiterate our caveats about the use of χ2, partic-
ularly for model comparisons (see also Andrae et al. 2010),
we note that the model D fit to 4U 1702−429 has χ2/d.o.f. =
2541.0/2122 (see also Table 2), whereas for a simple blackbody
fit χ2/d.o.f. = 2716.3/2010. The blackbody fits were obtained
using xspec version 12.9.1 (Arnaud 1996) with bbodyradmodel.
Thus the model atmosphere fit has an additional 112 degrees of
freedom, but its χ2 is 175.5 smaller. This kind of comparison is,
however, not strictly fair because individual blackbody best fits
minimize the quoted χ2 value for channels with more than 50
counts, whereas the results from the hierarchical modeling are
obtained from the MCMC chain that considers full Poisson or
Gaussian likelihoods. The best-fit values are also very suscepti-
ble to the exact energy range used for the fit, and so the χ2 values
reported here are only indicative. When an extra 0.5% calibra-
tion error is introduced, as is advised for RXTE spectral analy-
sis (Shaposhnikov et al. 2012), the χ2 value also decreases, in
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Fig. 10. Posterior distributions for the MCMC runs with real data for five PRE bursts from 4U 1702−429. The panels and symbols are the same as
in Figs. 3 and 5. The red solid line in the D panel shows the prior distribution (

√
D) that we used. Both models are seen to produce posterior shapes

that are similar to what we found in our synthetic data fits (Fig. 5). Both models also produce consistent estimates for the radius and distance.
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Fig. 11. Mass and radius posteriors for 4U 1702−429. The left panel shows the results for model A, which has fixed S f = 1 and X = 0. The right
panel shows the results for model D, which has free X and fixed S f = 1. The symbols and legends are the same as in Fig. 4. We recall that for
our synthetic data fits (shown in Fig. 6), model A underestimates the mass slightly. For X , 0 the correct mass is obtained using model D. This
suggests that the true mass of 4U 1702−429 is in the range M = 1.4 − 2.0 M�. Models A and D are both capable of recovering the radius used to
construct the synthetic data, which suggests that the radius of 4U 1702−429 is R = 12.0 − 12.9 km at 68% credibility.

both cases, by about 30. The main difference here that we wish
to emphasize is that blackbody fits involve two parameters per
spectrum (temperature and normalization), whereas direct spec-
tral fitting only has grad/g as a parameter for each spectrum (this
is true for models A, B and D; for model C, the surface emitting
fraction is also a free parameter for each spectrum). In addition
to the individual spectrum parameters, there are between three to
five global parameters, and thus the total number of model pa-
rameters is 1×116 + [3, 4] (mass, radius, distance, and hydrogen
mass fraction in some cases). This means that when compared
with the blackbody model, the atmosphere model is able to re-
duce the number of parameters needed from ∼ 230 to roughly
120 while retaining comparable accuracy.

Nonetheless, the formal statistical fit is not good, and this is
reflected in the non-zero value of σint in our model D fits. Hence
it appears that there are unmodeled effects in the data. An obvi-
ous candidate for such complications is the rotation of the star.
However, because 4U 1702−429 has a relatively low rotational
frequency of 329 Hz (Markwardt et al. 1999), the effects are un-
likely to be large for this star. Our preliminary studies show that
the effect of rotational broadening of the spectrum is strongest at
low and high energies, and hence broadening might account for
some of the deviations seen at E . 3 keV and E >∼ 12 keV in
Fig. 9. The impact on the fit quality (i.e., χ2), on the other hand,
is small because rotational broadening tends to smooth out the
spectra without producing any sharp features (Nättilä & Piha-
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joki 2017). Hence, distinguishing the effects of rotation from the
atmosphere model fits based on the fit quality alone is hard.

As is the case for rotational smearing, we cannot detect
whether there is non-uniform surface emission in the sense that
the temperature varies across the surface. This is because our
model C, which has a free surface-emitting fraction S f , can
only capture effects where some part of the star is partially cov-
ered. There have been detections of burst oscillations from 4U
1702−429 that imply a non-uniform surface temperature (Mark-
wardt et al. 1999; Galloway et al. 2008; Ootes et al. 2017). How-
ever, these have been detected only during the soft-state bursts
from this particular source (Ootes et al. 2017), and so it could be
that the effect, if it exists, is small because it cannot be detected
using RXTE data.

Another possible source of error is the treatment of heavy el-
ements in the atmosphere. Nättilä et al. (2015) showed that heavy
elements can have a significant impact on burst spectra. Most im-
portantly, heavy elements produce photoionization edges around
E ∼ 9 − 14 keV. The metals are likely to originate from nuclear
burning during the burst and might be brought to the surface
layers of the star by convection (Weinberg et al. 2006; Malone
et al. 2011, 2014). The spectral deviations are expected to appear
mainly when the metals start to recombine at lower temperatures
after the photosphere has cooled down. The detection of such
features in other sources with longer more energetic bursts (in’t
Zand & Weinberg 2010; Kajava et al. 2017b) implies that they
might also play some role in the shorter bursts analyzed here.

A third possible source of deviations involves the persistent
(non-burst) emission, which we currently assume to be constant
during the fit. Some recent studies indicate that this might not
be the case even in the hard state (Ji et al. 2015; Degenaar et al.
2016; Kajava et al. 2017c). However, the initial level of persis-
tent emission for the five bursts from 4U 1702−42 is very low
and we expect this effect to not have a very significant impact
on the observed radiation. A crude estimate can be obtained by
varying the background emission, not with the full hierarchi-
cal model, but with individual blackbody fits. In this case, the
constraints come from the Eddington limit and from the nor-
malization Ktail = (Rbb[km]/D10)2 in the burst tail. Here Rbb
is the blackbody radius (∝ R) and D10 = D/10 kpc. By vary-
ing the background emission with factors ranging from 0.5 to
2, we obtain constraints where the Eddington flux is still accu-
rately recovered, but the apparent normalization in the tail is de-
creased or increased, respectively. The value of the normaliza-
tion in the tail, in this case, is within 2% of the original value.
This is consistent with the fact that the persistent emission dur-
ing the hard state is about 1% of the Eddington flux, whereas in
the tail F ∼ 0.5FEdd and so a 2% scatter in the normalization K
is expected as F = KT 4. The measured radius R scales roughly
(for the fixed compactness) as R ∝ T−4

Edd,∞ ∝ Ktail/FEdd (see, e.g.,
Eq. (A9) in Poutanen et al. 2014) so that such a deviation in the
normalization results in a ∼ 2% scatter in the radius. This means
that the uncertainty related to the persistent emission would then
translate into about 250 m absolute error in our measured radius.

The final possible source of error is the neutral hydrogen col-
umn density. It only affects the low-energy channels of RXTE,
which can have an impact on the parameters deduced late in
the burst tail. Near the Eddington limit, the radiation peaks at
E ∼ 10 keV, but when the NS cools down, the bulk of the ther-
mal radiation moves to lower energies. Hence, the effect is sim-
ilar to the aforementioned persistent emission where the main
effect is on the normalization in the tail of the burst. When the
value of NH is decreased, the modeled low-energy radiation is
affected less by the absorption, and so the inferred value of the

normalization in the tail also decreases because the model flux
is now higher. Unfortunately, it is also in the Rayleigh-Jeans tail
that the surface gravity of the atmosphere models has the great-
est effect on the emergent spectra. Similar considerations as in
the persistent emission case show that varying NH by a factor of
2 leads to an error in Ktail of 5% that then translates into similar
relative error in radius. We do, however, note that the measured
NH is usually obtained by other instruments that operate at lower
X-ray energies where it is easier to measure the neutral hydrogen
column density. Hence, an uncertainty of a factor of 2 certainly
overestimates the error related to the value.

Our consideration of error sources leads us to propose that
the emission above F & 0.5FEdd probably is the cleanest option
for M − R measurements. However, the high flux near F ∼ FEdd
is not free of problems: early in the cooling tail, the count rates
from the source are highest and so the detector is affected by the
deadtime correction the most. Deadtime correction near the peak
can be as high as 5%, which would directly translate into error
in the measured FEdd. This would again translate into a simi-
lar uncertainty in the radius. In reality, of course, the deadtime
correction scheme proposed by the instrument calibration team
should be quite effective at covering this effect, and so errors as
large as 5% originating from this are not expected. To be safe,
the fluxes between (0.5 − 0.95)FEdd should give the most strin-
gent constraints. However, this decreases the amount of available
data even more, and for example, here in this work, we pushed
the aforementioned limits to cover grad/g = (0.2 − 0.98) that we
still think are viable. Another option would be to try to model the
varying background emission and also marginalize over some
plausible hydrogen column density range to capture all of the
known error sources. It would be useful to perform such an anal-
ysis in the future. All in all, this shows that we are approaching
the absolute measuring accuracy of the RXTE satellite.

The best-fit results are also robust against any systematic cal-
ibration error in the flux normalization. Because the constraints
for R mainly originate from FEdd and Ktail (in contrast to the
redshift 1 + z and surface gravity g, which have a much weaker
effect), the radius is mainly constrained by the temperature evo-
lution of the burst alone. For an unknown systematic energy-
independent shift ζ affecting the observed spectra we still obtain
R ∝ ζKtail/FEdd ∝ ζKtail/ζKT 4

Edd,∞ ∝ 1/T 4
Edd,∞, where TEdd,∞ is

the Eddington temperature (see Eq. A9 in Poutanen et al. 2014
and Eq. (12)). This is a distance-independent quantity that makes
the derived radius independent of any normalization factor ζ af-
fecting the observed flux.

4.2. Comparison and robustness of the constraints

It is also interesting to compare our analysis of the 4U 1702−429
bursts to previous constraints that were obtained using the cool-
ing tail method. By applying the cooling tail method to the same
set of hard-state bursts that we analyze here, Nättilä et al. (2016)
measured the NS radius to be R ≈ 13 km for M = 1.5 M�.
However, their M − R posteriors have a complicated banana-
like shape (see Figure 4 in Nättilä et al. 2016), and thus the
inferred radius depends strongly on the assumed mass. Nättilä
et al. (2016) found that introducing priors on the EoS led to bet-
ter constraints on the mass. That is, the assumption that all of
the sources analyzed in Nättilä et al. (2016) (in addition to 4U
1702−429, they used 4U 1724−307 and SAX J1810.8−2609)
originate from the same underlying EoS helps pin down the
mass. They find that at 68% probability, M = 1.8 ± 0.3 M� and
R = 11.9±0.6 km, assuming no phase transitions (QMC+model
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A in their paper). These constraints are in a good agreement with
the values derived here, which from model D are M ≈ 1.9 M�
and R ≈ 12.4 km. The compositions are also in good agree-
ment: Nättilä et al. (2016) assumed a pure helium composition
(X = 0), whereas here the fit itself shows that X < 0.09 (68%).
The distance constraints also agree well: D = 5.6 ± 0.9 kpc ver-
sus 5.5±0.4 kpc, for the cooling tail and the direct spectral fitting
methods (model A), respectively.

We note that our M − R results are located away from the
critical radius R = 4GM/c2 (see Özel & Psaltis 2015, for a dis-
cussion). If the constraints from FEdd and A (∝ Ktail) are not con-
sistent with each other,2 then the M−R solution is forced to obey
this relation because no real solution exists. This could happen,
for example, if the model is applied to data that it does not de-
scribe, such as data from soft-state bursts where the behavior of
the cooling tail might not be entirely determined by the NS sur-
face alone (see Steiner et al. 2010; Poutanen et al. 2014; Kajava
et al. 2014; Nättilä et al. 2016).

If the true values of M and R are close to the R = 4GM/c2

relation, then it is very hard to distinguish this correct solution
from an incorrect solution that is forced upon the system by a
model that is inconsistent with the data. Hence, if all of the M−R
solutions from multiple sources are located only at this line (see
Özel et al. 2016, for such a situation), it either means that the
model is applied inconsistently to data that it does not describe,
or that all NSs happen to have the same compactness M/R =
c2/4G.

Another interesting aspect of our method is its ability to con-
strain the composition of the atmosphere. As can be seen from
the synthetic data fits, it is possible to set limits for X with about
10% precision at 68% credibility. This opens up a whole new
window to the study of accretion physics because we can cor-
relate the burst behavior against the composition of the accreted
matter. We should, however, note that the composition we probe
here is the composition during the burst, and so in theory, the
nuclear reprocessing might change the true composition during
the measurement.

Although X = 0 is still consistent with the data, we can ask
whether other aspects of the 4U 1702−429 bursts are consistent
with there being some hydrogen in the atmosphere. One such
consistency check involves the ratio of the fluence of the per-
sistent emission between bursts to the burst fluence itself. This
ratio, which is usually called α, is a measure of the ratio of the
gravitational specific energy release to the thermonuclear en-
ergy release; because hydrogen fusion releases much more en-
ergy than helium fusion, we expect α to be larger when there
is less hydrogen present. For 4U 1702−429, α ≈ 75 (Galloway
et al. 2008), whereas for 4U 1820−303 α is in the range 125–
155 (Haberl et al. 1987). The neutron star in 4U 1820−303 is
usually assumed to have a nearly pure helium atmosphere (Cum-
ming 2003), so the lower value of α in 4U 1702−429 is consis-
tent with the presence of some hydrogen in the latter source. We
note, however, that the values of α quoted here are the minimum
values and might change from burst to burst. Bursts from 4U
1820−303 also exhibit a fast rise and have short timescales, both
of which are believed to be consequences of fast helium burn-
ing, whereas the 4U 1702−429 bursts have longer durations and
also longer rise times (Galloway et al. 2008). Neither of these

2 Together, FEdd and A set the normalization of the model spectra be-
cause both depend on the distance. They both rely on the assumption
that it is only the NS surface that is emitting. If this assumption is in-
valid, then the observed values might not coincide with the theoretical
values.

findings is conclusive, but they do point into the same direction:
there should be some traces of hydrogen in the 4U 1702−429
atmosphere, as is suggested by our analysis.

4.3. Future prospects

It is interesting to consider additional possibilities that are sug-
gested by our new and detailed analysis. One obvious extension
is to include the PRE phase in our fitting. To do this, however,
we will need accurate atmosphere models of extended NS pho-
tospheres. The advantage would be to increase the available data
for analysis, and it will probably also significantly improve the
measurements of M and R because the expansion must be heav-
ily dependent on the redshift z and surface gravity g. Prelimi-
nary work into this direction has already been reported in Medin
et al. (2016). Their work also allows an independent validation
of our atmosphere models. Our results agree well with theirs in
the range grad/g ≈ 0.2 − 1, implying that at least in the context
of the mutual assumptions set by both computations, the results
are reproducible.

Another important, but computationally very expensive fu-
ture prospect is to fit all possible X-ray bursts to obtain M − R
constraints. This would help to set groundbreaking constraints
on the EoS of the dense matter. Preliminary studies already val-
idate the previous results that the atmosphere models are not ap-
plicable to the soft-state bursts (Poutanen et al. 2014; Kajava
et al. 2014). Last, it is also important to understand why the mod-
els do not agree completely with the data and the physical origin
of these deviations. For this, more work is needed in order to
understand the physics and environments of the bursts better.

Despite the uncertainty about the mass, we have significantly
improved the constraints on the compactness of the neutron star.
Our mass and radius measurements are encouragingly consistent
with recent theoretical analyses of the EoS of cold dense matter
(Lattimer & Prakash 2016). This result gives hope that we may
use astrophysical neutron star measurements to better constrain
the behavior of the ultra-dense matter.

5. Summary

We have presented the first direct atmosphere model spectral
fits to thermonuclear X-ray burst cooling tails. Our method is
a generalization of previous work, in which blackbody param-
eters were used as a proxy to trace the evolution of the energy
spectrum. By fitting the atmosphere models directly to the data,
we were able to extract more information from the data and also
to test some of the physical assumptions made in previous anal-
yses.

We find that fits to synthetic data, which are generated using
the same model that we employed for our analyses, as expected
reveal a lack of bias and also show the prospects for precise mea-
surements of the mass and radius. When we applied our fitting
procedure to RXTE data from five hard-state type-I X-ray bursts
from 4U 1702−429 in Sect. 3.2, the resulting posteriors were
clearly similar to the synthetic data, although the formal quality
of the fits is worse than in the ideal case. When we artificially
added intrinsic noise in our analysis of the 4U 1702−429 data to
produce a formally good fit, we found that the radius was con-
strained to be R = 12.4 ± 0.4 km at 68% credibility for the two
models we employed. The source distance was constrained to
be between 5.1 kpc < D < 6.2 kpc (68% combined credibility
limits from models A and D). We found that the hydrogen mass
fraction X for 4U 1702−429 could be constrained to X < 0.09
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at 68% credibility. The highest-probability value was X = 0.06
rather than X = 0.

The mass seems to be the hardest parameter to constrain.
When we applied our two models to synthetic data, modelA typ-
ically underestimated M by ∼ 0.1 M�, whereas model D showed
an even stronger underestimation for atmospheres with no hy-
drogen in them. When X > 0, modelDwas seen to reproduce the
mass when applied to synthetic data. Our analysis of the RXTE
data for 4U 1702−429 yielded similar results: model A gave
M = 1.4 ± 0.2 M�, whereas model D gave M = 1.9 ± 0.3 M�. If
a bias similar to what we find when analyzing synthetic data ap-
plies to the 4U 1702−429 analysis, then the real mass is expected
to lie closer to the modelD constraints. We therefore suggest that
the 95% credible interval of model D is a trustworthy limit, and
in this limit we find that the mass for 4U 1702−429 lies in the
range 1.4 < M/M� < 2.2.
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