

Fig. 1. Simple representation of two biological neuron cells.

Exploring NoC jitter effect on simulation of spiking

neural networks

Sergei Dytckov, Sushri Sunita Purohit, Masoud

Daneshtalab, Juha Plosila

Department of Information Technology

University of Turku

Turku, Finland

{serdyt, susupu, masdan, juplos}@utu.fi

Hannu Tenhunen

School of Information and Communication Technology

Royal Institute of Technology

Stokholm, Sweden

hannu@kth.se

Abstract—The major bottleneck in simulation of large-scale

neural networks is the communication problem due to one-to-

many neuron connectivity. Network-on-Chip concept has been

proposed to address the problem. This work explores the

drawback that is introduced by interconnection networks – a

delay jitter. The preliminary experiment is held in the spiking

neural network simulator introducing variable communicational

delay to the simulation. The performance degradation is

reported.

Keywords-spiking neural networks; self-organizing maps;

network-on-chip

I. INTRODUCTION

Human brain has around 100 billion neurons which are
chemically connected to each other. A neuron can be connected
to around 10,000 neurons in the circuit. Those connections are
called synapses which are usually formed from axons to
dendrites. Fig.1 shows the structure of a biological neuron
where Axon is the longest nerve fibre that transmits the
electrical pulses or spikes away from the neuron cell body to
other neurons which then extends into thousands of branches
called Dendrites. Synapse converts an activity into electrical
effects that excites the activity in the connected neurons. Large-
scale artificial neural networks (ANNs) have been used to
emulate the information processing function of the brain [1].
Spiking neural networks (SNNs) [2] are a type of ANN, which
emulate real biological neural networks, conveying information
through the communication of short transient pulses (spikes)
between neurons via their synaptic connections. Each neuron
maintains an internal membrane potential, which is a function
of several parameters as input spikes, associated synaptic

weights, current membrane potential, and a constant membrane
potential leakage coefficient [2], [3]. A neuron fires (emits a
spike to all connected synapses/neurons) when its membrane
potential exceeds the neuron’s firing threshold value.
Understanding and emulating the behavior of the brain has
received much attention not only from neuroscientists but also
from engineers and computer scientists. While neuroscientists
are interested in biophysical models, engineers and computer
scientists are more interested in utilizing the brain’s powerful
computing capability. The dramatic developments in brain
science and neuroscience over the past few decades, together
with the formidable developments in hardware and software
technology, have brought us to the edge of building brain-like
functioning devices and systems [4].

Simulation of large-scale networks requires high-
performance computational systems. Software based systems
provide low speed and don’t scale efficiently. The complexity
of neuron interconnection is a fundamental bottleneck in
hardware emulation platforms. Traditional bus-based and direct
wired connections cannot provide mechanisms to overcome
this problem. Recently, the network-on-chip (NoC) paradigm
has emerged as a promising solution to solve the on-chip
communication problems revealed in many-core system-on-
chip. NoC architectures are composed of cores, routers, and
links which are arranged in a specific topology. In the context
of SNNs, the cores refer to the spiking neurons attached to NoC
routers and the NoC topology refers to the way those neurons
are interconnected across the network. NoC provides parallel
transmission of packets. Packet transfer via shared on chip
resources leads to varying latency values for each packet
transfer. This variation in packet transfer latency is called jitter.
The impact of jitter in SNN application is very prominent as it
alters the arrival time of the spike packet at the destination
neuron and causes information distortion within SNN, which
eventually affect the reliability and efficiency of the SNN
application. This work tends to explore how the jitter affects
the computational properties of SNN.

II. RELATED WORK

Hardware implementation commonly assumes trade-offs
between variable precision versus cost and speed. In the neural
networks, synaptic weights are the most important variables,

NNNNNN

NNNNNN

NNNNNN

NNNNNN

NNNNNN

NNNNNN

I I I I I I

Winning neuron

Neighborhood

Fig. 2. Self-Organizing Map architecture

especially in context of learning. Quite a few researches
explored reduced synaptic weights precision and the learning
properties of it for the classical ANNs [20-22]. SNN as a
relatively new concept is less studied in this sense. One work
explores genetic algorithm for three bit weights and delays
precision [23]. FACETS project claims that four bit synaptic
weights are enough for biological simulations [24]. Other study
shows that biologically plausible learning remains functional
down to two bits weight resolution [25]. From the point of
hardware drawbacks, weight resolution is the most explored
topic. However, we suppose that communication delay
introduces larger error, but it remains unexplored.

Some large-scale projects have indicated the jitter problem.
The Fast Analog Computing with Emergent Transient States
project (FACETS) is based on mixed (analog-digital) approach
[5]. The HICANN (High Input Count Analog Neural Network)
is a building block of a system incorporating 512 analog
neurons and more than 131,072 synapses with 4-bit SRAMs to
store weights. Up to 384 HICANN chips are placed on the
wafer and connected through hierarchical busses. Each chip has
access to 256 2-bit bus lanes, 8-bit packets with neuron
addresses are transmitted serially through them. FACETS
network allocates a time slot for a neuron on a specific lane. A
receiving neuron determines spike time by a delivery time, the
delay is said to introduce an error, but the real impact is not
reported.

The Spiking Neural Network Architecture project
(SpiNNaker) [6] is based on utilizing Multiprocessor-based
approaches. The building block of the system comprises 18
ARM968 processor cores. Each building block can emulate
16,000 biologically plausible neurons with STDP learning in
real-time. The interconnection between each node is handled
by a NoC using six links, which is wrapped into a triangular
lattice; this lattice is then folded onto a surface of a toroid.
Spikes are transmitted, as 40-bit packets, serially through the
asynchronous multicasting network [15]. SpiNNaker network
uses the spike discard policy in case of congestion or
significant delay. The spike traffic patterns effect on the
network performance is studied [16], but not vice-versa.

EMBRACE (Emulating Biologically InspiRed
ArChitectures in hardwarE) utilizes hierarchical (H-NOC)
approach, which gives a good trade-off between scalability and
power consumption [17]. The H-NOC approach offers a high
throughput of spikes per second along with low power
consumption of 13mW for a single cluster facility. However,
each module contains a fixed amount of neurons but not an
optimized amount. Last work on EMBRACE project identifies
the problem of a network jitter [7]. They show that jitter creates
spike rate deviation that affects the SNN data flow. The
unidirectional ring topology is proposed to reach a fixed delay
regime for local communications. Rings can be combined into
mesh topology for scalability with the assumption that cortical-
like modular SNN architecture is used, where neurons in one
module mostly have only local connections, thus the traffic in
mesh is kept low.

The researches mentioned above allow some error for
simulation, but the exact effect is not explored. In this work, we
explore how NoC jitter affects a specific SNN architecture

called Self-Organizing Maps (SOM). We perform classification
experiment with different delay conditions to find the
operational range that hardware NoC should provide.

III. SELF-ORGANIZING MAPS

Self-Organizing Maps (SOM) is a computational method
for the visualization and analysis of high-dimensional data,
especially experimentally acquired information [8]. It was first
developed in 1982 by Teuvo Kohonen, therefore SOM is
popularly called Kohonen maps. SOM employ an unsupervised
learning technique to achieve data classification, data
segmentation or vector quantization. SOM typically consist of
an input layer and a two-dimensional map of neurons, as shown
in Fig. 2. Each neuron in a map also has a neighborhood
relation which determines the map’s topology. Based on the
topology, distance in the map can be defined. SOM provides a
topology preserving mapping from the input space to the two-
dimensional grid of neurons, which means that the relative
distance between the neurons is preserved [9].

SOM has a broad area of application in numerous fields of
science and technology where it is used for different pattern
recognition, data analysis and data classification. Most
promising fields of application are of SOM are: data mining,
visualization of statistical data, process analysis, biomedical
applications, data analysis. A research was done in the
searching of patterns that are used to detect trading signals in
Taiwan Stock Index (TAIEX). 36 patterns were established by
implementing a 6 by 6 two-dimensional SOM to a time series
data of TAIEX. The patterns were analyzed by using a
normalized equity curve, for several days to verify whether
they transmit profitable signals [10]. SOM was used for the
edge detection process in order to reduce image intensity
levels. Since the edge detection procedure is a critical step in
biomedical image analysis, an efficient mechanism with the
satisfying quality of outputs has been proposed. The outputs
were verified using the high-resolution computed tomography
images [11]. Viscovery SOMine is an explorative data mining
commercial application, based on SOMs and statistics. It is a
desktop application for explorative data mining, visual cluster
analysis, statistical profiling and classification based on SOM
and classical statistics in an intuitive workflow environment. In
addition to a large number of enterprises, consultants and labs,

Fig. 3. Classification accuracy for tests with different delay jitter.

III I N N N N N N N N N N N N

R R R R

R R R R

I I

R R R R

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

I I

I

NN

I

I

I

R R R R

R

N

R

N

R R

N

R

N

R R

N

R

N

R

N

R

N

R

N

R

N

Fig. 4. Mapping of SOM into NoC. (a)-(b) 2-D mesh. (c) Fat tree.

(a) (b)

(c)

hundreds of universities worldwide make use of SOMine for
their analytical tasks [12].

IV. EXPERIMENT

We perform an experiment on the adaptation of SOM for
spiking neurons, which mostly resembles [18]. The simplest
Leaky Integrate and Fire neuron model was used

()

0,

m

dV
I t V

dt

V if V





 

 

 (1)

where V is membrane potential, I(t) is the current input, ij time
constant for the membrane potential, θ is threshold for
generating a spike.

The input layer consists of the banks of ten spiking neurons
that represent one input value. The input values are transformed
into a temporal spike sequence within each bank. During one
input presentation to the network, every neuron of the input
layer spikes only once. Input values are normalized on the [0;1]
interval. Each neuron in the input bank is tuned around a point
in that interval. The closer the input value to the tuned point of
a neuron, the earlier it spikes. This spike sequence then drives
the SOM layer. Neurons in map layer have lateral connections
to the neighbor, the weights of which are defined with
Mexican-hat like function

 (1) (,) (,)ijw a G i j r aG i j br     (2)

where wij is synaptic connection strength between neuron i and
j, a is a magnitude of the negative component of the function, b
is a decay of the negative component of the function, r is a
radius of the positive component of the function, G is Gaussian
function of the distance between neuron i and j. The lateral
connections implement the winner-take-all mechanism. A
winning neuron, which fires first, excites closest neighbors and
suppresses firing in remote neurons. Thus, every input pattern
activates some particular area on the map layer, forming the
representation of input data on it.

The learning is implemented with Spike-Timing Dependent
Plasticity rule (STDP), which is applied to connections
between input and map layers. STDP provides a function for
the long-term potentiation (LTP) and depression (LTD) of
synapses based on the time difference between a single pair of

pre and postsynaptic spikes, according to [19]

exp(/), 0

exp(/), 0

ij

ij

ij

w A t if t
w

w A t if t





 

 

  
  

   
 (3)

where, A+ and A_ are both positive and determine the maximum
amount of synaptic strengthening and weakening that can

occur, respectively, + and – are time constants determining
the range of time in which synaptic strengthening and
weakening will occur. The winning neuron typically fires after
receiving about a half of spikes from input banks. These
connections fall into LTP region, whereas late spikes depress
their synapses. To the detailed explanation of input encoding
and learning mechanism used, refer to original work [18].

The network described above was applied for Iris dataset
classification. The dataset consists of three iris plant classes of
50 instances each [13]. In the experiment, the dataset was
divided into two equal parts. The one half was used for training
the network with 20 000 of input presentations in total, and
another for the classification test. The experiment was
performed in a Brian simulator [14]. A communicational delay
was introduced to the simulation to represent hardware
communicational jitter. Every spike had normal distributed
delay with a zero mean and variable variance. Fig. 3 shows the
classification results for simulations with different delay
variances. The results show tolerable accuracy loss with the
delay variance until 2ms. Further increase in the variance
degrades the classification accuracy significantly.

V. CONCLUSION AND FUTURE WORK

We have indicated the problem of variable latency in NoC
that can potentially harm the results of simulation of SNN. The
problem is only slightly explored by the community and the
exact impact is unknown. In this work, we make the
experiment with SOM, introducing variable delay into
simulation. The result show that the variable delay may be
considered as tolerable until 2ms variance, but degrades
significantly afterwards. The quite high level of delay tolerance

can be explained by the input representation mechanism.
Further exploration is required for different neural network
architectures with different data encoding techniques.

Another work direction is to perform NoC simulations to
explore how different topologies and routing algorithms affect
SNN simulation. Our next experiment is to perform simulation
of the same SOM architecture mapped on different NoC
topologies. We are planning to compare the 2-D mesh and the
fat tree topologies. Typical 2-D mesh consists of routers that
are connected to four nearest neighbors, forming regular and
highly scalable topology. Each router is connected to one local
processing unit. In tree topologies, network routers form a tree
structure and computing units are connected only to the leaves
of a tree. Fat tree increases the number of routers and
communication lanes moving up to the root. Fig. 4. shows the
principle of the mapping of SOM into hardware NoC. In Fig.
4(c) the mapping of input neurons into one branch helps to
transmit spikes in the correct order. Mapping to the mesh
topology is somewhat tricky. We identify two major
possibilities: (i) to place input neurons in the center, as in Fig.
4(a), (ii) to place the neurons of the map layer preserving the
neighborhood connectivity, as in Fig. 4(b). The mapping (i)
minimizes the average transmission distance, as during most of
training or testing periods all the input neurons fire, but only a
winner neuron and its neighbors fire in the map layer.
However, at the beginning of a training several neurons can fire
close in time. Thus, the mapping (ii) tries to minimize the
training error that can be introduced by the spike delays in the
lateral connections. As the result of the whole work, the
community can get better understanding of communication
networks requirements and hardware drawbacks in simulations
of SNN.

REFERENCES

[1] S. Grossberg, W. Maass, and H. Markram, “Introduction: spiking
neurons in neuroscience and technology,” Neural Networks, vol. 14, no.
6–7, p. 587, 2001.

[2] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural Networks, vol. 10, pp. 1659–1671, 1997.

[3] W. Gerstner, and W. M. Kistler, Spiking Neuron Models Single
Neurons, Populations, Plasticity. Cambridge, U.K., Cambridge
University Press, 2002.

[4] T. Trappenberg, Fundamentals of Computational Neuroscience, 2nd ed.,
Oxford, U.K.: Oxford University Press, 2010.

[5] J. Schemmel, J. Fieres, and K. Meier: "Wafer-scale integration of analog
neural networks," in International Joint Conference on Neural Networks,
Hong Kong, (IJCNN), 2008, pp.431-438.

[6] S.B. Furber, D.R. Lester, L.A. Plana, J.D. Garside, E. Painkras, S.
Temple, and A.D. Brown: "Overview of the SpiNNaker system
architecture," Computers, IEEE Transactions on, vol. 62, no. 12, pp.
2454-2467, Dec. 2013.

[7] S. Pande, F. Morgan, G. Smit, T Bruintjes, J. Rutgers, B. McGinley, S.
Cawleys, J. Harkin, and L. McDaid: “Fixed latency on-chip interconnect
for hardware spiking neural network architectures,” Parallel Computing,
vol. 39, no. 9, pp. 357-371, September 2013.

[8] T. Kohonen, and T. Honkela: “Kohonen network,” Scholarpedia, vol. 2,
no. 1, pp. 1568. [Online]. http://dx.doi.org/10.4249/scholarpedia.1568

[9] J. Hollmen: ”Process modeling using the self organizing map,” M.S.
thesis, Dep. Comp. Sci., Hels. Univ. Tech., Helsinki, 1996.

[10] S. H. Chen, and H. He, “Searching financial patterns with self-
organizing maps,” in Computational Intelligence in Economics and
Finance, New York, Springer, pp. 203-216, 2003.

[11] L. Gr fov , J. Mare , . Proch zka, P. Konop sek: “Edge detection in
biomedical images using self-organizing maps,” in Artificial Neural
Networks - Architectures and Applications, Rijeka, Croatia, InTech,
January, 2013.

[12] “Viscovery SOMine” Viscovery SOMine 6. [Online]. Available:
www.viscovery.net/somine

[13] R. . Fisher, “The use of multiple measurements in taxonomic
problems,” nn. Eugen., vol. 7, no. 2, pp. 179–188, 1936.

[14] D. Goodman, and R. Brette “Brian: a simulator for spiking neural
networks in Python,” Front. Neuroinform., vol. 2, no. 5, 2008.

[15] L.A. Plana, S.B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and S.
Yang, "A GALS infrastructure for a massively parallel multiprocessor,"
Design & Test of Computers, IEEE, vol. 24, no. 5, pp. 454-463, 2007.

[16] J. Navaridas, L. A. Plana, J. Miguel- lonso, M. Luj n, and S.B. Furber,
“SpiNNaker: impact of traffic locality, causality and burstiness on the
performance of the interconnection network,” in Proceedings of the 7th
ACM international conference on Computing frontiers (CF '10), New
York, USA, 2010, pp. 11-20.

[17] S. Carrillo, J. Harkin, L.J. McDaid, F. Morgan, S. Pande, S. Cawley, and
B. McGinley: "Scalable hierarchical network-on-chip architecture for
spiking neural network hardware implementations," Parallel and
Distributed Systems, IEEE Transactions on, vol. 24, no. 12, pp. 2451-
2461, 2013

[18] T. Rumbell, S.L. Denham, T. Wennekers: “ spiking self-organizing
map combining STDP, oscillations, and continuous learning,” Neural
Networks and Learning Systems, IEEE Transactions on, unpublished.

[19] S. Song, K.D. Miller, L.F. bbott: “Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity,” Nat Neurosci., vol.
3, no. 9, pp. 919-926, Sept., 2000.

[20] V.P. Plagianakos, and M.N. Vrahatis, “Training neural networks with
threshold activation functions and constrained integer weights,” in
Proceedings of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks (IJCNN), Como, 2000, vol.5, pp.161-166.

[21] B. Jian, C. Yu, and Y. JinShou, “Neural networks with limited precision
weights and its application in embedded systems,” in Second
International Workshop on Education Technology and Computer
Science (ETCS), 2010, vol.1, pp.86-91.

[22] M. Hoehfeld, and S.E. Fahlman, “Learning with limited numerical
precision using the cascade-correlation algorithm,” Neural Networks,
IEEE Transactions on, vol. 3, no. 4, pp.602-611, Jul 1992.

[23] E. Stromatias, “Developing a supervised training algorithm for limited
precision feed‐forward spiking neural networks,” M.S. thesis,
Microelectron. Sys., Univ. of Liverpool, Liverpool, 2011.

[24] T. Pheil, T.C. Potjans, S. Schrader, W. Potjans, J. Schemmel, M.
Diesmann, and K. Meier, “Is a 4-bit synaptic weight resolution enough?
– constraints on enabling spike-timing dependent plasticity in
neuromorphic hardware,” Frontiers in Neuroscience, vol. 6, no. 90,
2012.

[25] D. Roclin, O. Bichler, C. Gamrat, S.J. Thorpe, J.-O. Klein: “Design
study of efficient digital order-based STDP neuron implementations for
extracting temporal features,” in International Joint Conference on
Neural Networks (IJCNN), Dallas, 2013 , pp.1-7.

