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Purpose: The aim of this paper is to define the requirements and describe the design and implemen-

tation of a standard benchmark tool for evaluation and validation of PET-auto-segmentation (PET-

AS) algorithms. This work follows the recommendations of Task Group 211 (TG211) appointed by

the American Association of Physicists in Medicine (AAPM).

Methods: The recommendations published in the AAPM TG211 report were used to derive a set of

required features and to guide the design and structure of a benchmarking software tool. These items

included the selection of appropriate representative data and reference contours obtained from
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established approaches and the description of available metrics. The benchmark was designed in a

way that it could be extendable by inclusion of bespoke segmentation methods, while maintaining its

main purpose of being a standard testing platform for newly developed PET-AS methods. An exam-

ple of implementation of the proposed framework, named PETASset, was built. In this work, a selec-

tion of PET-AS methods representing common approaches to PET image segmentation was

evaluated within PETASset for the purpose of testing and demonstrating the capabilities of the soft-

ware as a benchmark platform.

Results: A selection of clinical, physical, and simulated phantom data, including “best estimates” ref-

erence contours from macroscopic specimens, simulation template, and CT scans was built into the

PETASset application database. Specific metrics such as Dice Similarity Coefficient (DSC), Positive

Predictive Value (PPV), and Sensitivity (S), were included to allow the user to compare the results of

any given PET-AS algorithm to the reference contours. In addition, a tool to generate structured

reports on the evaluation of the performance of PET-AS algorithms against the reference contours

was built. The variation of the metric agreement values with the reference contours across the PET-

AS methods evaluated for demonstration were between 0.51 and 0.83, 0.44 and 0.86, and 0.61 and

1.00 for DSC, PPV, and the S metric, respectively. Examples of agreement limits were provided to

show how the software could be used to evaluate a new algorithm against the existing state-of-the art.

Conclusions: PETASset provides a platform that allows standardizing the evaluation and compar-

ison of different PET-AS methods on a wide range of PET datasets. The developed platform will be

available to users willing to evaluate their PET-AS methods and contribute with more evaluation data-

sets. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of Ameri-

can Association of Physicists in Medicine. [https://doi.org/10.1002/mp.12312]

Key words: conformity index, outlining assessment, PET/CT, PET segmentation

TABLE OF CONTENTS

1. INTRODUCTION

2. MATERIALS AND METHODS

2.A. Usability and accessibility

2.B. Application areas

2.C. Performance criteria

2.D. Recommendation for standard requirements

2.E. Evaluation of the benchmark

3. RESULTS

3.A. Data

3.A.1. Datasets

3.A.2. Reference contours

3.B. Workflow and analysis

3.C. Code

3.C.1. Segmentation

3.C.2. Analysis

Level I

Level II

3.C.3. Report

Local Report

Global Report

3.C.4. 3D PET simulator

3.D. Evaluation of the implementation

4. DISCUSSION

4.A. Design and implementation

4.B. Future work

5. CONCLUSIONS

REFERENCES

List of abbreviations

AAPM American Association of Physicists in

Medicine

AL Agreement Limits

AT Adaptive thresholding

BRENPHN Brest Numerical Phantom H&N data

BRENPLU Brest Numerical Phantom Lung data

CERR Computational Environment for Radiotherapy

Research

CT Computed Tomography

DICOM Digital Imaging for COmmunications in

Medicine

DICOM-RT DICOM extension to RadioTherapy

RTSTRUCT DICOM-RT structure data set

DSC Dice Similarity Coefficient

DUV Delineation Uncertainty Volume

FBP Filtered Back-Projection

FLAB Fuzzy Locally Adaptive Bayesian statistical

segmentation method

FT40 Fixed Thresholding at 40% maximum

intensity

FT42 Fixed Thresholding at 40% maximum

intensity

FT50 Fixed Thresholding at 50% maximum

intensity

GATE Geant4 Application for Tomographic Emission

GATE SIM GATE Simulation

GCM Gaussian Clustering Model

GMM Gaussian Mixture Model clustering

GTV Gross Tumor Volume

GUI Graphical User Interface

HD Hausdorff Distance
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H&N Head and Neck

KM K-means clustering

MILPPAB Milan Physical Phantom Abdominal data

MRI Magnetic Resonance Imaging

OSEM Ordered Subset Expectation Maximization

PET Positron Emission Tomography

PET-AS PET-Automatic Segmentation

PETASset PET-AS Suite of Evaluation Tools

PETSTEP PET Simulator of Tracers via Emission

Projection

PPV Positive Predictive Value

PSF Point Spread Function

RC Reference Contour

RG Region-growing

DP Discriminative Power

SBR Signal to Background Ratio thresholding

SD Standard Deviation

SUV Standardized Uptake Value

TG211 Task Group 211 of the AAPM

UCLPTLU UCL patient Lung data

UCLPTHN UCL patient H&N data

VOI Volume Of Interest

WC Watershed-based Clustering

WT Watershed

1. INTRODUCTION

Positron emission tomography (PET) shows great

potential for improving outcomes in cancer patients.1 This

functional imaging modality provides information that can be

used for a variety of clinical applications including patient

staging and prognosis, radiation therapy planning, therapy

monitoring, and the detection/prediction of recurrences or

metastatic disease.2–5 For all these purposes, accurate delin-

eation of the functional tumor volume in PET is of great

importance, and the need for reliable PET-auto-segmentation

(PET-AS) methods has been widely expressed. However,

despite the abundance of developed approaches, there is cur-

rently no established agreement on the most reliable tech-

nique for routine clinical PET-AS use. In addition, there are

currently no universally established protocols or benchmarks

for comparative performance evaluation of such PET-AS

methods for clinical use.

In this context, the report of the American Association of

Physicists in Medicine (AAPM) Task Group 211 (TG211)6

found that the selection of a single method among those

available is a challenging task considering the large number

of published PET-AS algorithms and the variability of

methodological approaches and their associated level of vali-

dation. The task group acknowledged the need for developing

a standard evaluation framework (benchmark) designed for

the assessment of both existing and future PET-AS algo-

rithms. The report also pointed out that the value of a bench-

mark would rely heavily on the choice of testing data, as well

as on the associated performance evaluation metrics.

In this work, we describe the requirements for the design

and implementation of such benchmark and report on the

PET-AS Suite of Evaluation Tools (PETASset) package which

was developed in line with the recommendations of TG211.

2. MATERIALS AND METHODS

In this section, we propose recommendations for standard

features of the benchmark. These can be grouped according

to (a) usability and accessibility, (b) application areas, and (c)

performance criteria.

2.A. Usability and accessibility

In order for a standard to be usable, it is essential that the

software is easy to use and quick to learn, although it is safe

to assume some level of prior knowledge in the field (e.g.,

PET image analysis and segmentation) from the users. In par-

ticular, the user interface is required to be intuitive and

accompanied by comprehensive documentation to guide the

user through common useful cases or specific tasks. In addi-

tion, the software is required to be accessible to the public

and understandable by the targeted user-base. It may be desir-

able also that the design allows the software to be further

extended and used for other applications in the future.

2.B. Application areas

The areas of application of the benchmark relate to the

field of oncology. Image types are expected to reflect the

state-of-the-art in diagnostic imaging and treatment manage-

ment and to adopt the most recent digitized histopathology

methods and bespoke phantoms. The benchmark should be

easily extendable to satisfy the needs of more application

areas according to the availability of new data and new tech-

nology. The types of Volumes of Interest (VOI) included in a

standardized evaluation protocol should at a minimum

include disease sites established for using PET in radiother-

apy treatment planning.

Best estimates of reference contours (RC) may originate

from various sources depending on the image type included

in the dataset. We distinguish between the following types of

RC:

(i) Absolute truth: only available for simulated images.

(ii) Single ‘best’ estimates: surrogate of truth provided

for physical phantom images and in the special case

of patient images for which histopathology data are

available. In physical phantom images, the optimal

threshold in simultaneous CT images provides a

uniquely best estimate but cannot be considered the

absolute truth because of threshold uncertainty aris-

ing from partial volume effects and potential

misalignments between PET and CT datasets. The

accuracy of RC data for patient scans provided by

pathology examination of excised lesions is limited

due to specimen deformation during processing and

Medical Physics, 44 (8), August 2017

4100 Berthon et al.: Standard evaluation of PET-AS methods 4100



possible metabolic changes between the time of scan

and the time of excision.7

(iii) Multiple equally ‘best’ estimates: they can be pro-

vided in the form of consensus manual expert delin-

eations when no single delineation can be considered

to be the best.

2.C. Performance criteria

This section describes the outputs expected from a bench-

mark in terms of both segmentation results and subsequent anal-

ysis using quantitative metrics extracted from the images. The

benchmark is required to evaluate the agreement of PET-AS

results with the best available ‘truth’ estimate, as well as their

robustness and the clinical implications of segmentation inaccu-

racies. The term ‘agreement’ relates to both volumetric and geo-

metric properties. This is in line with the end-points defined in

the TG211 report, which includes “the spatial distribution of the

tracer obtained from the PET image after correcting for physical

artifacts” (cf. Ref. [6], section 4.A). Performance criteria for seg-

mentation methods can include:6,8

(i) Accuracy: ability to recover the true tumor contour

(ii) Reproducibility: ability to provide the same result

when used multiple times on the same image

(iii) Efficiency: ability to minimize computational com-

plexity and workflow

(iv) Robustness: ability to provide similar results under

varying acquisition and image reconstruction

conditions

In the case of PET-AS methods that rely on a pure auto-

matic approach without user intervention, the reproducibility

is expected to be 100%, and the efficiency including human

and computational resources required for the segmentation is

expected to be high due to the automatic process. Hence, it is

suggested that the benchmark evaluation tools should focus

on accuracy and robustness of the PET-AS methods. Follow-

ing these requirements, the accuracy metrics to be included

in the benchmark are grouped into three categories, corre-

sponding to increasing degrees of complexity:

• Level I: metrics that assess the agreement in terms of

volumetric properties such as the number of voxels in

the VOI and the statistics of PET signal integrated over

that volume

• Level II: metrics that quantify the geometric agreement

including spatial matching between a particular PET-

AS contour and the RC

• Level III: metrics that evaluate the clinical relevance of

the disagreement between PET-AS contours and RCs.

These metrics describe the “knock-on” effect that seg-

mentation inaccuracy has on parameters used in treat-

ment selection and planning and, in the case of external-

beam radiotherapy, dose delivery. This functionality is

expected to ultimately be related to treatment outcome

and is not implemented in the first release of this bench-

mark.

The robustness metrics should include, as suggested by

Hatt et al.,9 the analysis of the sensitivity to the following

variations:

(i) across datasets, governed by differences in anatomy

and physiology as reflected by the image characteris-

tics,

(ii) within a dataset, resulting from natural differences in

gross tumor volume shape/size between different

patients, and

(iii) within an image, according to differences in image

reconstruction and noise levels across different real-

izations of that image.

2.D. Recommendation for standard requirements

The following components and functionalities are desir-

able for the benchmark software:

A1: Open access to the software and functionalities that are

understandable by both developers and users of the segmen-

tation methods.

A2: Collection of datasets representing the clinical applica-

tions requiring validation of PET-AS methods.

A3: Carefully selected images and RCs checked to only

include cases that can provide meaningful metric values.

A4: Capability to allow future extensions by adding new

datasets.

A5: Implementation of PET-AS methods representing the

current state-of-the-art, as described in ref. 6.

A6: Capability to facilitate the addition of an algorithm that

is developed outside the application’s framework and that

can be used to segment images and produce contours in a

format compatible with the benchmark analysis routines.

A7: Metrics to quantify the agreement between PET-AS vol-

umes and RCs and to evaluate the clinical implications of

segmentation inaccuracies.

A8: Functionalities allowing the evaluation of robustness of

PET-AS methods.

A9: Ability to directly compare the accuracy of the segmen-

tation of:

(i) the same image using different PET-AS methods

(ii) different images using the same PET-AS method.

2.E. Evaluation of the benchmark

The evaluation of the benchmark aims at addressing the

following question: how good are the chosen datasets and

metrics at quantifying and comparing the performance of

PET-AS methods? The implicit hypothesis is that the collec-

tion of images and metrics provided with the benchmark is

appropriate and allows comparing PET-AS methods with

enough accuracy and precision to distinguish between the

methods and identify their specific strengths and weaknesses.
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To validate this hypothesis, we need to test both the Dis-

criminative power (DP) and specificity of the benchmark for

differentiating PET-AS methods. DP, which here relates to the

ability to distinguish between two PET-AS methods that are

close in performance, can be tested by evaluating the range of

variation of the performance metrics across the range of PET-

AS methods and images. Specificity, defined here as the abil-

ity of the software to detect changes in performance that are

linked to the difficulty of the segmentation, can be tested by

comparing reference contours with a modified version of

these contours which were prepared to be less accurate.

3. RESULTS

This section summarizes the approach taken to implement

the standard with the PETASset software while satisfying

aims A1 – A9 and the recommendations given in Section 2.

The PETASset code was written in the Matlab language (The

Mathworks Inc, Natick, USA), including the Image Process-

ing Toolbox. PETASset was implemented as a plugin to the

Computational Environment for Radiotherapy Research

(CERR) software.10 This enabled using CERR’s capabilities

for handling and displaying Digital Imaging and Communi-

cations in Medicine (DICOM) data, as well as dealing with

Radiotherapy Treatment (DICOM-RT) data.

PETASset reference data are stored and distributed in a

Matlab structure saved in the CERR file format, and are com-

patible with all the tools available in CERR. This format is

also readable by any other Matlab-based application. An

application programming interface that can be used to read

Matlab formatted data in external environments is also avail-

able and is described elsewhere.† PETASset is freely dis-

tributed along with CERR, for which user documentation is

easily accessible,‡ in line with A1.

The folder structure of the PETASset package and a short

description of its content are given in Fig. 1. A detailed

description of PETASset’s content and functionalities is

given in the following section.

3.A. Data

3.A.1. Datasets

With reference to Fig. 1, the “Data” folder contains the

image datasets (cases) distributed with PETASset. These are

provided in compressed CERR file format. The cases include

phantom and patient scans for three anatomical sites: H&N,

lung, and pelvis. Reference contours were generated using (a)

histopathology specimen, (b) simulation templates, or (c)

another imaging modality (e.g., CT). The reference contours

are considered to be the best estimate of RCs for the cases

provided with PETASset. A total of 66 PET studies with RCs

from four different research centers are currently included in

the PETASset database.

The cases included in each dataset are reported in Table I

and described in more details below:

• UCLPTLU11: 10 clinical PET/CT lung cases, with two

PET scans corresponding to different spatial sampling,

i.e., different voxel sizes.

• UCLPTHN12: seven clinical PET/CT H&N cases.

• MILPPAB13: 11 cases corresponding to successive

acquisitions of the same physical body phantom.

• BRENPLU14: two simulated PET lung study generated

with the GATE simulation toolkit.15

• BRENPHN14: six simulated PET H&N cases generated

with the GATE simulation toolkit.

• SIM16: a total of 30 simulated PET scans, 10 for each of

the sites: pelvis (SIMPTAB), lung (SIMPTLU), and

H&N (SIMPTHN). Each dataset contains two recon-

structions using the Ordered Subset Expectation Maxi-

mization (OSEM) algorithms and OSEM + point spread

FIG. 1. PETASset package structure and content.

†Mathworks homepage https://www.mathworks.com/help/matlab/

programming-interfaces-for-c-c-fortran-com.html
‡CERR homepage http://www.cerr.info
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function (PSF) correction, for five different simulated

structures with different geometry and location. These

data were generated with the PET Simulator tool

described in III.C.4.

The cases were chosen in line with requirement A2, with

the inclusion of both clinical PET/CT used in state-of-the art

treatment management and state-of-the-art phantom data.

According to requirement A8, this set of cases was selected

to allow testing the robustness of the different PET-AS meth-

ods included in PETASset to:

(i) different reconstruction parameters for the same

patient/phantom (UCLPTLU, SIM)

(ii) different acquisitions, with different Signal to Noise

Ratio, of the same physical phantom (MILPPAB)

(iii) different instances of simulated VOIs, generated

according to the selection of different parameters

controlling the image reconstruction process

(BRENPHN).

(iv) different VOI geometries and locations for the same

underlying normal PETuptake (SIM).

The target volumes were chosen in line with requirement

A2, with a focus on lung and H&N cancer. Cutting-edge

histopathology and tissue heterogeneity data, modeled in the

simulated datasets (BRENPLU, BRENPHN, SIM) were also

included.

3.A.2. Reference contours

In PETASset RCs are hidden from the user and are only

used for evaluation purposes.

With reference to Table I, the RCs included in the current

version of PETASset are

• UCLPTHN: 1 RC per series. The contour was derived

from the macroscopic specimen obtained after surgery,

digitized on a flatbed scanner and registered to the CT

scan.11

• UCLPTLU: 1 RC per series. The contour was derived

from the macroscopic specimen obtained after surgery,

digitized on a flatbed scanner and registered to the CT

scan. The same RC is used for both reconstruction

types.12

• MILPPAB: 1 RC per series, for 11 different zeolite

tumor models positioned in various regions of the phys-

ical phantom and six different acquisition instances.

Reference contours were derived from thresholding on

the corresponding CT, iteratively adapted to fit the

known volume.13

• BRENPLU and BRENPHN: 1 RC per series, encom-

passing the whole tumor even in case of heterogeneous

uptake. These contours correspond to the tumors

defined in the original simulation map.14

• SIM data: 1 RC contour per series, extracted from the

original simulation PET uptake map.16

TABLE I. PETASset benchmark datasets.

Dataset Reference Center Data type

Anatomical

region

Number

of studies

Number

of series/study

Number

of structures/

series

Reference

contour CT data Additional features

UCLPTLU Wanet et al.11 Universit�e

catholique

de Louvain

Patient Lung 10 2 1 Specimen Yes 2 voxel sizes/PET

scan

UCLPTHN Daisne et al.12 Patient H&N 7 1 1 Specimen No –

MILPPAB Zito et al.13 Fondazione

IRCCS

Ca’ Granda

Ospedale

Maggiore

Policlinico

Phantom Lung &

Pelvis

11 6 1 CT No Different

acquisition

instances

BRENPHN Hatt et al.14 LaTIM,

INSERM

Phantom H&N 6 1 1 Simulation No Heterogeneous

(2 RC contours)

BRENPLU Phantom Lung 2 1 1 Simulation No Heterogeneous

(2 RC contours)

SIMPTLU Berthon et al.16 MSKCC/

Cardiff

University

Patient Lung 10 5 1 Simulation No 5 RC geometries/

2 reconstructions/

5 acquisition

instances

SIMPTHN Patient H&N 10 5 1 Simulation No 5 RC geometries/

2 reconstructions/

5 acquisition

instances

SIMPTAB Patient Pelvis 10 5 1 Simulation No 5 RC geometries/

2 reconstructions/

5 acquisition

instances
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Figure 2 shows examples of the PET images available in

PETASset including the associated RCs.

3.B. Workflow and analysis

The workflow implemented in PETASset is shown in

Fig. 3 and includes:

(i) Image and VOI visualization

(ii) Image segmentation

(iii) Data analysis and evaluation of performance metrics

(iv) Structured reporting

The input to PETASset is a set of contours the accuracy of

which has to be evaluated. The contours can be generated

using the (a) default PET-AS methods provided with PETAS-

set, (b) the segmentation module available in CERR or (c)

custom Matlab code (cf. Fig. 1).

A number of different analyses can be carried out in

PETASset as shown in Fig. 4. Depending on the used

dataset and evaluation metric, a given PET-AS method

can be tested in terms of absolute accuracy and/or in

terms of robustness to a specific reconstruction parameter.

For instance, testing a PET-AS method on UCLPTLU

data with Level I and II metrics provides a quantitative

measure of its performance on clinical lung tumor data.

In addition, the robustness of a PET-AS method to differ-

ent image acquisitions of the same subject can be

assessed using the MILPABB dataset as the standard

deviation of results obtained for the same lesions over

the different acquisition instances available.

All evaluation strategies, represented by Level I-II metrics,

operate on three types of data:

• PET image

• User-generated contours

• Reference contour

It is worth noting that in PETASset all RCs and PET-AS

contours in each study are defined in the same frame of refer-

ence and in the same co-ordinate grid as the image space and

resolution of the PET data are used. The evaluation strategies

implemented in PETASset are described in Section 3.C.2.

3.C. Code

With reference to Fig. 1, the PETASset code system is

saved in the “Code” folder. All the code files (or functions),

(a) (b)

(c) (d)

(f) (g)

(e)

FIG. 2. Examples of PET images and RCs available in PETASset. (a) and (b) UCLPTLU, same lesion with different image resolution; (c) BRENPHN; (d) MILP-

PAB; (e) UCLPTHN; (f) SIMPTAB; (g) SIMPTHN (cf. Table I). [Color figure can be viewed at wileyonlinelibrary.com]
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written in the Matlab language, are accessible from the

PETASset drop-down menu and are separated into three cate-

gories (a) Segmentation, (b) Analysis, and (c) Report

described in detail in the next sections.

3.C.1. Segmentation

The functions in the Segmentation category are used by

the PETASset segmentation tool to segment images and gen-

erate contours. The PETASset segmentation tool is accessible

through a Graphical User Interface (GUI) which allows visu-

alization and segmentation of the current PET scan. Once the

PET scan is selected, PETASset automatically displays axial,

sagittal, and coronal views of the volume on which the RC is

defined. The segmentation algorithm can be then chosen

from a drop-down list. The list includes the PET-AS methods

provided by default with the PETASset package plus any

additional custom algorithm implemented by the user. The

result of the image segmentation can be displayed and saved

together with the information on algorithm and parameters

used. The PET-AS segmentation methods implemented by

default in PETASset include:

• fixed threshold (percentage of maximum)

• fixed threshold (absolute threshold)

• region growing

• statistical clustering

The methods were selected from common thresholding

and advanced methods as defined by Hatt et al.6 (sections

2.B.1 and 2.B.2). It is worth noting that custom segmentation

methods coded in the Matlab language can also be used as

FIG. 4. Analysis workflows implemented in PETASset.

FIG. 3. PETASset workflow for a given study, RC and PET-AS method. [Color figure can be viewed at wileyonlinelibrary.com]
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well as any manual or threshold methods implemented in the

current version of CERR or indeed any third-party PET-AS

method that supports file export to the DICOM RTSTRUCT

format.

3.C.2. Analysis

The functions in the Analysis category implement metrics

used for the evaluation of the agreement between PET-AS-

generated contours and the RC. The code files are grouped in

two folders: Levels I and Level II, which correspond to differ-

ent metrics that can be launched independently from the

PETASset menu. The PETASset analysis tool is also accessi-

ble through a GUI that allows the user to select the PET-AS

contours and the metrics to use in the study. The results of

the analysis are automatically saved to file and can also be

shown in tabular format. Level I and II metrics are described

in the next sections.

Level I: Level I metrics are used to provide basic and

essential information on the delineated VOI. The metrics

include:

• Volume

• Mean uptake value

• Maximum uptake value

• Centre of mass

Each Level I metric can be used to quantify the deviation

between the PET-AS and the RC. Uptake statistics and

absolute volume are scalar quantities and the deviation from

the reference value is given by the signed fractional differ-

ence. The center of mass is a vector quantity and the devia-

tion from the reference value is given by the Euclidean

distance between PET-AS and centers of mass of the RC. If

we denote with A and B, the set of voxels delimited by the

RC and by the PET-AS contours respectively, we can define

the following errors for Level I metrics:

where j j and k k represent set cardinality and the Eucli-

dean norm, respectively.

Level II: Level II metrics are used to quantify the similar-

ity between the PET-AS and the RC. This similarity can be

expressed in terms of geometrical properties and spatial over-

lap. The following metrics were implemented in PETASset:6

• Dice Similarity Coefficient (DSC)

DSC ðA;BÞ ¼
2� jA \ Bj

jAj þ jBj
; range ½0; 1� (5)

• Sensitivity (S)

S ¼
jA \ Bj

jAj
; range ½0; 1� (6)

• Positive Predictive Value (PPV)

PPV ¼
jA \ Bj

jBj
; range ½0; 1� (7)

• Modified Hausdorff Distance (HD)17

HD ¼ max
1

NA

X

i
minjkai � bjk;

1

NB

X

i
minjkbi � ajk

� �

;

range ½0;þ1Þ

(8)

• Delineation Uncertainty Volume (DUV)

DUV ¼ ðjA [ BjÞ � ðjA \ BjÞ; range ½0;þ1Þ (9)

where A and B are the set of voxels delimited by the RC

and by the PET-AS contours respectively, | | represent set

cardinality, and ka� bk is the Euclidean distance of point

a on the RC to point b on the PET-AS contour. The range

of values that can be achieved is indicated for each metric.

The metric in Eq. 8 is a variant of the Hausdorff distance

(averages replaces the maximum). This formulation was

implemented in PETASset following the results of

Dubuisson et al.17 showing its superiority compared to the

original algorithm in quantifying the similarity between

two contours. The DUV in Eq. 9 is the cardinality of the

volume between the reference and test surfaces. From

DUV, one can derive the average delineation uncertainty

in voxels (or cm knowing the voxel dimensions) as the

average thickness of this volume.

An example of Level II analysis performed on a single

study (1 RC) of the UCLPTLU dataset is given in

� error in volume ¼
ðjBj � jAjÞ

jAj
� 100 ð%Þ (1)

� error in mean uptake ¼
ðmean uptake ðBÞ � mean uptake ðAÞÞ

mean uptake ðAÞ
� 100 ð%Þ (2)

� error in maximum uptake ¼
ðmaximum uptake ðBÞ � maximum uptake ðAÞÞ

maximum uptake ðAÞ
� 100 ð%Þ (3)

� error in center of mass ¼ kcenter of mass ðBÞ � center of mass ðAÞk (4)
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Table II for metrics DSC, S, PPV, and HD. The PET-AS

methods were: Watershed-based clustering (WC), Signal to

Background Ratio (SBR) thresholding method as described

by Geets et al.18 and fixed thresholding with 40% and

50% of the maximum tumor intensity (FT40 and FT50

respectively). In this case, the RC was extracted from a

digitized macroscopic specimen (cf. UCLPTLU in

Table I). Values obtained for the RC correspond to the

best metric value achievable.

3.C.3. Report

The functions in the Report category are used by the

reporting tool to produce structured reports that summarize

the results of the PETASset analysis. PETASset supports two

types of report: “Local” and “Global”. Both reports can be

generated through dedicated GUIs. PETASset report supports

different output formats (html, pdf, or doc document), which

can also be selected by the user. Both reports are described in

more detail in the following paragraphs.

Local Report: The Local Report is designed to summa-

rize the performance of PET-AS methods for a single study

and a selection of metrics. The structured report contains the

following sections:

(i) PETASset analysis details:

• Name of the image file corresponding to the selected

study

• List of PET-AS contours selected

• List of metrics used in the analysis

(ii) Level I analysis:

• Table of Level I metric values for the selected PET-

AS contours

• Graphs of the values obtained across PET-AS con-

tours for each metric

(iii) Level II analysis:

• Table of Level II metric values for the selected PET-

AS contours

• Graphs of the values obtained across PET-AS con-

tours for each metric

Global Report: The Global Report is designed to include

the performance of PET-AS methods across several cases. It

allows one or more PET-AS methods to be evaluated and

ranked using different performance metrics across the whole

benchmark dataset. The Global Report also provides addi-

tional statistics data such as the mean and standard deviation

of metric values, for each dataset across all the selected cases.

It can also be used for longitudinal studies.

The structure of the Local and Global Reports is the same,

except for one additional section which contains the follow-

ing items:

(i) A table reporting the mean and standard deviation of

each metric value across the selected PET-AS con-

tours

(ii) A table containing mean metric values across cases

within each dataset separately

(iii) Graphs showing the mean and standard deviation

of each metric value across cases within the differ-

ent datasets grouped by data type (clinical, non-

clinical) and tumor site.

3.C.4. 3D PET simulator

The 3D PET simulator PETSTEP§,16 was also imple-

mented in PETASset. With PETSTEP synthetic 3D PET

scans can be generated using the PET or CT data provided

with PETASset. Tumors of any shape, maximum SUV, and

tracer uptake distribution can be added to the original PET or

CT image. Different scanner and reconstruction parameters

can also be set by the user. Currently implemented recon-

struction techniques include Filtered Back-Projection (FBP),

and OSEM algorithms with or without Point Spread Function

(PSF) modeling.19 The PETSTEP functionalities allow users

to generate reference PET and RC data that can be used to test

and optimize their own segmentation methods and/or to test

the robustness of PET-AS methods to a particular image

parameter, reconstruction setting, or acquisition instance.

3.D. Evaluation of the implementation

In line with the evaluation objectives defined in sec-

tion 2.E, we assessed the DP of PETASset to distinguish

eight PET-AS methods including:

• FT42: fixed threshold of 42% maximum intensity

• FLAB: fuzzy locally adaptive Bayesian statistical seg-

mentation method20

• GMM: Gaussian Mixture Model clustering21

• AT: Adaptive thresholding22

• RG: Region-growing22

• KM: K-means clustering22

• GCM: Gaussian Clustering Model22

• WT: Watershed22

TABLE II. Example of Level II analysis using RC data from a single series in

the UCLPTLU dataset and different PET-AS methods.

Method DSC S PPV HD (cm)

RC 1 1 1 0

WC 0.778 0.754 0.804 0.250

SBR 0.642 0.511 0.864 0.318

FT40 0.652 0.525 0.861 0.318

FT50 0.469 0.315 0.920 0.378

§PETSTEP is available for download from: https://github.com/

CRossSchmidtlein/PETSTEP

Medical Physics, 44 (8), August 2017

4107 Berthon et al.: Standard evaluation of PET-AS methods 4107

https://github.com/CRossSchmidtlein/PETSTEP
https://github.com/CRossSchmidtlein/PETSTEP


Contours were obtained outside PETASset for the meth-

ods not implemented in the software, such as FLAB and

GMM.

Level I and Level II analyses were carried out using the

PETASset functionalities described in Section 3.C.2.

Table III reports the average Level I and Level II metric val-

ues calculated across all RCs with associated standard devia-

tion. The median and standard deviation across all methods is

also reported at the bottom of the table, together with the

range. The standard deviation (SD) of Level I metrics across

PET-AS methods, given with the median value in Table III,

ranged between 40% (absolute error in volume) and 94% (er-

ror in maximum SUV value) of the median value, corre-

sponding to values of 17 and 1.6, respectively. For level II

metrics, SDs ranged between 8.4% (PPV) and 20% (S) of the

median value, corresponding to values of 0.07 and 0.13,

respectively.

PETASset can also provide, for each metric, Agreement

Limits (ALs) to indicate the range of values that can be

expected by a new segmentation method compared to the per-

formance of existing PET-AS methods already evaluated with

PETASset. ALs for example could be defined as the mini-

mum and maximum values of a range corresponding to one

standard deviation centered on the median value (Table III)

or by confidence limits as determined from future research. It

is worth noting that for metrics such as DSC, S, and PPV that

provide a finite measure of agreement, the upper limit of the

AL should be set to the maximum achievable value.

The specificity analysis was carried out by modifying the

PETASset RCs to introduce known inaccuracies, on one of

the UCLPTHN series. The following test contours were gen-

erated to represent typical segmentation errors due to under-

contouring, over-contouring and different contour shape:

(i) isotropic shrinkage of 0.5 cm (RC – 0.5 cm)

(ii) isotropic expansion of x = 0.25, 0.35, 0.45, 0.5,

1.0 cm (RC + x cm)

(iii) iso-volumetric erosion/dilation (the RC was eroded

and dilated locally to modify its geometry while

maintaining the same volume)

where expansions of 0.5 and 1.0 cm were used to model

“moderate” and “large” over-contouring, respectively. All

modified contours were compared to the RC in terms of volu-

metric error, error in mean, DSC, S, PPV, and HD. The

results of this analysis are given in Fig. 5.

Results of the specificity analysis on Fig. 5 provide clear

rankings of the different contours for the different metrics

considered. In terms of the error in volume for example, the

smallest error is obtained for RC eroded, which was designed

to have a volume very close to the RC. The largest error is

obtained by RC + 1 cm, which is also visually the contour

the most different from RC. The sign of the error in volume

also provides information on the type of segmentation error

(over-segmentation or under-segmentation). Because the met-

rics chosen provide complementary information, the respec-

tive rankings are different.

The variations observed across methods and test cases are

considered large enough to conclude that PETASset provides

informative results for the comparison of PET-AS methods,

thereby validating the discriminative power of PETASset. In

addition, PETASset is able to accurately and clearly rank con-

tours with known and different inaccuracies, for example

small variations in volume, which validates its specificity. It

should be noted, however, that the specificity will be limited

by the accuracy of the volume contour definition in CERR.

Furthermore, the specificity, as described here, will vary with

the RC size: larger RCs are expected to lead to smaller differ-

ences between metric values when testing volumes of similar

known volume error.

The results given in Table III are an illustration of how

ALs could be defined, based on the hypothesis that datasets

and PET-AS methods implemented in PETASset are repre-

sentative of the current state-of-the art. In this example, with

reference to Table III, a PET-AS method would be within the

ALs for the volumetric error if its absolute mean error in vol-

ume across the PETASset VOIs was lower than 59% of the

true volume. It would be within the ALs for the DSC, if its

mean DSC across the PETASset was between 0.62 and 1.

However, the ALs provided in this work should not be used

in practice as they were provided only as an illustration of the

TABLE III. Average Level I and Level II metric values calculated across the entire PETASset dataset and associated standard deviation.

Method

Level I Absolute metric error (% RC) Level II

Volume Max SUV Mean SUV DSC S PPV HD (cm)

FLAB 27 � 15 3.0 � 12 6.3 � 11 0.74 � 0.07 0.69 � 0.09 0.82 � 0.09 0.25 � 0.16

GMM 21 � 25 5.0 � 11 0.21 � 10 0.76 � 0.08 0.77 � 0.08 0.78 � 0.09 0.17 � 0.12

FT50 60 � 37 0.89 � 11 3.7 � 35 0.53 � 0.08 0.43 � 0.11 0.91 � 0.10 0.30 � 0.08

FT42 61 � 70 0.36 � 9.8 15 � 20 0.64 � 0.07 0.56 � 0.09 0.88 � 0.09 0.24 � 0.08

RG 42 � 21 0.18 � 12 11 � 18 0.68 � 0.07 0.62 � 0.10 0.85 � 0.11 0.23 � 0.10

KM 70 � 163 2.7 � 11 11 � 58 0.73 � 0.10 0.85 � 0.05 0.69 � 0.13 0.27 � 0.20

GCM 39 � 13 0.98 � 9.6 9.0 � 17 0.70 � 0.06 0.65 � 0.09 0.83 � 0.09 0.19 � 0.05

WT 42 � 26 2.5 � 11 3.3 � 18 0.67 � 0.07 0.63 � 0.11 0.79 � 0.10 0.22 � 0.08

Range 21/70 0.18/5.00 0.21/15 0.53/0.76 0.43/0.85 0.69/0.91 0.17/0.30

Median (SD) 42 (� 17) 1.7 (� 1.6) 7.7 (� 4.9) 0.69 (� 0.07) 0.64 (� 0.13) 0.83 (� 0.07) 0.24 (� 0.04)

Agreement limits (example) (0,59) (0,3.3) (0,12.6) (0.62,1) (0.51,1) (0.76,1) (0,0.28)
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PETASset’s capabilities. Further investigation is needed to

systematically assess clinically relevant and acceptable ALs

for the metrics considered in this study.

4. DISCUSSION

4.A. Design and implementation

PETASset was designed and built following AAPM

TG211 report which identified the need for developing a stan-

dard evaluation framework designed for the assessment of

both existing and future PET-AS algorithms including those

derived from supervised machine learning methods.6,23,24

Figure 4 shows the workflows available in PETASset and the

large range of information that can be extracted from the cur-

rent version of the benchmark. It is important to note that,

although a number of datasets and evaluation metrics are

included, PETASset is not required, and therefore not

designed, to evaluate each PET-AS method on all datasets

using all metrics. Such a requirement is unrealistic due to dif-

ferent assumptions made about the datasets by different PET-

AS methods and metrics. For example, a PET-AS method

may operate on hybrid data, which assumes the availability of

both PET and CT datasets. This assumption may hold for a

patient dataset but not for numerical or physical phantoms.

The imaging and RC data available in the current version of

PETASset are intended to represent the state-of-the-art and

have been assembled with the contribution of leading clinical

and research institutions in the field. The PETASset datasets

include RCs for homogeneous (physical and numerical phan-

toms) as well as heterogeneous tracer uptake (numerical

phantom and clinical data). However, we emphasize that in

order to be meaningful, the comparison of PET-AS methods

developed with the same goal should be performed on the

same datasets and according to the same metrics.

We therefore recommend that the overall performance of a

PET-AS method is evaluated on all the PET-ASset data appli-

cable, for a given segmentation method. This can be done via

the automated analysis tool embedded in the software, which

can select the analysis to be carried out according to the seg-

mentation type. For more specific tests, such as robustness to

a particular image reconstruction method, users can follow

the process shown in Fig. 4.

The design of PETASset allows users to evaluate segmen-

tation methods themselves. This can be done either by

importing segmentation contours produced externally, or by

adding a segmentation tool to the benchmark software.

Level II analysis data are the primary output of PETASset

since they are easy to interpret and compare between PET-AS

methods and since spatial accuracy is a main concern. Level I

metrics provide essential information which put Level II results

into context and allow users to make additional considerations

regarding the relevance of the observed contouring errors.

PETASset can provide ALs for all evaluation metrics included

in the package. This can be used to compare the performance of

new and well established PET-AS methods. The quality and use-

fulness of these ALs will depend on the quality of data available

in PETASset, which will need to be regularly updated. It should

be noted that the ALs provided in this document are not recom-

mended for the evaluation of new PET-AS, since they were

derived using a small number of PET-AS methods and a limited

set of images. Further work is needed to produce task-dependent

and reliable ALs for PET image segmentation.

The RC is hidden via encryption in PETASset when the

software is distributed to the user. Even then, there is a risk

that users optimize their segmentation method blindly to

increase the accuracy score of certain algorithms. This opti-

mization may lead to the development of tools that may not

perform well outside the package. This risk could be limited

by restricting in PETASset the recording of results and the

generation of reports to the PET-AS methods that are tested

on all datasets and considering all metrics. Increasing number

and diversity of reference images and contours will also help

reducing this risk.

Constant improvement and maintenance of the PETASset

is needed in order to deal with these challenges.

4.B. Future work

The current version of PETASset is a research tool that

can be reliably used to evaluate the performance of PET-AS

methods against reference RC data. The following additional

FIG. 5. Specificity analysis for the UCLPTHN test case. (a) RC: black, (b) ‘RC 0.5 cm’: yellow, (c) ‘RC + 0.5 cm’: green, (d) ‘RC + 1 cm’: red, and (e) ‘RC

eroded’: magenta. Other contours are not shown for the sake of clarity. [Color figure can be viewed at wileyonlinelibrary.com]
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functionalities are expected to enhance impact of PETASset

in clinical practice:

(i) Web access: provide web access to PETASset data,

tools and statistics including reports for selected data-

sets and segmentation methods.

(ii) Level III Analysis: design and implement metrics to

evaluate the clinical implications of contour accuracy

in radiotherapy treatment planning.25 It is envisaged

that Level III metrics will operate on reference dose

maps calculated using PETASset’s RC and dis-

tributed with the benchmark.

(iii) Reference data: the value of PETASset will be

enhanced by adding more test data including 4D

PET/CT scans and expert consensus VOIs.26 In

particular, including images with highly varying

degrees of tumor size, activity, contrast and resolu-

tion will enable thorough robustness studies in ful-

fillment of requirement A8. It is envisaged that

synthetic datasets generated with PETSTEP will

also help growing the PETASset database, in par-

ticular to include data specifically designed for

testing robustness to the partial volume effect.

(iv) Imaging modalities: PETASset should evolve to

include the next generation of auto-contouring meth-

ods that combine information from different imaging

modalities such as CT and MRI.

(v) Unified performance score: performance metrics are

specific and limited to only certain image or contour

parameters. PETASset could be used to combine

more metrics in a unified score reporting a single per-

formance value. This would be a desirable feature

and research toward such a metric is encouraged.

(vi) Knowledge-based PET segmentation: continuously

adding to the PETASset database standardized data

on the performance of different PET-AS methods will

enable us to start building models and ALs to use as

a baseline for the assessment of new PET-AS algo-

rithms and for the optimal segmentation of virtually

every type of PET image.

5. CONCLUSIONS

We presented the methodology followed to develop

PETASset, a benchmark dedicated to the standardized evalua-

tion of PET-AS methods. The benchmark provides a common

software platform and state-of-the-art reference data that will

be made publicly available. In line with recommendations of

AAPM TG211, PETASset addresses the need to provide a

framework for an internationally developed standard for the

evaluation of PET-auto-segmentation approaches.
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