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Population dynamics of herbivorous insects in polluted
landscapes
Mikhail V Kozlov

Environmental pollution is one cause of insect decline in the
Anthropocene, but the underlying mechanisms remain obscure
due to a paucity of pollution-impact studies on insects that
address density-dependent processes. Long data series (19–26
years) are available only for a few species monitored around
two industrial polluters in north-western Russia. A particularly
exciting current finding is that industrial pollution determines
the relative strength of rapid (stabilising) and delayed
(destabilising) density dependence operating on a herbivore
population. Most studies address acute effects of traditional
pollutants (e.g. sulphur dioxide and trace elements) and
nitrogen deposition on agricultural pests, whereas the effects of
realistic concentrations of ozone, particulate matter and
emerging pollutants on insects feeding on noncultivated plants
are unknown. The accumulated evidence remains insufficient to
predict the effects of pollutants of global concern on the
population dynamics of herbivorous insects.
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Introduction
Pollution, the introduction of contaminants into an en-
vironment that causes instability, disorder, harm or dis-
comfort to the physical systems or living organisms, has
long been recognised as a serious environmental and so-
cial problem. The current generation has inherited large
areas disturbed or destroyed by industrial pollution, and
the destruction continues today in many countries [1].
However, industrial development, environmental legisla-
tion and public attitude during the past 10–20 years have
shifted the focal research topics of pollution ecology from

the exploration of acute local damage caused by tradi-
tional pollutants (e.g. sulphur dioxide, fluorine and trace
elements) associated with large industrial enterprises
(Figure 1) to studies of the regional effects of ozone (O3),
nitrogen (N) deposition, particulate matter (PM) and
several groups of emerging pollutants [2•].

Environmental pollution is a major driver of global bio-
diversity decline [3], including losses of insect diversity
and abundance [4]. However, pollution-related concerns
are primarily linked with excessive use of pesticides and
fertilisers, along with light and noise pollution [5,6]. By
contrast, photochemically formed ground-level ozone
and industrial pollutants — despite their global im-
portance [2•] and overall negative impact on biodiversity
[7] — are rarely considered in conservation planning and
management [8]. The neglect of chemical pollution in
insect-conservation agendas likely reflects the shortage
of empirical information regarding pollutant effects on
insect community structure and dynamics [9•]. Here, I
summarise the current findings on chemical pollutant
effects on fecundity, mortality, migration and other fac-
tors that directly or indirectly affect insect population
dynamics (Figure 2).

Despite the overall adverse effects of pollutants on in-
sect fitness, abundance and diversity [10,11], industrial
pollution was repeatedly reported to favour many plant-
feeding species, particularly forest pests [12,13]. Meta-
analysis confirmed a consistent increase in herbivorous
insect abundance near industrial polluters [11], although
this effect may be overestimated due to various biases in
published data [1]. Here, I focus on factors affecting
variations in herbivorous insect responses to chemical
pollution.

Changes in herbivore population dynamics
Exploration of pollution effects on population dynamics
requires simultaneous monitoring of several populations,
replicated within both polluted and unpolluted regions
over multiple (preferably 30–40) generations, coupled
with monitoring and/or manipulation of factors poten-
tially affecting the study population density and struc-
ture. Not surprisingly, data of this kind are limited to a
few herbivorous insect species. A search in the ISI Web
of Science Core Collection on 9 July 2022 for insect*
AND herbivor* AND pollut* AND ‘population dy-
namic*’ revealed only 11 studies of direct relevance to
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the present review topic, and only one of these studies
[14•] appeared in the past five years.

Pollution impacts on herbivore population dynamics are
best exemplified in a willow-feeding leaf beetle,
Chrysomela lapponica, as multiple populations have been
monitored for over 20 years at different distances from a
copper–nickel smelter in subarctic European Russia.
Spring and fall temperatures increased by 2.5–3 °C
during the observation period, while smelter emissions
of sulphur dioxide and heavy metals decreased fivefold.
Despite a discovered increase in host-plant quality with
increased temperatures, the C. lapponica density showed
a rapid 20-fold decline in the early 2000s, remaining at
very low levels thereafter. Time-series analysis and
model selection indicated an association between this
abrupt population decline and the smelter’s decreased
aerial emissions, and this was explained by increases in
insect mortality from natural enemies as a consequence
of climate warming and declining pollution [15•].

Consistent with these results, 26 years of monitoring of
an eruptive leafmining moth, Phyllonorycter strigulatella,
at 14 sites located at different distances from a coal-fired

Figure 1
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Examples of pollution-induced transformation of forested landscapes. (a) Industrial barren located 4 km S of the copper–nickel smelter at
Monchegorsk, north-western Russia, which had evolved from spruce forest (b) following 80 years of severe impacts of sulphur dioxide and deposition
of trace elements. (c) Scots pine forest with extensive nitrophilous vegetation located 1 km W of the fertiliser factory at Jonava, Lithuania, which had
evolved from forest with low-stature, sparse field-layer vegetation (d) following 40 years of intensive deposition of nitrogen-containing emissions.
Photo: V. Zverev.
Reproduced with permission from [1].

Figure 2
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The relative level of knowledge (green: high; yellow: intermediate; red:
low) on direct and indirect impacts of chemical pollution on individual
and population characteristics of insect herbivores. The effects of
pollution on the resulting population dynamics (within the dashed box)
are illustrated as changes in herbivore population density between
generation t-1 and generation t shaped by a combination of density-
dependent and density-independent processes. The figure reflects the
author’s subjective opinion on the relative numbers of case studies
addressing individual links and on the consistency between the results
of these studies. This opinion is based on all evidence on this topic.
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power plant near Apatity, north-western Russia, revealed
a decrease in the strength of rapid density dependence
but an increase in the strength of delayed density de-
pendence with decreasing distance from the pollution
source [14•]. This is the most exciting current finding
regarding pollution impacts on the landscape-level po-
pulation dynamics of plant-feeding insects, because it
suggests that insect herbivore outbreaks in polluted
environments can reflect a weakening of rapid (stabi-
lising) density dependence relative to delayed (desta-
bilising) density dependence [14•].

Population densities of insects feeding on birch leaves
demonstrated variable, and sometimes opposite, re-
sponses to industrial pollution gradients near the
Monchegorsk copper–nickel smelter [16]. The response
direction and strength are linked with herbivore life
history traits: the abundances of oligophagous and
polyphagous moth and butterfly species that fed ex-
ternally on plants and hibernated as larvae generally
declined near the smelter, whereas the abundances of
monophagous Lepidoptera species that fed inside live
plant tissues and hibernated as imagoes or pupae were
unaffected by pollution [9•].

We know of no study reporting long-term observations
on the abundance of herbivorous insects and/or on the
intensity of herbivory in spatial gradients of O3, N or PM
(except for dust containing trace elements). Therefore,
the landscape-level effects of these pollutants on plant-
feeding insects can only be predicted from accumulated
evidence of their direct and indirect impacts on insect
fecundity, survival and dispersal.

Changes expected from direct pollutant
effects on herbivores
The direct impact of chemical pollutants on the in-
dividual performance of herbivorous insects is generally
negative [11], especially when pollutant-contaminated
food is ingested. The most representative information is
accumulated for trace elements. Realistic concentrations
of lead, zinc, manganese and cadmium reduce larval
growth, survival and/or fecundity in several moth and
beetle species [17–20]. However, these effects are often
species-specific: zinc in an artificial diet reduced mon-
arch butterfly (Danaus plexippus) survival but enhanced
cabbage white butterfly (Pieris rapae) survival [21]. Si-
milarly, the same manganese concentrations applied to
birch leaves affected food consumption by Cabera pu-
saria [22] but not by Phyllobius arborator [23]. The
sources of this variation should be identified to broaden
our understanding of pollution tolerance in insect spe-
cies of conservation concern.

Airborne PM is a significant threat to human health, but
PM deposition effects on plant-feeding insects are

insufficiently understood. Feeding on leaves of Prunus
padus and P. serotina artificially dusted with cement and
roadside PM decreased the performance of the leaf
beetle Gonioctena quinquepunctata [24]. Similarly, con-
sumption of gypsum- and coal-dusted leaves by Gloveria
medusa [25] and Helicoverpa armigera larvae [26], as well
as exposure of Bicyclus anynana butterfly larvae to artifi-
cially generated smoke [27], significantly increased in-
sect mortality. Conversely, external treatment of G.
medusa larvae with PM [25] and tarsal contact of Onco-
peltus fasciatus with TiO2 and Al2O3 nanoparticles [28]
did not modify their survival or fecundity.

Most data on high O3 toxicity for insects originate from
studies using O3 to control stored-product pests, and
these studies generally use O3 concentrations that ex-
ceed concentrations observed in nature by factors of
100–10 000 [29]. However, realistic O3 episodes (80 ppb
and greater) also increase the mortality of tiny in-
sects [30].

Pollution was recently demonstrated to dampen insect
migratory abilities. The distance covered by adults
painted lady butterflies (Vanessa cardui) declined by 65%
during the first 20 min of flying in air polluted with
combustion-generated PM2.5, and flight speed strongly
declined with increases in airborne PM2.5 concentration
[31•]. Similarly, short-term O3 exposure (80–200 ppb)
decreased motility of the fig wasp Blastophaga psenes [30].
Combined with a strong positive correlation between
concentrations of trace elements (nickel and copper) in
butterflies and in plants within the Monchegorsk pol-
lution gradient [32], these results suggest that migration
to or from polluted sites contributes little to herbivore
population dynamics compared with pollution effects on
insect fecundity and mortality.

Changes expected from feeding on polluted
plants (bottom-up effects)
The current studies addressing indirect effects of pol-
lutants on herbivorous insects are dominated by the ef-
fects of N fertilisation on host-plant quality. This
dominance is likely explained by N being the primary
limiting nutrient of herbivorous insects [33] and N de-
position having an increasing global importance in nat-
ural and agricultural ecosystems [2•].

The brown rice planthopper Nilaparvata lugens showed
greater fecundity when feeding on N-fertilised than on
nonfertilised rice plants [34•]. Tuta absoluta miners
produced more eggs and had a higher intrinsic rate of
population increase when they developed in leaves from
N-fertilised plants than in leaves from nonfertilised
plants [35]. Consistently, N fertilisation increased po-
pulation growth rates of two aphid species, Sitobion
avenae and Acyrthosiphon pisum [36]. Conversely, N
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fertilisation decreased larval survival in six butterfly
species, although the underlying mechanisms remain
unknown [37]. A decrease in survival and reproduction
of a locust, Oedaeleus senegalensis, feeding on N-fertilised
plants, was associated with an increasing plant protein-
to-carbohydrate ratio [38].

Exposure of host plants to O3 induces diverse responses in
insect herbivores. In a choice experiment, Eri silkmoth
(Samia ricini) larvae did not distinguish between plants
exposed to ambient and elevated O3 concentrations (20
ppb vs. 55 ppb), but larval growth was inhibited, whereas
mortality was unaffected, by feeding on plants exposed to
elevated O3 [39•]. By contrast, growth of Chrysomela populi
on poplar leaves exposed to 80-ppb O3 increased relative
to control leaves, but this effect was significant only on
one of two poplar clones [40•]. When given the choice,
Pieris brassicae butterflies laid 49% fewer eggs on plants
exposed to 120-ppb O3 than on control plants. Con-
sistently, O3 decreased the growth of P. brassicae larvae,
but only at high temperatures, whereas egg survival was
greater on O3-exposed than on control plants [41].

Reactive N from human sources (e.g. NO2) is taken up
by plant roots following deposition in soils, but it can
also be assimilated by leaves directly from the atmo-
sphere. This assimilation was recently found to increase
the N-based defensive metabolites in leaves of Nicotiana
tabacum and consequently reduce food consumption and
growth of tobacco hornworm (Manduca sexta) larvae [42].

The accumulated evidence suggests that the bottom-up
effects of pollutants on individual and population per-
formance of plant-feeding insects are more variable than
the direct effects, ranking from strongly positive to
strongly negative. The sources of this variation require
further exploration to allow justified generalisations re-
garding possible consequences of these effects for her-
bivore population dynamics.

Changes expected from pollution effects on
predators and parasitoids (top-down effects)
An increase in herbivorous insect abundance in polluted
areas is routinely explained by a combination of bene-
ficial changes in host-plant quality (discussed above) and
enemy-free space (i.e. decreased abundance of natural
enemies) [10,14•,15•,43]. However, meta-analysis re-
vealed that a significant overall decrease in abundance of
predatory invertebrates with an increase in industrial
pollution was driven by a rapid decline in epigeic pre-
dators. By contrast, the abundance of predators feeding
in plant canopies (e.g. wasps, ladybirds, bugs and ho-
verfly larvae) was independent of the pollution load [11].

Recent studies demonstrated that pollution may both
enhance and weaken top-down control on insect

herbivores. In particular, N fertilisation can increase prey
nutritional quality to the point that it alters predator
foraging and feeding behaviour, resulting either in
slower rates of prey (Aphis gossypii) consumption and
longer prey handling times by ladybugs (Hippodamia
variegate) [44] or in increased fecundity and longevity of
parasitic wasps (Habrobracon hebetor) feeding on tomato
fruit worm (Helocoverpa armigera) larvae [45•]. Both zinc
and N transferred through food chains increased pre-
dator (Harmonia axyridis ladybug) mortality [46], thereby
releasing aphids (Aphis medicaginis and Acyrthosiphon
pisum) from top-down control. Nitrogen benefited both
brown rice planthoppers and predatory mirid bugs (Cy-
rtorhinus lividipennis), however, the difference in N ef-
fects on these species resulted in weakening of top-
down control of the planthopper by the mirid bug as rice
leaf N concentrations increased [34•]. Similarly, high N
fertilisation releases cereal aphids (Sitobion arvense and
Rhopalosiphym padi) from the control of Aphidiinae
parasitoids [47].

The only study of pollution impacts on mutualistic in-
teractions revealed a positive effect of N enrichment on
the abundance of sap-feeding insects (aphids, mealybugs
and treehoppers) that are mutualist partners of predac-
eous ants (primarily Formica obscuripes). The abundance
of ants in N-treated plants did not change, nevertheless,
ants provided greater antipredator protection for mutu-
alist herbivores on these plants than on control
plants [48].

The uncertainties in predicting pollution impacts on
herbivore population dynamics via top-down control are
enhanced by the recent finding that the ratio between
rapid (stabilising) and delayed (destabilising) density
dependence is more important than the absolute in-
tensity of the top-down impact [14•]. This interplay
between different forces shaping herbivore population
dynamics stresses the need for simultaneous exploration
of pollution impacts on both bottom-up and top-down
drivers.

Methodological implications
Disturbance-induced changes in ecosystems are a cen-
tral concern in ecology, and from this perspective, the
impacts of pollutants on natural ecosystems can be seen
as unintentional large-scale disturbance experiments.
Ecologists can make use of the results of these experi-
ments to pinpoint the factors that affect the resilience of
community structures and ecosystem functions [49].
However, researchers preferentially use results from
unintentional experiments associated with extreme le-
vels of industrial pollutants (as illustrated by Figure 1a,
c). Consequently, the current shift in research priorities
of pollution-oriented studies [2•] has greatly decreased
the number of unintentional experiments that can be
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used to explore pollution effects on natural commu-
nities, because spatial gradients of O3, N and PM are
generally much shallower than spatial gradients of tra-
ditional industrial pollutants and are rarely accompanied
by landscape-level changes, such as forest decline.
Nevertheless, regions with elevated N deposition can be
used as testing grounds to study herbivorous in-
sect population dynamics and particularly the effects of
microclimatic cooling triggered by N-induced increases
in plant biomass [50,51•].

Research needs and future directions
Despite decades of research, we know surprisingly little
regarding pollution impacts on the population dynamics
of insect herbivores (Figure 2). Especially disappointing
is acute shortage of studies addressing density-depen-
dent processes in herbivore populations experiencing
different loads of pollutants of global concern. In the
absence of long-term data, the only solution is to use a
'space-for-time' substitution to invoke temporal changes
in herbivore abundance from contemporary spatial pat-
terns [9•,52], as done to explore N-deposition effects on
moth and butterfly abundances in Switzerland [51•]. For
this purpose, monitoring populations of key species of
herbivorous insects should be added to programmes of
relevant networks assessing the effects of various pol-
lutants (O3, in particular) on natural ecosystems. The
data obtained in this way could be used to (i) test the
hypothesis of a general similarity in the effects of dif-
ferent pollutants on herbivore population dynamics and
(ii) suggest new hypotheses on mechanisms underlying
the observed effects.

Although environmental pollution is an integral part of
global change, most research addressing the biotic ef-
fects of climate change does not consider pollution is-
sues. Furthermore, most studies on both the distribution
of pollutants and the biotic effects of pollution have
neglected the issue of climate change [2•]. Conse-
quently, studies exploring the combined effects of air
pollution and climate change remain uncommon, al-
though in a rapidly changing world, the effects of an-
thropogenic pollution on the dynamics of animal
populations may be at least as important as the effects of
climate change [14•]. I therefore recommend in-
tensification of experimental studies that address the
combined effects of pollution and climate on plant-
feeding insects. These studies should preferably explore
insects feeding on noncultivated plants to assure a better
representation of taxonomic and functional diversity of
herbivorous insects in the published data and a greater
generality of the resulting conclusions.
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