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Abstract
We consider the problem of computing the Lyapunov exponents of reversible cellular automata (CA). We show that the

class of reversible CA with right Lyapunov exponent 2 cannot be separated algorithmically from the class of reversible CA

whose right Lyapunov exponents are at most 2� d for some absolute constant d[ 0. Therefore there is no algorithm that,

given as an input a description of an arbitrary reversible CA F and a positive rational number �[ 0, outputs the Lyapunov

exponents of F with accuracy �. We also compute the average Lyapunov exponents (with respect to the uniform measure)

of the reversible CA that perform multiplication by p in base pq for coprime p; q[ 1.

Keywords Cellular automata � Lyapunov exponents � Reversible computation � Computability

1 Introduction

A cellular automaton (CA) is a model of parallel compu-

tation consisting of a uniform (in our case one-dimen-

sional) grid of finite state machines, each of which receives

input from a finite number of neighbors. All the machines

use the same local update rule to update their states

simultaneously at discrete time steps. The following

question of error propagation arises naturally: If one

changes the state at some of the coordinates, then how long

does it take for this change to affect the computation at

other coordinates that are possibly very far away? Lya-

punov exponents provide one tool to study the asymptotic

speeds of error propagation in different directions. The

concept of Lyapunov exponents originally comes from the

theory of differentiable dynamical systems, and the discrete

variant of Lyapunov exponents for CA was originally

defined in Shereshevsky (1992).

The Lyapunov exponents of a cellular automaton F are

interesting also when one considers F as a topological

dynamical system, because they can be used to give an

upper bound for the topological entropy of F (Tisseur

2000). It is previously known that the entropy of one-di-

mensional cellular automata is uncomputable (Hurd et al.

1992) (and furthermore from (Guillon and Zinoviadis

2012) it follows that there exists a single cellular automa-

ton whose entropy is uncomputable), which gives reason to

suspect that also the Lyapunov exponents are uncom-

putable in general.

The uncomputability of Lyapunov exponents is easy to

prove for (not necessarily reversible) cellular automata by

using the result from Kari (1992) which says that nilpo-

tency of cellular automata with a spreading state is unde-

cidable. We will prove in Sect. 4 the more specific claim

that the Lyapunov exponents are uncomputable even for

reversible cellular automata. In the context of proving

undecidability results for reversible CA one cannot utilize

undecidability of nilpotency for non-reversible CA. An

analogous decision problem, the (local) immortality prob-

lem, has been used to prove undecidability results for

reversible CA (Lukkarila 2010). We will use in our proof

the undecidability of a variant of the immortality problem,

presented in Sect. 3, which in turn follows from the

undecidability of the tiling problem for 2-way deterministic

tile sets.

In the other direction, there are interesting classes of

cellular automata whose Lyapunov exponents have been

computed. In D’amico et al. (2003) a closed formula for

the Lyapunov exponents of linear one-dimensional cellular

automata is given. In Sect. 5 we present results concerning

the family of reversible multiplication automata that
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simulate multiplication by p in base pq for coprime

p; q[ 1. It is easy to find out their Lyapunov exponents

and it is more interesting to consider a measure theorical

variant, the average Lyapunov exponent. We compute the

average Lyapunov exponents (with respect to the uniform

measure) for these automata.

This is an extended version of the conference paper

(Kopra 2019b) published in the proceedings of

UCNC 2019. Section 3 is essentially the same as in Kopra

(2019b), but Section 4 has been revised extensively. Sec-

tion 5 is new, and the computations in it are originally from

the author’s Ph.D. thesis (Kopra 2019a).

2 Preliminaries

For sets A and B we denote by BA the collection of all

functions from A to B.

A finite set A of letters or symbols is called an alphabet.

The set AZ is called a configuration space or a full shift and

its elements are called configurations. An element x 2 AZ

is interpreted as a bi-infinite sequence and we denote by

x[i] the symbol that occurs in x at position i. A factor of x is

any finite sequence x½i�x½iþ 1� � � � x½j� where i; j 2 Z, and

we interpret the sequence to be empty if j\i. Any finite

sequence w ¼ w½1�w½2� � � �w½n� (also the empty sequence,

which is denoted by �) where w½i� 2 A is a word over A. If

w 6¼ �, we say that w occurs in x at position i if x½i� � � � x½iþ
n� 1� ¼ w½1� � � �w½n� and we denote by wZ 2 AZ the

configuration in which w occurs at all positions of the form

in (i 2 Z). The set of all words over A is denoted by A�, and

the set of non-empty words is Aþ ¼ A� n f�g. More gen-

erally, for L;K � A� we denote LK ¼ fw1w2 j w1 2
L;w2 2 Kg and L� ¼ fw1 � � �wn j n� 0;wi 2 Lg. If � 62 L,

define Lþ ¼ L� n f�g and if � 2 L, define Lþ ¼ L�. The set

of words of length n is denoted by An. For a word w 2 A�,
jwj denotes its length, i.e. jwj ¼ n() w 2 An.

If A is an alphabet and C is a countable set, then AC

becomes a compact metrizable topological space when

endowed with the product topology of the discrete topol-

ogy of A (in particular a set S � AC is compact if and only

if it is closed). In our considerations C ¼ Z or C ¼ Z2. We

define the shift r : AZ ! AZ by rðxÞ½i� ¼ x½iþ 1� for

x 2 AZ, i 2 Z, which is a homeomorphism. We say that a

closed set X � AZ is a subshift if rðXÞ ¼ X. Any w 2 Aþ

and i 2 Z determine a cylinder of X

Cyl Xðw; iÞ ¼ fx 2 X j w occurs in x at position ig:

Every cylinder is an open set of X and the collection of all

cylinders

CX ¼ fCyl Xðw; iÞ j w 2 Aþ; i 2 Zg

is a basis for the topology of X.

Occasionally we consider configuration spaces ðA1 �
A2ÞZ and then we may write ðx1; x2Þ 2 ðA1 � A2ÞZ where

xi 2 AZ
i using the natural bijection between the sets AZ

1 �
AZ
2 and ðA1 � A2ÞZ. We may use the terminology that x1 is

on the upper layer or on the A1-layer, and similarly that x2
is on the lower layer or on the A2-layer.

Definition 1 Let X � AZ be a subshift. We say that the

map F : X ! X is a cellular automaton (or a CA) on X if

there exist integers m	 a (memory and anticipation) and a

local rule f : Aa�mþ1 ! A such that FðxÞ½i� ¼ f ðx½iþ m�;
. . .; x½i�; . . .; x½iþ a�Þ. If we can choose m ¼ 0 we say that F

is a one-sided CA. A one-sided CA with anticipation 1 is

called a radius-1
2
CA.

Note that both memory and anticipation can be either

positive or negative. For instance, a negative value of the

memory m means that the value of F(x)[i] can also depend

on those values in the sequence x that are contained on the

left side of the coordinate i.

We can extend any local rule f : Aa�mþ1 ! B to words

w ¼ w½1� � � �w½a� mþ n� 2 Aa�mþn with n 2 Nþ by

f ðwÞ ¼ u ¼ u½1� � � � u½n�, where u½i�¼f ðw½i�;...;w½iþa�m�Þ.
The CA-functions on X are characterized as those con-

tinuous maps on X that commute with the shift (Hedlund

1969). We say that a CA F : X ! X is reversible if it is

bijective. Reversible CA are homeomorphisms on X. The

book (Lind and Marcus 1995) is a standard reference for

subshifts and cellular automata on them.

For a given reversible CA F : X ! X and a configura-

tion x 2 X it is often helpful to consider the space-time

diagram of x with respect to F. Formally it is the map

h 2 AZ2

defined by hði;�jÞ ¼ FjðxÞ½i�: the minus sign in

this definition signifies that time increases in the negative

direction of the vertical coordinate axis. Informally the

space-time diagram of x is a picture which depicts elements

of the sequence ðFiðxÞÞi2Z in such a way that Fiþ1ðxÞ is
drawn below FiðxÞ for every i.

The definition of Lyapunov exponents is from Shere-

shevsky (1992), Tisseur (2000). For a fixed subshift X �
AZ and for x 2 X, s 2 Z, denote Wþs ðxÞ ¼ fy 2 X j 8i� s :

y½i� ¼ x½i�g and W�s ðxÞ ¼ fy 2 X j 8i	 s : y½i� ¼ x½i�g.
Then for a given cellular automaton F : X ! X, x 2 X,

n 2 N, define

Kþn ðx;FÞ¼minfs�0 j 81	i	n :FiðWþ0 ðxÞÞ�Wþs ðFiðxÞÞg
K�n ðx;FÞ¼minfs�0 j 81	i	n :FiðW�0 ðxÞÞ�W��sðFiðxÞÞg:

These have shift-invariant versions K


n ðx;FÞ¼

maxi2ZK


n ðriðxÞ;FÞ. The quantities
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kþðx;FÞ ¼ lim
n!1

K
þ
n ðx;FÞ
n

;

k�ðx;FÞ ¼ lim
n!1

K
�
n ðx;FÞ
n

are called (when the limits exist) respectively the right and

left Lyapunov exponents of x (with respect to F).

A global version of these are the quantities

kþðFÞ ¼ lim
n!1

max
x2X

Kþn ðx;FÞ
n

;

k�ðFÞ ¼ lim
n!1

max
x2X

K�n ðx;FÞ
n

that are called respectively the right and left (maximal)

Lyapunov exponents of F. These limits exist by an appli-

cation of Fekete’s subadditive lemma (e.g. Lemma 4.1.7 in

Lind and Marcus (1995)). We note that at least when F is a

CA on some full shift AZ, there exists a configuration x 2
AZ such that k
ðx;FÞ ¼ k
ðFÞ: for example, one can

choose some x containing occurrences of all the words

from A�.
Occasionally we consider cellular automata from the

measure theoretical point of view. For a subshift X we

denote by RðCXÞ the sigma-algebra generated by the col-

lection of cylinders CX . It is the smallest collection of

subsets of X which contains all the elements of CX and

which is closed under complement and countable unions. A

measure on X is a countably additive function l : RðCXÞ !
½0; 1� such that lðXÞ ¼ 1, i.e. lð

S1
i¼0 AiÞ ¼

P1
i¼0 lðAiÞ

whenever all Ai 2 RðCXÞ are pairwise disjoint. A measure l
on X is completely determined by its values on cylinders.

We say that a cellular automaton F : X ! X preserves the

measure l if lðF�1ðSÞÞ ¼ lðSÞ for all S 2 RðCÞ.
On full shifts AZ we are mostly interested in the uniform

measure determined by lðCyl ðw; iÞÞ ¼ jAj�jwj for w 2 Aþ

and i 2 Z. By Theorem 5.4 in Hedlund (1969) any sur-

jective CA F : AZ ! AZ preserves this measure. For more

on measure theory of cellular automata, see Pivato (2009).

Measure theoretical variants of Lyapunov exponents are

defined as follows. Given a measure l on X (typically

assumed to be preverved by F and r) and for n 2 N, let

Iþn;lðFÞ ¼
R
x2X K

þ
n ðx;FÞdl and I�n;lðFÞ ¼

R
x2X K

�
n ðx;FÞdl.

Then the quantities

Iþl ðFÞ ¼ lim inf
n!1

Iþn;lðFÞ
n

; I�l ðFÞ ¼ lim inf
n!1

I�n;lðFÞ
n

are called respectively the right and left average Lyapunov

exponents of F (with respect to the measure l).
We will write W
s ðxÞ, K
n ðxÞ, kþðxÞ, Iþn;l and Iþl when

X and F are clear by the context.

3 Tilings and undecidability

In this section we recall the well-known connection

between cellular automata and tilings on the plane. We use

this connection to prove an auxiliary undecidability result

for reversible cellular automata.

Definition 2 A Wang tile is formally a function t :

fN;E; S;Wg ! C whose value at I is denoted by tI .

Informally, a Wang tile t should be interpreted as a unit

square with edges colored by elements of C. The edges are

called north, east, south and west in the natural way, and

the colors in these edges of t are tN ; tE; tS and tW respec-

tively. A tile set is a finite collection of Wang tiles.

Definition 3 A tiling over a tile set T is a function g 2 TZ2

which assigns a tile to every integer point of the plane. A

tiling g is said to be valid if neighboring tiles always have

matching colors in their edges, i.e. for every ði; jÞ 2 Z2 we

have gði; jÞN ¼ gði; jþ 1ÞS and gði; jÞE ¼ gðiþ 1; jÞW . If

there is a valid tiling over T, we say that T admits a valid

tiling.

We say that a tile set T is NE-deterministic if for every

pair of tiles t; s 2 T the equalities tN ¼ sN and tE ¼ sE
imply t ¼ s, i.e. a tile is determined uniquely by its north

and east edge. A SW-deterministic tile set is defined sim-

ilarly. If T is both NE-deterministic and SW-deterministic,

it is said to be 2-way deterministic.

The tiling problem is the problem of determining whe-

ther a given tile set T admits a valid tiling.

Theorem 1 [Lukkarila (2010), Theorem 4.2.1] The tiling

problem is undecidable for 2-way deterministic tile sets.

Definition 4 Let T be a 2-way deterministic tile set and C

the collection of all colors which appear in some edge of

some tile of T. T is complete if for each pair ða; bÞ 2 C2

there exist (unique) tiles t; s 2 T such that ðtN ; tEÞ ¼ ða; bÞ
and ðsS; sWÞ ¼ ða; bÞ.

A 2-way deterministic tile set T can be used to construct

a complete tile set. Namely, let C be the set of colors which

appear in tiles of T, let X � C � C be the set of pairs of

colors which do not appear in the northeast of any tile and

let Y � C � C be the set of pairs of colors which do not

appear in the southwest of any tile. Since T is 2-way

deterministic, there is a bijection p : X ! Y . Let T{ be the

set of tiles formed by matching the northeast corners X with

the southwest corners Y via the bijection p. Then the tile set

A ¼ T [ T{ is complete.

Every complete 2-way deterministic tile set A determi-

nes a local rule f : A2 ! A defined by f ða; bÞ ¼ c 2 A,

where c is the unique tile such that aS ¼ cN and bW ¼ cE.

This then determines a reversible radius-1
2
CA F : AZ ! AZ
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by FðxÞ½i� ¼ f ðx½i�; x½iþ 1�Þ for x 2 AZ, i 2 Z. The space-

time diagram of a configuration x 2 AZ corresponds to a

valid tiling g via hði;�jÞ ¼ FjðxÞ½i� ¼ gði;�i� jÞ, i.e.

configurations FjðxÞ are diagonals of g going from north-

west to southeast and the diagonal corresponding to

Fjþ1ðxÞ is below the diagonal corresponding to FjðxÞ.

Definition 5 A cellular automaton F : AZ ! AZ is (p, q)-

locally immortal (p; q 2 N) with respect to a subset B � A

if there exists a configuration x 2 AZ such that

FiqþjðxÞ½ip� 2 B for all i 2 Z and all j such that 0	 j	 q.

Such a configuration x is a (p, q)-witness.

Generalizing the definition in Lukkarila (2010), we call

the following decision problem the (p, q)-local immortality

problem: given a reversible CA F : AZ ! AZ and a subset

B � A, find whether F is (p, q)-locally immortal with

respect to B.

Theorem 2 (Lukkarila 2010, Theorem 5.1.5) The (0, 1)-

local immortality problem is undecidable for reversible

CA.

We now adapt the proof of Theorem 2 to get the fol-

lowing result, which we will use in the proof of Theorem 3.

Lemma 1 The (1, 5)-local immortality problem is unde-

cidable for reversible radius-1
2
CA.

Proof We will reduce the problem of Theorem 1 to the

(1, 5)-local immortality problem. Let T be a 2-way deter-

ministic tile set and construct a complete tile set T [ T{ as

indicated above. Then also A1 ¼ ðT � T1Þ [ ðT{ � T2Þ (T1
and T2 as in Fig. 1) is a complete tile set.1 We denote the

blank tile of the set T1 by tb and call the elements of

R ¼ A1 n ðT � ftbgÞ arrow tiles. As indicated above, the

tile set A1 determines a reversible radius-1
2

CA

G1 : A
Z
1 ! AZ

1 .

Let A2 ¼ f0; 1; 2g. Define A ¼ A1 � A2 and natural

projections pi : A! Ai, piða1; a2Þ ¼ ai for i 2 f1; 2g. By
extension we say that a 2 A is an arrow tile if p1ðaÞ 2 R.

Let G : AZ ! AZ be defined by Gðc; eÞ ¼ ðG1ðcÞ; eÞ where
c 2 AZ

1 and e 2 AZ
2 , i.e. G simulates G1 in the upper layer.

We construct involutive CA J1, J2 and H of memory 0 with

local rules j1 : A2 ! A2, j2 : A
2
2 ! A2 and h : ðA1 � A2Þ !

ðA1 � A2Þ respectively defined by

j1ð0Þ ¼ 0

j1ð1Þ ¼ 2

j1ð2Þ ¼ 1

j2ða2; b2Þ ¼
1 when ða2; b2Þ ¼ ð0; 2Þ
0 when ða2; b2Þ ¼ ð1; 2Þ
a otherwise

8
><

>:

hðða1; a2ÞÞ ¼
ða1; 1Þ when a1 2 R and a2 ¼ 0

ða1; 0Þ when a1 2 R and a2 ¼ 1

ða1; a2Þ otherwise:

8
><

>:

If id : AZ
1 ! AZ

1 is the identity map, then J ¼ ðid� J2Þ �
ðid� J1Þ is a CA on AZ ¼ ðA1 � A2ÞZ. We define the

radius-1
2

automaton F ¼ H � J � G : AZ ! AZ, which is

reversible because G is reversible and H � J is a compo-

sition of involutions. We will show that T admits a valid

tiling if and only if F is (1, 5)-locally immortal with respect

to B ¼ ðT � ftbgÞ � f0g.
Assume first that T admits a valid tiling g. Then by

choosing x 2 AZ such that x½i� ¼ ððgði;�iÞ; tbÞ; 0Þ 2 A1 �
A2 for i 2 Z it follows that FjðxÞ½i� 2 B for all i; j 2 Z and

in particular that x is a (1, 5)-witness.

Assume then that T does not admit any valid tiling and

for a contradiction assume that x is a (1, 5)-witness. Let h
be the space-time diagram of x with respect to F. Since x is

a (1, 5)-witness, it follows that hði;�jÞ 2 B whenever

ði;�jÞ 2 N, where N ¼ fði;�jÞ 2 Z2 j 5i	 j	 5ðiþ 1Þg.
There is a valid tiling g over A1 such that p1ðhði; jÞÞ ¼
gði; j� iÞ for ði; jÞ 2 Z2, i.e. g can be recovered from the

upper layer of h by applying a suitable linear transforma-

tion on the space-time diagram. In drawing pictorial

representations of h we want that the heads and tails of

all arrows remain properly matched in neighboring coor-

dinates, so we will use tiles with ‘‘bent’’ labelings, see

Figure 2. Since T does not admit valid tilings, it follows by

a compactness argument that gði; jÞ 62 T � T1 for some

ði; jÞ 2 D where D ¼ fði; jÞ 2 Z2 j j[ � 6ig and in par-

ticular that gði; jÞ is an arrow tile. Since h contains a ‘‘bent’’
version of g, it follows that hði; jÞ is an arrow tile for some

ði; jÞ 2 E, where E ¼ fði; jÞ 2 Z2 j j[ � 5ig is a ‘‘bent’’

version of the set D. In Fig. 3 we present the space-time

diagram h with arrow markings of tiles from T1 and T2

Fig. 1 The tile sets T1 (first row) and T2 (second row). These are

originally from Lukkarila (2010) (up to a reflection with respect to the

northwest - southeast diagonal)

1 The arrow markings are used as a shorthand for some coloring such

that in a valid tiling an arrowhead on the edge of one tile must connect

with an arrow tail on the edge of the neighboring tile. Strictly

speaking all the necessary information concerning the tiles is on the

edges: the lines in the tile interiors are only a guide to intuition.
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replaced according to the Fig. 2. In Fig. 3 we have also

marked the sets N and E. Other features of the figure be-

come relevant in the next paragraph.

The minimal distance between a tile in N and an arrow

tile in E situated on the same horizontal line in h is denoted

by d1 [ 0. Then, among those arrow tiles in E at horizontal

distance d1 from N, there is a tile with minimal vertical

distance d2 [ 0 from N (see Fig. 3). Fix p; q 2 Z so that

hðp; q� 2Þ is one such tile and in particular

ðp� d1; q� 2Þ; ðp; q� 2� d2Þ 2 N. We note that hðp�
i; q� jÞ does not contain an arrow for 0\i	 d1;

�2	 j	 3. Namely, assume to the contrary that it does

contain an arrow for some fixed i and j (and in particular

ðp� i; q� jÞ 62 N). It is clear that at least in the case i[ 1

the horizontal distance of hðp� i; q� jÞ from N is strictly

less than d1, contradicting the minimality of d1. If on the

other hand i ¼ 1, the tile hðp� 1; q� jÞ could have

horizontal distance from N equal to d1, so assume that it

is so. Since N is invariant under translation by the vector

�ð1;�5Þ, then from ðp; q� 2� d2Þ 2 N it follows that

ðp� 1; qþ 3� d2Þ 2 N and that the vertical distance of

the tile hðp� 1; q� jÞ from N is at most

ðq� jÞ � ðqþ 3� d2Þ	 d2 � 1, contradicting the mini-

mality of d2.

Now it can be seen that hðp; q� jÞ contains an arrow for

�2	 j	 2, because if there is a j 2 ½�2; 2Þ such that

hðp; q� jÞ does not contain an arrow and hðp; q� j� 1Þ
does, then hðp; q� j� 1Þ must contain one of the three

arrows on the left half of Fig. 2. These three arrows

continue to the southwest, so then also hðp� 1; q� j� 2Þ
contains an arrow, but this contradicts the previous

paragraph.

Now consider the A2-layer of h. For the rest of the proof
let y ¼ F�qðxÞ. Assume that p2ðhði; qÞÞ ¼ p2ðy½i�Þ is non-

zero for some �q=5\i	 p (in other words, the coordinate

(i, q) is to the left of (p, q) and ði; qÞ 2 E), and fix the least

such i, i.e. p2ðy½s�Þ ¼ 0 for s in the set

I0 ¼ fp0 2 Z j p0\i; ðp0; qÞ 2 N [ Eg:

We start by considering the case p2ðy½i�Þ ¼ 1. Denote

I1 ¼ fp0 2 Z j p0\i; ðp0; q� 1Þ 2 N [ Eg � I0:

From the choice of (p, q) it follows that p1ðhðs; q� 1ÞÞ ¼
p1ðGðyÞ½s�Þ are not arrow tiles for s 2 I1, and therefore we

can compute step by step that

p2ððid�J1ÞðGðyÞÞ½i�Þ¼2; p2ððid�J1ÞðGðyÞÞ½s�Þ¼0 for s2 I0� I1;

p2ðJðGðyÞÞ½i�1�Þ¼1; p2ðJðGðyÞÞ½s�Þ¼0 for s2 I1 nfi�1g;
p2ðFðyÞÞ½i�1�Þ¼1; p2ðFðyÞ½s�Þ¼0 for s2 I1 nfi�1g

and p2ðhði� 1; q� 1ÞÞ ¼ 1. By repeating this argument

inductively we see that the digit 1 propagates to the lower

left in the space-time diagram as indicated by Fig. 4 and

eventually reaches N, a contradiction. If on the other hand

p2ðhði; qÞÞ ¼ 2, a similar argument shows that the digit 2

propagates to the upper left in the space-time diagram as

indicated by Fig. 4 and eventually reaches N, also a

contradiction.

Assume then that p2ðhði; qÞÞ is zero whenever

�q=5\i	 p (or equivalently, whenever (i, q) is to the left

of (p, q) and ði; qÞ 2 E). If p2ðhðpþ 1; qÞÞ ¼
p2ðy½pþ 1�Þ 6¼ 1, then p2ððid� J1ÞðGðyÞÞ½pþ 1�Þ 6¼ 2 and

p2ðJðGðyÞÞ½p�Þ ¼ 0. Since p1ðhðp; q� 1ÞÞ is an arrow tile,

it follows that p2ðhðp; q� 1ÞÞ ¼ p2ðHðJðGðyÞÞÞ½p�Þ ¼ 1.

The argument of the previous paragraph shows that the

digit 1 propagates to the lower left in the space-time

diagram as indicated by the left side of Fig. 5 and

eventually reaches N, a contradiction.

Finally consider the case p2ðhðpþ 1; qÞÞ ¼ p2ðy½pþ 1�Þ
¼ 1. Then

p2ðJðGðyÞÞ½p�Þp2ðJðGðyÞÞ½pþ 1�Þ ¼ 12 and

p2ðFðyÞ½p�Þp2ðFðyÞ½pþ 1�Þ ¼ 02:

As in the previous paragraph we see that p2ðhðp; q� 2ÞÞ
¼ 1. This occurrence of the digit 1 propagates to the lower

left in the space-time diagram as indicated by the right side

of Fig. 5 and eventually reaches N, a contradiction. h

Remark 1 It is possible that for every choice of p 2 N and

q 2 Nþ the (p, q)-local immortality problem for reversible

radius-1
2
CA is undecidable. We proved this in the case

ðp; qÞ ¼ ð1; 5Þ but for our purposes it is sufficient to prove

this just for some p[ 0 and q[ 0. The important (seem-

ingly paradoxical) part will be that for (1, 5)-locally

immortal radius-1
2
CA F the ‘‘local immortality’’ travels to

the right in the space-time diagram even though in reality

there cannot be any information flow to the right because

F is one-sided.

Remark 2 The automaton of the previous lemma was

found by a little bit of trial and error: J2 � J1 is one of the

simplest nontrivial reversible radius-1
2
CA that comes to

mind, and we just coupled its dynamics with the tile set of

Lukkarila (2010) via the CA H. After that we chose to

consider (1, 5)-local immortality to get at least five con-

secutive arrows in the space-time diagram that ‘‘shield’’

signals of non-zero digits from possible interference caused

by other arrows (Figure 4) and generate new signals of

non-zero digits (Figure 5). For these purposes a smaller

number of consecutive arrows in the space-time diagram is

probably sufficient and one could show the undecidability

of (1, q)-local immortality also for some smaller q. Our

proof cannot be used to show the undecidability of (1, 1)-

local immortality, because then the signal of non-zero

On computing the Lyapunov exponents of reversible cellular automata

123



digits in the right side of Fig. 4 would travel at the same

speed as the ‘‘local immortality’’, parallel to the infinite

band N which we would now define to be at a 45 degree

angle with respect to the vertical axis.

4 Uncomputability of Lyapunov exponents

In this section we will prove our main result saying that

there is no algorithm that can compute the Lyapunov

exponents of a given reversible cellular automaton on a full

shift to an arbitrary precision. Specifically, we will show

that the cases kþðFÞ	 5
3
and kþðFÞ ¼ 2 are algorithmically

inseparable in the class of reversible CA. We first present

simple examples of CA corresponding to these cases.

Example 1 Consider the shift map r�t for t� 0 over some

full shift AZ. For any i 2 N and x 2 AZ we see that

ðr�tÞiðWþ0 ðxÞÞ ¼ Wþti ððr�tÞ
iðxÞÞ and thus ðr�tÞiðWþ0 ðxÞÞ �

Wþs ððr�tÞ
iðxÞÞ for s 2 N if and only if s� ti. For a fixed

n 2 N the inequality s� ti holds for 1	 i	 n if and only if

s� tn and therefore Kþn ðx; r�tÞ ¼ tn. Using this we con-

clude that the right Lyapunov exponent is

kþðr�tÞ ¼ lim
n!1

max
x2AZ

Kþn ðx; r�tÞ
n

¼ lim
n!1

tn

n
¼ t:

Some examples of reversible CA corresponding to the two

cases noted above are r�1 and r�2, whose right Lyapunov
exponents are equal to 1 and 2 respectively.

To achieve greater clarity we first prove our result in

Theorem 3 for a special class of subshifts, where the

configurations contains at most one ‘‘particle’’. Cellular

automata can then use this particle for easily controlled

information propagation.

Definition 6 Let Q;R;A1 ¼ Q [ R and A2 be alphabets

such that 0 2 R and Q \ R ¼ ;, let q : A1 ! A1 be an

involution (i.e. q2 ¼ id) acting as the identity on R and let

Y ¼ fy 2 AZ
1 j y½i� 2 Q for at most one i 2 Zg:

Then X ¼ Y � AZ
2 is a ðQ;R; Y ;A2; qÞ particle shift (or just

a particle shift), the elements of Q are called its particles

and the map q is a particle flip.

Fig. 2 The tile sets T1 and T2 presented in a ‘‘bent’’ form

Fig. 3 The space-time diagram h with ‘‘bent’’ arrow markings. The

set N is the infinite band colored in gray and the set E is the half-plane

to the right of N. An arrow tile hðp; q� 2Þ in E with minimal

horizontal and vertical distances to N has been highlighted

Fig. 4 Propagation of digits to

the left of hðp; qÞ. The tile

hðp; qÞ is denoted by thick edges
and nearby tiles guaranteed to

contain arrows are denoted by

solid edges. The tiles on

diagonals along which the

‘‘front’’ of non-zero digits

propagates are denoted by

dashed edges
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We define the natural projections p1 : X ! Y , p2 : X !
AZ
2 by p1ðy; zÞ ¼ y, p2ðy; zÞ ¼ z for y 2 Y ; z 2 AZ

2 .

For y 2 Y we will also denote by qðyÞ the coordinate-

wise application of q to y: equivalently, q is applied to the

only symbol from Q in y (if there is such a symbol). The

interpretation for the map q will be that it changes the

‘‘direction’’ of the particle symbol without changing its

speed. We also define a few special classes of CA on

particle shifts.

Definition 7 The reversal of a configuration x 2 AZ is the

configuration xR defined by xR½i� ¼ x½�i� for all i 2 Z.

Definition 8 A reversible CA F : X ! X on a

ðQ;R; Y;A2; qÞ particle shift X is a particle rule if there is a

CA S : Y ! Y such that

• Fðy; zÞ ¼ ðSðyÞ; zÞ for all y 2 Y , z 2 AZ
2 (i.e. F only

changes the top layer in a way that does not depend on

the bottom layer)

• SðyÞ ¼ y for all y 2 RZ (i.e. S does nothing when y does

not contain particles)

• If y 2 Y and y½i� 2 Q for some i 2 Z, then either there is

a j 2 Z such that y½j� ¼ 0 and SðyÞ½i� ¼ 0, SðyÞ½j� 2 Q

and SðyÞ½k� ¼ y½k� for k 62 fi; jg (i.e. the particle in y

moves to an empty position) or SðyÞ½i� 2 Q and

SðyÞ½k� ¼ y½k� for k 6¼ i (i.e. the particle in y possibly

changes but remains in the same position)

• SðqðyRÞÞ ¼ qðSðyÞRÞ for all y 2 Y (i.e. S has a left-right

symmetry).

Definition 9 A reversible one-sided CA G : X ! X on a

ðQ;R; Y;A2; qÞ particle shift X is a background rule if there

is a CA G0 : AZ
2 ! AZ

2 such that Gðy; zÞ ¼ ðy;G0ðzÞÞ for all
y 2 Y , z 2 AZ

2 (i.e. G only changes the bottom layer in a

way that does not depend on the top layer or on symbols to

the left).

Definition 10 Let X be a ðQ;R; Y ;A2;qÞ particle shift and
let w1;w2 2 RnQRm for some n;m 2 N be words of equal

length such that none of the symbols of w1 occur in w2 and

vice versa. Let W � A�2 and j 2 Z. A reversible CA H :

X ! X is a coupling rule (with parameters ðw1;w2;W ; jÞ) if
for all y 2 Y , z 2 AZ

2 the configuration H(y, z) is obtained

by replacing an occurrence of w1 by w2 (and vice versa) at

position i in y if and only if z 2 Cyl ðw; iþ jÞ for some

w 2 W .

Theorem 3 For reversible CA F : X ! X on particle

shifts such that kþðFÞ 2 ½0; 5
3
� [ f2g and F is some com-

position of particle rules, background rules and coupling

rules it is undecidable whether kþðFÞ	 5
3
or kþðFÞ ¼ 2.

Proof We will reduce the decision problem of Lemma 1

to the present problem. Let G0 : AZ
2 ! AZ

2 be a given

reversible radius-1
2
cellular automaton and B � A2 some

given set. Let R ¼ f0; kg, Q ¼ f ;!;.;&g, let A1 ¼
Q [ R and define the subshift Y � AZ

1 as the set of those

configurations containing a symbol from Q in at most one

position. Then X is a ðQ;R; Y;A2; qÞ particle shift with the

particle flip q defined by

qð0Þ ¼ 0 qðkÞ ¼ k
qð Þ ¼ ! qð!Þ ¼  qð.Þ ¼ & qð&Þ ¼ .

We will interpret elements of Q as particles going in dif-

ferent directions at different speeds and which bounce

between walls denoted by k. Let S : Y ! Y be the rever-

sible CA which does not move occurrences of k and which

moves  (resp. !, ., &) to the left at speed 2 (resp. to

the right at speed 2, to the left at speed 1, to the right at

speed 1) with the additional condition that when an arrow

meets a wall, it changes into the arrow with the same speed

and opposite direction. More precisely, S is the CA with

memory �2 and anticipation 2 determined by the local rule

f : A5
1 ! A1 defined as follows (where � denotes arbitrary

symbols):

f ð!; 0; 0; �; �Þ ¼ ! f ð�;&; 0; �; �Þ ¼ &
f ð�;!; 0; k; �Þ ¼  f ð�; �;&; 0; �Þ ¼ 0;

f ð�; �;!; 0; �Þ ¼ 0 f ð�; �;&; k; �Þ ¼ .;

f ð�; 0;!; k; �Þ ¼ 0

f ð�; k;!; k; �Þ ¼ !
f ð�; �; 0;!; kÞ ¼  

with symmetric definitions for arrows in the opposite

directions at reflected positions and f ð�; �; a; �; �Þ ¼ a

(a 2 Q [ R) otherwise.
Let x1 2 Y and x2 2 AZ

2 be arbitrary. We define

reversible CA G;F1 : X ! X by Gðx1;x2Þ¼ðx1;G010ðx2ÞÞ,
F1ðx1;x2Þ¼ðSðx1Þ;x2Þ. They are easily seen to be a

1 2

0 1 2

0 0 1

0 0 0 1

θ(p, q)

0 1 2

0 0 1

0 0 0 2

0 0 0 1

θ(p, q)

Fig. 5 Propagation of digits at hðp; qÞ. The tile hðp; qÞ is denoted by

thick edges and nearby tiles guaranteed to contain arrows are denoted

by solid edges. The tiles on diagonals along which the ‘‘front’’ of non-

zero digits propagates are denoted by dashed edges
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background rule and a particle rule respectively. Addition-

ally, let F2 :X!X be the involution which maps ðx1;x2Þ as
follows: F2 replaces an occurrence of !02QR in x1 at a

coordinate i2Z by an occurrence of .k2QR (and vice

versa) if and only if

G0jðx2Þ½i� 62 B for some 0	 j	 5

or G0jðx2Þ½iþ 1� 62 B for some 5	 j	 10;

and otherwise F2 makes no changes. The map F2 is then a

coupling rule. Finally, define F ¼ F1 � G � F2 : X ! X.

The reversible CA F works as follows. Typically particles

from Q move in the upper layer in the intuitive manner

indicated by the map S and the lower layer is transformed

according to the map G010. There are some exceptions to

the usual particle movements: If there is a particle !
which does not have a wall immediately at the front and x2
does not satisfy a local immortality condition in the next 10

time steps, then ! changes into . and at the same time

leaves behind a wall segment k. Conversely, if there is a

particle. to the left of the wall k and x2 does not satisfy a

local immortality condition, . changes into ! and

removes the wall segment. The choice of the power 10 in

G010 is to make the ‘‘local immortality’’ in a potential

(1, 5)-witness of G0 to travel two steps to the right at each

application of F, which is the same as the intended speed

for the particle !.

We will show that kþðFÞ ¼ 2 if G0 is (1, 5)-locally

immortal with respect to B and kþðFÞ	 5
3
otherwise.

Intuitively the reason for this is that if x; y 2 X are two

configurations that differ only to the left of the origin, then

the difference between FiðxÞ and FiðyÞ can propagate to the
right at speed 2 only via an arrow! that travels on top of a

(1, 5)-witness. Otherwise, a signal that attempts to travel to

the right at speed 2 is interrupted at bounded time intervals

and forced to return at a slower speed beyond the origin

before being able to continue its journey to the right. We

will give more details.

Assume first that G0 is (1, 5)-locally immortal with

respect to B. Let x2 2 AZ
2 be a (1, 5)-witness and define

x1 2 Y by x1½0� ¼ ! and x1½i� ¼ 0 for i 6¼ 0. Let x ¼
ð0Z; x2Þ 2 X and y ¼ ðx1; x2Þ 2 X. It follows that

p1ðFiðxÞÞ½2i� ¼ 0 and p1ðFiðyÞÞ½2i� ¼ ! for every i 2 N,

so kþðFÞ� 2. On the other hand, F has memory �2 so

necessarily kþðFÞ ¼ 2.

Assume then that there are no (1, 5)-witnesses for G0.
Let us denote

CðnÞ ¼ fx 2 AZ
2 j G05iþjðxÞ½i� 2 B for 0	 i	 n; 0	 j	 5g for n 2 N:

Since there are no (1, 5)-witnesses, by a compactness

argument we may fix some N 2 Nþ such that Cð2NÞ ¼ ;.
We claim that kþðFÞ	 5

3
, so let us assume that ðxðnÞÞn2N

with xðnÞ ¼ ðxðnÞ1 ; x
ðnÞ
2 Þ 2 X is a sequence of configurations

such that Kþn ðxðnÞ;FÞ ¼ snn where ðsnÞn2N tends to kþ.

There exist yðnÞ ¼ ðyðnÞ1 ; y
ðnÞ
2 Þ 2 X such that xðnÞ½i� ¼ yðnÞ½i�

for i� 0 and FtnðxÞ½in� 6¼ FtnðyÞ½in� for some 0	 tn	 n and

in ¼ snn� 1. Since G0 is a one-sided CA, it follows that

p2ðFtnðxðnÞÞÞ½j� ¼ p2ðFtnðyðnÞÞÞ½j� for j� 0. Therefore the

difference between xðnÞ and yðnÞ can propagate to the right

only via an arrow from Q, which must at some time step

first visit some position to the left of coordinate 0. Without

loss of generality (by swapping xðnÞ and yðnÞ if necessary)
there are 0	 tn;1\tn;2	 n and jn� in � 1 such that

p1ðFtn;1ðxðnÞÞÞ½�s� 2 Q for some s[ 0 and p1ðFtn;2

ðxðnÞÞÞ½jn� 2 Q. Fix some such tn;1; tn;2; jn and let wn 2
Qðtn;2�tn;1Þþ1 be such that wn½i� is the unique state from Q in

the configuration Ftn;1þiðxðnÞÞ for 0	 i	 tn;2 � tn;1.

The word wn has a factorization of the form wn ¼
uðv1u1 � � � vkukÞv (k 2 N) where vi 2 f!gþ, v 2 f!g� and
ui 2 ðQ n f!gÞþ, u 2 ðQ n f!gÞ�. By the choice of N it

follows that all vi; v have length at most N and by the

definition of the CA F it is easy to see that each ui contains

at least 2ðjvij � 1Þ þ 1 occurrences of . and at least

2ðjvij � 1Þ þ 1 occurrences of &. Namely, ! can only

change into. via the map F2, at which point a new wall is

created on the right side of.. The arrow. must return to

the nearest wall to the left, then come back as& to the new

wall on the right, and then at least once more turn into .
before turning back into ! via the map F2. If ! were to

turn into  instead, it would signify a wall on the right

which cannot be removed at any time step by the map F2

and which the arrow cannot therefore bypass.

If we denote by kn the number of occurrences of ! in

wn, then kn	 jwnj=3þOð1Þ (this upper bound is achieved

by assuming that jvij ¼ 1 for every i) and

snn	 jwnj þ 2kn þOð1Þ	 jwnj

þ 2

3
jwnj þ Oð1Þ	

5

3
nþOð1Þ:

After dividing this inequality by n and passing to the limit

we find that kþðFÞ	 5
3
.2 h

To prove the uncomputability result for full shifts, we

use the conveyor belt construction introduced in Kim and

Roush (1990) (where it is called the bucket passing con-

struction). The variant that we use follows closely the one

in Guillon and Salo (2017).

Definition 11 Let X be a ðQ;R; Y;A2; qÞ particle shift.

Define alphabets A1 ¼ Q� R, D ¼ f�; 0;þg and

2 By performing more careful estimates it can be shown that

kþðFÞ ¼ 1, but we will not attempt to formalize the argument for this.
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C ¼ ðR2 � fþ;�gÞ [ ðQ� R� f0gÞ [ ðR� Q� f0gÞ
� A1 � A1 � D:

Then the belted version of X is the full shift X� ¼ AZ over

the alphabet A ¼ C� A2. The natural projections

p1;1; p1;2 : AZ ! AZ
1 , pD : AZ ! DZ, p2 : AZ ! AZ

2 are

defined as p1;1ðxÞ ¼ x1;1, p1;2ðxÞ ¼ x1;2, pDðxÞ ¼ xD,

p2ðxÞ ¼ x2 for

x ¼ ðx1;1; x1;2; xD; x2Þ 2 AZ � ðA1 � A1 � D� A2ÞZ.

The configurations of X� can be decomposed into sev-

eral disjoint ‘‘conveyor belts’’ with ‘‘junction points’’: this

will become clearer after the next few definitions.

Definition 12 Every element x ¼ ðx1; x2Þ 2 ðC� A2ÞZ on

belted version X� of a ðQ;R; Y;A2; qÞ particle shift X has a

unique decomposition of the form

ðx1; x2Þ ¼ � � � ðw�2; v�2Þðw�1; v�1Þðw0; v0Þ
ðw1; v1Þðw2; v2Þ � � �

where vi 2 Aþ2 and

wi 2 ðR2 � fþgÞ�ððQ� R� f0gÞ
[ ðR� Q� f0gÞÞðR2 � f�gÞ�

[ ðR2 � fþgÞ�ðR2 � f�gÞ�

with the possible exception of the leftmost wi beginning or

the rightmost wi ending with an infinite sequence from

R2 � fþ;�g. The set

fji 2 Z j ji is the coordinate of the leftmost letter of wi in xg

is the set of junction points of x.

The main reason for defining X� is to be able to

‘‘simulate’’ particle rules of X as reversible automata on

some full shift similarly as in Guillon and Salo (2017). To

be exact, let F be a particle rule on a ðQ;R; Y ;A2; qÞ par-
ticle shift X and let S : Y ! Y be such that Fðy; zÞ ¼
ðSðyÞ; xÞ for ðy; zÞ 2 Y � AZ

2 . We will define F0 : X� ! X�

as follows. We first consider the decomposition of an

arbitrary x ¼ ðx1; x2Þ 2 ðC� A2ÞZ into words ðwi; viÞ in the

sense of the previous definition. Let ðci; eiÞ 2 ðR�
RÞ�ððQ� RÞ [ ðR� QÞÞðR� RÞ� [ ðR� RÞ� be the word

that is derived from wi by removing the symbols from D.
The pair ðci; eiÞ can be seen as a conveyor belt by gluing

the beginning of ci to the beginning of ei and the end of ci
to the end of ei. The map F0 will shift particles of Q like the

map F on both layers ci and ei, and near the junction points

of ci and ei the particle can turn around to the opposite side

of the belt. More precisely, for a word u 2 A�1 let qðuÞ
denote the coordinatewise application of q. For any word

w ¼ w½1� � � �w½n� define its reversal by wR½i� ¼ w½nþ 1� i�
for 1	 i	 n. Then consider the periodic configuration

y ¼ ½ðci; viÞðqðeiÞ; viÞR�Z 2 ðA1 � A2ÞZ. The map F : X !
X extends naturally to configurations of the form y: y can

contain infinitely many particles, but they are all identical

and occur in identical contexts. By applying F to y we get a

new configuration of the form ½ðc0i; viÞðqðe0iÞ; viÞ
R�. From

this we extract the pair ðc0i; e0iÞ, and by adding plusses and

minuses to the left and right of the particle (or in the same

coordinates as in ðci; eiÞ if there is no occurrence of a

particle) we get a word w0i which is of the same form as wi.

We define F0 : AZ ! AZ by F0ðxÞ ¼ x0 where x0 ¼ � � �
ðw0�2;v�2Þðw0�1; v�1Þðw00; v0Þðw01; v1Þðw02; v2Þ � � �. Clearly F0

is shift invariant, continuous and reversible, so it is a

reversible CA. We say that F0 is a belted version of F.

It is important to note that the map F0 above acts very

similarly to the map F at those points of the configuration

that are far away from the junction points and that F0 does
not transfer information over the junction points to neigh-

boring belts. This is formalized as the following more

general definition of a belted version of a reversible CA.

Definition 13 Let F : X ! X be a reversible CA on a

ðQ;R; Y;A2; qÞ particle shift. We say that a reversible CA

F0 : X� ! X� is a belted version of F if the following

hold.

• For ztop ¼ ðy; x1; xD; x2Þ and zbot ¼ ðx1; y; xD; x2Þ where
x1 2 RZ, y 2 Y is such that y½i� 2 Q for some i 2 Z,

x2 2 AZ
2 and xD is defined by xD½i� ¼ 0, xD½i� j� ¼ þ

and xD½iþ j� ¼ � for j[ 0 it holds that

ðp1;1ðF0ðztopÞÞ; p2ðF0ðztopÞÞÞ ¼ Fðy; x2Þ
and ðp1;2ðF0ðzbotÞÞ; p2ðF0ðzbotÞÞÞ ¼ Fðy; x2Þ:

• For all x 2 X� the configurations x and F0ðxÞ have the

same set of junction points.

• For all x; y 2 X� such that p2ðxÞ ¼ p2ðyÞ and any i; j 2
Z such that x½i; j� 1� ¼ y½i; j� 1� and i, j form a pair of

consecutive junction points of both x and y it holds that

p1;kðF0ðxÞÞ½i; j� 1� ¼ p1;kðF0ðyÞÞ½i; j� 1� for k 2 f1; 2g:

It is easy to see that if F0;G0 : X� ! X� are belted ver-

sions of reversible CA F;G : X ! X then F0 � G0 is a

belted version of F � G. Belted versions of reversible CA

are not necessarily unique.

Lemma 2 Let F : X ! X be a composition Fk � � � � � F1 of

particle rules, background rules and coupling rules on a

ðQ;R; Y;A2; qÞ particle shift X such that belted versions F0i
exist for all 1	 i	 k. Then for F0 ¼ F0k � � � � � F01 it holds

that kþðF0Þ ¼ kþðFÞ.
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Proof Assume that r[ 0 is a common radius for F, F0 and

for all Fi, F
0
i . We first show that kþðF0Þ � kþðFÞ. For this

let x 2 X be arbitrary and let y 2 Y; z 2 AZ
2 be such that

x ¼ ðy; zÞ. Define a configuration xD 2 DZ as follows: if y

contains a symbol from Q at some position i 2 Z, then

xD½i� ¼ 0 and xD½i� j� ¼ þ, xD½iþ j� ¼ � for j[ 0. If y

contains no symbols from Q, then xD½i� ¼ þ for all i 2 Z.

Finally define z ¼ ðy; y; xD; zÞ 2 X�. The configuration xD
was chosen so that z essentially consists of two layers of

conveyor belts without any junction points. The map F0

simulates F on these layers in the sense of Definition 13

and so Kþn ðz;F0Þ �Kþn ðx;FÞ for all n 2 N. Because x was

arbitrary, the inequality kþðF0Þ � kþðFÞ follows by the

definition of Lyapunov exponents.

To show that kþðF0Þ 	 kþðFÞ, assume to the contrary

that kþðF0Þ[ kþðFÞ. By the definition of Lyapunov

exponents we can choose n0 2 N and c[ 0 such that

max
z2X�

Kþn ðz;F0Þ[ max
x2X

Kþn ðx;FÞ þ nc

for all n� n0. Fix some such n� 4rmaxf1; 1=cg and some

z 2 X� such that

Kþn ðz;F0Þ[ max
x2X

Kþn ðx;FÞ þ nc:

Denote d ¼ Kþn ðz;F0Þ. There exists z0 2 X� such that z½i� ¼
z0½i� for i� 0 and F0tðzÞ½d � 1� 6¼ F0tðz0Þ½d � 1� for some

1	 t	 n. Since background rules are one-sided and parti-

cle rules and coupling rules can change configurations only

near particles, the difference between z and z0 can propa-

gate to the right only via a symbol from Q which must at

some time step first visit some position near the origin, and

these configurations cannot have junction points on the

interval ½0; d � 1�. Without loss of generality, within t time

steps a particle in the upper conveyor belt layer of z first

gets within distance r from the coordinate �1 and then gets

withing distance r from the coordinate d � 1 (by swapping

z and z0 if necessary and by swapping the upper and lower

conveyor belt layers of the configurations if necessary).

Also, after a sufficiently long time, the particle will remain

at least at distance r from the origin. More precisely, there

are 1	 t1\t2	 t and r	 i1\2r, d � 1� r	 i2	 d � 1

such that for all t1	 t0 	 t2

p1;1ðF0t1ðzÞÞ½i1� 2 Q; p1;1ðF0t2ðzÞÞ½i2� 2 Q and

p1;1ðF0t
0 ðzÞÞ½i� 2 Q for some i� r:

Define configurations x; x0 2 X such that p2ðxÞ ¼ p2ðx0Þ ¼
p2ðF0t1ðzÞÞ and

p1ðx½i�Þ ¼ 0 for i\0 and

p1ðx½i�Þ ¼ p1;1ðF0t1ðzÞÞ½i� otherwise ;

p1ðx0½i�Þ ¼ 0 for i\0 and for i ¼ i1 and

p1ðx½i�Þ ¼ p1;1ðF0t1ðzÞÞ½i� otherwise.

Consider now the configurations y ¼ ri1þ1ðxÞ and

y0 ¼ ri1þ1ðx0Þ. These agree at coordinates i� 0, y contains

a particle at the coordinate �1 and y0 contains no particles.

Then Ft2�t1ðyÞ contains a particle at i2 � i1 � 1 but

Ft2�t1ðy0Þ does not. Since t2 � t1	 n, we reach a contra-

diction by computing

max
x2X

Kþn ðx;FÞ�Kþn ðy;FÞ� i2 � i1�

d � 1� r � 2r� d � 4r�Kþðz;F0Þ � nc:

h

We are ready to prove the result for CA on full shifts.

Theorem 4 For reversible CA F : AZ ! AZ such that

kþðFÞ 2 ½0; 5
3
� [ f2g it is undecidable whether kþðFÞ	 5

3

or kþðFÞ ¼ 2.

Proof We will reduce the decision problem of Theorem 3

to the present problem. Let therefore F : X ! X be a

reversible CA on a ðQ;R; Y ;A2; qÞ particle shift such that

kþðFÞ 2 ½0; 5
3
� [ f2g and F is some composition of particle

rules, background rules and coupling rules. We will show

that the CA F0 of the previous lemma can be effectively

constructed. We then get the reduction, because F0 is a CA

on a full shift and kþðF0Þ ¼ kþðFÞ. To construct F0 it is
sufficient to show how to construct belted versions of

background rules and coupling rules, since we saw earlier

how to construct belted versions of particle rules.

Throughout let C, D, A and the natural projections be as in

Definition 11.

Let G : X ! X be a background rule and let G1 : A
Z
2 !

AZ
2 be such that Gðy; zÞ ¼ ðy;G1ðzÞÞ for ðy; zÞ 2 Y � AZ

2 .

Define G0 : AZ ! AZ by G0ðx1; x2Þ ¼ ðx1;Gðx2ÞÞ for

ðx1; x2Þ 2 ðC� A2ÞZ. Clearly G0 is a belted version of G.

Let then H be a coupling rule with parameters

ðw1;w2;W ; jÞ. For any x 2 AZ let H0ðxÞ be the configura-

tion gotten from x by replacing an occurrence of w1 by w2

(and vice versa) at position i in p1;1ðxÞ or p1;2ðxÞ if and only
if p2ðxÞ 2 Cyl ðw; iþ jÞ for some w 2 W and

pDðxÞ½i; jw1j � 1� 2 þ�0�� (and then automatically the

symbol 0 occurs at the same coordinate as the symbol

from Q in the occurrence of w1 or w2). Clearly H0 is a

belted version of H. h
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The following corollary is immediate.

Corollary 1 There is no algorithm that, given a reversible

CA F : AZ ! AZ and a rational number �[ 0, returns the

Lyapunov exponent kþðFÞ within precision �.

5 Lyapunov exponents of multiplication
automata

In this section we present a class of multiplication automata

which perform multiplication by nonnegative numbers in

some integer base. After the definitions and preliminary

lemmas we compute their average Lyapunov exponents.

For this section denote Rn ¼ f0; 1; . . .; n� 1g for

n 2 N, n[ 1. To perform multiplication using a CA we

need be able to represent a nonnegative real number as a

configuration in RZ
n . If n� 0 is a real number and n ¼

P1
i¼�1 nini is the unique base-n expansion of n such that

ni 6¼ n� 1 for infinitely many i\0, we define

config nðnÞ 2 RZ
n by

config nðnÞ½i� ¼ n�i

for all i 2 Z. In reverse, whenever x 2 RZ
n is such that

x½i� ¼ 0 for all sufficiently small i, we define

real nðxÞ ¼
X1

i¼�1
x½�i�ni:

For words w ¼ w½1�w½2� � � �w½k� 2 Rk
n we define

analogously

real nðwÞ ¼
Xk

i¼1
w½i�n�i:

Clearly real nð config nðnÞÞ ¼ n and config nð real nðxÞÞ ¼ x

for every n� 0 and every x 2 RZ
n such that x½i� ¼ 0 for all

sufficiently small i and x½i� 6¼ n� 1 for infinitely many

i[ 0.

The fractional part of a number n 2 R is

frac ðnÞ ¼ n� bnc 2 ½0; 1Þ:

For integers p; q� 2 let gp;pq : Rpq � Rpq ! Rpq be defined

as follows. Digits a; b 2 Rpq are represented as a ¼ a1qþ
a0 and b ¼ b1qþ b0, where a0; b0 2 Rq and a1; b1 2 Rp:

such representations always exist and they are unique.

Then

gp;pqða; bÞ ¼ gp;pqða1qþ a0; b1qþ b0Þ ¼ a0pþ b1:

An example in the particular case ðp; pqÞ ¼ ð3; 6Þ is given
in Fig. 6.

We define the CA Pp;pq : RZ
pq ! RZ

pq by

Pp;pqðxÞ½i� ¼ gp;pqðx½i�; x½iþ 1�Þ, so Pp;pq is a radius-1
2
CA.

The CA Pp;pq performs multiplication by p in base pq in

the sense of the following lemma.

Lemma 3 real pqðPp;pqð config pqðnÞÞÞ ¼ pn for all n� 0.

We omit the proof of the lemma, which can be found for

example in Kari (2012). The idea of the proof is to notice

that the local rule gp;pq mimics the usual school multipli-

cation algorithm. Because p divides pq, the carry digits

cannot propagate arbitrarily far to the left.

It is well known that Pp;pq is reversible. Indeed, by the

previous lemma the map Pq;pq �Pp;pq agrees with r on the

dense set of configurations config pqðR� 0Þ. Thus by con-

tinuity Pq;pq �Pp;pq ¼ r and r�1 �Pq;pq is the inverse of

Pp;pq.

For the statement of the following lemma, which can

essentially be found from Kari and Kopra (2017), we define

a function int : Rþpq ! N by

int ðw½1�w½2� � � �w½k�Þ ¼
Xk�1

i¼0
w½k � i�ðpqÞi;

i.e. int ðwÞ is the integer having w as a base-pq represen-

tation. We also write Md nðmÞ to denote the remainder of

m divided by n.

Lemma 4 Let t[ 0 and w 2 Rk
pq for some k� t þ 1. Then

int ðgtp;pqðwÞÞ ¼ Md ðpqÞk�tðb int ðwÞ=q
kcÞ:

Proof Let x 2 RZ
pq be such that x½�ðk � 1Þ; 0� ¼ w and

x½i� ¼ 0 for i\� ðk � 1Þ and i[ 0. From this definition of

x it follows that int ðwÞ ¼ real pqðxÞ. Denote y ¼ Pt
p;pqðxÞ.

We have

X1

i¼�1
y½�i�ðpqÞi ¼ real pqðyÞ ¼ pt real pqðxÞ ¼ pt int ðwÞ:

Dividing both sides of this equality by ðpqÞt we find that

X1

i¼�1
y½�i�ðpqÞi�t ¼ int ðwÞ=qt

and

a\b 0 1 2 3 4 5
0 0 0 1 1 2 2
1 3 3 4 4 5 5
2 0 0 1 1 2 2
3 3 3 4 4 5 5
4 0 0 1 1 2 2
5 3 3 4 4 5 5

Fig. 6 The values of g3;6ða; bÞ
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int ðgtp;pqðwÞÞ ¼ int ðy½�ðk � 1Þ;�t�Þ

¼
Xk�1

i¼t
y½�i�ðpqÞi�t ¼ Md ðpqÞk�tðb int ðwÞ=q

tcÞ:

h

We consider the Lyapunov exponents of the multipli-

cation automaton Pp;pq. Since Pp;pq is a radius-1
2
CA, it is

easy to see that for any x 2 RZ
pq we must have kþðxÞ ¼ 0

and k�ðxÞ	 1 and therefore kþðPp;pqÞ ¼ 0, k�ðPp;pqÞ	 1.

Now consider a positive integer m[ 0. Multiplying m

by pn yields a number whose base-pq representation has

length approximately equal to

logpqðmpnÞ ¼ nðlogpq pÞ þ logpq m. By translating this

observation to the configuration space RZ
pq it follows that

k�ð0Z;Pp;pqÞ ¼ logpq p. One might be tempted to conclude

from this that k�ðPp;pqÞ ¼ logpq p. In Theorem 5 it turns

out that this conclusion is not true. The intuition that the

left Lyapunov exponent of Pp;pq ‘‘should be’’ equal to

logpq p is explained by the computation of the average

Lyapunov exponent with respect to the uniform measure in

Theorem 6. Recall that Pp;pq is a reversible CA and in

particular it preserves the uniform measure.

Theorem 5 For coprime p; q[ 1 we have k�ðPp;pqÞ ¼ 1.

Proof For every n 2 Nþ define xn ¼ config pqðqn � 1Þ
and yn ¼ config pqðqnÞ. Note that qn isn’t divisible by pq

for any n 2 Nþ, which means that xn and yn differ only at

the origin. By Lemma 3, real ðPn
p;pqðxnÞÞ ¼ pnðqn �

1Þ\ðpqÞn and real ðPn
p;pqðynÞÞ ¼ pnqn ¼ ðpqÞn, which

means that Pn
p;pqðxnÞ½�n� ¼ 0 and Pn

p;pqðynÞ½�n� ¼ 1. It

follows that K�n ðr�1ðxnÞ;Pp;pqÞ� n and

k�ðPp;pqÞ ¼ lim
n!1

max
x2RZ

pq

K�n ðx;Pp;pqÞ
n

� lim
n!1

K�n ðr�1ðxnÞ;Pp;pqÞ
n

� 1:

Since we already know that k�ðPp;pqÞ	 1, we are done. h

Theorem 6 For coprime p; q[ 1 we have

I�l ðPp;pqÞ ¼ logpq p, where l is the uniform measure on

RZ
pq.

Proof First note that for any n 2 Nþ and any w 2 Rnþ1 the
equality K�n ðxÞ ¼ K�n ðyÞ holds for each pair

x; y 2 Cyl ðw;�nÞ, so we may define the quantity

K�n ðwÞ ¼ K�n ðxÞ for x 2 Cyl ðw;�nÞ. For any i 2 N denote

ðK�n Þ
�1ðiÞ ¼ fx 2 RZ

pq j K�n ðxÞ ¼ ig. Then, note that

always K�n ðxÞ	 n and define for 0	 i	 n

PnðiÞ ¼ fw 2 Rnþ1
pq j K�n ðwÞ ¼ ig

which form a partition of Rnþ1
pq . From these definitions it

follows that

I�n;l ¼
Z

x2RZ
pq

K�n ðxÞ

dl ¼
X1

i¼0
ilððK�n Þ

�1ðiÞÞ

¼ ðpqÞ�ðnþ1Þ
Xn

i¼0
ijPnðiÞj:

To compute jPnðiÞj we define an auxiliary quantity

pnðiÞ ¼ fw 2 Rnþ1
pq j i	K�n ðwÞ	 ng :

then clearly PnðnÞ ¼ pnðnÞ and PnðiÞ ¼ pnðiÞ n pnðiþ 1Þ
for 0	 i\n. Note that w 2 pnðiÞ ð0	 i	 nÞ is equivalent to
the existence of words w0 2 Rnþ1�i

pq , u 2 Ri
pq, v1; v2 2

Rnþ1�i
pq such that w ¼ w0u and gtp;pqðuv1Þ½1� 6¼ gtp;pqðuv2Þ½1�

for some i	 t	 n. By denoting

dnðiÞ ¼ fu 2 Ri
pq j 9v1; v2 2 Anþ1�i;

t 2 ½i; n� : gtp;pqðuv1Þ½1� 6¼ gtp;pqðuv2Þ½1�g;

it follows that jpnðiÞj ¼ ðpqÞnþ1�ijdnðiÞj. By Lemma 4, for

a word u 2 Ri
pq the condition u 2 dnðiÞ is equivalent to the

existence of a number divisible by qt on the open interval

JðuÞt ¼ ð int ðuÞðpqÞ
tþ1�i; ð int ðuÞ þ 1ÞðpqÞtþ1�iÞ

for some t 2 ½i; n�. Furthermore, if an integer m is divisible

by qt and m 2 JðuÞt, then mðpqÞn�t 2 JðuÞn is divisible by

qn. Thus it is sufficient to consider only the interval JðuÞn.
We use this to compute jdnðiÞj. The computation is divided

into two cases that can be defined using the quantity

j ¼ n� n logpq qþ 1
� �

.

In the case ðpqÞnþ1�i [ qn (equivalently: i	 j) each

interval JðuÞn contains a number divisible by qn and

therefore jdnðiÞj ¼ ðpqÞi. Using this we can also compute

jPnðiÞj when i\j:

jPnðiÞj ¼ jpnðiÞj � jpnðiþ 1Þj
¼ ðpqÞnþ1�ijdnðiÞj � ðpqÞn�ijdnðiþ 1Þj
¼ ðpqÞnþ1 � ðpqÞnþ1 ¼ 0:

In the case ðpqÞnþ1�i\qn (equivalently: i[ j) each

interval JðuÞn contains at most one number divisible by qn.

Then jdnðiÞj equals the number of elements on the interval

½0; ðpqÞnþ1Þ which are divisible by qn but not divisible by

ðpqÞnþ1�i. Divisibility by both qn and ðpqÞnþ1�i is equiv-

alent to divisibility by qnpnþ1�i because p and q are

coprime and because i 6¼ 0 by the assumption
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ðpqÞnþ1�i\qn. Therefore

jdnðiÞj ¼ ðpqÞnþ1=qn � ðpqÞnþ1=ðqnpnþ1�iÞ ¼ ðpqÞpn � qpi

.

We may compute

ðpqÞnþ1I�n;l ¼
Xj�1

i¼0
ijPnðiÞj þ

Xn

i¼j
ijPnðiÞj

¼ njpnðnÞj þ
Xn�1

i¼j
iðjpnðiÞj � jpnðiþ 1ÞjÞ

¼ jjpnðjÞj þ
Xn

i¼jþ1
jpnðiÞj;

in which

jjpnðjÞj ¼ jðpqÞnþ1�jjdnðjÞj
¼ jðpqÞnþ1�jðpqÞj ¼ jðpqÞnþ1

and

Xn

i¼jþ1
jpnðiÞj ¼

Xn

i¼jþ1
ðpqÞnþ1�ijdnðiÞj

¼
Xn

i¼jþ1
ðpqÞnþ1�iððpqÞpn � qpiÞ

¼ ðpqÞpn
Xn

i¼jþ1
ðpqÞnþ1�i

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

	
P1

i¼jþ1ðpqÞ
nþ1�i � qðpqÞnþ1

Xn

i¼jþ1
q�i

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
� 0

	ðpqÞpnðpqÞn�j
X1

i¼0
ðpqÞ�i

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
	 2

	 2ðpqÞpnðpqÞn�ðn�n logpq qþ1Þþ1

¼ 2ðpqÞpnðpqÞlogpq q
n

¼ 2ðpqÞnþ1:

Finally, the left average Lyapunov exponent is

I�l ¼ lim
n!1

I�n;l
n

¼ lim
n!1

jjpnðjÞj
ðpqÞnþ1n

þ lim
n!1

Pn
i¼jþ1 jpnðiÞj
ðpqÞnþ1n

¼ lim
n!1

j
n

¼ 1� logpq q ¼ logpq p:

h

Remark 3 Multiplication automata can also be defined

more generally. Denote by Pa;n : RZ
n ! RZ

n the CA that

performs multiplication by a 2 R[ 0 in base n 2 N, n[ 1

(if it exists). A characterization of all admissible pairs a; n
can be extracted from the paper (Blanchard et al. 1996),

which considers multiplication automata on one-sided

configuration spaces RN
n . We believe that I�l ðPa;nÞ ¼

logn a for all a� 1 and all natural numbers n[ 1 such that

Pa;n is defined (when l is the uniform measure on RZ
n ).

Replacing the application of Lemma 4 by an application of

Lemma 5.7 from Kari and Kopra (2017) probably yields

the result for Pp=q;pq when p[ q[ 1 are coprime. A

unified approach to cover the general case would be

desirable.

6 Conclusions

We have shown that the Lyapunov exponents of a given

reversible cellular automaton on a full shift cannot be

computed to arbitrary precision. Ultimately this turned out

to follow from the fact that the tiling problem for 2-way

deterministic Wang tile sets reduces to the problem of

computing the Lyapunov exponents of reversible CA. Note

that the result does not restrict the size of the alphabet A of

the CA F : AZ ! AZ whose Lyapunov exponents are to be

determined. Standard encoding methods might be sufficient

to solve the following problem.

Problem 1 Is there a fixed full shift AZ such that the

Lyapunov exponents of a given reversible CA F : AZ !
AZ cannot be computed to arbitrary precision? Can we

choose here jAj ¼ 2?

In our constructions we controlled only the right expo-

nent kþðFÞ and let the left exponent k�ðFÞ vary freely.

Controlling both Lyapunov exponents would be necessary

to answer the following.

Problem 2 Is it decidable whether the equality kþðFÞ ¼
k�ðFÞ ¼ 0 holds for a given reversible cellular automaton

F : AZ ! AZ?

We mentioned in the introduction that there exists a

single CA whose topological entropy is an uncom-

putable number. We ask whether a similar result holds also

for the Lyapunov exponents.

Problem 3 Does there exist a single cellular automaton

F : AZ ! AZ such that kþðFÞ is an uncomputable number?

By an application of Fekete’s lemma the limit that

defines kþðFÞ is actually the infimum of a sequence whose

elements are easily computable when F : AZ ! AZ is a CA

on a full shift. This yields the natural obstruction that

kþðFÞ has to be an upper semicomputable number. We are

not aware of a cellular automaton on a full shift that has an

irrational Lyapunov exponent (see Question 5.7 in (Cyr

et al. 2019)), so constructing such a CA (or proving the

impossibility of such a construction) should be the first
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step. This problem has an answer for CA F : X ! X on

general subshifts X, and furthermore for every real t� 0

there is a subshift Xt and a reversible CA Ft : Xt ! Xt such

that kþðFtÞ ¼ k�ðFtÞ ¼ t (Hochman 2011).

In the previous section we computed that the average

Lyapunov exponent I�l of the multiplication automaton

Pp;pq is equal to logpq p when p; q[ 1 are coprime inte-

gers. This in particular shows that average Lyapunov

exponents can be irrational numbers. We do not know

whether such examples can be found in earlier literature.
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