COMPUTER
INTECRATED International Journal of Computer Integrated

manueacterng. — Manufacturing

Oz ISSN: 0951-192X (Print) 1362-3052 (Online) Journal homepage: http://www.tandfonline.com/loi/tcim20

Taylor & Francis

Taylor & Francis Group

Machine configuration and workload balancing
of modular placement machines in multi-product
PCB assembly

Attila Téth, Timo Knuutila & Olli S. Nevalainen

To cite this article: Attila Téth, Timo Knuutila & Olli S. Nevalainen (2018) Machine
configuration and workload balancing of modular placement machines in multi-product PCB
assembly, International Journal of Computer Integrated Manufacturing, 31:9, 815-830, DOI:
10.1080/0951192X.2018.1429667

To link to this article: https://doi.org/10.1080/0951192X.2018.1429667

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

@ Published online: 24 Jan 2018.

N
CA/ Submit your article to this journal

||I| Article views: 137

P

@ View Crossmark data (&

CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=tcim20

http://www.tandfonline.com/action/journalInformation?journalCode=tcim20
http://www.tandfonline.com/loi/tcim20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/0951192X.2018.1429667
https://doi.org/10.1080/0951192X.2018.1429667
http://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2018.1429667&domain=pdf&date_stamp=2018-01-24
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2018.1429667&domain=pdf&date_stamp=2018-01-24

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING Tavior & F .
2018, VOL. 31, NO. 9, 815-830 aylor rancis

https://doi.org/10.1080/0951192X.2018.1429667 Taylor & Francis Group

ARTICLE 8 OPEN ACCESS W

Machine configuration and workload balancing of modular placement machines in
multi-product PCB assembly

Attila Toth?, Timo Knuutila® and Olli S. Nevalainen©

2Juhasz Gyula Faculty of Education, University of Szeged, Szeged, Hungary; ®Department of BID Technology, SF-20014 University of Turku, Turku,
Finland; <Department of Information Technology, SF-20014 University of Turku, Turku, Finland

ABSTRACT ARTICLE HISTORY

A popular gantry-type placement machine includes several interconnected, autonomously operating Received 26 April 2017
component placement modules and the machine was designed so as to able to use different kinds of ~ Accepted 5 January 2018
placement heads and vacuum nozzles in the modules, which can be easily changed. Although this KEYWORDS

increases the flexibility of the production line, the reconfiguration phases of the modules may be Printed circuit board:
unproductive and one should keep them to a minimum. In addition, the production times can be modular machines; machine
shortened by balancing the workloads of the machine modules. Here, a two-step optimisation method configuration; mixed-model
for the machine reconfiguration and workload balancing in the case of multiple Printed Circuit Borad workload balancing; integer
(PCB) batches of different sizes and PCB types is presented. The objective is to minimise the total programing; genetic
production time, and keep the machine configuration the same for all batches. The proposed algorithm algorithm

is iterative and it applies integer programming for the workload balancing along with an evolutionary

algorithm that searches for the best machine configuration. In experiments, for single PCB types the

proposed algorithm obtained optimal or near optimal solutions. For multiple PCB types the solutions

favour the PCB types that have a bigger production time due to greater batch sizes, but the total

production time is still close to optimal.

1. Introduction the PCB and the feeder unit and between the placement points
on the PCB cause time delays which increase the time needed
for the placement mechanism. In some cases it is also necessary
to change some nozzles in the placement head during the
assembly process. This is a time-consuming operation which
should in general be avoided. Last, when moving to a new PCB
type the feeder, head and nozzle settings demand manual
intervention in the production process, which has an impact
on the overall efficiency of the production process. While the
characteristics of the mounting machines may vary, the
machine types can be classified into five main categories
(Ayob and Kendal 2008). These are a dual delivery machine,
where pick-and-place operations alternate between the two
sides of the machine, there are two arms, and while one is
placing components the other can pick up new ones; multi-
station machine (or modular machine), where several place-
ment modules are connected via a conveyor belt and the
modules operate autonomously; turret-type machine (chip
shooter), where a rotating turret (operating like a carousel)
holds a number of nozzles that are filled with components at
a fixed pickup position and then placed in a fixed placement
position, the PCB table moves in the X or Y direction and the
feeder unit in the X-direction; multi-head machine (pick-and-
place or collect-and-place machine) has an X-Y gantry used to
move components from the feeder unit to the PCB. The PCB
table and the feeder unit may or may not be moveable;
sequential pick-and-place machine, where the arm holds only
one nozzle. Otherwise, the organisation is just like that for the
multi-head machine case.

In the electronics industry, the assembly of electronic compo-
nents on Printed Circuit Boards (PCBs) is a crucial task consisting
of several consecutive phases where the stations are intercon-
nected by a conveyor belt mechanism (Hayrinen et al. 2000;
Johnsson and Smed 2001). These include the dispension of the
glue or paste for fixing the electronic components on the bare
PCB, the actual placements of the components to their proper
positions, the final fixing of the components using an oven and
testing the functionality of the PCB. Since the design of the
boards varies, production volumes are generally large and high
precision is needed, this will require the use of automatic
assembly machines. To increase productivity, assembly lines
are constructed from several placement machines working in
parallel, which may be tailored to handle components of differ-
ent shapes. It is typical that the component placement opera-
tion of surface-mounted electronic devices is the most time-
consuming step of the assembly process. Recent component
placement machines operate in pick-and-placement cycles,
where each cycle collects a number of components from a
component feeder unit to the vacuum nozzles of the placement
head, moves the head to the proper positions where the com-
ponents will be inserted on the PCB, and finally returns to the
feeder area to pick up the next set of components. In addition
to these basic steps of the pick-and-placement cycles, the
machine checks prior to the actual placement operation the
identity and orientation of each component on the fly or by
using of an extra camera. The mechanical movements between

CONTACT Attila Toth @) attila@jgypk.u-szeged.hu

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2018.1429667&domain=pdf

816 (&) A TOTHET AL

One of the most popular variants of the above machine types
today is the modular gantry-type placement machine. Here, each
of the machine modules contains a feeder unit that holds the
reels or trays of different component types and a moveable arm
that is installed in an X-Y gantry. The arm is equipped with a
replaceable rotary placement head for holding several change-
able nozzles (see, e.g. Fuji NXT or Siemens Siplace) (Kallio,
Johnsson, and Nevalainen 2012). The PCB table and the feeder
unit are static and the multi-head placement arm operates in
pick-and-place cycles. For each cycle, the arm picks up the
required components into the nozzles from the feeder unit,
and then moves to the PCB area to put them into their place-
ment positions. The head is rotated such that an appropriate
nozzle is above the feeder reel (or placement point) when pick-
ing up (or placing) the component. The main advantage of this
type of machine is that the configuration is flexible, since the
feeder unit, head and nozzles can be adjusted to the require-
ments of the product type. Furthermore, the gantry-type opera-
tion is accurate and relatively simple compared to that of a
moveable PCB table and feeder unit structure.

To improve the production rate and help maintain the compe-
titiveness of the company, the goal of production planning and
control is to increase the number of manufactured (fault-free)
products (per unit time) with low equipment cost and operating
cost. Therefore, two key objectives in production planning and
control are to reduce the number of machines (or modules of a
modular machine) in the line and at the same time to speed up
production. Sometimes both aspects appear in the objective as a
weighted combination (see the Simple Assembly Line Balancing
Problem of type E (SALBP-E) described in Scholl and Becker
(2006)). In the electronics industry, the machine line is usually
designed for a long production planning period so the number
of modules is fixed and the efficiency is improved by increasing
the production rate.

The method for designing the production process depends
on the characteristics of the assembly lines, machine types, the
number of product types and the similarity of the products
(Becker and Scholl 2006). The problem of optimising a PCB
assembly process may be divided into several different phases.
For a definition of eight subproblems, see Crama, van der
Klundert, and Speiksma (2002). These are

(1) the assignment of PCB jobs to product families and

families to lines;

the allocation of components to machines;

partitioning the component placements for each machine;

sequencing the jobs on each machine;

the arrangement of the feeders in feeder units;

the sequencing of the component placements;

determining the feeders for retrieval of the compo-

nents; and

(8) controlling the movement of the heads above the pla-
cement area.

The present study focuses on component-to-machine mod-
ule allocation and component placement partitioning pro-
blems on a single assembly line (problems 1-3), while the
remaining problems (4-8) are put to one side here. What
makes this study different from previous research (for a survey

on assembly line balancing, see Battaia and Dolgui 2013)) is
that the machine modules can be easily reconfigured. This
useful property allows one to have a more flexible design,
but it also increases the complexity of production planning.

The case where only one PCB type is produced without the
need to change, the set-up of the line is called the single-
model case. In practice, there are usually several product types
to be assembled on the same line. Here, when the products
are sufficiently similar to be manufactured without reconfigur-
ating or changing the set-up of the machine line, the produc-
tion is known as the mixed-model strategy. However, if the
assembly line requires any changes in the set-up (feeder allo-
cation, head assignment, nozzle assignment) during produc-
tion, the products need to be grouped into families so that a
machine set-up operation (or reconfiguration) is performed
only between any two families (Smed et al. 1999; Ho, Ji, and
Dey 2008). This case is called the multi-model strategy.

When the batch sizes of different PCB types are small, the
reconfiguration of a modular machine during the assembly
process takes up a great proportion of the total time required
to manufacture the products. It is then better to have a general
configuration for all PCB types (where possible) and to allocate
the workload to the machine modules for each product types in
a balanced way. In the present study, this kind of scenario is
examined for the machine module configuration and line bal-
ancing. Here, a set of PCB batches is handled on a single
modular gantry-type machine (i.e. a machine consisting of sev-
eral independently operating machine modules). The problem
is really a subproblem of organising all the assembly operations
on a whole production line, which commonly includes (for
reasons of efficiency) some other assembly machines. Then,
the general question is how to efficiently allocate the place-
ments to all machines of the line. To answer this question, one
has to handle the low-level optimisation problem, i.e. the opti-
mal use of the modular placement machine. In order to do this
an abstraction is needed to find the solutions of phases 4-8
(see above). Here, the order of component reels in the feeder
unit and the placement sequences are not discussed, but the
placement time of the module varies linearly with the number
of placements. Next, the component-to-machine module allo-
cation and component placement partitioning optimisation
problem is divided into two sub-problems; namely finding an
efficient module-configuration and balancing the workload
among the modules.

Although the mixed-model case is examined in the present
study, the configuration problem for modular placement
machines also appears in the single model machine set-up
strategy; but in the latter without any machine set-ups between
the jobs (Toth, Knuutila, and Nevalainen 2010; Rong et al. 2011;
Guo et al. 2012). The same problem also appears in different
forms in other branches of industry; see Boysen, Fliedner, and
Scholl (2008) for some example application areas. For instance,
the organisation of mass production in the automobile industry
has been studied in detail; see Oliveira et al. (2012).

The line balancing of three or more machines is a well-
known NP-hard problem for the single-model (Guthjar and
Nemhauser 1964) and mixed-model (Thomopoulos 1967)
cases. There are many solution methods available for the
simple assembly line balancing problem, called SALB, where

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 817

the machines are identical (Scholl and Becker 2006), and the
general assembly line balancing case, called GALB (Becker and
Scholl 2006; Bentaha, Dolgui, and Battaia 2015) The main
difference between PCB assembly line balancing and general
line balancing is that in the electronics industry the prece-
dence among the component placements is not so important
and it is usually ignored. However, for PCB assembly the
characteristics of the placement machine modules (especially
capacity constraints) and the compatibility rules between the
equipment (head, nozzle) and the component types are more
complex. The solution approaches available for the single-
model case employ exact methods (Baybars 1986) and heur-
istics (Ayob and Kendal 2008). For the mixed-model case, the
solution methods include integer programing (Thomopoulos
1970), branch-and-bound (Bukchin and Rabinowitch 2006),
Lagrange relaxation (Lapierre, DeBargis, and Soumis 1998)
and heuristics (Crama et al. 1998; Simaria and Vilarinho 2004;
Ho, Ji, and Dey 2008; Akpinar, Bayhan, and Baykasoglu 2013).
In these studies, the line configuration and machine set-up are
fixed. While this is a valid assumption in many real-life manu-
facturing facilities, the current modular reconfigurable place-
ment machines have been designed without this assumption
so as to offer more flexibility in the usage of resources for
component placement. This provides the motivation for this
present study. Owing to the flexibility of the machine reconfi-
guration, a reconfigurable modular machine is not a fixed
resource, but its efficiency depends on the set-up of the
modules. This issue should be taken into account when bal-
ancing the workload of the line. However, in some article the
configuration is partly considered. For example see Lin, Lin,
and Huang (2016) and Luo, Liu, and Hu (2017) where nozzle
assignment is also optimised.

The Machine Configuration and (Work) Load Balancing
(MCLB) problem for modular gantry-type placement machines
was originally discussed by Toth, Knuutila, and Nevalainen
(2010) for one product type. In this case, the machine reconfi-
guration and load balancing are performed for each job
change. The optimisation of these tasks is a computationally
hard problem and, moreover, reconfiguration needs to be per-
formed manually. Here, the MCLB problem is generalised to the
multi-product case, called Machine Configuration and (Work)
Load Balancing for Multiple products (MCLB-M). Another differ-
ence with the MCLB is that in the present study, instead of a
single nozzle type, there may be several different optional
nozzle types by which a component can be assembled. This
feature adds both flexibility and complexity to the production
planning. However, this problem is occurred when a modular
placement machine is used for a set of different job batches,
each having its own demands of resources (nozzles, heads and
component reels); and, in order to save on machine set-up
time, the whole set of batches should be produced with the
same configuration of the modules. At first glance, the problem
could be trivially solved by creating a super PCB that covers all
the resources from the individual PCB types. Of course, the
generated configuration is feasible for the original problem
too, but the workload balancing may be very poor since the
balancing problem needs to be solved individually for each PCB
type. Furthermore, the impact of different batch sizes would
not be then taken into account and the solutions would turn

out to be unsatisfactory. As an extreme case, suppose that the
batch sizes of two PCB types are 1 and 10,000. Then the
machine configuration should favour the latter PCB type
(Salonen et al. 2006).

The two sub-problems (the configuring and balancing of
the MCLB-M) are closely interconnected. In Rong et al. (2011),
a joint mathematical model was presented for the single job
case (MCLB) and solved in an optimal way for small instances.
The approach is, however, too time-consuming for real-world
problem sizes. To overcome this difficulty, an algorithm is
proposed for the MCBL-M where the two problems are solved
separately; the previous solution to the one sub-problem is
iteratively applied as an input for the next one. As this
approach is a heuristicc we cannot guarantee finding the
optimal solution. Here, a hybrid metaheuristic is given which
combines a genetic algorithm for generating the machine line
configuration and an integer programming solution for the
line balancing sub-problem. To the best of our knowledge,
the MCLB-M problem for the mixed-model production case
has not been discussed before in the literature. The solutions
are evaluated by determining the estimated total assembly
time of the production plans of a set of single PCB problems
and also on generated random multi-product problems. It
transpires that the results of the algorithm are optimal or
close to an optimal solution in the single PCB-type case and
it works well for multi-model cases, too.

In Section 2, the MCLB-M problem is defined more precisely
and a mathematical model is presented in Section 3. The
solution method is introduced in Section 4, then in Section 5
the computational results are presented. Last, we summarise
our findings and make some suggestions for future research.

2. Problem definition

2.1. Reconfigurable modular component placement
machine

In the following, the operation principle of a modular PCB compo-
nent placement machine is examined. This machine type is also
called a reconfigurable modular component placement machine,
or simply a (reconfigurable) modular machine (Figure 1).

The component assembly process of each module of a
gantry-type machine performs a (simplified) set of actions.
These are the following:

(1) The head moves to the feeder unit area.

(2) It picks up the required components into its nozzles
one at a time.

(3) It moves above the stationary PCB.

(4) It places the components into the board one at a
time, and

(5) it returns to the feeder unit area.

(6) Steps 2-5 are repeated until every assigned component
has been inserted into the board.

The operations for automatically replacing the nozzle have
been omitted here because they are in practice avoided as they
are too time-consuming in medium and small batch size assembly
manufacturing processes, like the one considered here.

818 (&) A TOTHETAL.

‘ ‘ %/Feederunlt

v

Pickup < b
location

[l —+—Nozzle

Moving arm

[Rotary head

F—" Printed Circuit
0 Board
,,,,,,, _Conveyor belt

Module 1

Module 2

Module 3

Figure 1. A gantry-type placement machine with three identical configurable modules. Each module has a single gantry mechanism, multi-nozzle head and a

feeder unit.

When a module of a machine has finished its task with a
PCB, the product can be moved forward to the next module of
the same machine or to the next machine of the production
line. Obviously, the fully connected conveyor belt must wait
before moving until every module of the machine and every
other line machine has finished its task (paged production
line). The time between two successive moving steps is called
the cycle-time and it is defined by the slowest machine module
(called the bottleneck machine module) in the line. The cycle-
time commonly varies among different products.

In the MCLB problem, the following input data are given
(see Tables 1 and 2). Here, the machine line contains m
reconfigurable modules. Each module is supposed to be of
the same (gantry-) type that has a changeable placement head
which can hold several vacuum nozzles. There are in total h
head types and n nozzle types. In the study, it is assumed that
there is a sufficient number of heads and nozzles of every
type. A compatibility relation is defined between the head
types and nozzle types (i.e. each head type is related to a set
of compatible nozzle types, where HN;; denotes the compat-
ibility of head type i and nozzle type j) and in a similar way,
between the component types and the nozzle types (i.e. each
nozzle type is related to a set of component types which it can
handle, and ANj, denotes nozzle type j and component k).

Table 1. Inputs.
M

Set of machine modules
m = |M|

Set of head types

h = |H|

Set of nozzle types
n=|N|

Set of component types
a=Al

Set of PCB types

b =]

WA xS =3T3

Table 2. Parameters.

HNj; 1 If head type i is compatible with nozzle type j, 0 otherwise

ANj 1 If nozzle type j is compatible with component type k, 0 otherwise
C; Capacity of head type i (i.e. the maximal number of nozzles in the head)
F Capacity of feeder unit (i.e. the number of component reel slots)
Width of component reel of type k (in slots)

Average pick-and-place time of head type i

Average travelling time of head type i

P, Batch size of PCB type g

Number of placements of component type k on PCB type g

Each head type i has a capacity C, i.e. the maximal number
of nozzles it can hold. Each machine module has its own
feeder unit (also called the component magazine). The feeder
unit has a capacity F representing the number of slots needed
for storing the component reels. The capacity is the sum of the
component tape widths in the feeder unit and it cannot be
exceeded. It is supposed that each placement head requires a
certain (average) time to pick an electronic component from
the feeder unit and put it into the board. This is called the
pick-and-place time, which may vary for different head types
(T°P; with head type i). What is more, the average travelling
time is defined for each head type, which includes the time of
checking using a camera (T"; with head type i). This is the
average time needed by the head to move from the feeder
unit area to the board and back. These two time factors
determine the speed of a head.'

2.2. Machine configuration and (work) load balancing
for multiple products (MCLB-M)

The problem formulation of MCLB-M is a generalisation of the
MCBL for the single PCB type case (Rong et al. 2011). Now, the
production plan includes b PCB types and a different compo-
nent types in total. Each component type i has a width W, i.e.
the number of slots in the feeder unit occupied by the com-
ponent reel. For each PCB type g the production plan gives
the batch size Py, i.e. the number of PCBs of the same type to
be produced, and the number of placements Ry of each
component type k is also given.

The goal of the MCLB-M problem is to determine, for a given
set of PCB types with known batch sizes, a joint machine module
configuration and a component-to-machine assignment fulfilling
the compatibility and capacity constraints such that the estimated
total processing time of the production plan is minimal.

The machine configuration means the head assignment to
machine modules, the nozzle assignment to the heads and the
feeder allocation (i.e. which component types are inserted into
the feeder units of the modules, omitting the order of the reels).
A machine configuration is said to be feasible for a PCB type if
the board can be produced on it. This means that there is at
least one machine module for each component type that has a
compatible nozzle fixed to the placement head of the module
and the feeder contains the component type. A machine con-
figuration is called feasible for the production plan if it is feasible
with all PCB types in the production plan.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 819

In a feasible machine configuration, the machine set-up is
fixed for the whole production plan so none of the head
assignments, the nozzle assignments or the feeder allocations
of any machine module must be altered during the produc-
tion phase. This design avoids the need for the manual inter-
vention of the machine set-up and break time caused by it. To
minimise the total operation time, the machine configuration
and the allocation of the components to the modules must be
designed such that the assembly of each PCB type is as swift
as possible, taking into account the batch sizes of the products
(i.e. PCB types).

For a feasible machine configuration, the task is to assign
the component placements of the PCB types to the nozzles of
the different modules in such a way that the workload of the
bottleneck module (i.e. where the workload is maximal) is
minimised. The question of component-nozzle compatibility,
the feeder allocation and the operation time must then be
considered when the components are being assigned.

2.3. Example

For the parameter settings of a sample configuration see,
Table 3.

In the compatibility matrices, the value of an element is 1 if
the corresponding component type and nozzle type (ANj) or
head type and nozzle type (HN;) are compatible, and 0 if they
are not. For example, in Table 3 the first row of the HN-matrix
means that head type 1 is compatible with nozzle types 1, 2 and
3, but not compatible with any one of nozzle types 4, 5, 6 and 7.

3. Mathematical model

Using the above notations, a mathematical formulation can be
given for the MCLB-M problem. The following variables are
defined for the head-to-module, nozzle-to-head, component-
to-feeder and placement-to-module assignments.

mh,;
fa,k

equals 1 if head type i is assigned to machine module /
equals 1 if component type k is assigned to the feeder
unit of machine module /

Table 3. Configuration parameters of a sample MCLB-M problem.

Number of machine modules, m 4
Number of head types, h 3
Number of nozzle types, n 7
Number of component types, a 10
Capacity of feeder unit, F 20

321
1234556788

Capacities of head types, C; (i =1 to 3)

Widths of the component types, W; (i = 1 to a)
Average travelling times of head types, T"
Pick-and-place times of head types, 7°
Component-Nozzle compatibility matrix, AN (a X n)

0110000
0011000
0001100
0000100
0000011
0000001
11710000
0011100
0000111

Head-Nozzle compatibility matrix HN (h x n)

hn; denotes the number of nozzles of type j is assigned to
the head of machine module /
mdgy stands for the number of component of type k is

assigned to machine module / in the case of PCB
type g

The constraints of the model are the following:

th”:],forallleM 1)
ieH
> faxWy < F.foralll € M)
keA
> hny =" mh;C; forall I € M 3)
jenN ieH
hnj < Qth,,HN,-j,for allleM, jeN (4)
ieH

magy < OZhn,jANjk,for allgeB, ke A IeM (5)

jeN
magy < Qfay,forallqge B, ke A, IeM (6)
Zmaqk, = Ry, forallge B, kcA (7)
IeM
fay, < QZmaqk,,for allleM, ke A (8)
qcB

hnj < QZZmaqk,ANjk,for allleM, jeN (9)
geB keA

mh; € {0,1},foralll e M, ieH (10)

fax € {0,1},foralll e M, ke A (11)

hn; € {0,...,max(Cj| i € H)},foralll e M, jeN (12)

magq € {0,...,Ru},forall /e M, k€A, geB (13)

The first three formulas define the capacity bounds.
Constraint (1) states that exactly one head must be assigned
to each machine module. Constraint (2) states that the total
width of the component reels assigned to the feeder unit of
each module must not exceed the feeder capacity. Constraint
(3) states that the number of nozzles assigned to the head of
each module is equal to the capacity of the head. The following
three types of constraints are needed for maintaining the com-
patibility rules. Constraint (4) states that any nozzle can be
assigned to a head if they are compatible and, similarly, con-
straint (5) states that a component placement can be assigned
to a machine module if its head contains at least one compa-
tible nozzle. Constraint (6) states that a component placement
can be assigned to a module if its feeder unit contains the reel
of the component type. Constraint (7) states that precisely the
required number of placements assigned to the modules.
Constraints (8) and (9) state that a component reel is assigned
to the feeder unit or nozzle to the head if there is at least one

820 (& A TOTHETAL.

component placement assigned to the corresponding machine
module that needs it. Last, constraints (10)—(13) characterise the
domains of the variables.

To evaluate a feasible solution of the MCLB-M problem, the
slowest machine module has to be found for each PCB type
because the bottleneck modules define the cycle times of PCB
types. For a given module, the operation time depends on the
number of pick-and-place cycles made by the head. To deter-
mine this value is not a trivial task as it depends on the
configuration of the machine module and the assigned com-
ponent placements. For each component, there may be more
than one compatible nozzle in the head and one nozzle can
handle several different component types; and the number of
cycles depends on the load of the nozzles in the head.
Therefore, the assigned placements must be balanced
among the nozzles which leads to a new optimisation pro-
blem. Moreover, this subproblem can be resolved only when
the characterisation of the module (i.e. the head and the
nozzles in the head) is fixed. Not surprising, there is no exact
mathematical formulation which can give the precise produc-
tion time when the machine configuration and the workload
balancing are optimised together.

For the MCLB-M, the production time can be estimated
using lower and upper bounds. In the worst case, only one
nozzle in the head can pick and place all the assigned
component placements, which means that number of cycles
of the head is then equal to the number of placements.
Therefore, this value can be used to define an upper bound
for the production time of one PCB. In the best case, the
component placements are equally balanced among the
nozzles of the head and the number of cycles can be calcu-
lated by dividing the number of placements by the head
capacity and rounding up the result. One possible way of
estimating it is to use a weighted combination of these
upper and lower bounds. The weight could express the
quality of the optimisation process for an individual module.
Formally, let RM,, be the total number of placements of PCB
type g assigned to machine module /.

RMg = Zmaqk/,for algeB, leM
keA

(14)

The estimated number of cycles by the head of module / for
PCB type g is then the following:

RMy
ZieHmh/iCi

where w,, and wy, are the weights for the lower and upper
bounds. The production time for machine module / and PCB
type g can be estimated by applying the following formula:

Sq/ = WubRMq/ + Wp J(forallge B, IeM, (15)

Ta=>_ mhi(TPPRMg + T{'Sg) forallg € B, I € M
ieH

(16)

Using the above values, the bottleneck module can be
defined for PCB type g and the production time of a single
board can be computed.

Ty = maxiemTy, for allg € B (17)

Then, the objective function corresponds to the minimisation
of the total production time for the production plan. That is,

T=min» PT,
qeB

(18)

4. Multi-model evolutionary algorithm (MEA) for
module configuration and balancing

As shown in Section 3, an exact mathematical formulation for
the MCLB-M problem is not easy to provide and an exact way
of solving it is not known. Furthermore, in the article by Rong
et al. (2011) it was found that their integer programme for an
easier problem was hard to solve and advanced techniques for
traversing the solution space are required. In addition, the
solution time of the model was very large for bigger problem
instances. For these reasons, sub-optimal solutions are sought
here by dividing the MCLB-M into two sub-problems. Namely,
(1) generating a common feasible machine module configura-
tion of the head assignment, nozzle assignment and feeder
allocation for all the jobs; and (2) creating a component-to-
module assignment for each PCB type that minimises the
estimated total production time of the whole production pro-
gramme. An evolutionary solution method is applied here,
called the Multi-model Evolutionary Algorithm (MEA) (see
Figure 2). First, a machine configuration is generated for the
modules. Then, since only one PCB type is produced at a time,
the line balancing (including the component assignment to all
line machines) is solved independently for each PCB type.
Next, the solution is evaluated by using the estimated manu-
facturing time of the whole production plan. For a fixed
feasible machine module configuration, the workload balan-
cing problem is handled using a linear IP method. To look for
good configuration candidates, an evolutional algorithm (EA)
is applied due to it having provided excellent results for the
basic MCLB problem (Toth, Knuutila, and Nevalainen 2010).
The EA codes the candidate solutions in a natural way, and
includes efficient operations for generating new solutions.
The initial population of module configurations is gener-
ated by a greedy method (see Section 4.1). The algorithm is
based on the same basic idea as that in (Toth, Knuutila,
Nevalainen 2010), but now the generalised nozzle-head and
component-nozzle compatibility must be considered in the
nozzle-to-head and nozzle-to-component assignments. The
integer programming model for the evaluation of the compo-
nent assignment (i.e. workload balancing of component place-
ments) is described in Section 4.2. The details of the
evolutionary algorithm are discussed later on in Section 4.3.

4.1. Initial population of machine module configurations

A component type is compatible with a machine module if there
is at least one compatible nozzle in its head and there is
enough spare capacity in the feeder to store it. A configuration
covers a component type ay if there is at least one machine
module that is compatible with component type a,. For each
machine module, each component type has a covered value,
which is the number of compatible nozzles in the head of the
machine. A machine configuration is thus compatible with a

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING

1. Input

- a set of PCB assembly jobs

(for each job the batch size,

821

the

components and their number of copies)

- the number of machine modules

- the set of available heads,

nozzles and feeder units

- compatibility of the heads-to-nozzles and components-to-nozzles

2. Create an initial set of feasible machine module configurations,

solving the head and nozzle assignment and the feeder allocation,

Co

3. For each configuration in C,, balance the workload of the machine

modules.

4. Record the configuration cp* which gives the best workload fo*

(i.e.

where the assembly time of the bottleneck machine is lowest)

5. ¢c* <= co*; * <- fp*; 1 <=0

end for

6. While the stop criterion is not true

7. Using the population of configurations C; and the corresponding

workload balancing solutions,
module configurations C;;; and
solutions Fj;; by the means of
recombination and replacement

generate a new population of machine
the corresponding workload balancing
evolutionary algorithm (mutation,
operations)

8. Determine from the machine module configurations in C;;; the one

(Cie1™)
9. If f,.,* < f* then let
end while
10.

Return c* and f£*

which gives the best workload

c* <- Cc;p1* and f* <-

(£ia1%)
fin*

Figure 2. Multi-model Evolutionary Algorithm (MEA) for machine module configuration and line balancing.

PCB type if it has a positive covered value for all component
types of the board.

Head and nozzle assignment (step 2). First, those component
types that are compatible with only one nozzle type are con-
sidered sequentially. For a component of this kind, a nozzle is
inserted greedily into the first compatible head (which has been
already assigned to a machine module). If there is no head for
the component, then a compatible head type with the highest
nozzle relevance (see below) is assigned to an empty machine
module. The new nozzle is then assigned to the new head. If,
however, there is no empty machine module, the component
type is just skipped, resulting in an infeasible machine config-
uration. These component types are ignored in the later steps
for this configuration, but are incorporated into the evaluation
by using a penalty value (see later). Recall that here an assigned
nozzle may cover more than one component type.

For the second step of the initial configuring process, each
uncovered component type is compatible with more than one
nozzle type. To select one of these nozzle types, a new para-
meter is introduced called the nozzle-relevance (nr). Its value
describes how many component placements can be carried
out with this particular nozzle type relative to the total num-
ber of component placements R in the whole production plan.

quB (P QZkeAquAka)
R

nr = JforalljeN, (19)

where

(20)

R=> Py> Ra

qeB keA

To maintain the configuration diversity, the uncovered com-
ponent types are covered in a random order. (Recall that a set of
different configurations will be generated to form an initial
population of candidate solutions of MEA.) For each uncovered
component type, a compatible nozzle with the highest nozzle-
relevance value is assigned to a machine module. The assign-
ment process is the same as that above for the first step. If this
action is not possible, the next compatible nozzle types are
tried out in the order of decreasing nozzle relevance values.

When all component types have been covered with at least
one nozzle, the remaining empty slots of the heads are filled with
extra nozzles. As it was said before, to increase the diversity of the
configurations, a probability factor is used for nozzle selection, i.e.
a nozzle with high nozzle-relevance is selected with a higher
probability than a nozzle with low nozzle-relevance. If there is a
machine module without any assigned head, a nozzle is selected
in the same way as before, the head with the highest capacity
compatible with the selected nozzle being assigned to the
machine module, and the head is filled with nozzles in the
same way.

For the pseudo code of the initial head and nozzle assign-
ment method, see Figure 3.

Feeder allocation (steps 2 and 7). The component types that
are not yet stored in any feeder unit are assigned in ascending
order according to the number of compatible machine mod-
ules. Using this sequence, each component type is greedily
assigned to the feeder unit of the compatible machine module
with the highest covered value. Clearly, when a component
type is assigned to a feeder, some other component types
may become incompatible with that module because there is
no longer sufficient space in the feeder. This process is

822 (& A TOTHETAL

NozzleAssignment ()

Build nozzle-relevance vector: nr

Consider the set of those component types which are compatible with

only one nozzle type, A
While AV

compatible nozzle n.

Try to assign n to a machine module

is not empty take the next component type a,

and the

(see AssignModule (n))

If n is assigned then assign a to the same module otherwise skip
component type a and the configuration become infeasible

Update covered-values

Remove covered component types from A/

end while

Consider the set of the still uncovered component types,

A2

While A® is not empty take a randomly selected element of A, a
Let N be the set of compatible nozzle types of a
While a is not assigned take the next element of N® in the order

defined by nr,
a to the same module
end while

and try to assign it to a machine module and assign

If a is not assigned then skip component type a and the configuration

become infeasible
Update covered-values

Remove covered component types from A

end while
For each machine module m

If no head is assigned to m then select a nozzle randomly using nr
values as weights and a compatible head with the highest capacity,
and assign the head to the machine module m

Let h be the head assigned to m

Let N® be the set of nozzles compatible with h
While head h has empty slots select a nozzle randomly from N® using
nr values as weights and assign it to h

end while
end for
end NozzleAssignment

AssignNozzle (n)

If there is a machine module which has a compatible head h with an
empty slot then assign n to head h and return true

If there is machine module m without an assigned head then select that
head type h which has the highest capacity and is compatible with

n, then assign h to m and n to h,

return false
end AssignNozzle

Figure 3. Pseudo code for initial nozzle assignment.

repeated until every component type has been assigned to
some feeder and then the configuration is feasible for all jobs.
If a component type cannot be assigned to any feeder, it is
skipped and the configuration is deemed infeasible.

Since a component type may be compatible with more
than one machine module, putting the component into as
many feeder units as possible should increase the likelihood
to achieve a more balanced workload. Hence, the remaining
free capacity of the feeder units is filled in the following way.
For each machine module, a list of the compatible component
types not yet in its feeder is generated. The list is created in
order of the covered values. The component types are
assigned to the feeder unit in this order until the feeder unit
is filled or there are no compatible component types left. The
process is repeated for each machine module.

For the pseudo code of the feeder allocation, see Figure 4.

Workload balancing (steps 3 and 7). As outlined in Section 3,
to evaluate a solution of the MCLB-M problem, it is not
enough to balance the component placements among the
machine modules, because it is also necessary to assign the

and return true

components to the nozzles. Since in the workload balancing
phase, the machine configuration is already given the compo-
nent-to-nozzle assignment of the heads is possible here. The
machine configuration is given by:

mh() the head type assigned to machine module /

fa(lj) 1 if component type j is assigned to the feeder unit of
machine module /, 0 otherwise

hn(lj) the nozzle type assigned to the j place (i. e. nozzle

location) of the head in machine module /

Let N, be the list of the assigned nozzles ordered by their
nozzle locations in the machine module / and N’ a catenation
of the N’ lists (see Figure 5). Note that these structures are
multi-sets of nozzle types, as more than one copy of a parti-
cular nozzle type can be inserted into a head.

Since a component type may be compatible with several
different nozzle types, it is hard to determine the number of
feeder-PCB-feeder tours made by the head. Because a nozzle
can hold only one component at a time, the head must go
there and back as many times as there are component

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 823

FeederAllocation ()

// Assign each component type to a feeder unit
For each component type a in A in increasing order of the number of

compatible machine modules

If there is not compatible machine module with a then skip component
type a and the configuration becomes infeasible otherwise assign a
to that compatible machine module for which the covered value of a

is the highest
end for

(i.e.

the number of compatible nozzles in its head)

// Fill the remaining empty space in the feeders
For each machine module m that has empty feeder slots
Let A™ be the set of those component types which are compatible with
m and not stored in the feeder of m

While A™ is not empty,

highest and assign it to the feeder of m,

end while
end for
end FeederAllocation

Figure 4. Pseudo code of the feeder allocation.

N1 1,2, 3]

Ny[1.,2,2 4]

N,| 3, 4
N[1,1,2,3[1,2,2,4[3 ,4]

Figure 5. Nozzle list (N') of three machine modules.

placements assigned to any particular nozzle. Thus, the num-
ber of cycles performed by the head is determined by the
maximum load of its nozzles.

An infeasible machine configuration does not cover
some component type. To increase the chance that these
component types become covered in the next iteration of
MEA, the relevance value (nr) of those nozzle types is
increased, which are compatible with the uncovered com-
ponent types. For each uncovered component type, the
nozzle-relevance value of each compatible nozzle is simply
multiplied by a constant greater than one (a value of 1.5
was used in our tests). A higher nozzle-relevance value
increases the probability of fitting a compatible nozzle to
a module, and with a greater number of compatible nozzles
it is more likely that one can successfully assign the compo-
nent type to the feeder unit.

4.2. Integer programming formulation for workload
balancing

To evaluate a feasible configuration (for steps 3 and 7 of MEA),
the component placements of each PCB type have to be
assigned to the machine modules such that the production
time is minimised.

Production times of the different modules turn out to be
unequal due to the compatibility constraints caused by the
settings of feeders, heads and nozzles. For a fixed machine
module configuration the load balancing must be solved for
each PCB type and these individual balancing problems are
independent of each other. This is why they can be handled
one at a time or even simultaneously via parallel computation.

take that element whose covered value is the

then update A™

Therefore, the following formulation is applied for each PCB
type.

The mathematical model presented in Section 3 is modified
in such a way that the configuration is fixed and thus the
corresponding constraints are removed. Two new variables are
presented and the constraints of the workload balancing are
modified according to the nozzle setting N'. For PCB type g,
the integer variable s, gives the number of pick-and-place
cycles of the head in machine module /. Variable nag; gives
the number of placements of component type k assigned to
the nozzle j (eN’). Next, Q is a big constant.

For each PCB type geB,

min maxiey Y Y Naaig Ty + Sat T 21

keA jEN;
where
Znaqkf = qu,for alke A (22)
jen’
nagg < ANpng, Q. forallk e A, I e M, je N’ (23)
Znaqkj <fa(l, j)Q,forallk € A, I e M (24)
jen,
> nagy < sq.foralll €M, jeN; (25)
keA
naqkje {07--~7qu}7f0ra”keA’jEN’ (26)

The objective function defined in (21) minimises the pro-
cessing time of the slowest machine module. Constraint (22)
states that every component placement must be assigned to
some nozzle for each component type. Constraint (23) tells us
that a component placement can only be assigned to a com-
patible nozzle. Constraint (24) states that placements of a
component type can be assigned only to the nozzles of a
module that has the component type in its feeder.
Constraint (25) states that for each machine module, the
load of every nozzle is smaller than or equal to the number

824 (& A TOTHETAL

of pick-and-place cycles of the head. Last, constraint (26) gives
the permitted domains for the variables.

A standard way to linearise a minmax objective function is
to introduce a new variable T that denotes the maximum
processing time, replace the objective one that minimises
and provide new constraints to each machine module that
ensure that their processing times are less than or equal to 1.
With this modification, the new objective function is

min T (27)
and the new set of constraints is
SO x T + Ty, < T forall I € M (28)

keA jGI\//

The model was implemented in Java and solved using
CPLEX (version 11.1).

4.3. Genetic algorithm for machine configuration

The optimisation of the machine configuration is a complex
task and involves exploring a large search space. For indus-
trial-sized problems, it introduces unacceptable running times
if one has to find a globally optimal solution. In the following,
the genetic algorithm (GA) framework (Holland 1975) is
applied to look for a set of good feasible solutions for the
machine module configuration problem (steps 6 to10 of MEA).
GA is based on a population of individuals, where each of
them represents a candidate solution. With a fitness function,
the individuals are evaluated and compared to each other.
With two operations, the recombination and the mutation, new
individuals called offspring, are created from selected indivi-
duals called parents. During the replacement process, the
members of the next generation are selected from the pool
of the candidate individuals. The GA then iterates until a
stopping criteria is met (see Michalewicz (1996) for details).
Here, the basic concepts of our algorithm are the following.

4.3.1. Individuals

An individual represents a configuration of the machine mod-
ules. An individual is coded as (1) an integer vector containing
the head assignment to the machine (mh(/) gives the head type
in machine /); (2) an integer matrix containing the nozzle assign-
ments to the heads (hn(l,) gives the number of nozzles of type j
in the head of machine /); and (3) a binary matrix which defines
the feeder allocations of the modules (here, fa(lk) is 1 if com-
ponent type k is in the feeder of machine module /).

4.3.2. Fitness

To evaluate a configuration, the component placement time is
calculated for each different PCB type (see Section 4.2 above).
If the machine configuration is feasible for a PCB type, the
production time of the PCB batch is added to the global
fitness value. Otherwise, a penalty term is added to the global
fitness:

F= (29)

> (T(;’R i Zyqu> Pq,

geB keA

where T, is the production time of PCB type g which is
found by solving the corresponding workload balancing sub-
problem defined by the integer programme (21)-(28); yy is 1 if
a component type k is missing from the component assign-
ment and 0 otherwise; K, is a penalty and P, is the batch size
for PCB type g. To calculate the penalty, it is supposed that
each missing component type will be handled by the slowest
head and each placement requires one complete cycle by the
head. The value of the penalty is defined as the total number
of component placements of board g multiplied by the long-
est travelling time and longest pick-and-place time.

Kg= (Th +T) > Re.forq € B,
keA

(30)

where h’ is the head type with the longest travelling time and h”
is the head type with the longest pick-and-place time. In this
way, the GA allows infeasible solution candidates, but makes
them unfavourable.

4.3.3. Mutation

The mutation operation increases the diversity in the popula-
tion by making random changes in the individuals. In our
model, the mutation works on the head and nozzle assignment.
For each machine module, the operation with a predefined low
probability changes the head and assigns the nozzles to the
head using the nozzle-relevance values (see Section 4.1). In the
case where the head is not changed, the mutation is executed
on the nozzles. Then, with the same probability each nozzle is
changed to another compatible nozzle type that is selected by
the roulette-wheel selection technique (see Michalewicz 1996)
using the nozzle-relevance values.

4.3.4, Recombination
The role of recombination (or crossover) is to generate new con-
figurations by mixing the characteristics of two selected indivi-
duals. The machine modules of two individuals are considered
pairwise and for each pair a random crossing is performed. First, a
bit vector v (v, / = 1 to m) is randomly generated to define the
swapping positions. The module pairs are considered in increasing
order of . If v;= 0, then the pair is bypassed. Otherwise, if the head
types of the two modules are different, they are simply swapped
with their nozzles and feeders. If, however, the head types are the
same, for each nozzle location the assigned nozzles are swapped
using another random bit vector w (w;, j = 1 to Cppg). Then the
feeders are reallocated for both machines, as was done for the
initial configuration (see Section 3.1).

After this procedure, the heads and nozzles are reordered
by their indices. For an example, see Figure 6 below.

4.3.5. Replacement

The pool of candidate solutions contains the individuals of the
previous generation and the generated offspring. Linear order-
ing selection is then used to select the individuals for the next
generation, i.e. the individuals are sorted according to their
fitness values and the required number of best individuals
(size of the population) is chosen that will survive and become
the next generation.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 825

00— 0] 0 0 E
0@ 4 Nl 1 0
E1 ey 1 o
At 2] 2 1)
% — 1—> 3 3] %
3 3 3 3
4] 4] 4] 4]
5] 07 [4] 5 4
parent 1 parent 2 offspring 1 offspring 2

Figure 6. A recombination operation on two sample configurations with 3 machine modules, 3 head types (capacities 4, 3, 2) and 6 nozzle types. The Boolean vector
for modules is v = (1 1 0) and Boolean vector for nozzles of module 1 is w = (0 1 0 1). In offspring 2, the first head is then sorted by the nozzle identifiers.

4.3.6. Parameters

Evolutionary algorithms have many parameters and various
methods have been proposed for adapting the operations of
the general model to the needs of the current optimisation
problem (Eiben, Hinterding, and Michalewicz 1999). Therefore,
these parameters were determined by a tuning process where
each parameter was determined independently. A set of values
was defined for these parameters. Each value was tested one by
one on randomly generated problem instances of different sizes
and the best parameter value was kept. To select the number of
individuals in the generation (i.e. the population size), four
options were tried out (5, 10, 20 and 50) and the population
size of 20 gave the best results. For our problem instances, tests
demonstrated that a higher population size did not improve
the solutions significantly, but did increase the running time. In
each generation, the mutation operations were performed on
each individual. The best probability of changing a head or
nozzle in the configuration turned out to be 0.2, which was
chosen from the set {0.05, 0.1, 0.2. 0.3, 0.4, 0.5}. The number of
recombination operations performed was equal to the popula-
tion size. For the selection of the parents, the random, 2-tour-
nament and roulette-wheel selection methods were tested. Out
of these, the roulette-wheel method produced the best results.
For the new generation, the best individuals were selected by
using the linear ordering of their fitness value taken from the
pool of the members of the previous generation and the new
offspring. This method actually performed better than the 2-
tournament and roulette-wheel selection methods. The stop-
ping criterion was the maximum number of the generations,
which here was set to 1000. This value was sufficient for the
problems studied here. For more information about EA meth-
ods, see Michalewicz (1996).

5. Computational results

The MEA optimisation method was implemented in Java and
executed on an Intel i7 3.6GHz, 8GB computer; and the integer

programming problems were solved by using the CPLEX soft-
ware package. The performance of MEA was evaluated on two
different sets of problem instances. For efficiency evaluations,
the problem instances were taken from Toth, Knuutila, and
Nevalainen (2010) and Rong et al. (2011). In the article by Toth,
Knuutila, and Nevalainen (2010), a metaheuristic for a single
product MCLB (which is called SEA) was presented and its
efficiency was evaluated by Rong et al. (2011) by solving the
corresponding IP programme. Even though the algorithm in
the present study was constructed for the production of sev-
eral PCB types, its efficiency can be analysed on single PCB as
well. To evaluate the MEA for multi-model production, random
problem instances were generated that represent real-life
industrial products of different sizes.

5.1. Single job problems

The algorithm was tested with the single PCB production pro-
blems (see Table 4) published by Toth, Knuutila, and Nevalainen
(2010) and Rong et al. (2011). The results of the MEA were
compared to the results of SEA and the optimal solution.

The results in Table 5 show that the proposed algorithm
works quite well for these problem instances. The production
time is equal or close to the global optimum found by means
of the IP-programme formulation. With travelling time 1 for
problem instance 5 and with travelling time 10 for instances 4
and 5, the optimal production time is not known because
these instances were too large for the integer programing
method (Rong et al. 2011). Nevertheless, the resulting values
of MEA are lower than those found using the single-model
evolutionary algorithm SEA.

5.2. Generation of random PCB products

To the best of our knowledge, there are no available bench-
mark data for the MCLB problem. However, the design of real-
life products is protected by the owner companies and not

826 (&) A TOTHET AL

Table 4. Basic parameters of problem instances in single PCB cases.

Component Machine Head Head Nozzle Feeder
types modules types capacities types capacity Placements
1 8 5 2 41 5 10 55
2 8 4 2 4,1 5 12 74
3 10 5 3 841 8 20 100
4 20 8 4 8,421 10 30 320
5 40 8 4 12,8, 4,1 15 30 525

Table 5. Summary of test results for the problem instances of Table 4 with
traveling times 1 and 10.

T =1 =10
Production time Production time
(sec) (sec)
RT RT
OPT SEA (sec) Gen MEA OPT SEA MEA (sec) Gen
1 39 39 39 26 055 84 853 84 83 5.4
2 78 78 78 11 0.25 166 168.6 167.8 15 0.85
3 9 9.7 96 38 264 150 156.7 151.5 66 4.4
4 120 121 120 5671 180.3 - 1986 192 4646 107.3
5 - 2648 26125 4941 684 - 3887 3659 6483 1644

The results are averages of 20 independent runs. The production times of the
proposed multi-model evolutionary algorithm (MEA) are compared to the
optimal (OPT) given by Rong et al. (2011) and the previously published
single-case evolutionary (SEA) solutions in Toth, Knuutila, and Nevalainen
(2010). The other columns list the running time of MEA in seconds (RT) and
the number of those generations (Gen), where the final solution was found by
MEA (the Oth generation stands for the initial generation). For the bigger
problem instances, the optimal solutions are not known.

permitted to publish it. Therefore, to evaluate the method
developed here in the multi-model case, randomly generated
test instances were used which reflect the characteristics of
real products. For generating test instances, a statistical ana-
lysis was performed based on real-life industrial data. The
production database contains 341 different PCB types and
410 component types. The size of the products varies from
small to large, i.e. from only a few component placements to
hundreds on the PCBs. In order to generate a similar data set
the database was analysed and two different frequency values
were defined for each component type. The first one, called
freq.(k) (for each keA) represents the frequency of the com-
ponent type k which describes the probability that compo-
nent type k is needed for a PCB. This value is calculated by
using the number of those PCB types that use component
type k divided by the total number of PCB types. The other
frequency value, called freq,, (k) (for each keA), represents the
frequency of the number of placements from component type
k. It provides the probability that a component placement of a
PCB is taken from component type k, assuming that the
component type is used for this product. This value is defined
using the average of the number of placements of the com-
ponent type k divided by the total number of placements,
taking into account those PCBs that use component type k.

To generate the problem instances, two parameters are used.
Namely, (1) the size of the product (R), i.e. the number of place-
ments; and (2) the range of the required component types, i.e.
how many different component types can be used (at least (a,,;,)
and at most (a,,q,)) for the generated PCB (R = dp,qy)-

A sample set of PCBs is then generated as follows. First, the
algorithm randomly generates a component type list for the
instance in the following way. The number of component types

(a) is randomly selected from the defined interval (Gmin < @ < Gimay)
and a random order of the component types is created.
Component type k is taken from the order and a random number
Ais generated (0 < A < 1). If freq (k) = A, component type k is added
to the component list. This process is then continued until the
number of selected component types is equal to a. If every
possible component type has been checked and some types are
still needed, a new order of the unselected component types is
generated and the process is repeated.

In the second phase of the instance generation, the place-
ments are selected randomly using the component types in
the list. First, one placement is added to the product taken
from each component type. The rest of the placements are
then selected using a method similar to a roulette wheel
selection. A wheel is constructed by the frequency of compo-
nent placements (freq,), where each component type has a
sector whose size is proportional to its frequency value. A
sector is randomly selected from the wheel and one place-
ment is added from the selected component type to the PCB.
This method is repeated until the required number (R) of
component placements have all been added.

5.3. Multiple jobs, multipurpose nozzles

To test the algorithm in the multi-model case, the problem
instances used were of three different sizes; namely small,
medium and large. Each generated problem instance contains
ten different PCB types of equal batch size. Here, the para-
meters of the configuration are defined by considering the
problem size. Also, the multi-model production is relevant
when the cost of the module reconfiguration is high compared
to the cost of the production. This may be due to the small
batch sizes or the similarity of the PCB types. For two product
types which share most of the required component types, a
common configuration can give acceptable production times
for both products. In order to assess this kind of production
plan, a relatively small set of component types (see the second
column of Table 6) was used to generate PCB types and the
generator chose a number of required component types for
each PCB (see the last column of Table 6).

To evaluate the results, two lower bounds were used for
the MCLB-M. The first lower bound tells us something about
the configuration. The idea is that a common configuration of
the whole production plan is usually not optimal for each PCB
type individually. If the machine configuration is handled
separately for each job, the configurations may be better
suited to the different PCB types, and in this way, provide

Table 6. Parameter values for the generated test instances.
Head

Component Machine Head Nozzle Feeder

types modules types capacities types capacity R Gmin-Gmax
I 25 3 2 41 4 16 50 20-25
I 25 4 3 84,1 6 16 100 20-25
1] 50 6 3 84,1 6 20 250 35-45

Row | stands for small instances, row Il for medium and row Il for large.
Columns from the second to sixth indicate the parameter values of the
machine configuration. The last two columns are for the parameter values
of the generated product types. The seventh column contains the number of
placements and the last column gives the minimum value and maximum
value for the number of required component types for a certain PCB type.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 827

lower production times. So MEA was run for each PCB type
individually and the sum of the resulting production times was
used as the first lower bound. This value gives the cost for a
problem instance as if the machine line had been reconfigured
with zero cost after each PCB type batch. Note that MEA does
not always find the global optimum of the single product
MCLB, but the result is still lower. The other lower bound is
valid only for identical batch sizes based on a relaxation of the
problem in the workload balancing phase. The value of the
bound is the production time of the ‘Super PCB’ which con-
tains all the component placements of every PCB in the pro-
blem instance. In this way, the multi-model problem may be
simplified to the single product case. Since the batch sizes are
the same for each PCB type, the machine line places exactly
the same set of components into the Super PCB as it does
with the original PCBs with batch sizes 1. Hence, the gener-
ated configuration is as good for the Super PCB as it is for the
set of original PCBs. However, the total workload may be more
balanced for the Super PCB case than for the single PCB case
processed one by one. For example, when producing the
Super PCB, one module inserts the components of one PCB
type while another module inserts the components of another
PCB type at the same time. This case cannot happen with the
originally separated product types since the different PCB
types are assembled one after the other. Here, the higher
value of the two bound is used as a global lower bound.

For each problem instance of Table 7, twenty independent
runs were made with the Super PCB and with the single PCBs
independently. The best solutions of these runs were then
used as the lower bounds. Twenty runs were made with the
original multi-model problem instances and the averages of
the resulting production times were used for the evaluation
of MEA.

The results in Table 7 show that MEA is strong and robust
for smaller and larger product types, even when there are
several different PCB types in the production plan. It can be
seen that for almost every problem instance, the difference
between the production time of MEA and the lower bound is
at most 3%. However, for larger problem instances (i.e. with a
bigger number of modules and components) the running time
of MEA increases. Though the number of iterations of the
evolutionary algorithms increases slightly, the higher running
times are mainly caused by the larger line balancing problems,
which are solved by the IP-solver.

When several PCB types are assembled with a common
configuration, the algorithm configures the assembly line by
taking into consideration their batch sizes. To test this feature
of MEA, production programmes of the PCB types of Table 7
were generated by varying the batch sizes of the jobs. For this
test, four medium-sized PCB types were used. First, the batch
sizes were given the same value and then the batch size of
one board was set to twenty times that of the others. The
resulting production times are shown in Table 8.

The results in Table 8 show that the MEA algorithm effi-
ciently adjusts the machine line configuration according to the
proportion of the product types. When the production plan
contains more than one PCB type with equal batch sizes, the
generated configuration is designed in such a way that the
production time of each PCB type increases smoothly and

Table 7. Results obtained using MEA in the multi-model case of random
generated test instances got by averaging twenty independent runs.

Production time

MEA Single Super Gap (%) RT (sec) Gen
Small_0 305 301 297 13 217.5 19
Small_1 306 299 297 23 219.7 23
Small_2 302 289 293 3 204.5 14.6
Small_3 300 287 293 23 193.9 15.7
Small_4 301 292 290 3 205 18.8
Small_5 307 288 293 4.6 193.6 18.9
Small_6 303.3 295 294 2.7 200.4 12.3
Small_7 307.2 301 298 2 189.5 11.1
Small_8 309 281 298 3.6 192.6 13.6
Small_9 299.7 298 293 0.6 210.8 13.3
Medium_0 369 369 361 0 572.8 213
Medium_1 378.8 378 367 0.2 540.4 13.5
Medium_2 370.5 346 363 2 643.5 36.7
Medium_3 368 368 362 0 595.6 21.9
Medium_4 372 353 363 2.4 549.8 13.7
Medium_5 371 370 363 0.3 623 29.1
Medium_6 374 366 364 2.1 4949 1.6
Medium_7 372 372 362 0 517.4 45
Medium_8 371.6 371 364 0.2 624.8 30.2
Medium_9 369 369 360 0 512.4 9.4
Large_0 692.8 553 683 14 1575.6 57
Large_1 690.2 545 680 15 1691.6 68
Large_2 691.9 535 685 1 1385.9 437
Large_3 569 543 558 1.9 1583.4 21.5
Large_4 691.3 553 682 13 1543.3 56
Large_5 694.3 547 684 15 1761.1 75.2
Large_6 692 552 682 14 17244 67.4
Large_7 688 560 682 0.9 1306.6 283
Large_8 692.1 553 682 1.5 1338.9 333
Large_9 693.9 552 685 13 1590.1 59.4

The first column is the problem instance, while the second is the resulting
production time by MEA. The next two columns give the lower bounds for
production time, where the Single column comes from the single job produc-
tion and the Super from the production time of the Super PCB. The Gap
column lists in percentage terms the differences between the results of MEA
and the global lower bounds (the higher of the two lower bounds). Next, the
last two columns list the running time (RT) and the number of generations
(Gen) required for MEA to get the final solution.

Table 8. The production time of PCB types in different production plans.

Batch size Production time
PCB1 PCB2 PCB3 PCB4 PCB1 PCB2 PCB3 PCB4 Total Single Super
1 0 0 0 62 - - - 62 62 -
0 1 0 0 - 50 - - 50 50 -
0 0 1 0 - - 44 - 44 44 -
0 0 0 1 - - - 70 70 70 -
1 1 1 1 75 54 75 100 304 226 304
20 1 1 1 62 75 67 100 1482 1404 1729
1 20 1 1 90 50 920 100 1280 1176 1330
1 1 20 1 62 75 67 100 1577 1520 1729
1 1 1 20 79 107 91 70 1677 1556 2204

The four leftmost columns list the batch sizes, while the next five columns show
the resulting production time for each PCB type and for the total production
plan. In the next column, a lower bound (Single) is given for the production
plan which is calculated from the single product times, and the rightmost
column contains the production time using the configuration generated for
the Super PCB.

uniformly (see the middle row). However, if the batch sizes
of the PCB types are different, the configuration is adjusted so
as to reduce the assembly time of larger batches, usually at
the expense of the others. Nevertheless, the total production
time is still close to a lower bound, which is calculated using
the individual production times of the PCB types. If a Super
PCB is utilised instead of the individual PCB types, the gener-
ated configuration is not good when the batch sizes are
different (see the values in columns ‘Total’ and ‘Super’). It

828 (&) A TOTHETAL.

—{O— Production time per PCB type

=L} Running time of MEA (sec)

seconds
120 —fx— Required number of generations
100
80 | — —
60
40 r
20 -
A—B— —A A—
o
1 2 3 4 5

Number of PCB types in the production plan

Figure 7. The effect of the number of different PCB types on the average production time per PCB type, the average running time of MEA and the average number
of generations (where the final solution was first found by MEA). The x-axis gives us the number of PCB types in the production plan. The results are averages of 20
independent runs with all possible PCB type combinations for each number of different types (i.e. one PCB type, two PCB types, etc.).

can also be seen that the feasible configurations are also
strongly affected by the design of the boards defined in the
production plan.

The objective function of MEA contains a penalty term that
which helps one to create feasible machine configurations.
The method for generating the initial configuration attempts
to cover every component type by solving the head and
nozzle assignment first and then the feeder allocation.
Therefore, some component types might still remain uncov-
ered. This happens when too few nozzles and too few mod-
ules cover the component type and the feeder capacity of
these modules is not big enough for all the required compo-
nents. The nozzle-relevance updating (see Section 4.1)
increases the covering probability of these component types
by raising the relevance-value, i.e. the number of the compa-
tible nozzles in the configuration. This is why the algorithm
tends to generate feasible solutions, and if it finds at least one
the final solution will be feasible.

When solving the multi-product MCLB problem in two
phases (i.e. determining the machine configuration and balan-
cing the workload), adding new PCB types to the production
plan does not make the problem more difficult for MEA. The
parameter set of the machine configurations defines the
search space of the problem. The feasibility of a machine
configuration for a set of PCBs depends on the number of
different components in terms of the machine capacity (i.e.
the number of modules, feeder sizes, nozzle types, head capa-
cities) and not on the number of different PCB types. Because
the different configurations are evaluated by the manufactur-
ing time of the global production plan, the task of exploring
the search space just depends on the configuration para-
meters and not on the number of different PCB types. Also,
the workload balancing is solved separately for each PCB type.
However, the running time of MEA increases with the number
of the PCB types since more workload balancing subproblems
must be solved for each iteration of MEA.

To test the above points, a set of production plans was
generated that contained a different number of PCB types
ranging from 2 to 5 (see Table 2). For groups with two PCB

types, pairs were generated for all the (2

5) combinations of

the PCB types; for groups with three PCBs every triple was
generated, etc. Here, the batch of each PCB type has the same
size. For each test, the same configuration parameters of the
modules were used (see Table 1) and the results were aver-
aged over twenty independent runs. Figure 7 tells us that the
average running time of MEA increases linearly with the num-
ber of PCB types. However, the average number of genera-
tions did not change much in these tests. It is also apparent
that the production times of the individual PCB types increase
slightly when the number of different PCB types is bigger in
the production plan. This is because MEA has to balance the
assembly time of the different PCB types to conform to the
generated configuration of the machine modules. The result of
the balancing then depends on the similarity of the different
PCB types in the group.

The running time of MEA depends on the time needed to
generate the initial population (t;,;), the number of iterations
(n; and the time for an iteration (t;). That is

tmea = tinit + Nittit (31

Out of these, t; has a polynomial time dependence for
production, and the time needed to solve the workload bal-
ancing problem can be found using IP. This latter problem is
NP-hard and the solution got by using the CPLEX package that
may be very time consuming. However, in our tests the times
were found to be acceptable.

6. Conclusions

The machine configuration and the workload balancing of
reconfigurable gantry-type machine modules were studied
for the case where the production programme includes sev-
eral different product types and the machine configuration is
kept fixed for a set of PCB job batches of different sizes.
Compatibility relations were defined between heads and noz-
zles and between nozzles and components such that n-to-m
relations are permitted. The present problem is new and the
proposed algorithm can be integrated into a complex system
for managing the set-up, balancing and machine control of
one or several assembly lines.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 829

Since any change in a line configuration is time consuming,
an efficient machine configuration is crucial for a lower manu-
facturing time and it is also needed when the production plan
consists of several different product types. The component
assignment of the MCLB-M differs from the traditional assembly
line balancing problem as the compatibility constraints are
much more complicated, but the precedence restrictions
among the operations performed for the PCBs are usually
omitted. In this study, an iterative metaheuristic MEA was pre-
sented for solving the MCLB-M problem. The heuristics used a
genetic algorithm to generate new line configurations and an
integer programming model for the line balancing.

The efficiency of MEA was demonstrated by comparisons with
optimal solutions and with an earlier published heuristic algo-
rithm in the single product case. To test MEA in the multi-model
case, several randomly generated problem instances were uti-
lised. The results indicate that MEA works well for hard problems
as well. The good adaptivity of the algorithm was demonstrated
in a multi production case by varying the batch sizes of different
PCB jobs. Because MEA optimises the estimated total production
time, it gives higher weights to the PCB types that require more
time due to their complexity or batch size. However, when the
number of different component types becomes large there is
naturally no guarantee that a feasible machine module configura-
tion will be found or that it is even possible.

In real-life PCB manufacturing, it is quite common that the
production plan contains so many and such different products
that they cannot be assembled without a reconfiguration of the
machine line. In future research, our plan is to improve the
presented algorithm in such a way that it groups the products
and sequences the groups efficiently and then solves the MCLB-M
for each group. Another possibility is to allow some (automated
or manual) nozzle changes during the assembly process.

Note

1. While this kind of approximation looks unrefined, it turns out to be
reasonable in tests (Vainio et al. 2014). More sophisticated machine
models (Kallio, Johnsson, and Nevalainen 2012) exist, but they would
need extra data, which are not available in the module reconfigura-
tion and load balancing phase. Here, the ordering of the nozzles in
the head, the topology of the PCBs, the ordering of the component
types in the feeder unit and the sequence of the component place-
ments have been omitted. A consideration of these points would
introduce new hard combinatorial optimisation subproblems (Crama,
Van Der Klundert, and Speiksma 2002).

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Akpinar, S, G. M. Bayhan, and A. Baykasoglu. 2013. “Hybridizing Ant
Colony Optimization via Genetic Algorithm for Mixed.Model Assembly
Line Balancing Problem with Sequence Dependent Setup Times
between Tasks.” Applied Soft Computing 13: 574-589. doi:10.1016/j.
as0¢.2012.07.024.

Ayob, M., and G. Kendal. 2008. “A Survey of Surface Mount Device
Placement Optimization: Machine Classification.” Europian Journal of
Operational Research 186 (3): 893-914. doi:10.1016/j.ejor.2007.03.042.

Battaia, O., and A. Dolgui. 2013. “A Taxonomy of Line Balancing Problems
and Their Solution Approaches.” International Journal of Production
Economics 142: 259-277. doi:10.1016/j.ijpe.2012.10.020.

Baybars, I. 1986. “A Survey of Exact Algorithms for the Simple Assembly
Line Balancing Problem.” Management Science 32 (8): 909-932.
doi:10.1287/mnsc.32.8.909.

Becker, C., and A. Scholl. 2006. “A Survey on Problems and Methods in
Generalized Assembly Line Balancing.” European Journal of Operational
Research 168: 694-715. doi:10.1016/j.ejor.2004.07.023.

Bentaha, M. L., A. Dolgui, and O. Battaia. 2015. “A Bibliographic Review of
Production Line Design and Balancing under Uncertainty.” 15th IFAC
Symposium on Information Control Problems in Manufacturing — INCOM
2015, Ottawa, Canada, Vol. 48, 70-75.

Boysen, N., M. Fliedner, and A. Scholl. 2008. “Assembly Line Balancing:
Which Model to Use When?" International Journal of Production
Economics 111: 509-528. doi:10.1016/j.ijpe.2007.02.026.

Bukchin, Y. and |. Rabinowithc. 2006. “A Branch-And-Bound Based
Solution Approach for the Mixed-Model Assembly Line-Balancing
Problem for Minimizing Stations and Task Duplication Cost.” European
Journal of Operation Research 174: 492-508. doi:10.1016/j.
ejor.2005.01.055.

Crama, Y., O. E. Flippo, J. van de Klundert, and F. C. R. Spieksma. 1998. “The
Assembly of Printed Circuit Boards: A Case with Multiple Machines and
Multiple Board Types.” European Journal of Operational Research 98:
457-472. doi:10.1016/50377-2217(96)00228-7.

Crama, Y., J. van der Klundert, and F. C. R. Speiksma. 2002. “Production
Planning Problems in Printed Circuit Board Assembly.” Discrete Applied
Mathematics 123: 339-361. doi:10.1016/50166-218X(01)00345-6.

Eiben, A. E., R. Hinterding, and Z. Michalewicz. 1999. “Parameter Control in
Evolutionary Algorithms.” IEEE Transactions Evolution Computation 3:
124-141. doi:10.1109/4235.771166.

Guo, S., K. Takahashi, K. Morikawa, and Z. Jin. 2012. “An Integrated
Allocation Method for the PCB Assembly Line Balancing Problem with
Nozzle Changes.” The International Journal of Advanced Manufacturing
Technology 62: 351-369. doi:10.1007/s00170-011-3803-7.

Guthjar, A. L, and G. L. Nemhauser. 1964. “An Algorithm for the Line
Balancing Problem.” Management Science 11 (2): 308-315. doi:10.1287/
mnsc.11.2.308.

Hayrinen, T., M. Johnsson, T. Johtela, J. Smed, and O. S. Nevalainen. 2000.
“Scheduling Algorithms for Computer-Aided Line Balancing in Printed
Curcuit Board Assembly.” Production Planning & Control 11 (5): 497-510.
doi:10.1080/09537280050051997.

Ho, W., P. Ji, and P. K. Dey. 2008. “Optimization of PCB Component
Placements for the Collect-And-Place Machines.” International Journal
of Advanced Manufacturing Technology 37: 828-836. doi:10.1007/
s00170-007-1014-z.

Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. University
of Michigan Press.

Johnsson, M., and J. Smed. 2001. “Observations on PCB Assembly.”
Optimization, Electronic Packaging & Production 41 (5): 38-42.

Kallio, K, M. Johnsson, and O. S. Nevalainen. 2012. “Estimating the
Operation Time of Flexible Surface Mount Placement Machines.”
Production Engineering 6 (3): 319-328. doi:10.1007/511740-012-0380-z.

Lapierre, S. D., L. DeBargis, and F. Soumis. 1998. “Balancing Printed Circuit
Boards Assembly Line Systems.” International Journal of Production
Research 38: 3899-3911. doi:10.1080/00207540050176076.

Lin, H. Y., C. J. Lin, and M. L. Huang. 2016. “Optimization of Printed Circuit
Board Component Placement Using an Efficient Hybrid Genetic
Algorithm.” Applied Intelligence 45: 622. doi:10.1007/510489-016-0775-1.

Luo, J., J. Liu, and Y. Hu. 2017. “An MILP Model and a Hybrid
Evolutionary Algorithm for Integrated Operation Optimisation of
Multi-Head Surface Mounting Machines in PCB Assembly.”
International Journal of Production Research 55 (1): 145-160.
doi:10.1080/00207543.2016.1200154.

Michalewicz, Z. 1996. Genetic Algorithms + Data Structures =Evolution
Programs. 3rd ed. Berlin: Springer.

https://doi.org/10.1016/j.asoc.2012.07.024
https://doi.org/10.1016/j.asoc.2012.07.024
https://doi.org/10.1016/j.ejor.2007.03.042
https://doi.org/10.1016/j.ijpe.2012.10.020
https://doi.org/10.1287/mnsc.32.8.909
https://doi.org/10.1016/j.ejor.2004.07.023
https://doi.org/10.1016/j.ijpe.2007.02.026
https://doi.org/10.1016/j.ejor.2005.01.055
https://doi.org/10.1016/j.ejor.2005.01.055
https://doi.org/10.1016/S0377-2217(96)00228-7
https://doi.org/10.1016/S0166-218X(01)00345-6
https://doi.org/10.1109/4235.771166
https://doi.org/10.1007/s00170-011-3803-7
https://doi.org/10.1287/mnsc.11.2.308
https://doi.org/10.1287/mnsc.11.2.308
https://doi.org/10.1080/09537280050051997
https://doi.org/10.1007/s00170-007-1014-z
https://doi.org/10.1007/s00170-007-1014-z
https://doi.org/10.1007/s11740-012-0380-z
https://doi.org/10.1080/00207540050176076
https://doi.org/10.1007/s10489-016-0775-1
https://doi.org/10.1080/00207543.2016.1200154

830 (& A TOTHETAL

Oliveira, F. S., K. Vittori, R. M. O. Russel, and X. L. Travassos. 2012. “Mixed
Assembly Line Rebalancing: A Binary Integer Approach Applied to Real
World Problems in the Automotive Industry.” International Journal of
Automotive Technology 13: 940-993. doi:10.1007/512239-012-0094-4.

Rong, A, A. Toth, O. S. Nevalainen, T. Knuutila, and R. Lahdelma. 2011.
“Modeling the Machine Configuration and Line-Balancing Problem of a
PCB Assembly Line with Modular Placement Machines.” The International
Journal of Advanced Manufacturing Technology 54 (12): 349-360.
doi:10.1007/s00170-010-2920-z.

Salonen, K, J. Smed, M. Johnsson, and O. Nevalainen 2006. “Grouping and
Sequencing PCB Assembly Jobs with Minimum Feeder Setups.”
Robotics and Computer-Integrated Manufacturing 22, 4, August 2006:
297-305. doi:10.1016/j.rcim.2005.07.001.

Scholl, A., and C. Becker. 2006. “State-of-the-Art Exact and Heuristic Solution,
Procedures for Simple Assembly Line Balancing.” European Journal of
Operational Research 168: 666-693. doi:10.1016/j.ejor.2004.07.022.

Simaria, A. S, and P. M. Vilarinho. 2004. “A Genetic Algorithm Based
Approach to the Mixed-Model Assembly Line Balancing Problem of

Type I.” Computer & Industrial Engineering 47: 391-407. doi:10.1016/j.
€ie.2004.09.001.

Smed, J.,, M. Johnsson, M. Puranen, T. Leipala, and O. S. Nevalainen. 1999. “Job
Grouping in Surface Mounted Component Printing.” Robotics and Computer-
Aided Manufacturing 15: 39-49. doi:10.1016/50736-5845(98)00034-9.

Thomopoulos, N. T. 1967. “Line Balancing - Sequencing for Mixed-
Model Assembly.” Management Science 14: B59-75. doi:10.1287/
mnsc.14.2.B59.

Thomopoulos, N. T. 1970. “Mixed Model Line Balancing with Smoothed
Station Assignments.” Management Science 16: 593-603. doi:10.1287/
mnsc.16.9.593.

Toth, A, T. Knuutila, and O. S. Nevalainen. 2010. “Reconfiguring Flexible
Machine Modules of a PCB Assembly Line." Production Engineering
Research and Development 4: 85-94. doi:10.1007/511740-009-0200-2.

Vainio, F., T. Pahikkala, M. Johnsson, and O. Nevalainen. 2014. “Estimating
the Production Time of a PCB Assembly Job without Solving the
Optimized Machine Control.” International Journal of Computer
Integrated Manufacturing 28: 823-835.

https://doi.org/10.1007/s12239-012-0094-4
https://doi.org/10.1007/s00170-010-2920-z
https://doi.org/10.1016/j.rcim.2005.07.001
https://doi.org/10.1016/j.ejor.2004.07.022
https://doi.org/10.1016/j.cie.2004.09.001
https://doi.org/10.1016/j.cie.2004.09.001
https://doi.org/10.1016/S0736-5845(98)00034-9
https://doi.org/10.1287/mnsc.14.2.B59
https://doi.org/10.1287/mnsc.14.2.B59
https://doi.org/10.1287/mnsc.16.9.593
https://doi.org/10.1287/mnsc.16.9.593
https://doi.org/10.1007/s11740-009-0200-2

	Abstract
	1. Introduction
	2. Problem definition
	2.1. Reconfigurable modular component placement machine
	2.2. Machine configuration and (work) load balancing for multiple products (MCLB-M)
	2.3. Example

	3. Mathematical model
	4. Multi-model evolutionary algorithm (MEA) for module configuration and balancing
	4.1. Initial population of machine module configurations
	4.2. Integer programming formulation for workload balancing
	4.3. Genetic algorithm for machine configuration
	4.3.1. Individuals
	4.3.2. Fitness
	4.3.3. Mutation
	4.3.4, Recombination
	4.3.5. Replacement
	4.3.6. Parameters

	5. Computational results
	5.1. Single job problems
	5.2. Generation of random PCB products
	5.3. Multiple jobs, multipurpose nozzles

	6. Conclusions
	Note
	Disclosure statement
	References

