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Abstract—Virtual Machine (VM) consolidation provides a promising approach to save energy and improve resource utilization in data
centers. Many heuristic algorithms have been proposed to tackle the VM consolidation as a vector bin-packing problem. However,
the existing algorithms have focused mostly on the number of active Physical Machines (PMs) minimization according to their current
resource requirements and neglected the future resource demands. Therefore, they generate unnecessary VM migrations and increase
the rate of Service Level Agreement (SLA) violations in data centers. To address this problem, we propose a VM consolidation approach
that takes into account both the current and future utilization of resources. Our approach uses a regression-based model to approximate
the future CPU and memory utilization of VMs and PMs. We investigate the effectiveness of virtual and physical resource utilization
prediction in VM consolidation performance using Google cluster and PlanetLab real workload traces. The experimental results show,
our approach provides substantial improvement over other heuristic and meta-heuristic algorithms in reducing the energy consumption,
the number of VM migrations and the number of SLA violations.

Index Terms—VM consolidation, linear regression, k-nearest neighbor regression, energy-efficiency, SLA, green computing.
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1 INTRODUCTION

Energy-related costs and environmental impacts of data
centers have become major concerns and, research commu-
nities are being challenged to find efficient energy-aware
resource management strategies. VM consolidation is an
efficient way towards energy conservation in data centers.
It leverages virtualization technology such as Xen [1] and
VmWare [2] to improve resource utilization by support-
ing multiple enterprise applications using fewer computing
resources. Virtualization allows multiple Virtual Machines
(VMs) to share resources on a Physical Machine (PM)
through VM monitor or hypervisor. In addition, virtual-
ization provides the ability to transfer a VM between PMs
using live migration [3]. VM consolidation through live mi-
gration has a major impact on energy efficiency by packing
VMs into the minimum number of PMs and switching the
idle PMs to a power-saving mode. Migrating a VM can be
advantageous either when a PM is highly under-loaded, or
when it is over-loaded. However, unreliable characterization
of over-loaded and under-loaded PMs may cause unneces-
sary live migration, thus impacting on the performance of
applications running in a VM during a migration. Voorsluys
et al. [4] have performed an experimental study to investi-
gate this impact and to find a way to model it. Hence, how
to perform VM consolidation operation with the minimum
number of migrations is a challenging task.

Most of the recent works formulate VM consolidation
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as a bin-packing problem where the PMs are conceived as
bins and VMs as items. The classical bin-packing algorithms
should be modified to apply in the VM consolidation prob-
lem for three main reasons. First, PMs are characterized
with multi-dimensional resources such as CPU, memory,
and network bandwidth. For instance, VM consolidation
becomes a bi-dimensional bin-packing problem with consid-
ering the CPU and memory utilization of PMs. Therefore, a
VM consolidation algorithm should be concerned with dif-
ferent resource dimensions to balance the usage of resources
across multiple dimensions. Second, VM consolidation can
be seen as a bin-packing problem with different bin sizes,
i.e., heterogeneous PMs, unlike the classical bin-packing
problem where bin capacities are equal. Third, the classical
bin-packing algorithms only rely on minimizing the number
of bins (single-objective), although we should take into ac-
count multi-objective such as the number of migrations and
SLA for designing an efficient VM consolidation algorithm.
Therefore, VM consolidation is a NP-hard problem, and the
optimization algorithms can find a near optimal solution.
For this reason, we presented a dynamic VM consolidation
approach that uses a highly adaptive online optimization
bio-inspired algorithm called Ant Colony System (ACS)
in our previous work [5]. The proposed ACS-based VM
Consolidation (ACS-VMC) approach uses artificial ants to
consolidate VMs into a reduced number of active PMs
according to the current resource requirements. These ants
work in parallel to build VM migration plans based on a
specified objective function. ACS is especially attractive for
VM consolidation due to find a solution close to the optimal
solutions, and the ease of parallelization.

In this paper, we address the VM consolidation problem
with presenting a Utilization Prediction-aware VM Consoli-
dation (UP-VMC) approach. Our main contributions are as
follows:
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• UP-VMC formulates VM consolidation as a bi-
dimensional vector packing problem. UP-VMC goes
beyond the existing works which only consider CPU
utilization by also considering memory. Combining
both memory and CPU utilization, UP-VMC can
better identify causes of SLA violations and conse-
quently prevent them from happening.

• In contrast to the existing VM consolidation methods
which mostly rely on the current resource utilization
of PMs, UP-VMC considers both current and future
resource utilization. In order to approximate the
future utilization, we propose two regression-based
prediction models: linear and k-nearest neighbor.

• We implemented and evaluated UP-VMC on a sim-
ulated large-scale data center using the real Google
and PlanetLab workloads. We experimentally show
the added value of employing the utilization pre-
diction model for VM consolidation by comparison
with Sercon and a modified version of FF and BF.
We evaluate the benefits of a greedy-based VM con-
solidation algorithm by comparing with ACS-VMC.
We also conduct a comprehensive study of the effec-
tiveness of utilization prediction-aware approaches
on the VM consolidation problem. For this purpose,
we consider three different scenarios: when UP-VMC
uses the prediction model in order to predict (1)
resource utilization of VMs; (2) resource utilization
of PMs; and (3) resource utilization of both VMs and
PMs.

• We investigate how four well-known VM selection
methods can affect on the performance of UP-VMC
in terms of the energy consumption, the number of
SLA violations and the number of migrations. The
simulation results show that the performance of VM
consolidation is increased when the VM allocation
algorithm selects a VM that requires the minimum
time for migration to another PM.

• We study the relationship between energy consump-
tion, the number of migrations and SLA violations
based on different CPU utilization thresholds. The
value of the threshold ranges from 50% to 100%.

The rest of this paper is organized as follows: in Section 2
surveys some literature regarding to dynamic consolidation
in cloud data centers. Section 3 presents the proposed
system architecture and the VM consolidation algorithm.
Section 4 shows the implementation issue of our algorithm.
Finally, we give the experimental results and conclusion in
Section 5 and 6.

2 RELATED WORK

In recent years, there have been major significant research in
data center energy efficiency. The most of research focus on
VM consolidation methods as an emerging solution to save
energy in cloud data centers. The main idea in the existing
VM consolidation approaches is to use live migration to
consolidate VMs periodically [6], [7], [8]. These approaches
reduce the power consumption by packing the existing VMs
into fewer PMs and switching the idle PMs into a power
saving mode. Sandpiper [9] is a system that is enabled
to detect over-utilized PMs and creates a new mapping

of physical resources to virtual resources. To detect over-
loaded PMs, Sandpiper collects VM and PM usage statistics,
constructs profiles of resource usage and then uses the
prediction techniques. Bobroff et al. [10] presents a dynamic
server migration and consolidation algorithm which uses
time series forecasting techniques and bin packing heuristic
to minimize the number of PMs required to support a
workload. Their algorithm does not take into account the
number of migrations required to a new placement.

A VM consolidation algorithm should incorporate both
performance and power considerations into its decision
making on new VM placement. For this purpose, Sercon [11]
considers a threshold value to prevent CPU’s PM from
reaching 100% utilization that leads to performance degra-
dation. Therefore, it tries to keep the total usage of a PM
below the threshold value. However, setting static thresh-
olds are not efficient for an environment with dynamic
workloads, in which different types of applications may run
on a PM. Therefore, the threshold value should be tuned for
each workload type and level to allow the consolidation task
to perform efficiently. Beloglazov and Buyya [12] proposed
adaptive upper and lower thresholds based on the statistical
analysis of the historical data. A VM consolidation method
can minimize the number of SLA violations by forecasting
future resource utilization. Our previous works in [13], [14]
use a prediction model to forecast PMs’ utilization. If the
predicted usage exceeds of the available capacity of a PM,
some VMs are reallocated to other PMs for avoiding a SLA
violation. Moreover, a resource usage prediction algorithm
is presented in [15] to predict the system usage by inter-
polating what follows after the identified patterns from the
historical data. This algorithm uses a set of historical data
to identify similar usage patterns to a current window of
records that occurred in the past.

In addition, a lot of research has been done on designing
heuristic algorithms for solving the VM consolidation as a
bin packing problem. This problem is known to be NP-hard,
and there are many heuristic algorithms to solve it. In [16]
the authors survey the existing greedy methods in order
to tackle one-dimensional bin-packing problem. Among the
most popular heuristics, the First Fit (FF) algorithm which
places each item into the first bin in where it will fit. The
second popular heuristic algorithm is the Best Fit (BF) which
puts each item into the filled bin in which it fits. Moreover,
the FF and BF heuristics can be improved by applying a
specific order of items such as First Fit Decreasing (FFD)
and Best Fit Decreasing (BFD). However, the classical bin-
packing algorithms cannot be used directly for VM consol-
idation and they should be modified for applying to the
consolidation problem. Therefore, pMapper [17] applies a
modified version of the FFD heuristic to perform server
consolidation. It presents a power and migration cost aware
application placement controller in heterogeneous server
clusters that support virtualization with live VM migration.
In addition, we proposed a modified BFD algorithm in [18]
to predict only CPU resource utilization based on K-nearest
neighbor regression.

In [12], authors have presented a modified version of the
BFD algorithm for the VM placement and have reported
substantial energy saving based on simulation-driven re-
sults. Similarly in [19], a framework called EnaCloud is pre-
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Fig. 1. The system architecture.

sented where a modified version of the BF algorithm is used
for dynamic application placement. This work only focuses
on reducing energy consumption and do not consider other
important performance metrics. Another work [20] models
the resource allocation as a multi-dimensional bin packing
problem and provides simulation results for many greedy
algorithms (e.g., FF, BF, Permutation Pack (PP), Choose Pack
(CP)). Thereby, the objective of these algorithms is only to
maximize the minimum yield over all services.

In our earlier work [8], an ant colony system based
approach is proposed for solving the VM consolidation
problem as one-dimensional bin packing problem. The work
in [8] is then refined in [5]. In that context, we proposed
a dynamic VM consolidation approach that uses a highly
adaptive online optimization bio-inspired algorithm called
Ant Colony System (ACS) to optimize VM placement. The
proposed ACS-based VM Consolidation (ACS-VMC) ap-
proach uses artificial ants to consolidate VMs into a reduced
number of active PMs according to the current resource
requirements. These ants work in parallel to build VM
migration plans based on a specified objective function.
With respect to [5], [8], we extend the ACS-based VM
consolidation algorithm that models VM consolidation as
a multi-dimensional bin packing problem. However, this
algorithm is not scalable in the large scale data center due
to the cost of increased execution time.

To address this problem, we present a greedy-based
VM consolidation approach, named Utilization Prediction-
aware VM Consolidation (UP-VMC) in this paper. UP-VMC
formulates the VM consolidation as a multi-objective vector
bin packing problem in order to optimize three conflicting
objectives simultaneously. The objectives include reducing
energy consumption, minimizing the number of VM mi-
grations, and avoiding SLA violations. Generally, UP-VMC
performs two essential steps in order to reduce SLA vio-
lations and energy consumption: (1) migrating the number
of VMs from PMs that are over-loaded currently or become
over-loaded in the short term of future and (2) migrating
all VMs from the least-loaded PMs and then switch the idle
PM to the sleep mode. Moreover, UP-VMC selects a PM

to allocate a VM based on the current and future resource
utilization of PM and VM in order to avoid unnecessary
VM migrations. The future resource utilization is approx-
imated using a regression-based model as our previous
works [14], [13] have shown that the regression-based model
is more efficient than the robust statistic methods in order
to forecast resource utilization. Finally, we evaluate our
proposed approach using Google and PlanetLab workloads.
We found UP-VMC achieves lower SLA violations and
energy consumption compared to the classical bin packing
algorithms, Sercon [11] and ACS-VMC algorithm [5].

3 UTILIZATION PREDICTION AWARE VM CONSOL-
IDATION

In this section, we present a Utilization Prediction-aware
VM Consolidation (UP-VMC) approach for cloud data cen-
ters. We first introduce the proposed system architecture,
then we explain the UP-VMC algorithm. Finally, an example
of UP-VMC is presented to clarify the algorithm.

3.1 System Architecture

We consider a data center that consists of m heterogeneous
PMs, P = 〈p1, ..., pm〉. Each PM is characterized with D
type of resources such as CPU, memory, network I/O and
storage capacity. In addition, multiple VMs can be allocated
to each PM through Virtual Machine Monitor (VMM). In
our implementation, the VMs are initially allocated to PMs
based on the Best Fit Decreasing (BFD) algorithm, which
is one of the best known heuristics for the bin-packing
problem. At any given time, users submit their requests for
provisioning of n VMs, V = 〈v1, ..., vn〉, which are allocated
to the PMs. As the requested utilization of VMs and PMs
vary over time, an initial efficient allocation approach needs
to be augmented with a VM consolidation algorithm that
can be applied periodically. In our proposed approach,
the UP-VMC algorithm is applied periodically in order to
adapt and optimize the VM placement according to the
workload. Figure 1 shows the proposed system architecture
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that consists of two kind of agents: (1) fully distributed Local
Agents (LAs) in PMs, (2) a Global Agent (GA) resides in a
master node. The task sequence of these agents is described
as follows:

1) Each LA monitors the current resource utilization of
all VMs in a PM periodically. Then it approximates
the future utilization of all VMs in a PM using a
regression-based prediction model (i.e., linear re-
gression or k-nearest neighbor regression).

2) The GA collects the information from the local
agents to maintain the overall view of current and
future resource utilization of VMs.

3) The GA builds a global best migration plan to
optimize VM placement by using the UP-VMC al-
gorithm, which is described in the next section.
Then it sends commands to VMMs for performing
VM placement. The commands determine which
VMs on a source PM should be migrated to which
destination PMs.

4) The VMMs perform actual migration of VMs after
receiving the commands from the GA.

3.2 The proposed Algorithm
Each PM p has a d-dimensional total capacity vector Cp =〈
C1

p , C
2
p , ..., C

d
p

〉
, where Cd

p represents the total d-th resource
capacity of PM p. Each dimension corresponds to one type
of physical resource (e.g., CPU capacity, memory, network
I/O and disk storage). According to the resource dimensions
of the real-world workloads, we set |D| = 2 and consider
a bi-dimensional VM consolidation scheme. We do not take
into account the disk size dimension because we assume
that network-attached storage (NAS) is used as main storage
across the data center. However, if necessary, it is possible to
add more dimensions in the total and used capacity vectors.
In addition, the used capacity vector of the PM p can be
represented as Up =

〈
U1
p , U

2
p , ..., U

d
p

〉
, where Ud

p denotes the
used capacity of the resource type d. For instance, the used
CPU capacity of a PM is estimated as the sum of the CPU
utilization of the three VMs if three VMs are hosted by the
same PM. At any given time, the data center usually serves
many simultaneous independent users. Users submit their
requests for the provisioning of VMs that are located on
the PMs. The total capacity vector of the VM v is presented
as Cv =

〈
C1

v , C
2
v , ..., C

d
v

〉
, where Cd

v indicates the total d-
th consumption by the VM v. Moreover, the d-dimensional
used capacity vector Uv =

〈
U1
v , U

2
v , ..., U

d
v

〉
determines the

used d-th resource of the VM v. As the resource utilization
of VMs vary over time due to dynamic workloads, the
VM placement is optimized with the proposed UP-VMC
algorithm that can be applied periodically. The pseudocode
of the UP-VMC algorithm is given as Algorithm 1. For the
sake of clarity, the concepts used in the proposed algorithm
and their notations are tabulated in Table 1. The UP-VMC
algorithm run two steps to formulate the VM consolidation
problem.

First step- the UP-VMC algorithm aims to migrate some
VMs from the over-loaded and predicated over-loaded PMs.
If at least one resource (i.e., CPU or memory) exceeds total
capacity, PM is considered as a member of over-loaded PM
set (Pover). If at least one predicted utilization value is larger

TABLE 1. Summary of concepts and their notations

m number of PMs in the data center
n number of VMs in the data center
Pactive set of active PMs
Pover set of over-loaded PMs
P̂over set of predicted over-loaded PMs
Vp set of VMs running on a PM p
Vm set of VMs for migration
pde destination PM
pso source PM
v VM in a tuple
Cpde total capacity vector of the destination PM pde
Cpso total capacity vector of the source PM pso
Uv used capacity vector of the VM v
Upde used capacity vector of the destination PM pde
Upso used capacity vector of the source PM pso
PUpde predicted used capacity vector of the destination

PM pde
PUv predicted used capacity vector of the VM v
Loadv load level of the VM v
Loadp load level of the PM p
M final migration plans
M1 migration plans is generated by the first step of

UP-VMC
M2 migration plans is generated by the second step

of UP-VMC

than the available resource capacity, PM is considered as
a member of predicted over-loaded PMs (P̂over). UP-VMC
first aims to migrate some VMs from Pover and repeats the
process until there are no over-loaded PMs left. Then, some
VMs migrate from P̂over to guarantee that SLAs are not
violated in the near of future. Generally, the goal of this
step is to move some VMs from over-loaded and predicted
over-loaded PMs for minimizing SLA violations.

In order to predict the resource utilization, we assume
two regression-based prediction models: Linear Regression
(LR) [21] and K-Nearest Neighbor Regression (K-NNR) [22].
The prediction models estimate the resource utilization of
VMs and PMs in terms of CPU and memory. Since the
CPU and memory utilization are continuous, the regression-
based prediction model is applicable. UP-VMC focuses on
short-term load prediction due to the dynamic workload.
LR uses the historical resource utilization data and estimates
a linear function. The function determines the relationship
between the current and future resource utilization as

PUpde
= α+ βUpde

, (1)

where PUpde
and Upde

are the predicted and current used
capacity vector of the PM p, respectively. α and β are regres-
sion coefficients specifying the Y-intercept and slope of the
line, respectively. The most popular method for estimating
these coefficients is the least square method. This method
estimates the best-fitting straight line as the one that min-
imizes the distance between the observed output and the
predicted output in the data set by the linear approximation.
Therefore, the regression coefficients can be estimated using
this method by the following equations:

β =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

α = ȳ − βx̄,

where x̄ is the mean value of x1, ..., xn, and ȳ is the mean
value of y1, ..., yn.
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In a similar way, the resource utilization of a VM is
predicted based on a linear function which represents the
relationship between the current used capacity vector Uv

and the predicted used capacity vector PUv of the VM v.

PUv = α+ βUv. (2)

In addition, we also employ K-NNR to predict the future
utilization of PM and VM based on a historical utilization
data set. In the other word, K-NNR estimates the future
utilization by taking a local average of the data set. The
locality is defined in terms of the k samples nearest to the
new sample. The best value of k (number of neighbors)
is obtained by leave-one-out cross-validation which is a
value between one and the number of samples. Leave-one-
out cross-validation estimates the prediction accuracy by
summing of squared residuals for each k value. Then, it
selects the best value for k that has the minimum total
residual.

UP-VMC selects some VMs to migrate from a over-
loaded or predicted over-loaded PM based on a VM alloca-
tion policy. For this purpose, we assume three well-known
VM selection policies: Minimum Migration Time (MMT),
Maximum Load (MaxL) and Minimum Load (MinL). In
comparison between the proposed VM selection polices (see
Section 5.1), the UP-VMC algorithm provides more energy-
efficient solution with fewer SLA violations and number of
migrations when it uses MMT as a VM selection policy.
MMT selects a VM that requires the minimum time for
migration. The migration time is calculated as the amount
of memory by the VM divided by the spare network band-
width available for the PM.

Second step- the UP-VMC algorithm aims to eliminate
as most the least-loaded PMs (cold spots) as possible for
energy saving purpose in the data center. It migrates all VMs
from the cold spots to the most-loaded PMs (hot spots) in
order to reduce the energy consumption of data centers by
releasing the cold spots. UP-VMC guarantees a destination
PM does not become over-loaded in the near future after
placing the migrated VM. If the sufficient resources are not
available in the first hot spot, then UP-VMC considers the
next most-loaded PM and so on, until a match is found for
allocating the VM. If all VMs from a cold spot cannot mi-
grate to other PMs, none of them are migrated. Assigning a
VM to a PM requires a certain amount of different resources
on the PM, so that the algorithm captures the measures of
overall resource utilization for multiple resource types. It
means that the proportionality of CPU and memory usage
are considered in each PM for VM allocation. Therefore, the
load of PM p is modeled as the summation of the resource
utilization ratio Rd

p in each individual resource d ∈ D as

Loadp =
∑

d∈{1,...,|D|}

Rd
p, (3)

where Rd
p is the ratio of its utilized resource Ud

p to its total
resource Cd

p as

Rd
p =

Ud
p

Cd
p

. (4)

To determine which VMs to migrate from the cold spot,
the algorithm orders VMs in decreasing order of their load.

Therefore, first a VM is selected for migration that has a
high load among all VMs. Our idea is based on the fact that
bigger VMs are more difficult to insert into the other PMs.
The load level of VM v is defined as

Loadv =
∑

d∈{1,...,|D|}

Rd
v, (5)

where Rd
v is the ratio of the requested d-th utilization of VM

v to the total d-th consumption by VM v.

Rd
v =

Ud
v

Cd
v

. (6)

To find a suitable destination PM for allocating a mi-
grating VM, we apply two constraints for avoiding SLA
violations and needless migrations. The first constraint al-
lows a VM v to allocate the PM pde if the PM has sufficient
resources for allocating the VM at the moment. A risk of
SLA violation is created when the utilization of a PM is
close to 100%. So we propose an upper threshold value T
to limit the amount of requested resource by VMs on a PM
and reduce the SLA violations. Therefore, the first capacity
constraint is given as

Upde
+ Uv ≤ T × Cpde

, (7)

where Cpde
is the total capacity vector of the destination PM

pde, Upde
is the used capacity vector of pde, and likewise Uv

is the used capacity vector of the VM v.
The second constraint ensures the destination PM does

not become over-loaded in the near of future after VM allo-
cation. For this purpose, the UP-VMC algorithm considers
the future resource capacity of both the PM pde and VM v.
The second predicted capacity constraint is given as

PUpde
+ PUv ≤ T × Cpde

, (8)

where PUpde
is the predicted used capacity vector of PM

pde and PUv is the predicted used capacity vector of VM
v. The aggregated predicted resource utilization of VM and
PM is bounded by a specified upper threshold T of total PM
capacity. For example, if T = 0.5, the total predicted used
utilization of PM pde and VM v does not exceed more than
50% of total PM resource utilization. Based on above two
constraints, the algorithm selects a destination PM that has
enough available capacity in all dimension at the current
time and the near future for allocating a VM. In summary,
the algorithm proceeds by migrating all VMs from the least
loaded PMs to the highest loaded PMs in the second step. A
migration is feasible only if the destination PM has sufficient
CPU and memory resources to allocate the candidate VM at
the moment and near of future.

The pseudocode of Algorithm 1 creates a final migra-
tion plan by running two maintained steps. At the first
step (lines 2-13), the algorithm looks through the set of
overloaded PMs Pover and predicted overloaded PMs P̂over

(line 2). It aims to migrate some VMs from these sets to
avoid more SLA violations. For this purpose, it first selects
a VMs that needs a minimum time for migration. As we use
1Gbps network links between PMs, the migration time is
only calculated based on the requested memory utilization
by the VM. Therefore, the algorithm sorts all VMs of the
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source PM in ascending order of requested memory utiliza-
tion and then starts to migrate some VMs (lines 3-4). If the
source PM is still considered as a member of overloaded
or predicted overloaded sets, the VM selection policy is
applied again to select another VM to migrate from the PM
(line 5). This is repeated until the PM is considered being not
overloaded at the moment and future. Then, the algorithm
finds the appropriate destination PM for reallocating the
migrated VM v based on two proposed constraints (lines 6-
7). Finally, the new VM placement is added to a migration
plan M1 as a member (line 8). The migration plan is a set
of 3-tuple (pso; v; pde), where the source PM pso, the VM to
be migrated v, and the destination PM pde. If active PMs do
not have sufficient resource to allocate the VM v, a dormant
PM p can be switched to ON (lines 11-13).

At the second step (lines 14-30), the algorithm sorts
active PMs in decreasing order based on their load levels
(line 15). UP-VMC starts from the last PM of the list Pactive

and considers the least-loaded PM as a source PM pso
(lines 16-17). Then it aims to migrate all VMs from the
PM pso in order to release pso. To select which VMs first
migrate from ps to other PMs, the algorithm sorts all VMs
on PM ps in decreasing order based on their load (line 18).
To find the appropriate destination PM pde for reallocating
the migrated VMs, UP-VMC starts from the first PM (the
most-loaded PM) of list Pactive (line 19). If it is not possible,
the second PM will be selected and so on. UP-VMC selects
the PM pde that has the required capacity for allocating the
VM at the current time and near of future (lines 20). Finally,
the new VM placement is added to a migration plan M2
as a member (line 23). The CPU used capacity of source
and destination PMs are updated to reflect the impact of
the migration (line 24). The success variable is defined to
check whether all VMs form the source PM are migrated
or not. Either all VMs from the source PM are migrated if
one of them fails, none of them are migrated. Therefore,
the algorithm removes all tuples in the migration plan and
recovers the resource capacity of source and destination
PMs if the value of success is false (lines 27-29). Otherwise,
the source PM is switched to the sleep mode when all of its
VMs migrate from it, that is, when the PMs no longer has
any VMs (line 30). The output of the UP-VMC algorithm is
the migration plan M that combines all migration tuples at
two steps of UP-VMC (lines 31-32).

3.3 Example
Figure 2 shows an example of the UP-VMC algorithm where
we have three heterogeneous PMs P = 〈p1, p2, p3〉 and five
VMs V = 〈v1, v2, v3, v4, v5〉 are allocated on them. The total
capacity vector of PMs: Cp1

= 〈12, 18〉, Cp2
= 〈6, 8〉 and

Cp3
= 〈8, 12〉. Here Cp1

= 〈12, 18〉 means PM 1’s CPU
capacity and memory are 12GHz and 18GB, respectively.
The total capacity vectors of VMs are : Cv1

= 〈1, 1〉,
Cv2

= 〈1, 4〉, Cv3
= 〈2, 2〉, Cv4

= 〈2, 2〉 and Cv5
= 〈3, 4〉.

For instance Cv1
= 〈1, 1〉 that means the VM 1’s CPU and

memory consumption are 1GHz and 1GB, respectively. We
assume CPU threshold T = 0.8 in this example.

In the first iteration of the UP-VMC algorithm, the
requested resource usages by VMs are: Uv1

= 〈0.5, 0.7〉,
Uv2

= 〈0.5, 2〉, Uv3
= 〈0.5, 0.5〉, Uv4

= 〈0.5, 0.5〉 and
Uv5

= 〈0.5, 0.5〉. HereUv1
= 〈0.5, 0.7〉means the v1 requests

Algorithm 1: Utilization Prediction-aware VM Consol-
idation (UP-VMC)

1 Set M1← ∅;
2 for pso ∈ [Pover, P̂over] do
3 Sort VMs on PM pso and Vm in ascending order

based on Umem
v ;

4 for v ∈ Vm do
5 if (pso ∈ Pover)||(pso ∈ P̂over) then
6 for pde ∈ P − [Pover, P̂over] do
7 if (Upde

+ Uv ≤ T × Cpde
) and

(PUpde
+ PUv ≤ T × Cpde

) then
8 M1←M1 ∪ {(pso, v, pde)};
9 Update Upso

and Upde
;

10 break

11 if (pso ∈ Pover)||(pso ∈ P̂over) then
12 Switch on the dormant PM p;

13 else break;

14 Set M2← ∅;
15 Sort Pactive in descending of Loadp;
16 for i = |Pactive| to 1 do
17 pso ← Pactive[i];
18 Vm ← sort VMs on PM pso, Vp in descending order

of Loadv ;
19 for v ∈ Vm do
20 success← false;
21 for pde ∈ Pactive − pso do
22 if (Upde

+ Uv ≤ T × Cpde
) and

(PUpde
+ PUv ≤ T × Cpde

) then
23 M2←M2 ∪ {(pso, v, pde)};
24 Update Upso and Upde

;
25 success← true;
26 break

27 if success = false then
28 M2← ∅;
29 Recover Upso

and Upde
;

30 else Switch pso to the sleep mode;

31 M ←M1 ∪M2;
32 return M

0.5 CPU capacity of 1 GHz and 0.7 memory of 1GB. Based
on the initial VM placement (Figure 2a), the used capacity
vector of PMs are estimated: Up1 = 〈1, 2.7〉, Up2 = 〈0.5, 0.5〉
and Up3

= 〈1, 1〉. For example, 〈0.5, 0.7〉 be a tuple of the
CPU and memory requests of the VM v1, and 〈0.5, 2〉 is the
requested capacity of the VM v2. Then the utilization of PM
p1 accommodating the two VMs are estimated at 〈1, 2.7〉,
i.e., the sum of the vectors. The UP-VMC algorithm first
calculates the load of each PM by using Equation (3):

Loadp1 =
UCPU

p1

CCPU
p1

+
Umem

p1

CCPU
p1

=
1

12
+

2.7

18
' 0.23.

Similarly the load of p2 and p3 are: Loadp2 ' 0.14 and
Loadp3 ' 0.20. In the first step, the UP-VMC algorithm does
not find any over-utilized and predicted over-utilized PMs.
Because the current and predicted utilization of all PMs
do not exceeds PMs’capacity. In the second step, algorithm
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Fig. 2. An example of UP-VMC.

determines p2 as a least loaded PM according to the current
load of PMs, and aims to migrate v3 in order to release p2.

To find the destination PM for allocating v3, UP-VMC
starts from the most-loaded PM p1 and, investigates both
conditions in Equation (7) and (8) as

Up1 + Uv3 ≤ T × Cp1 = 〈1, 2.7〉+ 〈0.5, 0.5〉 ≤
0.8× 〈12, 18〉 = 〈1.5, 3.2〉 ≤ 〈9.6, 14.4〉 .

Since the PM p1 has sufficient capacity in all dimensions
for allocating the VM v3, the first condition is satisfied.
Moreover, the second condition is satisfied if the predicted
capacity vector of the PM p1 is 〈1.2, 2.5〉 and the predicted
demand capacity vector of v3 is 〈0.8, 1.3〉.

PUp1 + PUv3 ≤ T × Cp1 = 〈1.2, 2.5〉+ 〈0.8, 1.3〉 ≤
0.8× 〈12, 18〉 = 〈2, 3.8〉 ≤ 〈9.6, 14.4〉 .

As both conditions are satisfied, the VM v3 can migrate
to the PM p1 from the PM p2. As the PM p2 does not host
any VMs, it switches to the sleep mode in order to reduce
energy consumption.

In the second iteration of algorithm, algorithm does not
run the first step because the active PMs p1 and p3 are
not overloaded or predicted overloaded PMs. In the second
step, assuming the current requested resource usages by
VMs are: Uv1 = 〈1.4, 3〉, Uv2 = 〈2, 2〉, Uv3 = 〈3, 4〉,
Uv4 = 〈0.5, 0.5〉 and Uv5 = 〈0.5, 0.6〉. According to the
current VM placement (Figure 2(b)), the used capacity vec-
tors of PMs are estimated: Up1 = 〈6.4, 9〉, Up2 = 〈0, 0〉
and Up3

= 〈1, 1.1〉. The load level of active PMs are
Loadp1

' 1.03 and Loadp3
' 0.21. As the load of the PM

p3 is less than the PM p1, it can be switched to the sleep

mode if the PM p1 can accommodate the VM v4 and v5.
UP-VMC first migrates a VM from the PM p3 that has a
maximum load level. The load level of VMs is measured by
Equation (5) as:

Loadv4 =
UCPU

v4

CCPU
v4

+
Umem

v4

Cmem
v4

=
0.5

2
+

0.5

2
' 0.5,

Loadv5 =
UCPU

v5

CCPU
v5

+
Umem

v5

Cmem
v5

=
0.5

3
+

0.6

4
' 0.31.

Since the VM v4 has higher load than the VM v5, the
UP-VMC algorithm tries to migrate the VM v4 to the PM
p1. The PM p1 requires to have a enough resource at the
moment and future for allocation the VM. The destination
PM is the PM p1 if both following conditions are satisfied
where PUp1

= 〈1, 2.5〉 and PUv4
= 〈0.5, 0.6〉:

Up1 + Uv4 ≤ T × Cp1 = 〈6.4, 9〉+ 〈0.5, 0.5〉 ≤
0.8× 〈12, 18〉 = 〈6.9, 9.5〉 ≤ 〈9.6, 14.4〉 ,

PUp1 + PUv4 ≤ T × Cp1 = 〈1, 2.5〉+ 〈0.5, 0.6〉 ≤
0.8× 〈12, 18〉 = 〈1.5, 3.1〉 ≤ 〈9.6, 14.4〉 .

Therefore, the VM v4 can migrate to p1 because it has
enough capacity to reallocate the VM at the moment and
near of future. Then the algorithm also check whether p1 has
sufficient capacity for allocating v5 by following conditions,
assume PUv5

= 〈0.7, 0.5〉:
Up1 + Uv5 ≤ T × Cp1 = 〈6.4, 9〉+ 〈0.5, 0.6〉 ≤

0.8× 〈12, 18〉 = 〈6.9, 9.6〉 ≤ 〈9.6, 14.4〉 ,

PUp1 + PUv5 ≤ T × Cp1 = 〈1, 2.5〉+ 〈0.7, 0.5〉 ≤
0.8× 〈12, 18〉 = 〈1.7, 3〉 ≤ 〈9.6, 14.4〉 .

So the VM v5 can migrate to p1 and after migration
the PM p3 can be switched to the sleep mode. Finally the
number of PMs is reduced from 3 to 1. However, two re-
leased PMs can be switched to on if the amount of resource
requests increases.

4 EXPERIMENTAL SETUP

In this section, first we describe the simulation setup for
our proposed approach evaluation. Then, we explain two
type of workloads (PlanetLab and Google) and evaluation
metrics. Finally, we describe the benchmark algorithms that
are implemented to compare with the proposed approach.

4.1 Simulation Setup
To evaluate the efficiency of our proposed VM consolidation
approach, we use the CloudSim toolkit [23]. We simulated
a data center comprising M heterogeneous PMs. The value
of M depends on the type of workload which is specified
in Table 2. In each workload, half of PMs are HP ProLiant
ML110 G4 servers 1,860 MIPS each core, and the other half
consists of HP ProLiant ML110 G5 servers with 2,660 MIPS
each core. Each PM is modeled to have 2 cores, 4GB memory
and 1 GB/s network bandwidth. The CPU MIPS rating and
the memory amount characteristics of four VM instances
used in CloudSim corresponded to Amazon EC2 [1], i.e.,
High-CPU Medium Instance (2500 MIPS, 0.85 GB); Extra
Large Instance (2000 MIPS, 3.75 GB); Small Instance (1000
MIPS, 1.7 GB); and Micro Instance (500 MIPS, 613 MB).
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TABLE 2. Characteristics of the considered workload traces.

Workload Date VMs Res. Mean (%) St. dev (%) Median

PlanetLab May - Apr. 2011 265 CPU 25.44 14.16 22
Mem 10.48 11.06 7

GCD 10 days 1,600 CPU 10.87 10.85 7
May 2011 Mem 22.87 16.05 20

TABLE 3. The energy consumption at different load levels in
Watts.

Server sleep 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
HP G4 10 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP G5 10 93.7 97 101 105 110 116 121 125 129 133 135

4.2 Workload Data

To make the simulation based evaluation applicable, we
evaluated the UP-VMC approach on real-world publicly
available workloads:

• PlanetLab data [24]: is provided as a part of the
CoMon project, a monitoring infrastructure for Plan-
etLab. In this project, the CPU and memory usage
data is reported every five minutes from more than
a thousand VMs and is stored in ten different files.
The VMs are allocated on servers that are located
at more than 500 places around the world. In fact,
the workload is representative of an IaaS cloud
environment such as Amazon EC2, where several
independent users create and manage VMs with
the only exception that all the VMs are single-core,
which is explained by the fact that the workload
data used for the simulations come from single-core
VMs. For the same reason the amount of RAM is
divided by the number of cores for each VM type. We
consider ten days from the PlanetLab VMs workload
traces collected during March and April 2011. As the
utilization value of some VMs in the data set is so
low, we filter the original data and only consider
the range of CPU and memory utilization between
5% to 90%. So we can evaluate the proposed VM
consolidation by considering both CPU and memory
intensive tasks.

• Google Cluster Data (GCD) [25]: provides real trace
data of a Google cluster over about one-month
period in May 2011. This trace involves over 650
thousand jobs across over 12,000 heterogeneous PMs.
Each jobs with one or more tasks, contains the nor-
malized value of the average number of used cores
and the utilized memory. The usage of each type
of resources is collected at five minutes intervals.
For our experiments, we extracted the task duration
based on the time when the task was scheduled last
and the time when the task finished. Furthermore,
we also extracted the task utilization values of CPU
and memory over the first ten days. We use the
jobID as the unique identifier for a job, and for each
of these jobs we extracted a set of actual usage for
each resource for all of its tasks. The attributes that
we considered for CPU and memory are: the CPU
rate, which indicates the average CPU utilization
for a sample period of 5 minutes, and the canon-
ical memory usage, which represents the average
memory consumption for the same sampling period.
Moreover, tasks with a CPU or RAM consumption

higher than 90% and lower than 5% where also
removed from the experiments.

The characteristics of the VMs and their resource uti-
lization in the PlanetLab and GCD traces are presented in
Table 2.

4.3 Performance Metrics

The main goals of our approach are to: i) guarantee that
SLAs are not violated; ii) minimize the number of physi-
cal servers used; iii) minimize the number of migrations.
Therefore, the performance of proposed methods is assessed
through the following metrics:

• SLA Violations: a workload independent metric
(SLAV) is proposed in [12] that can be used to eval-
uate the SLA delivered by any VM deployed in an
IaaS. SLAV is measured by the SLA violations due
to over-utilization (SLAVO) and SLA violations due
to migration (SLAVM). Both SLAVO and SLAVM
metrics independently and with equal importance
characterize the level of SLA violations by the infras-
tructure. Therefore, both performance degradation
due to host overloading and due to VM migrations
are proposed as a combined metric (SLAV)

SLAV = SLAV O × SLAVM. (9)

In this paper, SLAVO indicates the percentage of
time, during which active PMs have experienced the
CPU or memory utilization of 100% as

SLAV O =
1

M

M∑
i=1

Tsi

Tai

, (10)

where M is the number of PMs; Tsi is the total time
that the PM i has experienced the CPU or memory
utilization of 100% leading to an SLA violation. Tai

is the total of the PM i being the active state. SLAVM
shows the overall performance degradation by VMs
due to migrations as

SLAVM =
1

N

N∑
j=1

Cdj

Crj

, (11)

whereN is the number of VMs; Cdj
is the estimate of

the performance degradation of the VM j caused by
migrations; Crj is the total CPU capacity requested
by the VM j during its lifetime. In our experiments,
we estimate Cdj

as 10% of the CPU utilization in
MIPS during all migrations of the VM j.

• Energy consumption: we consider the total energy
consumption by the physical resources of a data
center caused by application workloads. The energy
consumption of PMs depends on the utilization of
a CPU, memory, disk and network card. Most stud-
ies [12], [26] show that CPU consumes more power
than other devices such as memory, disk storage and
network interface. Therefore, the resource utilization
of a PM is usually represented by its CPU utilization.
Here the energy consumption is measured based on
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real data on power consumption provided by the re-
sults of the SPECpower benchmark1 instead of using
an analytical model of server power consumption.
Table 3 illustrates the amount of energy consumption
of two types of HP G4 and G5 servers at different
load levels. The table shows the energy consump-
tion is reduced efficiently when under-utilized PMs
switch to the sleep mode.

• Number of VM Migrations: live VM migration is
a costly operation that involves some amount of
CPU processing on a source PM, the link bandwidth
between the source and destination PMs, downtime
of the services on a migrating VM and total migra-
tion time [11]. In addition, VM migration consumes
negligible energy that is considered for measuring
SLA violations as 10% of CPU utilization during all
VM migrations in the servers.

4.4 Baseline Algorithms
We implemented and evaluated the Utilization Prediction-
aware VM Consolidation (UP-VMC) approach on a simu-
lated data center. We discuss the added value of employing
an utilization prediction model by comparing UP-VMC with
the following algorithms:

• Modified Best Fit Decreasing (MBFD): in order to
applicable comparison with UP-VMC, we modified
the traditional BFD algorithm (MBFD) by proposing
a threshold to limit the resource utilization of a PM
for allocating VMs. Thus MBFD assigns VM v to a
most-loaded PM pde if the total used capacity of the
VM and PM does not exceed the threshold of the
total resource utilization of the PM:

Upde
+ Uv ≤ T × Cpde

. (12)

In comparison with the UP-VMC algorithm, MBFD
dose not employ any prediction models so that it
only migrates VMs from the over-loaded PMs to
avoid SLA violations. Furthermore, MBFD can re-
duce the energy consumption by releasing least-
loaded PMs.

• Modified First Fit Decreasing (MFFD): is a modified
version of FFD algorithm to compare with the UP-
VMC algorithm. The MFFD allocates a VM to the
first PM that the total used capacity vector of the VM
and PM is less than the threshold of the total capacity
vector of the PM.

Upde
+ Uv ≤ T × Cpde

. (13)

In addition, MFFD minimizes SLA violations by
reallocating VMs from the over-loaded PMs. It also
performs the second step of UP-VMC to minimize
the number of active PMs based on the current
resource requirements.

• PM Utilization Prediction-aware VM Consolidation
(PUP-VMC): runs an algorithm similar to the UP-
VMC algorithm but it only considers the future
resource utilization of a destination PM to allocate
a VM. Therefore, PUP-VMC allocates the VM v to

1. http : //www.spec.org/power ssj2008/

the PM pde if the aggregated the predicted capacity
vector of PM pde and the demand capacity vector
VM v does not exceed of the threshold of the total
capacity vector of the PM:

PUpde
+ Uv ≤ T × Cpde

. (14)

• VM Utilization Prediction-aware VM Consolidation
(VUP-VMC): runs an algorithm similar to the UP-
VMC algorithm but it only considers the future de-
mand capacity of a VM. The VM v can be assigned
to the destination PM pde if the aggregated used
capacity vector of the PM and the predicted demand
capacity vector by the VM does not exceed of the
threshold of the total capacity vector of the PM:

Upde
+ PUv ≤ T × Cpde

(15)

• Sercon [11]: is a well-known greedy bin-packing al-
gorithm. It migrates VMs from the least loaded PM
to the most loaded PM to release the least loaded PM.
In order to eliminate unnecessary migration, Sercon
follows all-or-nothing property, that is, either all VMs
from a PM are migrated or if one of them fails, none
of them are migrated.

• ACS-based VM Consolidation (ACS-VMC) [5]: is a
meta-heuristic bin-packing algorithms. It generates a
migration plan using ant colony system algorithm to
reduce the energy consumption and SLA violations.

5 EXPERIMENTAL RESULTS

In this section, we first present the impact of three different
VM selection polices on the UP-VMC. Then, the prediction
performance is evaluated. Finally, we discuss about the
experimental results in comparison with the benchmark
algorithms.

5.1 VM Selection Algorithms
We investigate the impact of three well-known VM selec-
tion polices on the UP-VMC performance. These policies
include:

• Minimum Migration Time (MMT): a VM with the
minimum migration time is selected for migration.
The length of a VM migration takes as long as it
needs to migrate the memory assigned to the VM
over the network bandwidth link between source
and destination PMs. In our simulations, we used
1Gbps network links.

• Maximum Load (MaxL): a VM with the maximum
load level (Loadv) is selected for migration.

• Minimum Load (MinL): a VM with the minimum
load level (Loadv) is selected for migration.

The effectiveness of the VM selection polices is evaluated
based on the three metrics: the number of SLA violations,
the energy consumption and the number of migrations.
As depicted in Figure 3 and Figure 4, UP-VMC reduced
the energy consumption, SLA violations and the number
of migrations when it uses MMT policy. In addition, the
results show UP-VMC can perform better in terms of energy
consumption, SLA violations and number of migrations



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2617374, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING, VOL. XX, NO. X, MARCH 2016 10

Fig. 3. The SLAV metric (a), energy consumption (b), and number of VM migrations (c) by UP-VMC based on LR and K-NNR
with three VM selection polices for the PlanetLab workload trace.

Fig. 4. The SLAV metric (a), energy consumption (b) and number of VM migrations (c) by UP-VMC based on LR and K-NNR
with three VM selection polices for the GCD workload trace.

(a) (b) (c)

Fig. 5. The SLAV metric (a), energy consumption (b), and number of VM migrations (c) by UP-VMC and benchmark methods for
the PlanetLab workload trace.
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(a) (b) (c)

Fig. 6. The SLAV metric (a), energy consumption (b), and number of VM migrations (c) by UP-VMC and benchmark methods for
the GCD workload trace.

when it uses K-NNR as a prediction model. This is because
K-NNR able to accurately measure the resource utilization
of PMs and VMs than LR (see next sub-section).

5.2 Performance Evaluation of Prediction models

We applied the Leave-One-Out cross-validation tech-
nique [27] for evaluating the accuracy of the prediction
model. We then assess the prediction model accuracy by
using Mean Absolute Percentage Error (MAPE) and Root
Mean Squared Error (RMSE). The first measures the average
of the absolute errors, where the errors are calculated as
the difference between the predicted and the actual value.
The latter measures the standard deviation of the absolute
errors. To evaluate the quality of our prediction technique,
we used five different data sets. Each data set collects the
resource utilization of a PM by running GCD workload
traces. Thus a one-step prediction is equivalent to predict
the PM utilization in the next five minutes. The data sets are
divided into a training data set and validation data set. The
training data set used to determine the number of neighbors
(k) in K-NNR and the validation data set is then used assess
the accuracy of the prediction model.

The results show RMSE of K-NN is 0.21 where it is 0.38
for LR. Moreover, MAPE of K-NN and Linear Regression
(LR) prediction models are 0.24 and 0.37, respectively. So
MAPE of the K-NN is slightly lower than the linear re-
gression which means that the K-NN can predict the actual
utilization more accurately by yielding less residuals. We
also conducted more experiments to examine the impact of
prediction step on the prediction performance. Experiments
results show the prediction error is grown when we in-
creased the prediction step. Therefore, we predict the future
load of PM in the next time.

5.3 Comparison of UP-VMC with Baseline Algorithms

We conducted several experiments to evaluate the perfor-
mance of our approach. In the first experiments, we use
PlanetLab workload. As a high value for the CPU thresh-
old leads to high performance degradation and number of
migrations and a low threshold value can increase energy
consumption, finding a suitable threshold value is essential.
Therefore we obtained results on various threshold values

between 50% to 100% to show the impact of the value of
threshold on the performance metrics. Figure 5a presents
the SLA violation levels caused by the UP-VMC, PUP-VMC,
VUP-VMC, ACS-VMC, Sercon, MBFD and MFFD methods
for different values of threshold. The UP-VMC method can
reduce the percentage of SLA violation rate more efficiently
than the other methods. The results can be explained by
the fact that UP-VMC allocates a VM to a PM that does not
become overloaded in the near future based on the proposed
prediction model. In addition, UP-VMC tries to migrate
VMs from the overloaded and predicted overloaded PMs
in order to avoid the SLA violations. Figure 5b shows our
proposed VM consolidation approach can reduce energy
consumption by up to 71.6% in comparison with MFFD.
This is because the proposed method minimize the number
of active PMs by packing VMs into the most-loaded PMs.
Figure 5c depicts the total number of VM migrations during
the VM consolidation in the PlanetLab workload. The UP-
VMC outperforms the benchmark algorithms due to the pre-
dictions of utilization, and therefore decreased the number
of VM migrations.

In the second experiment, we run the simulation for
GCD with the large number of VMs. During the simulation,
each VM is randomly assigned a workload trace from one
of the VMs from the data set. Figure 6a shows that the UP-
VMC leads to significantly less SLA violations than the other
four benchmark algorithms. This is due to the fact that the
UP-VMC prevents SLA violations by using a prediction of
PM and VM utilization and ensures that the destination PM
does not become overloaded when a VM migrates on it.
Figure 6b illustrates the UP-VMC brought higher energy
savings in comparison to the other approaches in the real
workload. This is because the UP-VMC tries to release least-
loaded PMs by packing VMs into a few number of PMs. As
observed from the results, the UP-VMC has the minimum
number of migrations compared with the other benchmark
methods (Figure 6c). This is due to the fact it allocates a
VM to a PM according to the current and future resource
utilization.

Moreover, the effect of different threshold values on
three evaluation metrics is shown in Figure 5 and Figure 6.
These figures show that the increase of threshold leads to the
decrease the energy consumption, indicating that although
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a smaller value of threshold achieves better performance on
energy reduction. Moreover, the number of migrations and
SLA violations are increased if the threshold is set in a high
value. Therefore, it seems that a good solution is achievable
by properly selecting the value of threshold.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented a dynamic Virtual Machine
(VM) consolidation approach called Utilization Prediction-
aware VM Consolidation (UP-VMC). UP-VMC formulates
a VM consolidation as a multi-objective vector bin packing
problem. It considers both the current and future utilization
of resources in order to consolidate VMs into the minimum
number of active Physical Machines (PMs). The future re-
source utilization is predicted by using a regression-based
prediction model. To further enhance the quality of service
and minimize the number of migrations, we also proposed
a VM allocation algorithm based on prediction models. The
algorithm selects a PM that has enough resources at the
moment and in the short term of future for reallocating
the VM. The obtained results of real Google and PlanetLab
workload traces show that UP-VMC significantly outper-
forms benchmark algorithms in terms of energy consump-
tion, performance requirements and number of migrations.

As a future work, we have identified four improvement
directions for the UP-VMC. First, we plan to improve the
scalability of the proposed architecture by moving from two
to three-tier hierarchical architecture. The second improve-
ment, UP-VMC will take into account network resource
utilization and traffic to optimize VM placement. The third
improvement aims to implement UP-VMC algorithm as an
extension of the VM manager within the OpenStack Cloud
platform2 to evaluate the algorithm in a real cloud envi-
ronment. The four improvement involves evaluating the
performance of the proposed VM consolidation algorithm
over different thresholds for different resources types.
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