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Abstract

The concept of identifying codes was introduced by Karpovsky, Chak-
rabarty and Levitin. These codes find their application, for example, in
sensor networks. The network is modelled by a graph. In this paper,
the goal is to find good identifying codes in a natural setting, that is,
in a graph Er = (V, E) where V = Z2 is the set of vertices and each
vertex (sensor) can check its neighbours within Euclidean distance r. We
also consider a graph closely connected to a well-studied king grid, which
provides optimal identifying codes for E√5 and E√13.

Keywords: Identifying code; optimal code; Euclidean distance; sensor network;
fault diagnosis

1 Introduction

Let G = (V,E) be a simple connected and undirected graph with V as the set
of vertices and E as the set of edges. A nonempty subset of V is called a code,
and its elements are called codewords. Let u and v be vertices of V . Then we
say that u covers v if the vertices u and v are adjacent, i.e. there exists an edge
between the vertices. The ball centered at u is defined as

B(G;u) = {u} ∪ {v ∈ V | u covers v}.

The ball B(G;u) can also be written in short as B(u) if the underlying graph
G is known from the context. For a subset U ⊆ V , we denote

B(U) = B(G;U) =
⋃

u∈U

B(G; u).

If U = {u1, u2, . . . , uk}, then we can also write B(G; U) = B(G; u1, u2, . . . , uk) =
B(u1, u2, . . . , uk).

Let C ⊆ V be a code and X be a subset of V . The size of the set X is
denoted by |X|. The I-set of X with respect to the code C is

I(X) = I(C;X) = I(G,C; X) = B(G; X) ∩ C.

Let also Y be a subset of V . The symmetric difference of X and Y is defined
as X4Y = (X \ Y ) ∪ (Y \X).

Definition 1.1. Let ` be a positive integer. A code C ⊆ V is said to be `-set-
identifying in G if for all X, Y ⊆ V such that |X| ≤ `, |Y | ≤ ` and X 6= Y we
have

I(X) 6= I(Y ).

If ` = 1, then we simply say that C is identifying.

In other words, a code C ⊆ V is `-set-identifying in G if and only if for all
X, Y ⊆ V such that |X| ≤ `, |Y | ≤ ` and X 6= Y we have

I(X)4 I(Y ) 6= ∅.

The `-set-identifying codes defined above are called (1,≤ `)-identifying codes in
the terminology of, for example, [12].
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Identifying codes were introduced in [15] for finding malfunctioning proces-
sors in a multiprocessor system. The topic forms an active field of research; see
the numerous articles in the web-page [17] with various aspects considered; for a
recent development we refer to [1, 7, 16]. Identifying codes find [18, 19] applica-
tions also in sensor networks. The network is modelled by a graph G = (V,E).
The sensors correspond to a code C (⊆ V ) and B(u) is the set of vertices which
the sensor u can check. The idea is that we determine the exact locations of
objects (like faulty processor) X ⊆ V using only the alarm signals (that is, the
set I(C; X)) obtained from the sensors of C — this can be done provided that
C is `-set-identifying and |X| ≤ `.

Assume now that the vertex set V is equal to Z2. Let then t be a positive
integer and u = (x, y) be a vertex in Z2. The graph St with the ball

B(St;u) = {(x′, y′) ∈ Z2 | |x− x′|+ |y − y′| ≤ t}

is called the square grid. The graph Kt with the ball

B(Kt;u) = {(x′, y′) ∈ Z2 | |x− x′| ≤ t, |y − y′| ≤ t}

is called the king grid. The graphs St and Kt are illustrated in Figure 1. The
`-set-identification in St and Kt have been studied, for example, in [4, 10, 13]
and [5, 8], respectively.

(0,0)

(a)

(0,0)

(b)

(0,0)

(c)

Figure 1: (a) The ball B(E√5; (0, 0)) and the code C2 (defined in Section 2.2)
illustrated. (b) The ball B(S3; (0, 0)) illustrated. (c) The ball B(K3; (0, 0))
illustrated.

Let now r be a positive real number. Let again V = Z2. The graph Er =
(V, E) is defined by the edge set E such that vertices u and v in Z2 are adjacent
if the Euclidean distance of u and v is at most r. If u = (x, y) ∈ Z2, then the
ball

B(Er;u) = {(x′, y′) ∈ Z2 | (x− x′)2 + (y − y′)2 ≤ r2}.
Obviously, S1 = E1, K1 = E√2, S2 = E2 and K2 = E2

√
2. The graph E√5 is

illustrated in Figure 1. For larger values of t, the shape of the ball B(u) in
the graphs Kt and St is a square as can be seen in Figure 1. In this paper,
we consider identification in the case when B(u) is an Euclidean ball, which is
a natural area for a sensor in Z2 to check. In other words, the aim is to find
good `-set-identifying codes in Er for any real number r ≥ 1. The motivation
for considering different balls in Z2 also comes from [3] and [14, Section 5].
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In order to measure codes in Z2, we define the notion of density of codes.
For this, we first define

Tn = {(x, y) ∈ Z2 | |x| ≤ n, |y| ≤ n},

where n is a positive integer. Now the density of a code C ⊆ Z2 is defined as

D(C) = lim sup
n→∞

|C ∩ Tn|
|Tn| .

Naturally, we seek identifying codes with density as small as possible. We say
that an `-set-identifying code is optimal, if there does not exist any identifying
codes with lower density.

In the sequel we will need the following result from [4, Proposition 1].

Theorem 1.2 ([4]). Let G = (V,E) be a simple connected and undirected graph.
Let u1,u2,u3 ∈ V be three vertices of G and C be an identifying code in G. Then
the set H(u1,u2,u3) = (B(u1)4B(u2))∪ (B(u1)4B(u3))∪ (B(u2)4B(u3))
contains at least two codewords.

2 On `-set-identifying codes with ` = 1

In this section, we study 1-set-identifying codes in two families of graphs. We
first start by considering identifying codes in Er. Then we examine identifying
codes in a graph similar to the king grid. The identifying codes in this graph
also provide optimal identifying codes for certain graphs Er.

2.1 Identifying codes in the graphs Er

In what follows, we construct a 1-set-identifying code for the graph Er, when
r ≥ 1 is an arbitrary real number, and also provide a lower bound on the
density of such codes. For the considerations, we define the horizontal line as
L

(h)
i = {(x′, i) | x′ ∈ Z} and the vertical line as L

(v)
i = {(i, y′) | y′ ∈ Z}, where

i is an integer. We also define the diagonal with slope −1 as D
(n)
i = {(x′, y′) ∈

Z2 | x′+y′ = i} and the diagonal with slope 1 as D
(p)
i = {(x′, y′) ∈ Z2 | x′−y′ =

i}. If u is a vertex in Z2 and X is a subset of Z2, then the sum of u and X is
defined as u + X = {u + v | v ∈ X}. We first present the following technical
lemma. The results (ii), (iii) and (iv) in the lemma are estimates (not always
sharp), which are enough for our purposes in Section 3.

Lemma 2.1. Let u = (x, y) be a vertex in Z2 and r ≥ 1 be a real number.

(i) In B(x, y)\B(x, y−1) there exist 2brc+1 vertices, which lie on consecutive
vertical lines L

(v)
i with i = x− brc, . . . , x + brc.

(ii) In B(x, y) \B(x− 1, y− 1)) there exist 4br/√2c+ 1 vertices, which lie on
consecutive diagonals D

(p)
i with i = x− 2br/√2c, . . . , x + 2br/√2c.

(iii) In B(x, y)\B((x, y−1), (x+1, y)) there exist br(1−1/
√

2)c vertices, which
lie on consecutive vertical lines L

(v)
i with i = x−brc, . . . , x−brc+ br(1−

1/
√

2)c − 1.
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(iv) In B(x, y)\B((x−1, y−1), (x+1, y−1)) there exist 2br(1/
√

2−1/2)c−1 ver-
tices, which lie on consecutive diagonals D

(p)
i with i = x−2br√2c, . . . , x−

2br√2c+ 2br(1/
√

2− 1/2)c − 2.

Proof. (i) Moving the center u = (x, y) of a ball to (x, y − 1) means that u
covers on L

(v)
i (i = x − brc, . . . , x + brc) exactly one vertex of Z2 which is not

covered by (x, y − 1), since the second coordinate decreases by one. The case
(ii) is analogous. (iii) Suppose r ≥ 4, otherwise the claim is trivial. Denote
Q

(l)
2 = {(−a, b) ∈ Z2 | 0 ≤ a, 0 ≤ b ≤ a}. It is easy to check that the vertices of

u + Q
(l)
2 which are covered by (x + 1, y) belong to B(x, y − 1) also. Therefore,

in u + Q
(l)
2 , it is enough to consider the vertices, that u = (x, y) covers but

(x, y − 1) does not. We obtain the claim using (i) for the consecutive vertical
lines L

(v)
i for x − r ≤ i ≤ x − r/

√
2. The case (iv) is again similar (non-trivial

for r ≥ 5).

Notice that analogous results to the previous lemma hold when the consid-
ered patterns are rotated by π/2, π and 3π/2. For example, when the pattern
in (i) is rotated anti-clockwise by π/2, we have that the set B(x, y) \B(x+1, y)
contains vertices on 2brc+ 1 consecutive horizontal lines.

For the construction of the identifying codes in Er, we first introduce the
following sets of vertices

C(h) = {(j, 0) ∈ Z2 | j ≡ 0 mod 2}

and
C(v) = {(0, j) ∈ Z2 | j ≡ 0 mod 2}.

Define then a code Ck as follows:

Ck =
⋃

i∈Z

(
(C(h) + (0, i · 2k)) ∪ (C(h) + (1, k + i · 2k))

)

⋃

i∈Z

(
(C(v) + (i · 2k, 0)) ∪ (C(v) + (k + i · 2k, 1))

)
,

where k ∈ Z and k ≥ 1. The following theorem shows that the previous code
Ck provides a 1-set-identifying code for the graph Er.

Theorem 2.2. Let r ≥ 1 be a real number.

(i) If r2 − brc2 ≥ 1, then the code C2brc+1 is identifying in Er.

(ii) If r2 − brc2 < 1, then the code C2brc is identifying in Er.

Proof. (i) Let u = (x, y) be a vertex in Z2. Assume first that r2−brc2 ≥ 1. This
assumption implies that the vertices (x−brc, y−1), (x−brc, y+1), (x+brc, y−1)
and (x + brc, y + 1) belong to B(u). Therefore, the set {(i, j) ∈ Z2 | x− brc ≤
i ≤ x + brc, y − 1 ≤ j ≤ y + 1} is a subset of B(u). By the construction of
C2brc+1, one of the 2brc + 1 consecutive vertical lines is such that every other
vertex in the line is a codeword. Hence, the ball B(u) contains a codeword. In
other words, each vertex in Z2 is covered by a codeword.

Let v = (x + x′, y + y′) be a vertex in Z2 and v 6= u. Consider then
the symmetric difference B(u)4B(v). In order to prove that C2brc+1 is an
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identifying code in Er, we have to show that this symmetric difference always
contains a codeword. Without loss of generality, we can assume that x′ ≥ 0 and
y′ ≥ 0. (Other cases are analogous.) If B(u) ∩ B(v) = ∅, then we are done.
Hence, assume that B(u) ∩B(v) 6= ∅.

Assume first that x′ ≥ 2 or y′ ≥ 2. Let y′ ≥ 2 (the other case is analogous).
Denote then u′ = (x, y + y′) and v′ = (x + x′, y′). Using similar arguments
as in the proof of Lemma 2.1 part (i), we conclude that each vertical line L

(v)
i

with x−brc ≤ i ≤ x+ bx′/2c contains two consecutive vertices in B(u) \B(u′).
(Recall that r2 − brc2 ≥ 1.) Clearly, these same points are also included in
B(u) \ B(v). By symmetry, we can show that each vertical line L

(v)
i with

x + dx′/2e ≤ i ≤ x + x′ + brc contains two consecutive vertices in B(v) \B(u).
We have shown that each vertical line L

(v)
i with x − brc ≤ i ≤ x + x′ + brc

contains two consecutive vertices in B(u)4B(v). Therefore, we conclude that
there exists a codeword in B(u)4B(v).

Assume now that x′ ≤ 1 and y′ ≤ 1. Then we have the following cases to
consider:

1) Assume that x′ = 0 and y′ = 1. Let L
(v)
k be a vertical line with x− brc ≤

k ≤ x + brc. By Lemma 2.1(i), the set L
(v)
k ∩ (B(v) \B(u)) is nonempty.

Let w = (k, y+1+a) ∈ Z2 be a vertex in B(v)\B(u). Then, by symmetry,
a vertex w′ = (k, y−a) ∈ Z2 belongs to B(u)\B(v). Since the Euclidean
distance between w and w′ is equal to 2a + 1, the parity of the second
coordinates of the vertices w and w′ are different. Therefore, since one of
the vertical lines L

(v)
i with x− brc ≤ i ≤ x + brc is such that every other

vertex in the line is a codeword, the symmetric difference B(u)4B(v)
contains a codeword.

2) If x′ = 1 and y′ = 0, then the proof goes exactly like in the case 1); just
replace the vertical lines by horizontal ones.

3) Assume now that x′ = 1 and y′ = 1. Let w = (k, y + 1 + a) ∈ L
(v)
k ,

where x − brc ≤ k ≤ x, be a vertex such that w ∈ B(x, y + 1) \ B(x, y).
By symmetry, the vertex w′ = (k, y − a) belongs to B(x, y) \B(x, y + 1).
Since k ≤ x, the vertex w′ ∈ B(x, y) \B(x+1, y +1). If w ∈ B(x+1, y +
1)\B(x, y), then the vertical line L

(v)
k contains two vertices (w and w′) in

B(u)4B(v) such that the parity of their second coordinates are different.
Assume then that w /∈ B(x + 1, y + 1) \ B(x, y). Hence, by symmetry,
the vertex w′′ = (k, y + 1 − a) ∈ B(x, y) \ B(x + 1, y + 1). Clearly, the
parity of the second coordinates of w′ and w′′ are different. Analogous
arguments also apply, when we are considering the vertical lines L

(v)
k with

x+1 ≤ k ≤ x+1+brc. Hence, each line L
(v)
i with x−brc ≤ i ≤ x+1+brc

contains two vertices in B(u)4B(v) such that the parity of the second
coordinates of the vertices are different. Thus, there exists a codeword in
B(u)4B(v).

In conclusion, we have shown that C2brc+1 is an identifying code in Er when
r2 − brc2 ≥ 1.

(ii) Let again u = (x, y) be a vertex in Z2. Assume then that r2 − brc2 < 1.
Define the set A = {(i, j) ∈ Z2 | x − brc ≤ i ≤ x + brc, y − 1 ≤ j ≤ y} \ {(x −
brc, y−1), (x+brc, y−1)}. Let us then show that the set A contains a codeword
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of C2brc. If a vertical line L
(v)
i with x−brc+1 ≤ i ≤ x+brc−1 is such that every

other vertex in the line is a codeword, then we are clearly done. Otherwise, we
know that the vertical lines L

(v)
x−brc and L

(v)
x+brc are such that every other vertex

in the lines is a codeword. Hence, by the construction of C2brc, either the vertex
(x−brc, y) or (x+ brc, y) is a codeword. Since A ⊆ B(u), the word u is covered
by a codeword.

Let v = (x+x′, y+y′) be a vertex in Z2 and v 6= u. We need to show that the
symmetric difference B(u)4B(v) contains a codeword (when B(u)∩B(v) 6= ∅).
Without loss of generality, we can assume that x′ ≥ 0 and y′ ≥ 0. If (x′ = 0 and
y′ = 1) or (x′ = 1 and y′ = 0), then the proof goes exactly as in the cases 1) and
2) of the part (i), respectively. Assume that x′ = 0 and y′ ≥ 2. If now a vertical
line L

(v)
i with x−brc+1 ≤ i ≤ x+ brc−1 is such that every other vertex in the

line is a codeword, then we are done. Otherwise, either the vertex (x−brc, y) or
(x + brc, y) in B(u)4B(v) is a codeword. Therefore, I(u)4 I(v) 6= ∅. Similar
arguments also apply when x′ ≥ 2 and y′ = 0. If x′ = 1 and y′ = 1, then
the proof goes exactly as in the previous case 3), but we just consider the 2brc
consecutive vertical lines L

(v)
i with x−brc+1 ≤ i ≤ x+brc. If x′ ≥ 1 and y′ ≥ 2,

then the proof is similar to the third paragraph of the proof of the part (i), but
we just consider the vertical lines L

(v)
i with x−brc+1 ≤ i ≤ x+x′+brc−1. The

case with x′ ≥ 2 and y′ ≥ 1 goes the same way as the previous one. In conclusion,
we have shown that C2brc is an identifying code in Er when r2 − brc2 < 1.

It is easy to conclude that the density of the code Ck satisfies D(Ck) ≤ 1/k.
Therefore, by the previous theorem, we have shown that for any real number
r ≥ 1 there exists an identifying code C such that the density

D(C) ≤ 1
2brc .

For small values of r, there exist identifying codes with smaller densities. Indeed,
since E√2 = K1 and E2

√
2 = K2, we have optimal identifying codes in E√2 and

E2
√

2 with densities 2/9 and 1/8, respectively (see [5]). Recall that E1 = S1 and
E2 = S2. It has been shown in [6] that there exists an identifying code with
density 7/20 in S1. Moreover, it was proved in [2] that there is no identifying
codes in S1 with smaller density. There exists an identifying code in S2 with
density 5/29 (see [13]). In [4], it has been shown that there does not exist an
identifying code in S2 with density smaller than 3/20.

Consider then a lower bound on the density of an identifying code in Er. In
order to provide a lower bound, we first need to present an auxiliary theorem.
This theorem is a rephrased version of [11, Theorem 5]. For completeness, we
have also included the proof.

Theorem 2.3. Assume that C ⊆ Z2 is a code. Let S = {s1, s2, . . . , sk} be a
subset containing k different points of Z2. For each i = 1, 2, . . . , k we choose a
real number wi ≥ 0, which we call the weight of si and denote by w(si). For all
subsets A of S we define

w(A) =
∑

a∈A

w(a).

If for all v ∈ Z2 we have w((v + C) ∩ S) ≥ 1, then the density of C satisfies

D(C) ≥ 1
w1 + w2 + · · ·+ wk

.
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Proof. Since S is finite, we can choose a constant h such that S ⊆ Th. Consider
then the sum

∑
v∈Tn−h

w((v + C) ∩ S), where n > h. Now we have

|Tn−h| ≤
∑

v∈Tn−h

w((v + C) ∩ S) ≤
k∑

i=1

wifi(n), (1)

where fi(n) denotes the number of pairs (c,v) such that c ∈ C, v ∈ Tn−h and
si = v + c. Since v ∈ Tn−h and si ∈ Th, we know that c = si − v ∈ Tn.
Hence, there at most |C ∩ Tn| choices for c. Furthermore, for every c there
is at most one possible choice for v ∈ Tn−h such that si = c + v. Therefore,
fi(n) ≤ |C ∩ Tn|.

Combining this result with the equation (1), we have

|Tn−h| ≤ (w1 + w2 + · · ·+ wk)|C ∩ Tn|.
Thus,

|C ∩ Tn|
|Tn| ≥ |Tn−h|

|Tn| · 1
w1 + w2 + · · ·+ wk

.

The claim immediately follows from this equation, since |Tn−h|/|Tn| → 1 when
n →∞.

In what follows, we prove a lower bound on the density of an identifying code
in Er. The lower bound is actually attained for some graphs Er (see Theorem
2.7).

Theorem 2.4. If C ⊆ Z2 is an identifying code in Er, then the density satisfies

D(C) ≥ 3

4brc+ 4bbc+ 4
⌊√

r2 − (bbc+ 1)2
⌋

+ 8
,

where b = −1/2 + 1/2 · √2r2 − 1.

Proof. Let C ⊆ Z2 be an identifying code in Er. Denote u1 = (0, 0), u2 =
(−1, 0), u3 = (0,−1) and u4 = (−1,−1). Define then the set

H = (B(u1)4B(u2)) ∪ (B(u1)4B(u3)) ∪ (B(u1)4B(u4))
∪ (B(u2)4B(u3)) ∪ (B(u2)4B(u4)) ∪ (B(u3)4B(u4))

and H ′ as the set of vertices that belong to H and are covered by exactly two
of the vertices u1, u2, u3 and u4.

Notice that if v ∈ H \H ′, then v is covered by exactly one or three of the
vertices u1, u2, u3 and u4. If a codeword c ∈ C belongs to H \ H ′, then, by
Theorem 1.2, there exist at least three codewords in H. On the other hand, if
there does not exist any codewords in H \H ′, then there clearly exist at least
two codewords in H ′.

Using the notations of Theorem 2.3, we choose S = H. The weight of a
vertex s ∈ H is now defined as follows: if s ∈ H ′, then w(s) = 1/2, else
w(s) = 1/3. By the considerations in the previous paragraph, we conclude that
for every v ∈ Z2 we have w((v + C) ∩H) ≥ 1. By Theorem 2.3, we have

D(C) ≥ 1
1/2 · |H ′|+ 1/3 · (|H| − |H ′|) =

3
|H|+ 1/2 · |H ′| .
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For the lower bound, it is now enough to calculate the number of vertices in H
and H ′.

For the calculations, define the set Q = {(x, y) ∈ Z2 | x ≥ 0, y ≥ 0}. It is
clear that a vertex u ∈ Q∩H if and only if u ∈ B(0, 0) \B(−1,−1) and u ∈ Q.
Now, by straightforward computations, we have that the number of vertices in
Q ∩H is equal to

brc−1∑

i=0

(⌊√
r2 − i2

⌋
−

⌊√
r2 − (i + 1)2 − 1

⌋)
+

⌊√
r2 − brc2

⌋
+ 1 = 2brc+ 1.

Therefore, by symmetry, the number of vertices in H is equal to 4(2brc+ 1) =
8brc+ 4.

Consider then the number of vertices in H ′. It is easy to see that the circles
of radius r centered at the points (−1, 0) and (0,−1) intersect each other in
the point (b, b), where b = −1/2 + 1/2 · √2r2 − 1. Define then the set Qb =
{(x, y) ∈ Z2 | 0 ≤ x ≤ b, y ≥ 0}. It is clear that a vertex u ∈ Qb ∩ H ′ if and
only if u ∈ (B(0, 0)∪B(−1, 0))\ (B(0,−1)∪B(−1,−1)) and u ∈ Qb. Hence, by
straightforward computations, we have that the number of vertices in Qb ∩H ′

is equal to

bbc∑

i=0

(⌊√
r2 − (i + 1)2

⌋
−

⌊√
r2 − i2 − 1

⌋)
=

⌊√
r2 − (bbc+ 1)2

⌋
+bbc−brc+1.

Therefore, by symmetry, the number of vertices in H ′ is equal to

8
(⌊√

r2 − (bbc+ 1)2
⌋

+ bbc − brc+ 1
)

.

Thus, we obtain the lower bound on the density

D(C) ≥ 3

4brc+ 4bbc+ 4
⌊√

r2 − (bbc+ 1)2
⌋

+ 8
.

Let us then consider more closely the lower bound given by the previous
theorem. As in the theorem, let C ⊆ Z2 be an identifying code in Er and denote
b = −1/2 + 1/2 · √2r2 − 1. Denote further bbc = k ∈ Z. Since now b < k + 1,
we have that r <

√
1/2 · (2k + 3)2 + 1/2. Therefore, we have

√
r2 − (bbc+ 1)2 ≤

√(√
1/2 · (2k + 3)2 + 1/2

)2

− (bbc+ 1)2 = k + 2.

Hence, we further obtain that
⌊√

r2 − (bbc+ 1)2
⌋
≤ bbc+ 1. Thus, the denom-

inator of the lower bound can be estimated as follows:

4brc+ 4bbc+ 4
⌊√

r2 − (bbc+ 1)2
⌋

+ 8 ≤ 4brc+ 8bbc+ 12 ≤ 4(
√

2 + 1)r + 12.

Therefore, we have the following approximation for the lower bound on the
density of an identifying code C in Er:

D(C) ≥ 3
4(
√

2 + 1)r + 12
≥ 1

3, 22r + 4
.
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2.2 Identifying codes in the king grids without corners

In this section, we consider 1-set-identification in a graph closely related to the
king grid. These considerations provide two optimal identifying codes in Er, as
is shown in Theorem 2.7. The vertex set V is again equal to Z2. Let then t
be a positive integer and u = (x, y) be a vertex in Z2. The edge set E of the
considered graph K′t is such that

B(K′t;u) = B(Kt;u) \ {(x + t, y + t), (x + t, y − t), (x− t, y + t), (x− t, y − t)}.

The graph K′t is called the king grid without corners. Notice that K′1 = S1.
As was mentioned in Section 2.1, there exists an optimal identifying code in S1

with density 7/20.
Define a code

Ct =
⋃

i∈Z
{(2t · i + α, α) | α ∈ Z and α is even}.

The code Ct is illustrated in Figure 1 when t = 2. Clearly, the density D(Ct) is
equal to 1/(4t). It has been shown in [5] that Ct is an optimal identifying code
in Kt. The following theorem shows that Ct is also an identifying code in K′t —
notice that now the ball in K′t is smaller than the one in Kt! In Theorem 2.6,
we prove that there does not exist identifying codes in K′t with lower density.

Theorem 2.5. Let t ≥ 2 be an integer. Then the code Ct is identifying in K′t.
Proof. Let w = (x, y) be a vertex in Z2. Define then sets

Ah(w) = {(i, j) ∈ Z2 | x ≤ i ≤ x + 2t− 1, y ≤ j ≤ y + 1}

and
Av(w) = {(i, j) ∈ Z2 | x ≤ i ≤ x + 1, y ≤ j ≤ y + 2t− 1}.

Let i be a integer. If i is even, then the horizontal line L
(h)
i is such that one of

the 2t consecutive vertices in the line is a codeword of Ct. The same also holds
for the vertical lines. Thus, the sets Ah(w) and Av(w) both contain at least
one codeword.

Let u = (x1, y1) and v = (x2, y2) be vertices in Z2. The I-set I(u) is
nonempty, since the ball B(u) contains the set Ah(w) with a suitable choice
of w, when t ≥ 2. In order to prove the claim, we have to show that the
symmetric difference B(u)4B(v) always contains a codeword. Assume first
that |x1−x2| ≥ 3 or |y1− y2| ≥ 3. Then the symmetric difference B(u)4B(v)
contains the set Av(w) or Ah(w). Thus, I(u)4 I(v) 6= ∅.

Assume now that |x1−x2| ≤ 2 and |y1−y2| ≤ 2. Then we have the following
cases to consider (other cases are analogous):

1) Assume that v = (x1 + 1, y1) or v = (x1 + 2, y1). Denote X1 = {(x1 −
t, y1− t+1), (x1− t, y1− t+2), . . . , (x1− t, y1 + t−1)} and X2 = {(x1 + t+
1, y1− t + 1), (x1 + t + 1, y1− t + 2), . . . , (x1 + t + 1, y1 + t− 1)}. It is easy
to see that X1, X2 ⊆ B(u)4B(v) and (x1− t+1, y1− t), (x1 + t, y1 + t) ∈
B(u)4B(v). Assume first that x1 − t is even. Then, by the previous
considerations, either X1 contains a codeword or the vertex (x1− t, y1− t)
is a codeword. If X1 contains a codeword, we are done. Otherwise, the

10



vertex (x1− t, y1− t) is a codeword. Therefore, by the construction of Ct,
the vertex (x1− t+2t, y1− t+2t) = (x1 + t, y1 + t) is a codeword. Assume
then that x1 − t is odd. Hence, x1 + t + 1 is clearly even. The proof is
now similar to the first case.

2) Assume that v = (x1 + 1, y1 + 1) or v = (x1 + 2, y1 + 2). Denote Y1 = X1

and Y2 = (0, 1) + X2. It is easy to see that Y1, Y2 ⊆ B(u)4B(v) and
(x1−t+1, y1−t+1), (x1+t, y1+t) ∈ B(u)4B(v). Assume first that x1−t
is even. If Y1 contains a codeword, we are done. Otherwise, the vertex
(x1−t, y1−t) is a codeword. Therefore, the vertex (x1−t+2t, y1−t+2t) =
(x1 + t, y1 + t) is a codeword. If x1 − t is odd, then x1 + t + 1 is even and
the proof is similar to the first case.

3) Assume that v = (x1 + 2, y1 + 1). The proof is now analogous to the case
2).

In conclusion, we have shown that the symmetric difference I(u)4 I(v) is always
nonempty. Hence, the claim follows.

The following theorem provides a lower bound on the density of an identi-
fying code in K′t.
Theorem 2.6. If C is an identifying code in K′t, then the density

D(C) ≥ 1
4t

.

Proof. Let C be an identifying code in K′t. Define the vertices u1,u2,u3,u4 ∈ Z2

and the sets H,H ′ ⊆ Z2 as in the proof of Theorem 2.4. Using similar arguments
as in the proof of Theorem 2.4, we have

D(C) ≥ 3
|H|+ 1/2 · |H ′| .

It is easy to calculate that |H| = 8t + 4 and |H ′| = 4(2t− 2). Therefore,

D(C) ≥ 3
8t + 4 + 1/2 · 4(2t− 2)

=
1
4t

.

In conclusion, we have shown that Ct is an optimal identifying code in K′t.
Hence, we have the following theorem concerning identifying codes in Er, where
r =

√
5 or r =

√
13.

Theorem 2.7. The codes C2 and C3 are optimal identifying codes in E√5 and
E√13, respectively.

Proof. The claim immediately follows from the fact that E√5 = K′2 and E√13 =
K′3.
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3 On `-set-identifying codes with ` > 1

Let r ≥ 1 be a real number and let Z+ denote the set of positive integers. In
what follows, we show that there exists a 2-set-identifying code Cr in Er such
that the density satisfies D(Cr) = Θ(1/r). We also prove that the density of a
2-set-identifying code in Er is always at least 1/(2brc+ 1). In Theorem 3.2, we
consider for which r a 3-set-identifying code can exist in Er. Theorem 3.3 shows
that there does not exist a 4-set-identifying code in Er for any r.

The following theorem considers 2-set-identifying codes in Er.

Theorem 3.1. Let Cr be a 2-set-identifying code in Er, r ≥ 1. Then Cr satisfies
D(Cr) ≥ 1

2brc+1 . Moreover, there exists a sequence of 2-set-identifying codes Cr

such that D(Cr) = Θ( 1
r ).

Proof. Let Cr be any 2-set-identifying code in Er. The lower bound D(Cr) ≥
1/(2brc + 1) comes from comparing the sets B(x) and B(x,x + (1, 0)), where
x ∈ Z2. By Lemma 2.1(i) |B(x) 4 B(x,x + (1, 0))| = 2brc+ 1 and there must
be at least one codeword of Cr among these vertices. Applying Theorem 2.3 we
obtain the result (choose S = B(x) 4 B(x,x+ (1, 0)) and all the weights equal
to one).

Let r ≥ 14, P1 = br(1− 1/
√

2)c, P2 = 2br(1/
√

2− 1/2)c − 1 and

C1,r = {(x, y) ∈ Z2 | x ≡ 0 mod P1 or y ≡ 0 mod P1}.

Let further

C2,r = {(x, y) ∈ Z2 | x + y ≡ 0 mod P2 or x− y ≡ 0 mod P2}.

We claim that the code
Cr = C1,r ∪ C2,r

is 2-set-identifying in Er. Clearly, |C| ≤ 4/P1.
We need to show that for Cr we have I(X) 6= I(Y ) for any two sets X, Y ⊂

Z2, where X 6= Y and |X| ≤ 2 and |Y | ≤ 2.
Suppose to the contrary that there exist distinct subsets X and Y of Z2 such

that
I(X) = I(Y ) (2)

where |X|, |Y | ≤ 2.
Clearly, if X or Y is the emptyset, we get I(X) 6= I(Y ). Therefore, assume

that |X| ≥ 1 and |Y | ≥ 1.
Let L1 (resp. L2) be a horizontal line L

(h)
i where i is such that L

(h)
i contains

at least one element of X ∪ Y but for any j > i (resp. j < i) the line L
(h)
j

contains no elements of X ∪ Y . Similarly, let L3 (resp. L4) be a vertical line
L

(v)
i where i is such that L

(v)
i contains at least one element of X∪Y and for any

j < i (resp. j > i) the line L
(v)
j contains no elements of X ∪ Y . Denote by R

the set of the vertices that belong to a rectangle or a line segment bordered by
the the four lines L1, L2, L3 and L4. Clearly, all the vertices of X ∪ Y belong
to R.

Of course, R is a line segment if (and only if) L1 = L2 or L3 = L4. Suppose
first that this is the case; without loss of generality, let L1 = L2. We can
also assume that on (at least) one end of the line segment R there is x ∈
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X 4 Y . Without loss of generality, let x ∈ X be on the left end of R. Now,
by Lemma 2.1(i) (rotated anti-clockwise by π/2), we know that B(x) contains
2brc+1 vertices on consecutive horizontal lines, which x+(1, 0) does not cover.
Since none of the vertices x+(a, 0), a ∈ Z+, covers them either, the elements of
Y cannot cover them. By the definition of C1,r, the set I(Cr;x) 4 I(Cr; Y ) 6= ∅.
Hence we get a contradiction with (2).

Consequently, we can assume that R is a rectangle.
1) Suppose first that (at least) one of the four corners of R contains x ∈

X 4 Y . Without loss of generality, we may assume that x ∈ X is in the
north-west corner of R.

By Lemma 2.1(iii) there are at least P1 vertices on consecutive vertical lines
in B(x) \B(u,w) where u = x+ (0,−1) and w = x+ (1, 0). It is easy to verify
that none of these P1 vertices is covered by any vertex in S = {x + (a,−b) ∈
Z2 | a ≥ 0, b ≥ 0, (a, b) 6= (0, 0)}. Since Y ⊆ S, these P1 vertices belong to
B(x) \B(Y ). Now the code C2,r guarantees that there is at least one codeword
among these P1 vertices, a contradiction with (2).

2) Suppose then that there is no vertices of X∪Y in any of the corners of R.
Consequently, there must be an element of X ∪ Y on each line Li, i = 1, 2, 3, 4.
Therefore, |X| = |Y | = 2; denote X = {x,y} and Y = {u,w}.

2.1) Assume first that the elements of X are on two non-intersecting lines,
without loss of generality, let x ∈ L1 and y ∈ L2. Assume further u ∈ L3 and
w ∈ L4.

By Lemma 2.1(iv), there are P2 vertices of B(x) ∩ {x + (−a, b) | a, b ∈
Z+, a ≤ b} on consecutive diagonals, which are neither in B(x + (1,−1)) nor
in B(x + (−1,−1)). Again, none of the vertices w ∈ U = {x + (a,−b) |
a, b ∈ Z+} can cover these P2 points. It is also easy to verify that none of
the vertices u ∈ T = {x + (−a,−b) | a, b ∈ Z+, a ≤ b} can cover these P2

points either. Consequently, if u ∈ T , the code C2,r gives the codeword to the
set I(X) 4 I(Y ), which contradicts (2). Assume then that u /∈ T , that is,
u = x + (−a,−b) where a, b ∈ Z+ and a > b. In this case, we examine the
vertices of B(u) ∩ {u + (−c, d) | c, d ∈ Z+, c ≥ d} which are not covered by
u+(1, 1) and u+(1,−1) — there are again P2 of them by a result symmetrical
to Lemma 2.1(iv). We observe that neither the vertex y = u + (c,−d) for any
c, d ∈ Z+ nor the vertex x = u + (a, b) cannot cover these P2 vertices in B(u)
(because the assumption a > b now gives symmetric situation to the above case
u ∈ T ). Therefore, there must be a codeword of C2,r in I(X) 4 I(Y ) to give
the contradiction.

2.2) Assume then that the elements of X are on two intersecting lines, and
without loss of generality, let x ∈ L1, y ∈ L3, u ∈ L2 and w ∈ L4. Let
Lx = {x + (0,−a) | a ∈ Z+}. Again w ∈ U .

If u ∈ T ∪ U ∪ Lx, then the previous arguments give us the contradiction
with (2). Indeed, if u ∈ U ∪ Lx, the argument of 1) applies although x is not
in a corner of R. If u ∈ T , the case 2.1) yields the needed contradiction.
Therefore, it suffices to assume that w ∈ U and u = x + (−a,−b) where
a, b ∈ Z+, a > b. Now consider y in the role of x. In this case u ∈ U ′

and w belong to the area T ′∪U ′∪Ly where T ′ = {y+(c, d) | c, d ∈ Z+, c ≥ d},
U ′ = {y + (c,−d) | c, d ∈ Z+} and Ly = {y + (c, 0) | c ∈ Z+}. Now the area
T ′ ∪U ′ ∪Ly for y is analogous to T ∪U ∪L for x. This gives the contradiction
to (2).

3) Finally, it suffices to check the case where there is a vertex y ∈ X ∩ Y in
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one of the corners of R. By 1) we can assume that there is no other vertex of
X ∪ Y in any corner. Consequently, we may assume that y is in the south-east
corner and x ∈ L1 and u ∈ L3. This situation goes exactly like in 2.1).

The graphs Kt and Er have balls of equal size, for example, when r = 347
and t = 307. In the king grid K307 the optimal density of a 2-set-identifying
code equals 0.25 (see [8]) and by our previous construction we have a 2-set-
identifying code in E347 with density at most 0.0396. Similarly, the square grid
St and Er have the same cardinality of vertices in a ball when, for instance,
r = 385 and t = 482. The smallest possible density of a 2-set-identifying code
in S482 is at least 0.125 (see [10]) and our construction gives a 2-set-identifying
code of density at most 0.0357.

In general, an optimal 2-set-identifying code Ct in the king grid Kt, t ≥ 3,
satisfies D(Ct) = 1/4 (see [8]). Similarly, in the square grid St, we know (by [10])
that D(Ct) ≥ 1/8 for any code Ct which is 2-set-identifying. In Er, however,
the density of such codes can be arbitrarily small by the previous theorem. For
the 2-set-identifying codes in E1 = S1, E2 = S2, E√2 = K1 and E2

√
2 = K2, we

refer to [10].

Consider next the `-set-identifying codes in Er when ` = 3. Since the sets
I((1, 0), (−1, 0)) and I((1, 0), (−1, 0), (0, 0) must be distinct and also the sets
I((−1,−1), (1, 1)) and I((−1,−1), (1, 1), (0, 0)) must differ, we obtain the fol-
lowing statement for 3-set-identifying codes.

Theorem 3.2. Let r ∈ R, r ≥ 1. If there exists a 3-set-identifying code in Er,
then we must have

brc >
√

r2 − 1

and, if r ≥ √
2, we also must have

br/
√

2c >
√

r2/2− 1.

By the previous theorem we obtain that 1, 3, 17, 99, 577, 3363, 19601,. . . are
the first values of an integer r such that the graphs Er can have 3-set-identifying
codes. By [9, Theorem 2], we know that there exists a 3-set-identifying code in
E1 = S1. However, it remains open whether there exist a 3-set-identifying code
in Er for all possible values of r (listed above).

Moreover, if there exists a 3-set-identifying code C in Er = (V,E) for r = 3
or r = 17, then necessarily C = V and thus the density equals one due to the
fact that

B((−1,−1), (1, 2)) 4 B((−1,−1), (1, 2), (0, 0)) = {(2,−2)}
(only one vertex!) for r = 3 and B((−2,−1), (3, 1))4B((−2,−1), (3, 1), (0, 0)) =
{(−8, 15)} for r = 17.

Theorem 3.3. Let r ≥ 1. There does not exist an `-set-identifying code in Er

for any ` ≥ 4.

Proof. The claim follows since

B((−1, 0), (1, 1), (1,−1)) = B((−1, 0), (1, 1), (1,−1), (0, 0))

and thus these sets of three and four vertices cannot be distinguished.
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