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Abstract—Facial expression recognition has broad application
prospects in the fields of psychological study, nursing care,
Human Computer Interaction as well as affective computing.
The method with surface Electromyogram (sEMG), which is
one of vital bio-signals, has its superiority in several aspects
such as high temporal resolution and data processing efficiency
over other methods. Researches regarding EMG signal to study
emotional expression have started since the second half of last
century. Meanwhile, studies on myoelectrical control systems
focusing on the computation of bio-signal processing and data
analysis have been blooming in the recent twenty years. To
have a comprehensive view of utilizing facial sEMG method, a
systematic review is presented in this paper for facial expression
recognition from experiment design to measurement systems, and
data analysis steps.

Keywords— Facial expression recognition, sEMG, Human
Computer Interaction.

I. INTRODUCTION

Emotion recognition has been studied through various ap-

proaches utilizing a single or a combination of several bio-

signals such as Electroencephalogram (EEG), facial Elec-

tromyogram (EMG) and physiological signals (e.g. electroder-

mal activity, respiration rate and blood pressure) [1–4]. Facial

expression, as an expressive aspect of emotion, can indicate a

person’s affective state and also the change of emotion state

under stimulation [5]. Several approaches have been employed

in facial expression recognition. Except for EMG method,

other approaches are based on facial image or video analysis,

by manual coding or image processing. Compared with image

based method, EMG method has its superiority from multiple

aspects, as discussed later.

Among the three mentioned facial action measurement

methods, facial EMG has a relatively longer history because

the most classical and widely applied Facial Action Coding

System (FACS) [6] was developed by using fine-wire EMG

to discover how the muscles work to change the appearance.

However, the fine-wire EMG or needle EMG is invasive and

requires medical training and certification [7]. In contrast,

surface EMG (sEMG) method is non-invasive and inherits the

high temporal resolution at the same time. The high temporal

resolution attribute makes it a suitable method for measuring

emotion, which may have rapid onset and short duration [8, 9].

Expressions recognition based on other methods need facial

expressions to be overt, however, many emotional reactions

are not accompanied by visible facial actions or real emotion

is hided or masked by invoked display rules. In these circum-

stances, it is possible for sEMG to indicate muscle activity

in subtle movements even in the absence of visible facial

expressions [10–12]. Furthermore, facial sEMG may give a

chance for consistent expression interpretation across cultures

[13]. Advantages of facial sEMG method in facial expression

recognition according to [8, 14–16] and existing devices are

summarized as follows:

• High temporal resolution;

• Sensitivity to capture subtle facial muscle activities that

are not even visible;

• Efficiency in data processing with significantly less time

consumption than manual coding;

• Convenience for testing without head pose or area restric-

tion, compared with difficulties in image or video analysis

method;

• Easy to be embedded in wearable devices.

sEMG signal has been widely applied in kinesiological

study [17], identifying neuromuscular diseases and myoeletri-

cal control system [18]. Similarly, facial expression recogni-

tion with sEMG method has broad prospects in emotion study,

nursing care, Human Computer Interaction (HCI) and affective

computing. In this paper, we present a concise survey in

existing research related to facial expression recognition using

sEMG method across psychological, clinical and engineering

areas and summarize from experiment design to measurement

system and data analysis methods.

The rest of the paper is organized as follows: Section II in-

troduces the attributes of facial sEMG signal and its measure-

ment system; Section III presents involved facial muscles in

expressions and methods to arouse some certain expressions;

the details of electrode configuration and electrode placement

are listed in Section IV; and in Section V, we summarize sEMG

data processing and analysis procedures. At last, Section VI

concludes the paper.

II. EXPRESSIONS AND FACIAL MUSCLES

According to Darwin and previous studies, six facial ex-

pressions of emotion are universal. They are happiness, sad-

ness, anger, fear, surprise and disgust [19]. When studying

expressions, a neutral expression is usually added as reference.

Researchers in psychology also represent more finesorted

emotions in an affective circumplex model with continuous

dimensions of arousal and valence [20].

Facial expressions are mostly categorized into positive and

negative in facial expressions recognition systems and research

[4, 21–23]. Some research target on some specific facial mus-

cle responses, for example, lateralized facial muscle response

[24] and the difference between facial sEMG activity response
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to dynamic and static facial expressions [25]. While some HCI

research includes several universal expressions [12, 26], or

multiple given facial gestures such as smiling with one side

and wrinkling the nose [27, 28]. Moreover, some negative

expressions are studied in the context of human well-being

and to improve usability in HCI. For example, pain and

disgust expressions are studied in [29, 30]. P. Branco et al.
[31] focus on the expressions when people confront with

adverse-event in an HCI context. S. Amershi et al [32] aim

at building intelligent system which adapt to varying student

needs according to emotion patterns so as to improve their

learning in educational games.

There are several approaches guiding subjects to make

facial expressions. In some research, subjects are instructed

to pose facial expressions, like smile, frown or make an angry

face. While in some other cases, stimuli is used to cause

evoked expressions. Emotion stimuli found across literature is

from images, film fragments, sound to environmental changes.

Regarding image stimuli, there are some databases available.

Two of them are facial stimuli, where the images themselves

are emotional expressions, Picture of Facial Affect [33] and

the dataset of 3-dimensional facial expressions [34]. Compar-

atively, pictures from International Affective Picture System

[35] are more widely used to elicit a range of emotions

in experiments which are representative of daily experiences

such as household furniture and extreme encounters such as a

mutilated body.

Fig. 1. Facial muscles [36]

The muscles responsible of facial expressions are thin, flat

muscles that act either as sphincters of facial orifices, as

dilators, or as elevators and depressors of the eyebrows and

mouth, presented in Fig. 1. One consistent conclusion through

studies is that sEMG activity over the brow (corrugator
supercilii) and cheek (zygomaticus major) can differentiate

positive and negative facial expressions. For the six universal

emotional expressions, facial muscles involved in each of them

can be inferred from corresponding action units from FACS

[37], shown in Table I.

TABLE I
UNIVERSAL EMOTIONAL EXPRESSIONS

Expression Action units Facial muscles

Anger 4, 5 or 7, 22, 23, 24

Corrugator supercilii,
Depressor supercilii,
Levator palperbrae superioris,
Orbicularis oculi,
Orbicularis oris

Disgust 9, 10
Levator labii superioris,
Levator labii superioris alaeque nasi

Fear 1, 2, 4, 5, 20

Frontalis,
Depressor supercilii,
Levator palperbrae superioris,
Risorius

Happiness 6, 12
Orbicularis oculi,
Zygomaticus major

Sadness 1, 15
Frontalis,
Depressor anguli oris

Surprise 1, 2, 5, 25 or 26

Frontalis,
Levator palperbrae superioris
Depressor labii,
Orbicularis oris

III. FACIAL SEMG AND ITS MEASUREMENT SYSTEM

Facial sEMG measures the electrical activity of motor units

in the striated muscles of the face. The force and velocity

of movement are controlled by the number of motor units

and their rate of firing [17]. Fig. 2 shows filtered sEMG

signal (with 50Hz notch filter) collected during a posed facial

movement from cheek region where zygomaticus major is the

main functioning muscle. It can be seen from the figure that

the muscle activity starts at around 0.7 second and end at

approximately 2.4 second. Due to the inherent physiology

of an organ, a myoelectrical signal is considered as a non-

stationary signal [18].

Fig. 2. Raw sEMG signal from cheek region (zygomaticus major)

Fig. 3. sEMG measurement system

One sEMG measurement system can be composed of five

parts: electrode, lead wire, amplifier, data acquisition device

and signal processing software in computer (Fig. 3). When

electrode and lead wire are two separate parts, the electrode
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is often to be disposable. Facial sEMG signal amplitude is in

microvolt level and hence it should be amplified before being

digitalized in the data acquisition device. In terms of sample

rate, it is concluded that a low pass filter frequency between

400 and 500Hz [38] is appropriate for all facial muscles.

Some sEMG measurement devices are designed as small

and portable with local data storage in SD card or transmitting

data wirelessly after digitization between a transmitter and

receiver, for example, [39] and [40]. This flexibility benefits

the tested subjects from less posture and movement restrictions

during sEMG recording, compared with image or video facial

expression recognition system.

IV. ELECTRODE PLACEMENT

Test points on face where electrodes are placed are selected

in variety of ways through literature. However, there are

mainly two trends: one is to put electrodes on dominant facial

movement muscles which is applied in most psychological

clinical studies and some HCI applications, while the other

one is that when wearable HCI devices are designed, distal

sEMG signals on the side of the face are captured for facial

expression recognition [21, 41].

Fig. 4. sEMG electrode configuration

When selecting or designing a sEMG measurement sys-

tem, several choices in electrode configuration can be found.

Typically, there are three types with various names regarding

electrode configuration. They are monopolar (i.e. unipolar

or single-ended), bipolar (i.e. single differential) and double

differential (i.e. spatial filter), illustrated in Fig. 4. Branched

electrode in is a simplified approach to equal to double

differential. Among all of those types, a pair of Ag/AgCl

electrodes for bipolar configuration is the most popular one.

Bipolar electrode configuration is believed to have a better

selectivity on the muscle of interest because in theory crosstalk

from adjacent muscles can be suppressed through differential

inputs. Two electrodes are placed parallel to the course of

the muscle fibers to reach maximize selectivity. There are

two important parameters for bipolar electrodes, one is size

and the other one is inter-electrode distance which is defined

as center to center distance between two electrodes in one

pair. Larger inter-electrode distance can enhance detectability

of the reflex response but weaken muscle selectivity [42].

Although electrode size has no significant effects on facial

sEMG signal amplitude [43], bulky electrodes can hinder

facial movements or alter their behavior [44]. Besides, large

inter-electrode distance caused by large electrode size results

in decreasing measurement selectivity. Surface electrodes with

contact area diameter less than 4-mm are suggested for facial

sEMG recording in [2]. Fridlund and Cacioppo (1986) [44]

give an instruction on bipolar electrode placement over target

muscles covering most of the facial muscles.

Monopolar configuration has its own advantage being less

obtrusiveness with equal number of channels or having a larger

channel density with the same amount of electrodes [28].

Moreover, research in [28] and [45] showed that in spite of

amplitude difference, signals obtained through monopolar and

bipolar configurations have similar or even the same pattern.

Except for separate electrodes, theoretically, all kind of

configurations can be implemented in electrode arrays by

off-line mathematically substracting signals from monopolar

recordings [46]. Electrode arrays have electrodes with small

diameter and large density. Within electrode arrays, many

complex spatial filters can be implemented to restrain crosstalk

which has been verified in anterior tibial and triceps surae

muscles [47]. Higher spatial resolution in sEMG, even to

detect single motion unit activities can be achieved non-

invasively [48]. However, electrode arrays have more potential

as a diagnostic tool rather than an expression recognition tool

due to its less flexibility and hindering facial movements to

some extent [49, 50].

Before sEMG measurements, facial muscles and electrode

configuration type need to be selected for a research proposi-

tion. Targeted skin area should be prepared such as shaving,

cleaning and abrasion for stable electrode attachment and to

reduce electrode-skin impedance [51]. Conductive gel and

paste or pre-gelled electrodes can also be used for reducing

electrode-skin impedance to achieve better sEMG record-

ing. Double-sided tape can help electrode fixation to reduce

movement artifact [52]. Electrode lead wires should be dealt

properly to keep them from dragging electrodes or hinder the

movement of facial muscles.

V. DATA ANALYSIS

The complete sEMG signal processing scheme is shown

in Fig. 5. Noise due to electromagnetic interference and

movement, is mixed with expected sEMG signal unavoidably.

This makes it difficult to identity the sEMG signal [53].

The first step of pre-processing is to remove noise from the

acquired signal. After that, the muscle activities represented by

sEMG signal from each targeted facial muscle can be detected

and separated from the muscle relaxed periods. Research on

automated onset estimation in sEMG signal has been con-

ducted and the performance of some algorithms are compared

in [54]. Besides, the methods that detect muscle activity after

a signal transformation are also proposed in [55] and [56]. The

raw sEMG signal is not a proper input to a classifier because

of low efficiency and thus features from one or several signal

domains are extracted. Features are most commonly extracted

from time domain, while features from frequency domain and

time-frequency domain are also found from literature. In these
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cases, the transformation from time domain to other domains

is also part of pre-processing before feature extraction. The

normalization is applied in raw sEMG signal or features when

amplitude comparison is needed between muscles, between

individuals or between days within an individual [57]. Nor-

malization is also required in developing generic classifiers

owing to humans’ rich variety [4]. The learning process in

facial expression recognition is mostly supervised learning

process, that is, certain expressions or categories are assigned

for training. In this circumstance, features are reduced and

then classified into the targeted categories.

Fig. 5. sEMG signal processing scheme

A. De-noising

De-noising of acquired signal is done to increase the quality

of sEMG signal by improving the signal-to-noise ratio while

the distortion of sEMG signal must be kept as small as

possible [58]. This is especially important for muscle diagnosis

applications. Two main noise sources in facial sEMG signals

are movement artifact and electromagnetic noise. The former

one dominates low frequency part within 20Hz, while the latter

one also called power line interference (PLI) is composed of

50Hz or 60Hz noise in frequency and its harmonics.

The power line interference origins from capacitive cou-

pling to patient, electrodes, electrode leads and the amplifier.

Solutions are proposed including shielded electrode leads [59]

and shielded active electrodes [60], in which noises coupling

to the lead wire are weaken significantly by shortening its

length. As to differential amplifiers, it is customary to reach a

common-mode rejection ratio of 100-110dB and thus this part

of noise is slight.

Post-processing methods for de-noising movement artifact

and PLI are generally the same. The methods include digital

filters, adaptive noise canceler, and wavelet decomposition and

reconstruction. Adaptive noise canceler reduce noise influence

by subtracting estimated noise from the captured signal. It

estimates noise with an adaptive algorithm which adjusts

estimated noise through feedback from de-noised output. One

level wavelet decomposition with discrete wavelet transform

is equivalent to decomposing the signal into low half fre-

quency coefficients and high half frequency coefficients in

time domain. When the noise characteristics are known, the

coefficients that represent noise separated by several level

decomposition can be replaced by zeros before signal recon-

struction. The performance comparison in movement artifacts

and PLI de-noising among these three methods summarized

in Table II [60, 61].

TABLE II
DE-NOSING METHODS COMPARISON

Method Movement artifacts Power line interference

Classic filters:
FIR and IIR

Easy to set cutoff
frequency;

FIR needs to be high order;
IIR caused distortion near the cut-
off frequencies.

Adaptive
noise canceler

Unsuitable
Low order;
Attenuate noises with different
amplitudes.

Wavelet
decomposition

Better performance than
classic filters;

Require more computational re-
sources;

Manual threshold set-
ting.

Filter bandwidth relates to wavelet
family, order and decomposition
tree.

B. Muscle activity detection

Regarding automatic sEMG onset detection, G. Staude

et al. [54] conclude that threshold-based methods are very

popular due to their intuitive and easy implementation. This

approach is well applied in the sEMG signal whose signal

to noise ratio (SNR) is larger than 10dB. The test results

show that signal conditioning of raw sEMG before detecting

onset can substantially reduce the risk of false alarms. Signal

conditioning consists of full wave rectified followed by low

pass filtering to get the envelope. The threshold to detect

muscle activity is usually set by

TH = mean+ i ∗ std
where mean and std are the mean and the standard deviation

of the background noise of sEMG, i is a preset value. The

smooth incline of the low-passed signal will lead to increased

variability of the estimated onset time. Comparatively, an

adaptive pre-whitening filter is superior to a low pass filter.

While it is found that statistical methods and method based

on Teager-Kaiser energy operation always performed better,

especially in poor quality signal, such as with a SNR of 8dB

or lower [62].

C. Feature extraction and pattern recognition

An sEMG feature is a distinct characteristic of sEMG signal

that can be described or observed quantitatively. Features serve

as the inputs of a classifier in training and testing. Some

common sEMG features are summarized in Table III. Features

in are extracted from data points within joint or overlapped

time windows. SSI and VAR in time domain can index

energy and power information of the signal separately [63]. In

sEMG based upper limb motion recognition research, features

extracted after Fourier transformation, wavelet decomposition

or Empirical Mode Decomposition (EMD) in classification
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have also been studied to improve the performance of clas-

sification (e.g. [64, 65]) while few related studies are found in

sEMG based facial expression recognition. Wavelet analysis

and EMG, as methods working for non-stationary signals also

are applied in sEMG signal de-noising.

TABLE III
SEMG FEATURE LIST

Name Abbr.and Mathematical function

Integrated sEMG INT =
N∑

i=1
|xi|

Mean absolute value MAV = 1
N

N∑
i=1

|xi|

Modified mean absolute
value1

MMAV = 1
N

N∑
i=1

wi |xi|

Simple square integral SSI =
N∑

i=1
x2
i

Variance VAR = 1
N−1

N∑
i=1

x2
i

Root mean square RMS =

√
1
N

N∑
i=1

x2
i

Waveform length WL =
N−1∑
i=1

|xi+1 − xi|

Difference absolute standard
deviation value

DASDV =

√
1

N−1

N−1∑
i=1

(xi+1 − xi)2

Mean absolute value slope MAVSk = MAVk+1 −MAVk

Zero crossing3
ZC =

N−1∑
i=1

|sgn(xi+1 × xi)| ∩
f(|xi+1 − xi|)

Slope sign change SSC =
N−1∑
i=2

f [(xi+1 − xi)× (xi − xi−1)]

Willison amplitude WAMP =
N−1∑
i=1

f(xi+1 − xi)

Myopulse percentage rate
1
N

N∑
i=1

f(xi)

Median Frequency
MDF∑
j=1

Pj =
M∑

j=MDF

Pj = 1
2

M∑
j=1

Pj

Standard deviation SD(σ) =

√
1
N

N∑
i=1

(xi − x̄)2

Histogram of sEMG Amplitude statistics

Skewness(x1...xN ) = 1
N

N∑
i=1

[
xi−x̄

σ ]3

Kurtosis(x1...xN ) = 1
N

N∑
i=1

[
xi−x̄

σ ]4 − 3

Annotation: 1. wi is weighted function

2. f(x)=

⎧⎪⎪⎨
⎪⎪⎩

1, if x � threshold

0, otherwise

3. sgn(x)=

⎧⎪⎪⎨
⎪⎪⎩

1 if x � 0

0 otherwise

Normalization is applied before or after feature extraction

for diminishing the influence of interpersonal inter-day dif-

ference in sEMG signals and for boosting the performance

of generic classifiers. Feature scaling and standard core are

found in sEMG feature normalization [4, 63]. M. Halaki et
al. [57] summarize that normalization of sEMG signals is

usually performed by dividing the sEMG signals during a

task by a reference sEMG value obtained from the same

muscle. The most common reference is the value during a

maximal voluntary isometric contraction (MVIC) from the

same muscle. O’Dwyer et al. [66] propose a set of MIVC

tests to produce maximum activation in several facial muscles

need to be identified. The facial muscles in it includes levator

labii superiori, zygomaticus major, orbicularis oris and thirteen

other muscles. The isometric tests has facial movements such

as unilateral snarl, broad laugh and puffout cheeks, mouth

closed.

When m muscles or test points and n features are selected

for classification, the total number of variables is m×n, see in

Fig. 5. High dimensional variables increase computation com-

plexity, therefore features should be examined before taken

as inputs to classifiers. Scatter plot is an intuitional method

to reduce feature redundancy when testing several targeted

expressions or facial movements. This method restricts to two

and three input channels, that is, shown as a two-dimensional

or three-dimensional scatter plot. For example, in [67], feature

WL showed mussy distribution in three-dimensional feature

space which explained the very low classifier recognition ac-

curacy. Another method is statistical test, Analysis of Variance,

which is a common method to find relevance between expres-

sions and facial muscle sEMG features in psychophysiology

studies. Principal components analysis is a data set dimension

reduction method, which is also competent in filtering features.

Table IV shows some cases which vary from the selection

of expressions, targeted muscles, features and classifiers.

VI. DISCUSSION AND CONCLUSIONS

For facial expression recognition, accuracy is one of the

main concerns regarding expression classification. An accurate

sEMG classification relies on both proper electrode placement

and signal processing. Based on the existing research, placing

electrodes on specific expression related facial muscles, has

better resolution when differentiating multiple emotional ex-

pressions. Electrodes in smaller size and larger density can

lead to a better selectivity in detecting activities of target

muscles. However, obtrusiveness can be caused by electrodes

in large amounts or densities, a balance needs to be found in

between.

In addition to the study of emotional expressions, the arousal

degree of each emotion is also worth of exploring, especially

for negative emotions. It is not only necessary for further

clinical diagnosis, but also because of having potentials in

improving humanization in Human Computer Interaction. The

calibration of emotional levels and the corresponding emotion

stimuli are needed in this case. Well-designed questionnaire

and manual coding method from recorded video may help

with better understanding in emotional changes and comparing

results in early research stages. In some other cases, when

the categorization of expressions in a task is not clear, unsu-

pervised learning needs to be implemented to find potential

patterns.

The scope of sEMG features needs to be narrowed aiming at

facial muscles and expressions. Some comparisons and stud-

ies have been carried out in facial expressions classification
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TABLE IV
SOME EXAMPLES OF FACIAL EXPRESSION RECOGNITION WITH SEMG METHOD

Authors Expressions Facial muscles Features and feature reduction Classification method and results

E. Broek et al [4]
Neutral, mixed, positive, nega-
tive;

Frontalis, corrugator supercilii,
zygomaticus major;

Mean, AD, SD, VAR, skew-
ness and kurtosis; Reduction:
repeated measures ANOVA

k-NN (k=8): netural 71.43%, pos-
itive 57.14%, mixed 64.29%, neg-
ative 52.38%; SVM:60.71%; ANN:
56.19%.

G. Gibert et al [12]
Anger, disgust, fear, happiness,
sadness, surprise;

Frontalis, corrugator supercilii,
orbicularis oculi, levator labii,
zygomaticus major, masseter,
depressor anguli oris;

Envelope of absolute values Gaussian model classifier: 92.19%.

L. Ang et al [26] Happy, angry, sad;
Corrugator supercilii, levator
labii, masseter

Mean, SD, RMS, power den-
sity spectrum; Reduction: fea-
ture differentiation.

Minimum-distance classifier:
92.78.%

P. Branco et al [31]
Expressions when a person is
facing different level of difficul-
ties;

Frontalis, corrugator, zygomatic
Mean and SD of RMS (time
window:30ms)

Paired t-test: in general, the propor-
tion of tasks with muscle activity
increases with the increase on the
task difficulty.

M. Hamedi et al
[41]

Neutral, smile, smile with
right/left side, anger, rage,
gesturing ”no” with mouth,
open the mouth like saying ”a”;

Frontalis, right and left tempo-
ralis

RMS (time window:256ms) FCM: 91.8%; SVM: 80.4%.

M. Hamedi et al
[67]

Smile, smile with right/left side,
saying ”a”, clenching the molar
teeth, gesturing ”notch” by ras-
ing eyebrows, frown, close both
eyes, close right/left eye;

Frontalis, right and left tempo-
ralis

INT, MAV, MAVS, RMS, VAR
and WL, respectively

Fuzzy C-Means: INT 87.5%, MAV
84.6%, MAVS 87.9%, VAR 35.7%,
RMS 90.8%, WL 21.5%.

and hand gestures classification, but inconsistency is found

from their conclusions. Further and comprehensive evaluation

among features as well as classifiers in terms of effectiveness

and computation efficiency are needed in facial expression

recognition. The computation efficiency is especially crucial

in wearable and wireless sEMG devices where computation

and energy resources are both restrained.
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