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Abstract: In large-area forest inventories, a trade-off between the amount of data to be sampled and
the corresponding collection costs is necessary. It is not always possible to have a very large data
sample when dealing with sampling-based inventories. It is therefore important to optimize the
sampling design with the limited resources. Whereas this sort of inventories are subject to these
constraints, the availability of remote sensing (RS) data correlated with the forest inventory variables
is usually much higher. For this reason, the RS and sampled field measurement data are often used in
combination for improving the forest inventory estimation. In this study, we propose a model-based
data sampling method founded on Bayesian optimization and machine learning algorithms which
utilizes RS data to guide forest inventory sample selection. We evaluate our method in empirical
experiments using real-world volume of growing stock data from the Aland region in Finland. The
proposed method is compared against two baseline methods: simple random sampling and the
local pivotal method. When a suitable model link is selected, the empirical experiments show on
best case on average up to 22% and 79% improvement in population mean and variance estimation
respectively over baselines. However, the results also illustrate the importance of model selection
which has a clear effect on the results. The novelty of the study is in the application of Bayesian
optimization in national forest inventory survey sampling.

Keywords: national forest inventory; remote sensing; survey sampling; Bayesian optimization;
machine learning

1. Introduction

Large-area surveys apply a wide range of methods from the field of statistical sampling
theory, such as, for example, the simple random, systematic or stratified sampling [1–6].
Methods such as systematic or clustered sampling are common in forest inventories, be-
cause the weights of individual sample plots are constant, which makes their application
straightforward in monitoring the forest resources over consecutive inventories. The sam-
pling methodologies are optimized in order to produce accurate inventories for the response
variables of interest. Large-area forest inventories at regional and national level are typically
based on sampled field observations measured from sample plots. The sampling intensity
is dependent on the size of the inventory area, desired accuracy of the inventory data and
the resources available for measuring the data. The sampled data should be representative
enough to cover the variation of the significant variables, such as the volume of grow-
ing stock and main tree species in the inventory area, in order to allow the estimation of
these variables at national and regional level. Management of forest resources requires
predictions, e.g., on the distribution of tree species, state of forests, soil conditions for
trafficability assessment etc. [7–10]. Information gain from these data-based approaches
will be utilized both in strategic and operative plannings in forestry. Increasing the number
of field observations generally improves the precision and accuracy of the inventory data,
but on the other hand, the measurement of field data is the most significant cost factor in
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sampling-based forest inventories. Thus, the selected inventory design is always a trade-off
between the desired accuracy of inventory data and the available resources. One output of
forest inventories, with growing importance, are thematic maps. These thematic maps are
created using the collected field sample data and some prediction model, e.g., k-nearest
neighbor, for interpolating the field sample data over larger areas [11].

The efficiency of sampling designs can be improved by using auxiliary data such as
remote sensing (RS) data, which as such is not accurate enough for the inventory task
but which can be used for enhancing the sampling efficiency by, e.g., weighting the areas
represented by each sample plot. The main prerequisite for the use of auxiliary data is that
there is sufficient correlation between the auxiliary data and actual variables of interest,
which typically is the case between RS data and forest inventory variables [12–19]. Recent
examples in Swedish forest inventory utilizing auxiliary information in sampling decisions
have been presented, e.g., in the studies by [20–23]. In the works of [24,25] auxiliary data
were used via the local pivotal method in national forest inventory (NFI) using Southern
Finland as the test area. The local pivotal method produces sample locations in a stochastic
manner while trying to avoid similar data points in the auxiliary space to be included into
the data set, in order to produce a spatially well-balanced data set. The results showed
significant improvement in estimation accuracy with the utilization of auxiliary data to
the NFI. In addition, related studies regarding the baseline methods used in this work and
sampling strategies regarding the NFI can be found, e.g., in the works by [26–28].

In design-based inference, sample locations are decided using probability sampling
which means that each sample point (i.e., a single observation of a variable of interest in
a spatial location) is included into the sample randomly based on inclusion probabilities,
and the specific probability sampling method applied. In model-based inference, sample
locations are not based on probability sampling but rather on a statistical model. Both of
these approaches have their strengths and weaknesses, and the best approach of these two
depends on the aim of the survey [29]. Primarily, the design-based approach is the most
appropriate if interest is in the valid objective assessment of the population mean, whereas
the model-based approach is the more appropriate if the goal is to map the study/response
variable. In addition, given that a good model is used, the model-based approach is also
more efficient with more precise estimates of the population mean [30] (ch. 26). In this
work, we use a model-based sampling approach in which we utilize the model link between
the response and auxiliary data for deciding new field sample locations. Our response
variables of interest is the volume of growing stock, and the auxiliary data consist of
remotely sensed airborne imagery and laser scanning data. The goal of the sampling is
to estimate the population parameters (i.e., mean and variance) of the volume response
variables (more details on study data are given in Section 2). The proposed model-based
sampling method is motivated by the use of Gaussian processes [31] in sensor network
optimization (SNO) problems [32–34]. The SNO problems are very similar to those in forest
inventory sampling, since they both have the same common challenge, i.e., to optimize
sample locations with respect to accuracy and cost efficiency. This is the main basis on
which our proposed method is built upon, and for which Bayesian optimization with
Gaussian processes offers a theoretical framework. Instead of using response and auxiliary
data per se for new sampling decisions, our model-based approach lets the prediction
model itself guide the sample selection using auxiliary (e.g., RS) data to areas where the
model’s prediction uncertainty for response (i.e., the inventory data) variables is the largest.
By doing so, the proposed method aims to avoid similar data points to be included into the
sample data, much alike as in the local pivotal method [24]. Since our approach relies on
the prediction model, it is assumed that prior data exists for fitting the model before the
sampling can be implemented. These data should be reflect the functional link between the
auxiliary and response data as accurately as possible.

In general, NFIs typically cover hundreds of variables, of which information is
recorded on NFI sample plots. These variables typically cover, among others, the trees (liv-
ing or dead), site type, forest health as well as variables related to biodiversity or ecological
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value [11,35]. However, it is not feasible to optimize the sampling design for all variables
of interest. For example in Finnish NFI, the current systematic cluster sampling design is
optimized for producing design unbiased estimates of the total volume of growing stock
as well as the volumes of main tree species at regional and national level, and the same
sampling design will be used also for all other variables recorded in NFI. In this study, we
focus on the volumes of total growing stock and the main tree species groups due to their
importance in national forest inventory.

Lastly, to summarize this study, our objective is to conduct empirical analysis on the
performance of our proposed Bayesian model-based sampling method against two baseline
methods in NFI data context. Our study data from Aland region consist of a population
of NFI sample plots containing the response variables (volume of growing stock) and the
auxiliary explanatory data consisting from airborne imagery and ALS data. We evaluate
the performance of the sampling methods by measuring how accurate estimates they
produce of the ground truth mean and variance population parameters of the volume
response variables.

2. Materials
2.1. Study Area and Field Data

The real-world research data were collected from the archipelago province of Aland
(lat. 60◦11′ N, long. 20◦22′ E) in Finland. The data set consisted from a set of airborne laser
scanning (ALS), aerial imagery and reference data measured in the field. The ALS and
aerial imagery data were used as predictor/input data to generalize the field reference data,
i.e., response data, over a larger area. The total area covered by both ALS and aerial imagery
data were approximately 346,000 ha, but a large part of it was sea area. The field data were
mainly composed of 11th Finnish national forest inventory (NFI11) sample plots allocated
on the basis of systematic cluster sampling. In the study area sample plot clusters were
established in a grid of 3× 3 km, and each cluster consisted of 9 sample plots in L-shaped
form, having 200 m distance between plots (see Figure 1). In addition to these sample
plot clusters, permanent clusters established in 9th NFI [35] were remeasured. A total of
349 NFI plots were measured in forestry land based on systematic sampling. Forestry land
consists of forest land, other wooded land and unproductive land (see Figure 1 for map of
land classes). In this study, we refer to a subset of the population that accurately reflects
the characteristics of the larger group as a representative sample.

For RS-based forest inventory it is necessary to have field observations of all types of
forest, otherwise the forest strata that are missing from field observations will be missing
also from inventory results. In order to check the representativeness of the systematic
sample, the inventory area was stratified into 196 strata based on ALS and aerial image
features, and additional field observations were allocated to those strata that were un-
derrepresented or missing in the systematic sample. The basis of the stratification was
to check the representativeness of the systematic sample in relation to following features
characterizing the forest types: species dominance (coniferous vs. broadleaved), average
stand density, dominant height (Lorey’s height) of trees and the spatial order of the trees.
For the selection of the additional sample, an initial grid of plots was generated to inventory
area with a spacing of 100 × 100 m between the initial plots (these points included the center
point locations of the systematic sample plots). The plots of the initial grid were stratified
into 196 strata based on ALS and aerial image features. The following features were used in
the stratification: height where 85% of LiDAR returns have accumulated (4 strata), ratio of
canopy returns to all returns (3 strata), inverse distance moment of rasterized canopy height
model (4 strata) and spectral average of aerial image near-infrared (NIR) band (4 strata).
These features correlate, respectively, with stand dominant height, stand density, size and
spatial organization of tree crowns, and the proportion of broadleaved trees of the total
canopy coverage (a more detailed description of ALS and aerial image features is presented
in the following section). The strata, whose area was less than 100 ha in the entire inventory
area, were excluded from additional sample, since their area was not significant. Thus,
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although the theoretical number of strata was 192, some feature combinations are unlikely
to occur, and the number of those strata representing an area more than 100 ha was 101 in
the entire inventory area. The representativeness of the systematic sample was examined
in relation to these strata, and altogether 126 additional plots were allocated to the strata
underrepresented or missing among the systematic sample, bringing the total number of
field plots to 475. The additional sample plots were selected as a random sample from each
underrepresented or missing stratum, and they were not clustered. Otherwise, they were
measured in the same way as systematic sample plots.

Figure 1. Map of the sampling layout in Aland. Background land cover map is based on NFI and
topographic data provided by LUKE. The ALS coverage area is marked with white borderline.

The sample plots were measured as restricted relascope plots with a basal area (m2/ha)
factor 1 and maximum radius 9 m. For each sample plot, tree and stand level variables were
recorded in accordance with NFI field guide and nomenclature [36]. The field variables
that were applied for testing different sampling strategies in this study were volume of
total growing stock and volumes per following tree species groups: pine, spruce and
broadleaf trees. In practical forest inventories the amount of growing stock and propor-
tions of tree species are typically the most important stand variables, especially for forest
management [37].
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2.2. Remote Sensing Data

The ALS and aerial imagery data contained a total of 154 variables covering point
cloud features from ALS data as well as spectral and textural features from aerial imagery.
The following features were extracted from ALS point cloud data from an area representing
each 9 m radius sample plot [38–40]:

1. Average, standard deviation and coefficient of variation of height above ground (H)
for canopy returns, separately from first (f) and last (l) returns (havg[f/l], hstd[f/l],
hcv[f/l]).

2. H at which p% of cumulative sum of H of canopy returns is achieved (Hp) (hp[f/l], p
is one of 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95 and 100).

3. Percentage of canopy returns having H ≥ than corresponding Hp (p[f/l], p is one of
20, 40, 60, 80, 95).

4. Canopy densities corresponding to the proportions of points above fraction no. 0, 1,
. . . , 9 to a total number of points (d0, d1, . . . , d9).

5. (a) Ratio of first canopy returns to all first returns (vegf), and (b) Ratio of last canopy
returns to all last returns (vegl).

6. Ratio of intensity percentile p to the median of intensity for canopy returns (ip[f/l], p
is one of 20, 40, 60 and 80).

The following features were extracted from the aerial image bands from an area
representing the size of sample plots:

1. Average, standard deviation (std) and coefficient of variation (cv) from each of the
four image bands: near-infrared (nir), red (r), green (g), blue (b).

2. The following multiband transformations Normalized difference vegetation index,
NDVI. See, e.g., [41]: NDVI as (nir− r)/(nir + r), modified NDVI as (nir− g)/(nir + g),
nir/r, nir/g.

3. Haralick textural features [42] based on co-occurrence matrices of image band values:
angular second moment (ASM), contrast (Contr), correlation (Corr), variance (Var),
inverse difference moment (IDM), sum average (SA), sum variance (SV), sum entropy
(SE), entropy (Entr), difference variance (DV), difference entropy (DE).

Additionally, height and intensity values of LiDAR points were interpolated into
raster format data with similar resolution as aerial imagery for extracting the same textural
features as from aerial imagery. A detailed description of the acquisition of RS data is
presented in [43,44].

The use of RS data in forest inventory estimation and survey sampling is widely
studied, and related works can be found, e.g., in [44–48].

2.3. Target Population

In this research, we use the ten best features discovered from the ALS and aerial
imagery data in the study [44] as the auxiliary data for the target response variables:
volume of growing stock (all trees, pine, spruce and broadleaf) in the field reference data.
In the referenced study, approximately ten predictor features were found to be sufficient to
achieve optimal prediction performance for the corresponding response variables. We have
listed the target response variables and their corresponding top ten used predictor features
in Table 1. Histograms describing the value distributions of the target response variables is
presented in Figure 2. The total number of available data points (i.e., our empirical study
population) used in this study was 475. The goal is to estimate the mean and variance
population parameters of the four target volume variables.
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Figure 2. Histograms describing tree volume distributions in the Aland research area. Volumes of
0–10 m3/ha of spruce and broadleaf trees are of high frequency in sample sites, whereas the most
frequent volume of all trees in sample sites is 20–30 m3/ha. The average volumes for all, pine, spruce
and broadleaf trees are 67.4, 61.5, 30.5 and 26.7 m3/ha respectively.

Table 1. List of the top ten predictor features found for the target variables: growing stock tree
volume (all, pine, spruce, broadleaf trees) in the work by [44]. In the table H stands for height above
ground. The optimal features were selected via greedy forward selection method see, e.g., [49].

Volume All Trees
texture feature, sum average, ALS based canopy height

percentage of last canopy returns above 20% height limit

percentage of first canopy returns above 90% height limit

texture feature, entropy, ALS based canopy height

texture feature, angular second moment, ALS based canopy height

texture feature, inverse difference moment, ALS based canopy height

H at which 100% of cumulative sum of last canopy returns is achieved (Hp, p%)

gndvi, transformation from band averages within the pixel windows: nir − g/nir + g

percentage of last canopy returns having H ≥ than corresponding H20

coefficient of determination of first returned canopy returns
Volume Pine Trees

percentage of last canopy returns above 70% height limit

texture feature, angular second moment, ALS based intensity

texture feature, contrast, near-infrared band of CIR imagery

transformation from band averages within the pixel windows: nir/r

texture feature, sum average, ALS based canopy height

texture feature, sum average, ALS based intensity

texture feature, difference variance, blue band of RGB imagery
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Table 1. Cont.

texture feature, difference entropy, near-infrared band of CIR imagery

ratio of last canopy returns to all last returns

ratio of first canopy returns to all first returns
Volume Spruce Trees

ratio of intensity percentile 20 to the median of intensity for last canopy returns

percentage of last canopy returns above 30% height limit

ratio of intensity percentile 60 to the median of intensity for last canopy returns

ratio of intensity percentile 80 to the median of intensity for first canopy returns

texture feature, difference variance, blue band of RGB imagery

texture feature, coefficient of determination, near-infrared band of CIR imagery

percentage of first canopy returns above 30% height limit

coefficient of determination of last returned canopy returns

texture feature, coefficient of determination, red band of CIR imagery

texture feature, contrast, blue band of RGB imagery
Volume Broadleaf Trees

texture feature, sum average, ALS based intensity

ratio of intensity percentile 40 to the median of intensity for first canopy returns

ratio of intensity percentile 20 to the median of intensity for first canopy returns

ratio of intensity percentile 40 to the median of intensity for last canopy returns

texture feature, entropy, ALS based intensity

texture feature, variance, ALS based intensity

texture feature, inverse difference moment, ALS based intensity

percentage of first canopy returns having H ≥ than corresponding H95

percentage of first canopy returns above 20% height limit

H at which 5% of cumulative sum of last canopy returns is achieved (Hp, p%)

3. Methods

The following notation will be used throughout this and the following sections. A
single observation of input or auxiliary predictor variables is denoted as a vector x ∈ Rm

with m distinct features. A corresponding response variable is denoted as y ∈ R. The pair
d = (x, y) is treated as a single data point. For example, x might contain RS data (e.g., raster
pixel information or derived features) on some geographic location and y could contain the
average volume of trees in that corresponding location. In this study, x and y refer to the
auxiliary and response data (forest inventory) as presented in earlier sections. An observed
data set is denoted as D = (X ,Y), where X = {x1, x2, . . . , xn} is the set of n input vectors
and Y = {y1, y2, . . . , yn} is the set of n realizations of the response variable. A prediction
model is denoted as f (x; θ) ( f in short), where θ ∈ Rq is a vector of model parameters. We
use the symbol U to denote the population of all possible data points (i.e., all the data that
can be sampled) and πi (0 ≤ πi ≤ 1) to denote the inclusion probability of data point di.
That is, πi is the probability that the ith data point of population U will be included into the
observed (sampled) data set D ⊂ U . In other words, it is its probability of becoming part of
the sample during the drawing of a single sample.
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3.1. Population Parameter Estimators

In this study, we use the following simple sample mean and variance (µ̂, σ̂2) for
estimating the ground-truth mean and variance (µ, σ2) study population parameters of the
four volume response variables:

µ̂ = |U |−1

 ∑
d∈D

y + ∑
d∈U\D

f (x; θ)

 (1)

σ̂2 = (|U | − 1)−1

 ∑
d∈D

(y− µ̂)2 + ∑
d∈U\D

( f (x; θ)− µ̂)2

, (2)

where the unsampled response data (d ∈ U \ D) are estimated by the model f (x; θ). We
compare the quality of sampling methods via these estimators empirically using mean
squared errors (MSE) E

[
(µ̂− µ)2] and E

[
(σ̂2 − σ2)2

]
where we take the averages with

respect to the number of empirical experiments we conduct. We go into more details on
this in Section 3.5.

The motivation of the proposed sampling method is that it attempts to include into
the sample D such observations of the response variable y for which the prediction model
f (x; θ) has very high estimation uncertainty, given the auxiliary data x. In other words,
the proposed method aims to select such a sample D from the population U , so that the
estimation of the unsampled response data (the rightmost sum terms inside the parentheses
in Equations (1) and (2)) would be as accurate as possible. That is, we do not want
to include data into the sample D which yields no or small further gain (small model
prediction uncertainty) for estimating the unsampled data (d ∈ U \D) using model f (x; θ),
but instead, data which yields most further gain (high model prediction uncertainty) in the
estimation of the unsampled data using model f (x; θ).

3.2. Simple Random and Local Pivotal Method Sampling

We will compare our proposed sampling algorithm with two baseline sampling meth-
ods: simple random sampling (SRS) [2] and local pivotal method sampling (LPM) [19,20,50].
In the SRS method, the inclusion probabilities for all data points are equal, i.e., πi = πj ∀ i, j.
In other words, the SRS samples data randomly with all the data points having equal
probability of being included into the sample. In addition, the data points are sampled
independently from one another.

The LPM is a sampling method based on the idea of avoiding the selection of data
points that are similar in the feature space X . The point is to select a spatially balanced
data D from the population U . LPM attempts to select the spatially balanced samples by
locally aggregating the inclusion probabilities of neighboring data points, decreasing the
likelihood that similar data samples are selected. This for example, is especially useful
when we want to acquire a representative sample of geographical data. The LPM starts
with an initial inclusion probability set Π = {π1, π2, . . . , π|U |} and proceeds by iteratively
updating pairs of inclusion probabilities (πi, πj), so that the sampling outcome is decided
for at least one of the two corresponding data points in each iteration.

This means that all the sampling decisions will be completed in at most |U | iterations
of the algorithm. Note that in LPM, it is not required that πi = πj ∀ i, j but it is required
that ∑di∈U πi = n, where n is the size of sampled data set D [20]. The main steps of the
LPM sampling are the following:

1. Randomly choose a data point di ∈ U with uniform probability.
2. Find the nearest neighbor (i.e., nearest in, e.g., Euclidean distance e sense) di of dj in

the feature space X .
3. If data point di has two neighbors equally close in the feature space, then randomly

with equal probability select either of the two neighbors.
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4. Update the inclusion probability pair (πi, πj) using the rules found in Algorithm 1.
5. Remove the data point in the pair (di, dj) for which the inclusion probability is either

0 or 1 from further consideration.
6. If all the inclusion probabilities in set Π have πk = 1 or πk = 0, then stop the algorithm

and include data points with πk = 1 into D. Otherwise, repeat from step 1.

The corresponding pseudocode for LPM is shown in Algorithm 1.

Algorithm 1 Pseudocode for LPM

Require: U , Π . The population data and set of initial inclusion probabilities
Ensure: D . The returned sample data

1: set D = ∅ and U ∗ = U
2: while |U | > 0 do . Repeat until sampling decision is made for all the data
3: Randomly select a data point di from set U with uniform probability
4: Set dj = argmind∈U\di

e(x, xi) . find the nearest neighbor
5: Update the inclusion probabilities πi, πj ∈ Π using the rules:
6:

If πi + πj < 1, then (πi, πj) =

(0, πi + πj) with probability
πj

πi+πj

(πi + πj, 0) with probability πi
πi+πj

,

else if πi + πj ≥ 1, then (πi, πj) =

(1, πi + πj − 1) with probability
1−πj

2−πi−πj

(πi + πj − 1, 1) with probability 1−πi
2−πi−πj

.

7: Set U = U \ {dk ∈ U : πk ∈ {0, 1}} . Remove samples with decision
8: end while
9: Set D = {dk ∈ U ∗ : πk = 1} . Data points with positive sampling decision

10: return D

3.3. Data Sampling Via Bayesian Optimization

The sampling method we propose is based on utilizing a prediction model’s uncer-
tainty on the value of response variable y under a given input datum x. To give motivation
for the proposed method, we note that typically we have observations of the response
variable y (such as forest growing stock) only in sampled points, whereas auxiliary data
variables x (e.g., satellite/airborne data) are often available throughout the entire inventory
area. This may often be the case in inventories that use RS-based auxiliaries such as the
Finnish multi-source NFI [11]. We aim to utilize the link between the response variable and
auxiliary information by firstly building a probabilistic model using the observed data set
D, and then basing the sampling decision on the model’s conditional uncertainty on the
value of y (quantified by its variance) given input feature datum x. A new sample point
is to be chosen based on where the prediction model has the highest uncertainty on the
value of y. Whereas the sampling decisions with methods such as SRS or LPM focus mainly
to variables y and x in itself, the sampling decisions in the proposed method are based
on the functional link y = f (x; θ) + ε, where ε is Gaussian noise. The proposed method
thus assumes that there exists strong enough correlation between the predictor variables
x and the response variable y in order to utilize this link in data sampling. We will next
go through the proposed method in a more detailed manner. Most of the following is
based on literature by, e.g., [51–55]. Furthermore, more related literature based on Bayesian
optimization can be found, e.g., in the works of [31,56–63].

Having observed a data set D = {(x1, y1), (x2, y2), . . . , (xn, yn)} of identically and in-
dependently distributed samples, we are interested in knowing the conditional distribution
of y given a new input vector xnew and the data set D. Explicitly put, we want to find out
p(y|xnew,D), which can be written as:

p(y|xnew,D) =
∫
Rq

p(y, θ|xnew,D) dθ =
∫
Rq

p(y|xnew, θ)p(θ|D) dθ, (3)
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where p(θ|D) is the posterior distribution of model parameters. Note also that p(y|xnew, θ) =
p(y|xnew, θ,D). This follows from the fact that the model parameters θ and xnew completely
determine the distribution of y once the data D has been observed. Using Equation (3), we
can now state the main statistic of interest in the proposed sampling method, which is the
variance of the distribution p(y|x,D), i.e.,:

σ2
D(x) = Ey

[
(y− µ)2|x,D

]
, (4)

where µ is the mean value of y w.r.t. distribution p(y|x,D) and Ey stands for expectation
w.r.t. same distribution. We see from Equation (4) that the variance is a function of x, but
notD since we assume this to be fixed. In this study, we call the proposed sampling method
(based on the statistic in Equation (4)) Bayesian maximum variance inclusion (BMVI). The
BMVI always chooses sample data points d = (x, y) where σ2

D(x) attains highest values (i.e.,
maximum uncertainty). The pseudocode for the BMVI is illustrated in Algorithm 2 and
corresponding process flow chart is presented in Figure 3. The symbols k,Dp,Ds denote the
number of data points to be sampled, a prior data set available for calculating the posterior
predictive distribution p(y|x,Dp), and the new sampled data set (i.e., k = |Ds|). The
algorithm shows that the inclusion probabilities are πi = 1 for the k single data samples
with the highest posterior predictive variances. For all the remaining data points the
inclusion probabilities are πi = 0.

Algorithm 2 Pseudocode for BMVI

Require: Dp,U , k . Prior data set, population and sample size
Ensure: Ds . Sample data set

1: Set Ds = ∅
2: Calculate p(y|x,Dp) using prior data set Dp . Note Dp ⊂ U
3: for i← 1 to k do . Select k data points
4: Set (xi, yi) = argmax(x,y)∈U\Dp

σ2
D(x) . Data point with max. uncertainty

5: Set Ds = Ds ∪ {(xi, yi)} . Include data point into sample
6: Set U = U \ {(xi, yi)} . Remove sampled point from population
7: end for
8: return Ds . Return sample of size k

After making Gaussian assumptions on the distributions in Equation (3), it follows
that the variance statistic of Equation (4) can be written as:

σ2
D(x) =

1
β
+ g(x)TA−1g(x), (5)

where β > 0 is a parameter controlling the prior variance of the response variable y, g is a
gradient vector of the prediction model f (x; θ) evaluated at a maximum posterior point,
and A is the Hessian matrix of the exponent of the posterior distribution of model weights
θ. Detailed definitions and derivations of this result can be found from the Appendix A
part of this study. A Python implementation of the proposed BMVI method and example
demonstration made by the authors of this study can be found from [64].
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Figure 3. Process flow chart of the proposed BMVI sampling method.

3.4. Prediction Models

Next, we will give a short introduction to the prediction models f (x; θ) we apply in
the empirical analyses of the following sections.

3.4.1. Ridge Regression

The first prediction method used in our analyses is ridge regression known also as
regularized least squares (RLS) [65]. RLS is almost identical to basic linear regression
method, with the exception that instead of minimizing simply the squared error between
observed data and predictions, the RLS adds a regularizing term into the squared error
minimization. This addition makes the model selection process to favor more well-behaving
models, which are more likely to achieve successful generalization to new unseen data,
e.g., [66]. Explicitly, in RLS the prediction model is simply a linear function of the input
data, i.e., f (x; θ) = θTx + θ0 where θ0 denotes the constant bias term of the model. In RLS,
the model parameters are selected so as to minimize the (error) function:

S(θ) =
β

2

n

∑
i=1
{yi − θTxi − θ0}2 +

α

2

m

∑
j=1

θ2
j , (6)

where α, β > 0 and α controls the degree of regularization. The constants α, β correspond
directly to those in Equations (A1), (A2) and (A4) (see Appendix A), showing the connec-
tion between Tikhonov regularization and Bayesian modelling [67]. Note that it is not
necessary to include the constant term θ0 into the second term in Equation (6) since it simply
controls the offset of the hyperplane f (x; θ) but not its slopes. In our analyses, the RLS
hyperparameter selection (i.e., α, β) was conducted using leave-one-out cross-validation
(LOOCV) [68].

3.4.2. Multilayer Perceptron

In addition to the RLS, a multilayer perceptron (MLP) [51] was tested as a prediction
model. A MLP is a feedforward neural network defined by the number of hidden layers L,
inputs and outputs, hidden nodes and types of activation functions, and it has shown great
performance in a number of applications. The MLP network is trained by minimizing a
suitable error function, such as S(θ) in the Equation (6). The parameters of a MLP can be
defined as the set:

θ ≡
{

θ
(l)
ij | 1 ≤ l ≤ L + 1, 0 ≤ i ≤ d(l−1), 1 ≤ j ≤ d(l)

}
, (7)

where d(l) is the number of nodes on layer l. In other words, θ
(l)
ij means a network weight

connecting node i at layer l − 1 to node j at layer l. The weights θ
(1)
ij and θ

(L+1)
ij correspond

to weights connected to the input and output nodes respectively. As an example, a MLP
with one hidden layer (L = 1) can be explicitly expressed as a function:

f (x; θ) = f2

d(1)

∑
j=1

θ
(2)
j1 f1

(
m

∑
i=1

θ
(1)
ij xi

), (8)
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where now weights θ
(1)
ij and θ

(2)
j1 correspond to connections of the hidden layer to input and

output layers correspondingly. The functions f1(·) and f2(·) correspond to the activation
functions, which need not be the same at all layers. Common choices for the activation
functions are, e.g., linear or sigmoid functions. In our experiments, we used a MLP model
provided by the NETLAB-library [69]. The MLP network was trained using the scaled
conjugate gradient algorithm [70].

3.5. Implementation Details of the Empirical Analysis

Lastly, in this section we will describe the technical details of the empirical analyses
in order to make it more clear on how to interpret the results of the next section. The
corresponding results in Tables 2 and 3 were produced using the Algorithm 3 presented
in this section. Note that the emphasis of this study was not to find an optimal prediction
model (e.g., the RLS or MLP) for the data sets, but the comparison of the sampling methods
by their performance in the estimation of response variable population parameters. Thus
due to their irrelevance, no optimal prediction model parameters are listed in this study.
Recall, that we denoted the data population as U and the prediction model as f . In addition,
we will denote a sampling method as SM, i.e., SM ∈ {SRS, LPM, BMVI}, and sample data
sets as Dp,Ds ⊂ U where we have Dp ∩Ds = ∅.

Table 2. Results of population mean µ estimations in terms of MSE. The results are illustrated for
all response variables, sampling methods and prediction models. The leftmost column of the table
represents different valued sampling fraction vector f introduced in the methods Section 3.5. In each
group of three (SRS, LPM, BMVI) the best sampling method is emphasized with a bolded MSE value.
The response variables for volume of growing stock (all trees, pine trees, spruce trees, broadleaf trees)
are denoted as va, vp, vs and vb respectively.

Regularized Least Squares Multilayer Perceptron
va vp vs vb va vp vs vb

SRS 1.510 2.829 1.794 1.399 1.778 3.176 2.732 1.911
0.1/0.6/0.3 LPM 1.198 2.595 1.382 1.639 1.973 2.361 2.735 3.757

BMVI 0.832 2.036 20.065 6.502 11.086 16.368 6.977 2.036
SRS 1.353 3.072 1.642 1.583 1.913 2.349 2.180 2.333

0.2/0.5/0.3 LPM 1.229 2.044 1.307 1.384 1.585 2.181 2.276 2.202
BMVI 0.796 1.430 19.881 6.796 7.030 16.576 2.054 1.561
SRS 1.536 2.502 2.111 1.731 2.323 2.416 2.047 2.226

0.3/0.4/0.3 LPM 1.733 2.589 1.851 1.747 2.610 2.439 2.303 2.774
BMVI 1.046 2.158 17.148 5.848 11.222 9.252 1.800 1.659
SRS 1.381 2.083 2.085 1.579 1.935 2.077 2.612 2.378

0.4/0.3/0.3 LPM 1.241 2.416 1.648 1.414 2.006 1.852 2.472 2.248
BMVI 0.945 2.037 12.111 6.148 3.024 5.594 2.332 1.853
SRS 1.588 2.434 1.812 1.623 1.851 2.638 2.176 2.804

0.5/0.2/0.3 LPM 1.184 2.195 1.569 1.853 1.472 1.955 2.638 2.104
BMVI 0.871 2.321 6.851 3.495 2.621 3.756 1.443 1.015
SRS 1.211 3.615 1.613 1.861 1.824 2.811 1.795 2.491

0.6/0.1/0.3 LPM 1.184 2.996 1.830 1.353 2.494 2.341 2.186 2.059
BMVI 1.094 1.641 2.761 1.855 2.782 4.221 0.844 0.861
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Table 3. Analogous results as in Table 2 but for population variance σ2 estimations. All the values
in table below have a common factor of 105 which has been omitted from the values for clearer
presentation. The response variables for volume of growing stock (all trees, pine trees, spruce trees,
broadleaf trees) are denoted as va, vp, vs and vb respectively.

Regularized Least Squares Multilayer Perceptron
va vp vs vb va vp vs vb

SRS 6.255 8.666 8.204 6.632 7.555 4.972 3.799 3.726
0.1/0.6/0.3 LPM 7.829 9.072 8.395 5.202 9.882 6.821 3.323 4.655

BMVI 0.243 5.499 1.244 0.699 12.202 9.341 2.962 1.954
SRS 7.293 8.661 9.115 6.638 9.562 5.906 3.606 4.271

0.2/0.5/0.3 LPM 6.981 9.381 8.197 5.818 9.950 5.438 3.460 3.082
BMVI 0.184 5.184 0.892 0.710 6.899 7.962 0.379 0.997
SRS 5.697 8.377 9.399 5.952 8.268 5.231 3.753 3.758

0.3/0.4/0.3 LPM 8.497 8.346 9.627 5.682 9.737 5.789 4.097 4.362
BMVI 0.258 5.513 0.935 0.704 4.242 3.499 0.180 0.168
SRS 4.365 9.241 9.490 5.282 7.489 5.902 4.165 2.660

0.4/0.3/0.3 LPM 5.726 7.925 8.725 5.088 6.747 5.516 3.147 2.730
BMVI 0.436 5.255 2.078 0.683 3.936 3.598 0.388 0.247
SRS 5.527 9.382 7.713 5.088 7.093 5.786 2.846 3.394

0.5/0.2/0.3 LPM 5.282 8.416 8.212 6.579 8.525 5.609 3.486 3.807
BMVI 0.336 5.418 4.095 1.288 2.364 2.495 0.246 0.163
SRS 5.263 8.452 7.706 5.826 10.022 5.101 3.254 3.384

0.6/0.1/0.3 LPM 4.405 9.165 8.143 5.556 11.979 6.345 3.713 2.682
BMVI 0.469 6.016 5.155 1.743 1.698 2.948 0.223 0.553

Algorithm 3 Procedure used for obtaining the empirical results

Require: U , f, f . Population data, sample fraction vector and prediction model
Ensure: MSESRS

µ , MSESRS
σ2 , MSELPM

µ , MSELPM
σ2 , MSEBMVI

µ , MSEBMVI
σ2

1: Set SESRS
µ = ∅, SELPM

µ = ∅, SEBMVI
µ = ∅ . Sets of squared error values

2: Set SESRS
σ2 = ∅, SELPM

σ2 = ∅, SEBMVI
σ2 = ∅

3: for i← 1 to 100 do . Repeat 100 times to produce averaged results
4: Select a random prior sample set Dp from U according to f
5: for SM ∈ {SRS, LPM, BMVI} do . Do sampling with all methods
6: Select a sample Ds from U \ Dp using SM, f, f and Dp
7: Set D = Dp ∪Ds . Combine prior and sampled data
8: Set V = U \ D . Use the remaining unsampled data for testing
9: Train a prediction model f using data set D

10: Set estimator µ̂ = |U |−1[∑d∈D y + ∑d∈V f (x; θ)]

11: Set estimator σ̂2 = (|U | − 1)−1[∑d∈D(y− µ̂)2 + ∑d∈V( f (x; θ)− µ̂)2]
12: Set SESM

µ [i] = (µ̂− µ)2 . Error between estimate and true value

13: Set SESM
σ2 [i] = (σ̂2 − σ2)2

14: end for
15: end for
16: for SM ∈ {SRS, LPM, BMVI} do . Calculate MSEs for all methods
17: Set MSESM

µ = mean
(

SESM
µ

)
18: Set MSESM

σ2 = mean
(

SESM
σ2

)
19: end for . Lastly return all MSE values for all methods
20: return MSESRS

µ , MSESRS
σ2 , MSELPM

µ , MSELPM
σ2 , MSEBMVI

µ , MSEBMVI
σ2

Since the core principle behind the BMVI sampling method is in utilizing the learned
functional link between x and y, the method assumes that we have some prior data set
Dp available for training the model f before we conduct the sampling of new data, i.e.,
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Ds via BMVI. In clearer terms, the BMVI uses previously sampled data to optimize future
sampling decisions. Thus in the empirical experiments, it is always assumed that we have
some prior data set Dp available before the actual sampling of Ds is conducted with given
SM. Furthermore, since the sampling decisions of the BMVI method are obviously affected
by the data used for training the prediction model f , it is of interest to study how the size of
the prior training data Dp with respect to the whole data population U affects the sampling
performance of the BMVI. For this reason, we parameterize our experiments with a vector:

f =

(∣∣Dp
∣∣

|U | ,
|Ds|
|U | ,

∣∣U \ (Dp ∪Ds)
∣∣

|U |

)
∈ (0, 1)3. (9)

In other words, the elements of the vector f are interpreted as: (1) the fraction of data
points of the population U available in the prior set Dp, (2) the fraction of new data to be
sampled into set Ds with a given sampling method SM, and (3) the remaining fraction of
the population data (i.e., out-of-sample data) used for testing the estimation performance of
population parameters. In our experiments we used a reasonable constant fraction of 30%
of the data for testing the estimation performance. Thus we always had in the experiments

that |Dp|
|U | + |Ds |

|U | = 0.7, with |Dp|
|U | , |Ds |

|U | ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. For readers concerned
with the high fraction of prior data (e.g., 0.6), we by no means imply that one should obtain
60% of data population prior to implementing the sampling. The high prior data fraction
is simply added into the study to illustrate how the performance of the BMVI changes as
more data are available for model training. This allows the BMVI method to, e.g., utilize
sampled data from previous years in future sampling in the Bayesian paradigm manner.

The complete procedure used for obtaining the results of the next section is described
in Algorithm 3. The algorithm is parametrized by the used data set U , a fraction vector f
and a prediction model f . The algorithm returns for all three sampling methods SM the
MSE values of the population mean µ and variance σ2 parameter estimations. Note on
line 3 of the algorithm that we repeat the experiments 100 times. This is due to decrease
the effect of randomness in the estimation statistics by providing averaged results. For
guaranteeing a valid comparison in the analysis results, all the sampling methods (i.e., SRS,
LPM, BMVI) shared the same prior data set Dp when implementing a single comparative
calculation run (line 4 in the algorithm). In addition, note in line 6 that only the BMVI
method is dependent on f and Dp. Rest of the algorithm is straightforward and on lines
10–11 the population parameters are estimated using the data set D = Dp ∪ Ds and the
auxiliary x data available in the set V. Recall that all the auxiliary data x (i.e., RS data) is
assumed to be fully known throughout the research area and the response variable data y
(NFI volume of growing stock) is only partly known and requires further sampling.

The auxiliary predictor features used in the real-world data case are listed in Table 1.
The response variables for volume of growing stock (all trees, pine trees, spruce trees,
broadleaf trees) are denoted in the results in Tables 2 and 3 as va, vp, vs and vb respectively.

4. Results

In this section, we will go through the empirical results of comparing the BMVI method
with SRS and LPM sampling using the previously described data sets and prediction models.
Refer to Algorithm 3 for technical details on the results.

Volume of Growing Stock Data

The empirical results of this study are illustrated in Tables 2 and 3. The leftmost
column in the tables represent different valued vectors f (i.e., fraction of data in Dp,Ds and
in the unsampled data set V). For example the values 0.1/0.6/0.3 in the first row means
that 10% of the data in population U is assumed to be known beforehand (as we must
have some prior data for the BMVI), 60% of the data will be sampled from the population,
and the remaining 30% is estimated using the observed data D = Dp ∪Ds and prediction
model f .
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In population mean µ estimation, we can see the BMVI performing best for response
variables va (volume of all trees) and vp (volume of pine trees) with a linear prediction
model RLS. For response variables vs (volume of spruce trees) and vb (volume of broadleaf
trees), best results are achieved by the BMVI with MLP prediction model. In the case of
population variance σ2 estimation, we see the BMVI performing best of the three sampling
methods in almost all cases. According to the results, the BMVI method outperforms SRS
and LPM by a significant amount in population variance estimation, which makes intuitive
sense based on the design of the method: sample from locations with large prediction
uncertainty (i.e., prediction variance). In the case of population mean estimation for vs and
vb we can notice the effect of the used prediction model.

To summarize the results, we firstly notice that the performance of the proposed
method seems to increase as the amount of prior training data available for the prediction
model increases. This makes sense because the BMVI method relies on the model. Secondly,
the used model has a clear effect on the performance of the proposed method. If the model
is suitable, the BMVI method outperforms the baselines and vice versa. The performance
of the baselines is more stable in this sense. Lastly, the population variance estimation is
more effective than population mean estimation with the BMVI, understandably so, due to
the design of the BMVI method.

5. Discussion

The benefits of using auxiliary data in forest inventory sampling has been noted in the
corresponding literature, e.g., [21,24]. In the work of [24] the authors showed significant
improvements in sampling efficiency for forest inventories with the usage of auxiliary
remote sensing data. In addition, in [21] experiments made with both synthetic and real
data showed great utility of using airborne laser scanning data in forest inventory sampling
design. Furthermore, the application of Bayesian approaches in optimizing geostatistical
sampling designs can be found from a variety of literature, e.g., in the works by [58–60,63].

Although forest inventories such as NFIs usually collect information of hundreds of
variables, the sampling design is typically optimized for variables of primary importance,
such as volumes per tree species (assuming that the sampling design is suitable also for
other variables), which has been noted, e.g., in studies by [21,24] where tree volume has
been the main variable of interest. The corresponding sampling design optimized for
tree volume will also be used also for all other variables recorded in the NFI, since it is
theoretically and practically impossible to optimize the sampling design for all variables of
interest simultaneously.

In this work, the real-world NFI data were available at the time as a systematic
cluster sample from the research area. The promising empirical results encourage the
continued research of applying Bayesian optimization methods in the context of RS-based
forest inventory sampling. The current version of the BMVI method offers deterministic
sampling, since the field samples with maximum prediction variance are always selected
and thus the method does not produce a probability sample [1]. However, the method
can be easily altered into producing a probability sample by having the sample inclusion
probabilities being proportional to prediction uncertainties. That is, field samples with
highest prediction uncertainties have the highest inclusion probabilities.

Considering the practical work-flow of the proposed method in operational inventory
procedures, the method requires that we have some field samples already available since
the prediction model needs to be trained before the BMVI sampling can be applied. This
requirement is in the core of the method, since it uses previous data to decide where to
place new field samples. Other practical challenges might occur if the method suggests field
samples in geographical areas which are difficult to access, though all sampling methods
are limited by these areas.

The advantages of the proposed method is that it allows the updating of the cor-
responding prediction model using new data with the expectation that the method’s
performance increases as new data are received, which the empirical results of this study
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support. Other advantage of the method is that it allows, via the prediction model, to
decrease redundant information being included (in the sense of similar sample points) into
the sample data, which would yield of no or small further gain in the BMVI method’s
performance improvement. Disadvantages of the method include the susceptibility of
the BMVI to model selection, which we have seen to have a clear effect on the method’s
performance. Furthermore, since the performance of the BMVI method also partly relies
on utilizing new data for the model, it might be difficult to obtain useful new data for the
BMVI due to the fact that the NFI often can use permanent sample plots for other reasons
(e.g., tree growth measurements over time).

Regarding the results of this study, it is good to also note the volume distribution his-
tograms described in Figure 2 and their effect. These histograms represent the distribution
of the sample in the Aland region and thus the results do not automatically extrapolate into
the whole of Finland where the corresponding tree distributions can be different.

6. Conclusions

In this study, we proposed a data sampling method based on Bayesian optimization,
the BMVI, which utilizes the model link between the auxiliary RS and the NFI variables
in new NFI field sample decision-making. We compared the BMVI against SRS and LPM
sampling methods by measuring their performance in terms of MSE in producing estimates
for NFI volume of growing stock population parameters, namely the mean and variance.
The empirical results showed overall best performance for the proposed method when
compared with the baselines, especially when enough training data (which we also called
prior data earlier) was available to learn the model link between RS and forest inventory
variables. The results also revealed the relevance of the underlying prediction model, which
should be optimized based on the response variable of interest.
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Appendix A. Derivations and Proofs

In this appendix, we will derive the result in Equation (5) of the methods section.
We will next proceed with formulating a closed-form expression for σ2

D(x). To begin, we
assume a Gaussian prior distribution for the prediction model parameters:

p(θ) ∝ exp
(
−α

2
||θ||2

)
= exp

(
−α

2

q

∑
j=1

θ2
j

)
=

q

∏
j=1

exp
(
−α

2
θ2

j

)
. (A1)

That is, each model parameter θj is assumed to be distributed as θj ∼ N (0, α−1).
The response variable y is assumed to be generated by a function f (x; θ) with additive
zero-mean Gaussian noise ε ∼ N (0, β−1), i.e.,:

p(y|x, θ) ∝ exp
(
− β

2
ε2
)

, (A2)



Forests 2022, 13, 1692 17 of 22

where ε = y− f (x; θ). By also assuming that the data set D consists from n identically and
independently distributed samples, we get the data likelihood as:

p(D|θ) ∝
n

∏
i=1

p(y|xi, θ) = exp

(
− β

2

n

∑
i=1
{yi − f (xi; θ)}2

)
. (A3)

We can now use Equations (A1) and (A3) to express the posterior distribution for θ as:

p(θ|D) ∝ p(D|θ) p(θ) ∝ exp

(
− β

2

n

∑
i=1
{yi − f (xi; θ)}2 − α

2

q

∑
j=1

θ2
j

)
. (A4)

Next, we will denote the negative of the exponent in Equation (A4) as

S(θ) =
β

2

n

∑
i=1
{yi − f (xi; θ)}2 +

α

2

q

∑
j=1

θ2
j , (A5)

and make a second degree Taylor approximation for this function around the maximum
posterior point θMP = argmaxθ∈Rq p(θ|D):

S(θ) ≈ S(θMP) +
1
2
(θ− θMP)

TA(θ− θMP), (A6)

where A is the Hessian matrix of S(θ) evaluated at θMP, i.e., the (i, j)th element of A is

Ai,j =
∂2

∂θi∂θj
(S(θ))|θ=θMP .

The maximum posterior θMP corresponds also to the parameters, which minimize
S(θ), i.e., θMP = argminθ∈Rq S(θ). Furthermore, note that the prior distribution p(θ)
provides a regularizing function into S(θ) which results in favoring smaller values of θj,
thus encouraging the selection of smoother functions f (x; θ) in θMP solution. Assuming
in addition that the width of the posterior distribution of θ is sufficiently narrow (due
to the Hessian A), we can approximate f (x; θ) with a linear expansion around θMP as
f (x; θ) ≈ f (x; θMP) + gT(θ− θMP), where g is the gradient vector of f (x; θ) with respect to
θ evaluated at θMP. That is, the jth element of g is:

gj =
∂

∂θj
( f (x; θ))|θ=θMP .

The linear approximation of f (x; θ) is suitable here without significantly losing accu-
racy, since most of the probability mass is focused on θMP and the higher order terms
of the expansion are close to zero. By now plugging Equations (A2) and (A4) into
Equation (3), using the approximations of S(θ) and f (x; θ) and denoting ∆θ = θ− θMP
and ŷMP(x) = f (x; θMP), we get the expression for the posterior predictive distribution for
y in Equation (3) as:

p(y|x,D) ∝
∫
Rq

exp
(
− β

2
{y− ŷMP(x)− gT∆θ}2

)
× exp

(
−S(θMP)−

1
2

∆θTA∆θ

)
dθ

∝
∫
Rq

exp
(
− β

2
{y− ŷMP(x)− gT∆θ}2 − 1

2
∆θTA∆θ

)
dθ

= (2π)q/2|A + βggT |−1/2 exp

(
−{y− ŷMP(x)}2

2σ2
D(x)

)
,

(A7)
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where now the variance of posterior predictive distribution of y is:

σ2
D(x) =

1

β− β2gT(A + βggT)
−1g

=
1
β
+ g(x)TA−1g(x), (A8)

where we have now explicitly stated the dependency of σ2
D(x) on x. The right side of Equa-

tion (A7) follows straightforwardly using known results on multidimensional Gaussian
integrals. In addition, the right side of Equation (A8) results conveniently via algebraic
manipulation. Detailed results for Equations (A7) and (A8) can be found from the appendix
of this manuscript. By now simply discarding the factor (2π)q/2|A + βggT |−1/2 from the
right side of Equation (A7) and adding a multiplying factor {2πσ2

D(x)}−1/2, we can write
p(y|x,D) as:

p(y|x,D) = 1√
2πσ2

D(x)
exp

(
−{y− ŷMP(x)}2

2σ2
D(x)

)
. (A9)

One might have an issue with dropping out the non-constant factor t(x) ∆
= (2π)q/2|A+

βg(x)g(x)T |−1/2 in Equation (A7) but this is not a problem, since it simply scales the
distribution function of y|x,D and the variance σ2

D(x) is invariant to this effect. Regarding
the Algorithm 2, the factor t(x) is also irrelevant and does not affect the functionality of
BMVI sampling. Thus, we have now that the conditional posterior predictive distribution
of y, given an input datum x and data set D is y|x,D ∼ N (ŷMP(x), σ2

D(x)).
In a special case, if we use a linear function as the prediction model, i.e., f (x; θ) =

xTθ+ w0, then it is easy to show that the Hessian matrix A of S(θ) in Equation (A5) has
the form:

A = βXTX + α

[
0 01×m

0m×1 Im×m

]
, (A10)

where 0m×1 and 01×m are m-dimensional zero vectors and matrix X is defined as:

X =


1 x11 x12 . . . x1m
1 x21 x22 . . . x2m
...

...
...

. . .
...

1 xn1 xn2 . . . xnm

,

where ith row contains the ith input vector xi (with term 1 corresponding to constant
parameter θ0). We see that A is a positive semidefinite matrix, implying the convexity of
S(θ). This means the maximum posterior point θMP for a linear model is:

θMP = argmin
θ∈Rm ,w0∈R

S(θ) =
(

XTX +
α

β

[
0 01×m

0m×1 Im×m

])−1

XTy,

where y is a n× 1 vector of output values. It follows that the variance of p(y|x,D) for a
linear prediction model is:

σ2
D(x) =

1
β
+ xTA−1x. (A11)

Finally, we will present the derivations of the results in Equations (A7) and (A8). In
the following equations, we denote C = A + βggT and D = gTC−1g. We will also take
advantage of the following known results:

∫ ∞

−∞
exp

(
−λ

2
x2
)

dx =

(
2π

λ

)1/2
,∫

Rq
exp

(
−1

2
θTAθ+ hTθ

)
dθ = (2π)q/2|A|−1/2 exp

(
1
2

hTA−1h
),
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where A is a real symmetric matrix, h and θ are q-dimensional vectors, and the integration
is over whole θ-space Rq.

Equation (A7), closed form of p(y|x,D):

p(y|x,D) ∝
∫
Rq

exp
(
− β

2

{
y− ŷMP(x)− gTθ

}2
− 1

2
θTAθ

)
dθ

=
∫
Rq

exp
(
− β

2
{y− ŷMP(x)}2 + β{y− ŷMP(x)}gTθ− β

2
θTggTθ− 1

2
θTAθ

)
dθ

= exp
(
− β

2
{y− ŷMP(x)}2

) ∫
Rq

exp
(
−1

2
θTCθ+ β{y− ŷMP(x)}gTθ

)
dθ

= exp
(
− β

2
{y− ŷMP(x)}2

)[
(2π)q/2|C|−1/2 exp

(
1
2

β{y− ŷMP(x)}gTC−1β{y− ŷMP(x)}g
)]

= exp
(
− β

2
{y− ŷMP(x)}2

)[
(2π)q/2|C|−1/2 exp

(
1
2

β2{y− ŷMP(x)}2D
)]

= (2π)q/2|C|−1/2 exp
(
− β

2
{y− ŷMP(x)}2

)
exp

(
(−Dβ)

(
− β

2

)
{y− ŷMP(x))2

)
= (2π)q/2|C|−1/2 exp

(
(1− Dβ)

(
− β

2

)
{y− ŷMP(x)}2

)
= (2π)q/2|A + βggT |−1/2 exp

(
− β− β2gT(A + βggT)−1g

2
{y− ŷMP(x)}2

)
= (2π)q/2|A + βggT |−1/2 exp

(
−{y− ŷMP(x)}2

2σ2
D(x)

)
,

where σ2
D(x) =

(
β− β2gT(A + βggT)−1g

)−1
� Note that integrating p(y|x,D) with

respect to y gives:

∫ ∞

−∞
p(y|x,D) dy ∝

∫ ∞

−∞
(2π)q/2|A + βggT |−1/2 exp

(
−{y− ŷMP(x)}2

2σ2
D(x)

)
dy

= (2π)q/2|A + βggT |−1/2
∫ ∞

−∞
exp

(
−{y− ŷMP(x)}2

2σ2
D(x)

)
dy

= (2π)q/2|A + βggT |−1/2
√

2πσ2
D(x),

which contains the reciprocal of {2πσ2
D(x)}−1/2 we added in Equation (A9).

Equation (A8), closed form of σ2
D(x):

σ2
D(x) =

1
β− β2gT(A + βggT)−1g

=
1

β− β2gT(A + βggT)−1g
× gT(I + βA−1ggT)g

gT(I + βA−1ggT)g

=
gTg + gT βA−1ggTg

βgTg + β2gTA−1ggTg− β2gT(A + βggT)−1ggTg− β2gT(A + βggT)−1ggT(βA−1ggT)g

=
1 + gT βA−1g

β + β2gTA−1g− β2gT(A + βggT)−1g− β2gT(A + βggT)−1ggT βA−1g

=

1
β + gTA−1g

1 + βgTA−1g− βgT(A + βggT)−1g− βgT(A + βggT)−1ggT βA−1g
.
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Now in order for the result in Equation (A8) to hold, the denominator excluding term
1 in the above fraction should equate to 0:

βgTA−1g− βgT(A + βggT)−1g− βgT(A + βggT)−1ggT βA−1g = 0

gTA−1g− gT(A + βggT)−1g− gT(A + βggT)−1ggT βA−1g = 0

gTA−1g− gT(A + βggT)−1g = gT(A + βggT)−1ggT βA−1g

gTA−1g− gTC−1g = βgTC−1ggTA−1g

gTA−1ggT(ggT)−1C− gTC−1ggT(ggT)−1C = βgTC−1ggTA−1ggT(ggT)−1C

gTA−1C− gT = βgTC−1ggTA−1C

C(ggT)−1ggTA−1C−C(ggT)−1ggT = βC(ggT)−1ggTC−1ggTA−1C

CA−1C−C = βggTA−1C

(A + βggT)A−1(A + βggT)− (A + βggT) = βggTA−1(A + βggT)

(A + βggT)(I + βA−1ggT)− (A + βggT) = β(ggT + βggTA−1ggT)

(A + βggT)(βA−1ggT) = β(ggT + βggTA−1ggT)

β(ggT + βggTA−1ggT) = β(ggT + βggTA−1ggT).

In other words,

σ2
D(x) =

1
β− β2gT(A + βggT)−1g

=
1
β
+ gTA−1g �
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