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Abstract

Let f : Z+ → R be an increasing function. We say that an infinite word w is abelian f(n)-saturated if
each factor of length n contains Θ(f(n)) abelian nonequivalent factors. We show that binary infinite words
cannot be abelian n2-saturated, but, for any ε > 0, they can be abelian n2−ε-saturated. There is also a
sequence of finite words (wn), with |wn| = n, such that each wn contains at least Cn2 abelian nonequivalent
factors for some constant C > 0. We also consider saturated words and their connection to palindromic
richness in the case of equality and k-abelian equivalence.
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1. Introduction

Uniform recurrence is a well-studied property of infinite words requiring that each factor of the word
occurs with a bounded gap, or, equivalently, for any n, there exists a constant N such that all factors of
length n occur in any factor of length N .

We define here a related notion asking each factor to contain a certain amount of different factors. We
formulate this property for abelian factors as follows: Let f : Z+ → R be an increasing function. We say
that an infinite word w is abelian f(n)-saturated if each its factor of length n contains Θ(f(n)) abelian
nonequivalent factors. In this note we are interested in as fast-growing functions as possible. Clearly, a
quadratic upper bound for such functions f(n) = n2 is given by the total number of factors of a word of
length n.

We show that this trivial upper bound cannot be reached for abelian factors in binary words. To prove
this, we use the fact that almost abelian k-powers are unavoidable (in the sense that each infinite word
contains factors u1 . . . uk such that for every letter, the frequencies of that letter in the blocks ui are close
to each other, and ui have the same lengths for all i). On the other hand, we give an example showing
that for each ε > 0, there exist abelian n2−ε-saturated infinite words. Interestingly, these infinite words are
obtained by iterating a morphism.

A natural restriction of the problem to finite words asks whether there exists a constant C and a sequence
(wn)n≥0 of words such that |wn| = n and wn contains at least Cf(n) abelian nonequivalent factors. We
give a simple example that in this finite setting the maximal bound f(n) = n2 can be achieved. In fact, this
example is a special case of a construction from [6] where k-abelian palindromes were considered. We also
give the exact maximal number of abelian nonequivalent factors a binary word of length n can contain.

Of course, f(n)-saturated infinite words can be defined with respect to ordinary factors instead of abelian
factors. In this setting the maximal bound f(n) = n2 can be achieved.
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The motivation to this research comes from the articles [3, 6] where palindromicity was considered with
respect to three types of equivalence relations: equality, abelian equivalence, and, as an in between case,
k-abelian equivalence.

In the case of poor words, it turned out that the k-abelian palindromicity behaves like the ordinary
palindromicity: There exist infinite words containing only finitely many (k-abelian, k ≥ 2) palindromes.

In the case of rich words and ordinary palindromes, the situation is clear: A finite word of length
n can contain at most n + 1 palindromes and this upper bound can be attained, see [4, 5]. Moreover,
there exist infinite words all of whose factors contain the maximal number of palindromic factors. In the
abelian case, any finite word is an abelian palindrome. So the question of how many nonequivalent abelian
palindromes a word can contain is actually our earlier restriction of f(n)-saturation for finite words. Hence,
as we mentioned, a word of length n can contain Θ(n2) nonequivalent abelian palindromes as factors. This
extends to the k-abelian palindromicity. So, with respect to richness, the k-abelian palindromicity behaves
as the abelian palindromicity.

A question about extensions of k-abelian richness for infinite words was asked in [6]. The goal and
motivation of this note is to give partial answers to this question. Indeed, our main results deal directly with
the palindromic richness of infinite words in the abelian case. Moreover, our Theorem 5.1 and Corollary 5.2
translate results from the abelian case to the k-abelian case. Although the motivation for our research
came from palindromicity research, the notion of saturated words is quite independent and evokes a series
of questions on its own right.

2. Preliminaries

Let Σ be a finite alphabet. As usual, the set of all finite words over Σ is denoted by Σ∗, the set of all
(right) infinite words by Σω, the set of words of length n by Σn, and the set of words of length at most n
by Σ≤n.

The length of a word u ∈ Σ∗ is denoted by |u| and the number of occurrences of a factor x in u by |u|x.
The reversal of u is denoted by uR.

Words u, v ∈ Σ∗ are abelian equivalent if |u|x = |v|x for all x ∈ Σ, that is, if they have the same letters
with the same multiplicities but possibly in a different order.

Let k be a positive integer. Words u, v ∈ Σ∗ are k-abelian equivalent if |u|x = |v|x for all x ∈ Σ≤k. Of
course, 1-abelian equivalence is the same as abelian equivalence.

For words u, v ∈ Σ∗ of the same length, the following conditions are equivalent:

• u and v are k-abelian equivalent.

• |u|x = |v|x for all x ∈ Σk and u and v have the same prefix of length min{k − 1, |u|}.

• |u|x = |v|x for all x ∈ Σk and u and v have the same suffix of length min{k − 1, |u|}.

The proof of this and other basic properties of k-abelian equivalence can be found in [7].
It follows immediately from the definition that if u and v are k-abelian equivalent, then they are also

k′-abelian equivalent for all k′ ≤ k, and if they are k-abelian equivalent for all k ∈ Z+, then they are equal.

Example 2.1. The words aabab and abaab are 2-abelian equivalent because they begin with the same letter,
|aabab|x = 1 = |abaab|x for x ∈ {aa, ba}, |aabab|ab = 2 = |abaab|ab, and |aabab|bb = 0 = |abaab|bb.

The words aba and bab are not 2-abelian equivalent even though |aba|x = |bab|x for all x ∈ {a, b}2. Their
inequivalence follows, for example, from the fact that |aba|a = 2 6= 1 = |bab|a, or from the fact that the first
letters are different.

A word u is a palindrome if u = uR, and a k-abelian palindrome if u and uR are k-abelian equivalent. In
the case k = 1 the words u and uR are always abelian equivalent, so every word is an abelian palindrome. If
the alphabet is binary, also the case k = 2 is very simple: A nonempty binary word u is 2-abelian equivalent
to uR if and only if it begins and ends with the same letter.
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Example 2.2. The word aabacaa is a 2-abelian palindrome, but not a 3-abelian palindrome.

Let k ≥ 1 and let f : Z+ → R be an increasing function. An infinite word w is

• f(n)-saturated if there exists a constant C > 0 such that for all sufficiently large n, every factor of w
of length n has at least Cf(n) factors,

• palindromic f(n)-saturated if there exists a constant C > 0 such that for all sufficiently large n, every
factor of w of length n has at least Cf(n) palindromic factors,

• k-abelian f(n)-saturated if there exists a constant C > 0 such that for all sufficiently large n, every
factor of w of length n has at least Cf(n) k-abelian nonequivalent factors,

• k-abelian palindromic f(n)-saturated if there exists a constant C > 0 such that for all sufficiently large
n, every factor of w of length n has at least Cf(n) k-abelian nonequivalent k-abelian palindromic
factors.

A finite word of length n is rich if it has n + 1 distinct palindromic factors. An infinite word is rich
if each its factor is rich. For more on both finite and infinite rich words, see [4, 5]. It follows from the
definitions that a rich infinite word is palindromic n-saturated. A word of length n cannot have more than
n+ 1 palindromic factors, so there are no palindromic f(n)-saturated words if f is superlinear.

In [6] a related question has been posed for the k-abelian case: Do there exist infinite words such that
each factor contains the maximal number, up to a constant, of k-abelian nonequivalent k-abelian palindromic
factors? This maximal number is known to be quadratic with respect to the length of the factor, see [6]. We
can then call such words k-abelian rich. This motivates our study of k-abelian palindrome saturated words.

3. A Characterization of n2-saturated words

In this section, we will consider saturated words in the ordinary case of equality.
Every word of length n has at least n + 1 factors (namely, one of each length from 0 to n), so every

infinite word is n-saturated. If an infinite word contains arbitrarily high powers of some fixed word, then it
is not f(n)-saturated for any superlinear function f .

A word of length n can have at most n(n+ 1)/2 + 1 factors, and this bound is reached only in the trivial
case where the word contains n different letters. This obviously means that there are no infinite words such
that every factor has exactly this maximal number of factors, but there are many infinite words such that
every factor has the maximal number of factors up to a constant.

Theorem 3.1. An infinite word w is n2-saturated if and only if there exists p ≥ 2 such that w is p-power-free.

Proof. Assume first that for all p ≥ 2, there exists a nonempty word u such that up is a factor of w. The
word up has at most |u| · |up|+ 1 = |up|2/p+ 1 factors. Therefore, w is not n2-saturated.

Assume then that w is p-power-free. Let n ≥ 1 and let u = a0 · · · an−1 be an arbitrary factor of w of
length n. Let l ≤ dn/2e and consider the factors vi = ai · · · ai+l−1 of u of length l for i < l/(p− 1). If two
of these were equal, say, vi = vj for i < j, then ai · · · aj+l−1 would have the prefix (ai · · · aj−1)p, which is a
contradiction. Therefore, the factors vi are all distinct, and u has at least

dn/2e∑
l=1

l

p− 1
≥ n(n+ 2)

8(p− 1)

factors. This proves that w is n2-saturated.
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4. Abelian saturated binary words

In this section, we analyze binary words from the point of view of abelian equivalence. We show that
there exist abelian n2−ε-saturated binary words, but there are no abelian n2-saturated binary words. The
case of ternary and larger alphabets remains open.

Let w ∈ {a, b}∗ ∪ {a, b}ω, n ≥ 1, and n ≤ |w| if w is finite. We use the notation

αn(w) = min{|u|b | u ∈ Fn(w)}, βn(w) = max{|u|b | u ∈ Fn(w)}.

A simple fact that is frequently used when studying abelian factors of binary words is that w has exactly

βn(w)− αn(w) + 1

abelian nonequivalent factors of length n.
Before moving on to the results about infinite words, let us first look at the maximal and minimal

numbers of abelian nonequivalent factors of finite words. Every word of length n has at least n+ 1 abelian
nonequivalent factors, so every infinite word is abelian n-saturated. If u ∈ {a, b}n and |u|b = i ≤ n/2, then
u has at most in− i2 + n+ 1 abelian nonequivalent factors, and this bound is reached if u = an−ibi. Thus
the maximal number of abelian nonequivalent factors a binary word of length n can have is bn2/4c+ n+ 1,
and this bound is reached by the word adn/2ebbn/2c.

In [6], there is a construction showing that for all k ≥ 1, there exists a constant C > 0 such that for
all n ≥ 1, there exist a binary word of length n having at least Cn2 k-abelian nonequivalent k-abelian
palindromic factors. This general construction is somewhat complicated, but in the binary case, it gives
exactly the words adn/2ebbn/2c.

Theorem 4.1. Let K ≥ 3 and let w be the fixed point of the morphism

σ : {a, b}∗ → {a, b}∗, σ(a) = aK−1b, σ(b) = abK−1.

Then w is abelian n1+log(K−2)/ log(K)-saturated.

Proof. For all j ≥ 0, let Aj = σj(a) and Bj = σj(b). Then |Aj | = |Bj | = Kj and

|Aj |b =
Kj − (K − 2)j

2
, |Bj |b =

Kj + (K − 2)j

2
,

as can be verified by induction.
Let u be an arbitrary factor of w, n = |u| and K ′ = max{K, 5}. We will show that u has at least the

required number of abelian nonequivalent factors. We can assume that n ≥ K ′ + 1.
Let

j =

⌊
log(n/(K ′ + 1))

log(K)

⌋
so that n ≥ (K ′+ 1)Kj . Then u has a factor σj(v), where v is a factor of w of length K ′. Every factor of w
of length K ′ has the factors aa, ba or the factors ab, bb or the factors aa, ab or the factors ba, bb. We assume
that v has the factors aa, ba (the other cases are symmetric). Then u has the factors AjAj , BjAj .

For all i ∈ {Kj , . . . , 2Kj}, let pi be the prefix of Aj of length i−Kj . Then u has the factors Ajpi and
Bjpi of length i, so αi(u) ≤ |Ajpi|b and βi(u) ≥ |Bjpi|b. Thus

βi(u)− αi(u) ≥ |Bjpi|b − |Ajpi|b = |Bj |b − |Aj |b = (K − 2)j .

The number of abelian nonequivalent factors of u is

n∑
i=0

(βi(u)− αi(u) + 1) ≥
2Kj∑
i=Kj

(βi(u)− αi(u)) ≥ Kj(K − 2)j =
(K2 − 2K)j+1

K2 − 2K

≥ 1

K2 − 2K
· (K2 − 2K)log(n/(K

′+1))/ log(K) =
1

K2 − 2K
·
(

n

K ′ + 1

)log(K2−2K)/ log(K)

=
1

K2 − 2K
·
(

n

K ′ + 1

)1+log(K−2)/ log(K)

.
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The claim follows.

Corollary 4.2. For every ε > 0, there exists an abelian n2−ε-saturated binary infinite word.

Proof. Follows from Theorem 4.1, because limK→∞ log(K − 2)/ log(K) = 1.

Theorem 4.3. There does not exist an abelian n2-saturated binary infinite word.

We give two proofs of this result. The first one is self-contained, the second one uses a fact about
unavoidability of “almost abelian powers”.

First proof. We assume that every factor of w ∈ {a, b}ω of length n has at least Cn2 abelian nonequivalent
factors and derive a contradiction. Let K = d2/Ce+ 1.

Let us first give a rough idea of the proof. We will look at factors of w of length Kj for different values
of j. From the assumption that a factor of length Kj has many abelian nonequivalent factors we can deduce
that it has factors with “many” b’s and factors with “few” b’s, and this leads to bounds for the maximal
and minimal numbers of b’s in factors of length Kj . We will then show that the difference of the maximal
and the minimal proportion of b’s in factors of length Kj , that is, βKj (w)/Kj −αKj (w)/Kj , decreases and
eventually becomes negative as j increases, which is a contradiction.

Let j ≥ 0 and let u be a factor of w of length Kj+1. We can write u = u1 · · ·uK , where |ui| = Kj for
all i. Because |u|b = |u1|b + · · ·+ |uK |b and αKj (w) ≤ |ui|b ≤ βKj (w) for all i, we have KαKj (w) ≤ |u|b ≤
KβKj (w), but our first goal is to prove better bounds than this for |u|b. Let

m = min{|ui|b | i ∈ {1, . . . ,K}}, M = max{|ui|b | i ∈ {1, . . . ,K}}.

Then

|u|b ≥ (K − 1)m+M ≥ KαKj (w) + (M −m),

|u|b ≤ (K − 1)M +m ≤ KβKj (w)− (M −m),
(1)

so we need to estimate the difference M − m. If for all l ∈ {1, . . . , |u|}, u has at most C|u| − 1 abelian
nonequivalent factors of length l, then it has less than C|u|2 abelian nonequivalent factors, which is a
contradiction. Therefore there exists a number l ∈ {1, . . . , |u|} such that u has more than C|u| − 1 abelian
nonequivalent factors of length l. There exists k ∈ {0, . . . ,K − 1} such that every factor of u of length
l can be written in the form pui+1 · · ·ui+kq, where |pq| ≤ 2Kj − 2. It follows that αl(u) ≥ km and
βl(u) ≤ kM + 2Kj − 2. We get

CKj+1 − 1 = C|u| − 1 < βl(u)− αl(u) + 1 ≤ k(M −m) + 2Kj − 1 < K(M −m) + 2Kj − 1

and thus

M −m >

(
C − 2

K

)
Kj = C ′Kj ,

where C ′ = C − 2/K > 0. From (1) it now follows that

KαKj (w) + C ′Kj < |u|b < KβKj (w)− C ′Kj . (2)

Because (2) holds for all factors u of w of length Kj+1, we get

αKj+1(w) > KαKj (w) + C ′Kj , βKj+1(w) < KβKj (w)− C ′Kj .

Then
βKj+1(w)− αKj+1(w) < K(βKj (w)− αKj (w))− 2C ′Kj

and thus
βKj+1(w)− αKj+1(w)

Kj+1
<
βKj (w)− αKj (w)

Kj
− 2C ′

K
.
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Because this holds for all j, we get

βKj (w)− αKj (w)

Kj
< β1(w)− α1(w)− j · 2C ′

K
,

so for large enough j, βKj (w)− αKj (w) < 0, which is a contradiction.

The idea of the second proof is the following. First we will show that “almost abelian powers” (in the
sense that frequencies of letters in each block differ by at most ε) are unavoidable. Then we prove that
for any C some almost abelian power must contain less than Cn2 distinct abelian factors. We begin with
unavoidability of almost abelian powers.

For a finite word v and a letter a ∈ Σ, we let freqa(v) denote the frequency of a in v: freqa(v) = |v|a
|v| .

The following lemma from [1] basically states that every infinite word contains “almost” abelian k-powers
for any k and any ε:

Lemma 4.4. Let w be an infinite word over an alphabet Σ. Then for any integers k and l and any ε > 0
there exists a factor u = u1 · · ·uk of w, where u1, . . . , uk ∈ Σ∗, |u1| = |u2| = · · · = |uk| ≥ l and

| freqa(ui)− freqa(uj)| < ε

for any i, j ∈ {1, . . . , k}.

Actually, a slightly stronger fact is implicitly contained in [2]. In the paper, the notion of ε-regular word
is introduced: For a positive ε, ε < 1/3, a word w of length n over an alphabet Σ is called ε-regular if for
every i, εn+ 1 ≤ i ≤ n− 2εn+ 1 and every a ∈ Σ it holds that

| freqa(w)− freqa(wi . . . wi+εn−1)| < ε (3)

(here we neglect integers in indices for readability). Further, a regularity lemma for words [2, Lemma 6]
states that for each ε > 0 any sufficiently long word admits an ε-regular partition, i.e. a factorization such
that all factors in the factorization except for some of total length at most εn are ε-regular. In addition,
the number of factors in the factorization can be bounded from above (by a certain function of ε). As a
corollary, we obtain that

Lemma 4.5. Let w be an infinite word over an alphabet Σ. Then for any integers k and N and any ε > 0
there exists a factor u of w, where |u| ≥ N , and for any a ∈ Σ

| freqa(u)− freqa(ui · · ·ui+ |u|
k −1

)| < ε

for each i ∈ {1, . . . , |u| − |u|k + 1}.

Essentially, this is a strengthening of Lemma 4.4 saying that in fact we can choose a factor u such that

frequencies in all its factors of length l = |u|
k differ by at most ε and not only those beginning in positions il.

Second proof. Let w be an infinite binary word and suppose that each its factor of length n has at least
Cn2 distinct abelian factors for some constant C. By Lemma 4.4, given an integer k and ε > 0, the word w
contains a factor u = u1 · · ·uk of w, where |u1| = |u2| = · · · = |uk| ∈ Σl for some integer l and

| freqa(ui)− freqa(uj)| < ε

for any i, j ∈ {1, . . . , k}. Choose k > 6
C , ε < C

2 .
Now we count and estimate the number of its abelian factors.
First count “short” factors: notice that the number of abelian factors of u of length smaller than l is at

most nl, where n = |u|. Indeed, for each length i we have n− i+ 1 possible places for the initial position of
a factor of length i, and a total number of lengths is l. Hence the total number of short distinct factors is
at most nl, and the number of abelian factors can only be smaller or equal.
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Now consider factors of length at least l. Take length i ≥ l; each such factor consists of several full blocks
of length l, where frequencies of letters differ by at most ε, and a prefix and a suffix of a total length smaller
than 2l. So the numbers of a given letter in different factors of length i differ by at most εi+ 2l, which gives
an upper bound for the number of distinct abelian factors of length i.

Now the total number of abelian factors is bounded from above by

nl +

n∑
i=1

(εi+ 2l) < nl + εn2 + 2nl =
3n2

k
+ εn2 < Cn2,

where the last inequality comes from the choice of k and ε.

We remark that in the second proof either of the Lemmas 4.4 and 4.5 can be used, but neither seem
to work directly for non-binary case. We also note that in Theorem 3.1, we proved that if an infinite word
contains high powers, it cannot be n2-saturated. In the second proof of Theorem 4.3, we prove that because
every infinite binary word contains high “almost abelian powers”, it cannot be abelian n2-saturated.

5. From the abelian case to the k-abelian case

In this section, we show how abelian constructions can be turned into k-abelian constructions simply
by mapping by suitable morphisms. Moreover, we can consider k-abelian palindromes instead of factors.
We get k-abelian palindromic n2−ε-saturated words for all k and all nonunary alphabets. It remains open
whether for some k there exists k-abelian palindromic n2-saturated words. If there are such words in the
ternary abelian case, then there are such words for all k ≥ 2 already in the binary case.

Theorem 5.1. Let k ≥ 2. If there exists an abelian f(n)-saturated ternary infinite word, then there exists
a k-abelian palindromic f(bn/(2k)c − 2)-saturated binary infinite word.

Proof. Let C be a constant and w ∈ {a, b, c}ω an infinite word such that for all sufficiently large n, every
factor of w of length n has at least Cf(n) abelian nonequivalent factors. Let h : {a, b, c}∗ → {a, b}∗ be the
morphism defined by

h(a) = a2k, h(b) = ak−1bak, h(c) = ak−1bbak−1

and let w′ = h(w). It is easy to see that the image of every word under h is a k-abelian palindrome. We can
also see that if u, v ∈ {a, b, c}∗ are not abelian equivalent, then h(u), h(v) are not 2-abelian equivalent: If
u, v are not abelian equivalent, then one of the following three conditions is satisfied: |u| 6= |v|, or |u|c 6= |v|c,
or |u|c = |v|c and |u|b 6= |v|b. In the first case, |h(u)| 6= |h(v)|. In the second case, |h(u)|bb = |u|c 6= |v|c =
|h(v)|bb. In the third case, |h(u)|b = |u|b + 2|u|c 6= |v|b + 2|v|c = |h(v)|b. In all cases, h(u) and h(v) are
2-abelian nonequivalent.

If v is a factor of w′ of sufficiently large length n, then v has a factor h(u), where u is a factor of w of
length m = bn/(2k)c−2 and the word u has at least Cf(m) abelian nonequivalent factors, and their images
under h are k-abelian nonequivalent k-abelian palindromic factors of v.

Corollary 5.2. Let k ≥ 2. For every ε > 0, there exists a binary infinite word w and a constant C > 0
such that for all n ≥ 0, every factor of w of length n has at least Cn2−ε k-abelian nonequivalent k-abelian
palindromic factors.

Proof. Follows from Corollary 4.2 and Theorem 5.1.

6. Conclusion

In this article, we have characterized n2-saturated infinite words, and proved that there are k-abelian
palindromic n2−ε-saturated binary infinite words for all k ≥ 1, but there are no abelian n2-saturated binary
infinite words.
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We can ask the following question: Given k ≥ 1 and m ≥ 2, are there k-abelian (palindrome) n2-saturated
m-ary infinite words? As stated above, the answer is negative for k = 1, m = 2, but all other cases remain
open. If the answer is positive for k = 1, m = 3, then it is positive in all cases except k = 1, m = 2.

If there are k-abelian palindromic n2-saturated words, then it would make sense to call them k-abelian
rich. In any case, studying the different variants of saturated words seems like an interesting topic for further
research.
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