
 

Fig. 1. Simple representation of two biological neuron cells. 
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Abstract—The major bottleneck in simulation of large-scale 

neural networks is the communication problem due to one-to-

many neuron connectivity. Network-on-Chip concept has been 

proposed to address the problem. This work explores the 

drawback that is introduced by interconnection networks – a 

delay jitter. The preliminary experiment is held in the spiking 

neural network simulator introducing variable communicational 

delay to the simulation. The performance degradation is 

reported. 
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I.  INTRODUCTION 

Human brain has around 100 billion neurons which are 
chemically connected to each other. A neuron can be connected 
to around 10,000 neurons in the circuit. Those connections are 
called synapses which are usually formed from axons to 
dendrites. Fig.1 shows the structure of a biological neuron 
where Axon is the longest nerve fibre that transmits the 
electrical pulses or spikes away from the neuron cell body to 
other neurons which then extends into thousands of branches 
called Dendrites. Synapse converts an activity into electrical 
effects that excites the activity in the connected neurons. Large-
scale artificial neural networks (ANNs) have been used to 
emulate the information processing function of the brain [1]. 
Spiking neural networks (SNNs) [2] are a type of ANN, which 
emulate real biological neural networks, conveying information 
through the communication of short transient pulses (spikes) 
between neurons via their synaptic connections. Each neuron 
maintains an internal membrane potential, which is a function 
of several parameters as input spikes, associated synaptic 

weights, current membrane potential, and a constant membrane 
potential leakage coefficient [2], [3]. A neuron fires (emits a 
spike to all connected synapses/neurons) when its membrane 
potential exceeds the neuron’s firing threshold value. 
Understanding and emulating the behavior of the brain has 
received much attention not only from neuroscientists but also 
from engineers and computer scientists. While neuroscientists 
are interested in biophysical models, engineers and computer 
scientists are more interested in utilizing the brain’s powerful 
computing capability. The dramatic developments in brain 
science and neuroscience over the past few decades, together 
with the formidable developments in hardware and software 
technology, have brought us to the edge of building brain-like 
functioning devices and systems [4]. 

Simulation of large-scale networks requires high-
performance computational systems. Software based systems 
provide low speed and don’t scale efficiently. The complexity 
of neuron interconnection is a fundamental bottleneck in 
hardware emulation platforms. Traditional bus-based and direct 
wired connections cannot provide mechanisms to overcome 
this problem. Recently, the network-on-chip (NoC) paradigm 
has emerged as a promising solution to solve the on-chip 
communication problems revealed in many-core system-on-
chip. NoC architectures are composed of cores, routers, and 
links which are arranged in a specific topology. In the context 
of SNNs, the cores refer to the spiking neurons attached to NoC 
routers and the NoC topology refers to the way those neurons 
are interconnected across the network. NoC provides parallel 
transmission of packets. Packet transfer via shared on chip 
resources leads to varying latency values for each packet 
transfer. This variation in packet transfer latency is called jitter. 
The impact of jitter in SNN application is very prominent as it 
alters the arrival time of the spike packet at the destination 
neuron and causes information distortion within SNN, which 
eventually affect the reliability and efficiency of the SNN 
application. This work tends to explore how the jitter affects 
the computational properties of SNN. 

II. RELATED WORK 

Hardware implementation commonly assumes trade-offs 
between variable precision versus cost and speed. In the neural 
networks, synaptic weights are the most important variables, 
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Fig. 2. Self-Organizing Map architecture 

 

 

especially in context of learning. Quite a few researches 
explored reduced synaptic weights precision and the learning 
properties of it for the classical ANNs [20-22]. SNN as a 
relatively new concept is less studied in this sense. One work 
explores genetic algorithm for three bit weights and delays 
precision [23]. FACETS project claims that four bit synaptic 
weights are enough for biological simulations [24]. Other study 
shows that biologically plausible learning remains functional 
down to two bits weight resolution [25]. From the point of 
hardware drawbacks, weight resolution is the most explored 
topic. However, we suppose that communication delay 
introduces larger error, but it remains unexplored. 

Some large-scale projects have indicated the jitter problem. 
The Fast Analog Computing with Emergent Transient States 
project (FACETS) is based on mixed (analog-digital) approach 
[5]. The HICANN (High Input Count Analog Neural Network) 
is a building block of a system incorporating 512 analog 
neurons and more than 131,072 synapses with 4-bit SRAMs to 
store weights. Up to 384 HICANN chips are placed on the 
wafer and connected through hierarchical busses. Each chip has 
access to 256 2-bit bus lanes, 8-bit packets with neuron 
addresses are transmitted serially through them. FACETS 
network allocates a time slot for a neuron on a specific lane. A 
receiving neuron determines spike time by a delivery time, the 
delay is said to introduce an error, but the real impact is not 
reported. 

The Spiking Neural Network Architecture project 
(SpiNNaker) [6] is based on utilizing Multiprocessor-based 
approaches. The building block of the system comprises 18 
ARM968 processor cores. Each building block can emulate 
16,000 biologically plausible neurons with STDP learning in 
real-time. The interconnection between each node is handled 
by a NoC using six links, which is wrapped into a triangular 
lattice; this lattice is then folded onto a surface of a toroid. 
Spikes are transmitted, as 40-bit packets, serially through the 
asynchronous multicasting network [15].  SpiNNaker network 
uses the spike discard policy in case of congestion or 
significant delay. The spike traffic patterns effect on the 
network performance is studied [16], but not vice-versa. 

EMBRACE (Emulating Biologically InspiRed 
ArChitectures in hardwarE) utilizes hierarchical (H-NOC) 
approach, which gives a good trade-off between scalability and 
power consumption [17]. The H-NOC approach offers a high 
throughput of spikes per second along with low power 
consumption of 13mW for a single cluster facility. However, 
each module contains a fixed amount of neurons but not an 
optimized amount. Last work on EMBRACE project identifies 
the problem of a network jitter [7]. They show that jitter creates 
spike rate deviation that affects the SNN data flow. The 
unidirectional ring topology is proposed to reach a fixed delay 
regime for local communications. Rings can be combined into 
mesh topology for scalability with the assumption that cortical-
like modular SNN architecture is used, where neurons in one 
module mostly have only local connections, thus the traffic in 
mesh is kept low. 

The researches mentioned above allow some error for 
simulation, but the exact effect is not explored. In this work, we 
explore how NoC jitter affects a specific SNN architecture 

called Self-Organizing Maps (SOM). We perform classification 
experiment with different delay conditions to find the 
operational range that hardware NoC should provide. 

III. SELF-ORGANIZING MAPS 

Self-Organizing Maps (SOM) is a computational method 
for the visualization and analysis of high-dimensional data, 
especially experimentally acquired information [8]. It was first 
developed in 1982 by Teuvo Kohonen, therefore SOM is 
popularly called Kohonen maps. SOM employ an unsupervised 
learning technique to achieve data classification, data 
segmentation or vector quantization. SOM typically consist of 
an input layer and a two-dimensional map of neurons, as shown 
in Fig. 2. Each neuron in a map also has a neighborhood 
relation which determines the map’s topology. Based on the 
topology, distance in the map can be defined. SOM provides a 
topology preserving mapping from the input space to the two-
dimensional grid of neurons, which means that the relative 
distance between the neurons is preserved [9]. 

SOM has a broad area of application in numerous fields of 
science and technology where it is used for different pattern 
recognition, data analysis and data classification. Most 
promising fields of application are of SOM are: data mining, 
visualization of statistical data, process analysis, biomedical 
applications, data analysis. A research was done in the 
searching of patterns that are used to detect trading signals in 
Taiwan Stock Index (TAIEX). 36 patterns were established by 
implementing a 6 by 6 two-dimensional SOM to a time series 
data of TAIEX. The patterns were analyzed by using a 
normalized equity curve, for several days to verify whether 
they transmit profitable signals [10]. SOM was used for the 
edge detection process in order to reduce image intensity 
levels. Since the edge detection procedure is a critical step in 
biomedical image analysis, an efficient mechanism with the 
satisfying quality of outputs has been proposed. The outputs 
were verified using the high-resolution computed tomography 
images [11]. Viscovery SOMine is an explorative data mining 
commercial application, based on SOMs and statistics. It is a 
desktop application for explorative data mining, visual cluster 
analysis, statistical profiling and classification based on SOM 
and classical statistics in an intuitive workflow environment. In 
addition to a large number of enterprises, consultants and labs, 



 

Fig. 3. Classification accuracy for tests with different delay jitter. 

 

III I N N N N N N N N N N N N

R R R R

R R R R

I I

R R R R

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

I I

I

NN

I

I

I

R R R R

R

N

R

N

R R

N

R

N

R R

N

R

N

R

N

R

N

R

N

R

N

 

Fig. 4. Mapping of SOM into NoC. (a)-(b) 2-D mesh. (c) Fat tree. 

 

(a) (b) 
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hundreds of universities worldwide make use of SOMine for 
their analytical tasks [12]. 

IV. EXPERIMENT 

We perform an experiment on the adaptation of SOM for 
spiking neurons, which mostly resembles [18]. The simplest 
Leaky Integrate and Fire neuron model was used 
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where V is membrane potential, I(t) is the current input, ij  time 
constant for the membrane potential, θ is threshold for 
generating a spike. 

The input layer consists of the banks of ten spiking neurons 
that represent one input value. The input values are transformed 
into a temporal spike sequence within each bank. During one 
input presentation to the network, every neuron of the input 
layer spikes only once. Input values are normalized on the [0;1] 
interval. Each neuron in the input bank is tuned around a point 
in that interval. The closer the input value to the tuned point of 
a neuron, the earlier it spikes. This spike sequence then drives 
the SOM layer. Neurons in map layer have lateral connections 
to the neighbor, the weights of which are defined with 
Mexican-hat like function 

 (1 ) ( , ) ( , )ijw a G i j r aG i j br       (2) 

where wij is synaptic connection strength between neuron i and 
j, a is a magnitude of the negative component of the function, b 
is a decay of the negative component of the function, r is a 
radius of the positive component of the function, G is Gaussian 
function of the distance between neuron i and j. The lateral 
connections implement the winner-take-all mechanism. A 
winning neuron, which fires first, excites closest neighbors and 
suppresses firing in remote neurons. Thus, every input pattern 
activates some particular area on the map layer, forming the 
representation of input data on it. 

The learning is implemented with Spike-Timing Dependent 
Plasticity rule (STDP), which is applied to connections 
between input and map layers. STDP provides a function for 
the long-term potentiation (LTP) and depression (LTD) of 
synapses based on the time difference between a single pair of 

pre and postsynaptic spikes, according to [19] 
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where, A+ and A_ are both positive and determine the maximum 
amount of synaptic strengthening and weakening that can 

occur, respectively, + and – are time constants determining 
the range of time in which synaptic strengthening and 
weakening will occur. The winning neuron typically fires after 
receiving about a half of spikes from input banks. These 
connections fall into LTP region, whereas late spikes depress 
their synapses. To the detailed explanation of input encoding 
and learning mechanism used, refer to original work [18]. 

The network described above was applied for Iris dataset 
classification. The dataset consists of three iris plant classes of 
50 instances each [13]. In the experiment, the dataset was 
divided into two equal parts. The one half was used for training 
the network with 20 000 of input presentations in total, and 
another for the classification test. The experiment was 
performed in a Brian simulator [14]. A communicational delay 
was introduced to the simulation to represent hardware 
communicational jitter. Every spike had normal distributed 
delay with a zero mean and variable variance. Fig. 3 shows the 
classification results for simulations with different delay 
variances. The results show tolerable accuracy loss with the 
delay variance until 2ms. Further increase in the variance 
degrades the classification accuracy significantly. 

V. CONCLUSION AND FUTURE WORK 

We have indicated the problem of variable latency in NoC 
that can potentially harm the results of simulation of SNN. The 
problem is only slightly explored by the community and the 
exact impact is unknown. In this work, we make the 
experiment with SOM, introducing variable delay into 
simulation. The result show that the variable delay may be 
considered as tolerable until 2ms variance, but degrades 
significantly afterwards. The quite high level of delay tolerance 



can be explained by the input representation mechanism. 
Further exploration is required for different neural network 
architectures with different data encoding techniques.  

Another work direction is to perform NoC simulations to 
explore how different topologies and routing algorithms affect 
SNN simulation. Our next experiment is to perform simulation 
of the same SOM architecture mapped on different NoC 
topologies. We are planning to compare the 2-D mesh and the 
fat tree topologies. Typical 2-D mesh consists of routers that 
are connected to four nearest neighbors, forming regular and 
highly scalable topology. Each router is connected to one local 
processing unit. In tree topologies, network routers form a tree 
structure and computing units are connected only to the leaves 
of a tree. Fat tree increases the number of routers and 
communication lanes moving up to the root. Fig. 4. shows the 
principle of the mapping of SOM into hardware NoC. In Fig. 
4(c) the mapping of input neurons into one branch helps to 
transmit spikes in the correct order. Mapping to the mesh 
topology is somewhat tricky. We identify two major 
possibilities: (i) to place input neurons in the center, as in Fig. 
4(a), (ii) to place the neurons of the map layer preserving the 
neighborhood connectivity, as in Fig. 4(b). The mapping (i) 
minimizes the average transmission distance, as during most of 
training or testing periods all the input neurons fire, but only a 
winner neuron and its neighbors fire in the map layer. 
However, at the beginning of a training several neurons can fire 
close in time. Thus, the mapping (ii) tries to minimize the 
training error that can be introduced by the spike delays in the 
lateral connections. As the result of the whole work, the 
community can get better understanding of communication 
networks requirements and hardware drawbacks in simulations 
of SNN. 
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