
Journal of Computer Languages 74 (2023) 101175

A
s
K
a

b

A

K
G
S
R
D
D

1

t
w
b
D
i
o
w
m
i
I

a
a
F
i
s
l

o

h
R
A
2
(

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

domain-specific language for structure manipulation in constraint
ystem-based GUIs
nut Anders Stokke a,∗, Mikhail Barash a, Jaakko Järvi b,a

University of Bergen, Norway
University of Turku, Finland

R T I C L E I N F O

eywords:
UI programming
eparation of concerns
ule based systems
eclarative programming
ataflow constraint systems

A B S T R A C T

A common frustration with programming Graphical User Interfaces (GUIs) is that features for manipulating
structures, such as lists and trees, are limited, inconsistent, buggy, or even missing. Implementing complete and
convenient sets of operations for inserting, removing, and reordering elements in such structures can be tedious
and difficult: a structure that appears as one collection to the user can be implemented as several different
data structures and a web of dependencies between them. Structural modifications require changes both to the
GUI’s model and view, and possibly extraneous bookkeeping operations, such as adding and removing event
handlers.

This paper introduces a DSL that helps programmers to implement a complete set of operations to structures
displayed in GUIs. The programmer specifies structures and relations between elements in the structure.
Concretely, the latter are definitions of methods for establishing and unestablishing relations. Operations that
manipulate structures are specified as rules that control which relations should hold before and after a rule is
applied. From these specifications, our tools generate an easy-to-use API for structure manipulation. We target
constraint system-based Web GUIs: the DSL generates JavaScript and relies on dataflow constraint systems
for expressing dependencies between elements in GUI structures. Our DSL gives tangible representations with
well-defined operations for ad-hoc and incidental GUI structures.
. Introduction

Programming is to a large extent about manipulating data and
he structures that data resides in. We routinely take advantage of
ell-known abstract data types (ADT) that specify operations and
ehavior of lists, queues, trees, graphs, and other common structures.
ata manipulated through an ADT is stored in a concrete data type

mplemented with the ADT’s interface in mind—the standard libraries
f common programming languages contain many examples. Structures
e encounter in programs in practice are often more ad-hoc: they
ay not be neatly encapsulated within the boundaries of a canned

mplementation of an ADT. This is particularly true in Graphical User
nterface (GUI) programming.

In GUIs, the representation of a structure is typically split between
view and model, maybe several views and models. Operations that

ffect the structure of one of them should be reflected on the others.
urther, elements in these structures are often connected to each other
n different ways, e.g., to realize dataflows. Instead of well-defined data
tructures, programmers must manipulate incidental structures, which
ack direct operations for doing so.

Consider a GUI for specifying a multi-city flight search, such as the
ne in Fig. 1. The user of such a GUI specifies a sequence of flight

∗ Corresponding author.
E-mail addresses: knut.stokke@uib.no (K.A. Stokke), mikhail.barash@uib.no (M. Barash), jaakko.jarvi@utu.fi (J. Järvi).

segments, each with a departure and arrival city and date. Though the
sequence of flights has a very tangible manifestation in the GUI, its
representation in code is less concrete. Presumably the GUI’s model
represents the sequence of flights as a linked list or an array of flight
records, and the view as sibling elements in the DOM-tree. These
two projections of the same structure do not live in a single data
structure with predefined methods for manipulating the sequence. The
code for inserting, removing, or reordering flight segments has many
responsibilities, including modifying the model’s flight record list, mod-
ifying the DOM-tree’s widgets, adding and removing the widgets’ event
handlers, and updating validation logic (e.g., to ensure a chronological
order when entering dates)—and to keep these changes in sync. All this
is a considerable programming effort.

Features for structure modification are limited and cumbersome in
many widely used GUIs. Continuing with the flight search example,
almost no flight booking service allows adding flight segments in the
beginning or middle of a multi-city search; we checked 30 services,
one has this feature. Frequent travelers know that this would be a
convenient feature when exploring options for complex itineraries, yet
even services with millions of users do not provide it.
ttps://doi.org/10.1016/j.cola.2022.101175
eceived 14 June 2021; Received in revised form 19 June 2022; Accepted 7 Novem
vailable online 14 November 2022
590-1184/© 2022 The Author(s). Published by Elsevier Ltd. This is an open acces
http://creativecommons.org/licenses/by/4.0/).
ber 2022

s article under the CC BY license

https://doi.org/10.1016/j.cola.2022.101175
https://www.elsevier.com/locate/cola
http://www.elsevier.com/locate/cola
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2022.101175&domain=pdf
mailto:knut.stokke@uib.no
mailto:mikhail.barash@uib.no
mailto:jaakko.jarvi@utu.fi
https://doi.org/10.1016/j.cola.2022.101175
http://creativecommons.org/licenses/by/4.0/

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

s

f
i
l
i
e
e
T
r
w
o
f
t
s

p
r
f
s
e
e

b
w
s
r
a
t
r
h
o
r

p
d
o
o
b
v
c
m
a
a

i
r

Fig. 1. A GUI for specifying a multi-city flight query. Operations for manipulating the
egment sequence as a structure are rudimentary.

GUIs without adequate support for structural operations can be
rustrating. In our experience, such GUIs are particularly common in
n-house applications and other applications with smaller user bases,
ikely because in developing such applications, resources that can be
nvested in producing feature-rich GUIs are limited. As a representative
xample, the ApplyTexas [1] website for admissions to Texas’ higher
ducation institutions has a tab for entering extracurricular activities.
he GUI asks for up to ten of them, in priority order, but offers no
eordering operations. To move an activity up or down in the form
ould require swapping activities by swapping (with copy–paste) each
f the 23 fields (text, list, and checkboxes) of two activities. In practice,
illing the form again is the fastest way to perform a reordering. This
ime-wasting GUI is a necessary evil for hundreds of thousands of
tudents every year, and has been for more than a decade.

It is well known that implementing GUIs constitutes a significant
art of all development effort.1 Getting developers to write GUIs with
ich features requires thus either sufficient incentives or that such
eatures are not costly to implement. The goal of this paper is to
how the latter, that structural operations are implementable with little
ffort. Central is to make the incidental structures that appear in GUIs
xplicit to the programmer.

We present a domain-specific language that provides an abstract
ut precise view over GUIs’ messy incidental structures. With this DSL,
e call it WarmDrink, programmers define relations between elements,

uch as an element preceding another in a sequence, and how these
elations are established and unestablished. Programmers then define
n API for structural operations as transformation rules in terms of
he relations: each rule defines which relations hold before and after a
ule is applied. Rules can typically be parameterized over relations—a
andful of relation definitions on elements of a structure that appears
n a GUI thus suffices to give an API for insertions, deletions, and
eorderings for that structure.

This paper builds on our prior work [4], a simpler DSL where the
rogrammer implements relations’ establishing and unestablishing code
irectly in JavaScript. We showed a mock implementation in that DSL
f the above discussed ApplyTexas-form with a full suite of reordering
perations. The DSL presented in this paper still generates JavaScript,
ut it describes GUI structures explicitly with grammars that specify
alid compositions of structural components; these components are
onceptual, and typically include elements from the GUI’s view and
odel. A departure from [4] is that we make stronger assumptions

bout the structure: the DSL provides explicit support for tree structures
nd offers XPath-like tree-navigation expressions for such structures.

1 Myers’ early study [2] reports about 50% of all code to be related to user
nterfaces, Parent puts that number to 30% of all Adobe applications code and
emarks that this code has a disproportionately higher share of defects [3].
2

This navigation capability simplifies the implementation of structure
transformation rules, and in particular rules parameterized over rela-
tions, which we now support (as alluded to in the description of future
work in [4]).

WarmDrink is the result of exploring and ‘‘teasing out’’ the struc-
tural similarities found in different aspects of a GUI, in the view and
the model. The paper shows that by making the similarities visible
by binding these aspects to one explicit structure, providing a unified
navigation syntax for these different aspects, and making the structure
accessible from any view object, a great deal of structure manipulation
code becomes easily reusable.

2. Baseline: structures in contemporary GUI programming

GUI frameworks let programmers write handler functions that re-
spond to user events, such as clicking a button, dragging a slider,
or typing in a text field. It is well-known that unstructured event-
handling code easily becomes interdependent ‘‘spaghetti’’ that is prone
to defects and difficult to comprehend and maintain [5]. To manage
the complexity of GUI code, many software patterns and architectures
(e.g., MVC [6], MVVM [7], MVP [8], and MVU, also known as the Elm
Architecture [9]) have been developed. GUI languages and libraries
that realize and support variations of these patterns and architectures
abound; some of the recent ones include Elm, Vue, Angular, React,
Knockout, and ReactiveUI.

As described in the introduction, the state of the GUI has its man-
ifestations both in the (view)model and in the view. A common goal
of all the above patterns is to ensure a single source of truth of the
GUI’s state, and to keep the view devoid of logic. In all these patterns,
user events from view elements (widgets) are interpreted as requests
to modify the model, and once the model is updated accordingly, the
view is adjusted to reflect the new state of the model.

The connection between the view and the model is particularly
explicit in the MVVM pattern through its data binders concept (see,
e.g., the KnockoutJS library [10]). A binder connects an element in a
view with a particular piece of data in the view model, typically via
a two-way observer-observable connection. Binders guarantee that the
view stays in sync with the view-model and vice versa. The MVVM
pattern, as well as MVC and MVP, are however silent on how to manage
changes of the structure of the view model and view, e.g., how to ensure
that bindings are created or disconnected when new view and model
elements are added, removed, or reorganized.

Elm, that follows the MVU pattern, and React [11] use a different
approach: the view in its entirety, both the structure and content, is
derived from the model. Modifications on the structure of the model
are then automatically also modifications on the structure of the view
because the view is re-rendered when the structure of the model
changes. To keep the approach efficient, e.g., React first writes its tree
to an internal data structure (Virtual DOM) and then reconciles [12] it
with the prior state of the browser’s DOM.

Our work focuses on GUI programming according to the MVVM pat-
tern. The motivation comes from cases where the view-model itself has
a complex structure, when there are dependencies between components
of the view-model. Then, structural modifications can be complex even
if the model completely determines the view. Complex dependencies
within the view-model arise, e.g., when programming GUIs using reac-
tive programming (see, e.g [13]). Central to reactive programming is
an explicit specification of dataflow: programmers define dependencies
between data streams, typically as methods that react to changes in
their input data streams and compute new values to their output data
streams. Then, when a structure of a reactive view-model changes, the
programmer has to ensure that new reactive programs, new dataflows,
are correctly established in the changed view-model.

The DSL introduced in this paper has explicit support for updating
dataflows in the view-model. Concretely, the DSL interfaces with the
‘‘HotDrink’’ [14–16] library, which makes defining dataflows particu-
larly easy.

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

ℎ

}

b
d
v
D

2

c
e

2.1. Constraint systems for GUIs

The HotDrink library is based on multiway dataflow constraint sys-
tems [17]. A dataflow constraint defines a relation over a set of vari-
ables as a set of methods, each of which can enforce the constraint,
i.e., compute a variable valuation that satisfies the relation. For exam-
ple, the following HotDrink program specifies a system of four variables
and two constraints.

const Rectangle = hdl`
component {
var A, w, h, p;
constraint {
m1(w, h -> p) => 2*(w+h);
m2(p, w -> h) => p/2 - w;
m3(p, h -> w) => p/2 - h;

}
constraint {
n1(w, h -> A) => w*h;
n2(A -> w, h) => [Math.sqrt(A), Math.sqrt(A)];

}
}`;

The first constraint is between the perimeter 𝑝, width 𝑤, and height
of a rectangle, and the second between 𝑤, ℎ, and the area 𝐴. The first

constraint specifies methods from any of its two variables to the third
one. The second constraint specifies two methods, from 𝑤 and ℎ to 𝐴
and from 𝐴 to 𝑤 and ℎ (in the last case the programmer has chosen
to default to a square). The method bodies can be arbitrary JavaScript
code. A method that has more than one output returns its results as an
array.

Concretely, HotDrink programs are embedded to JavaScript as
tagged template literals. The result of the hdl-tagged template literal
is a component of variables and constraints. Components can also be
constructed without the DSL, less conveniently, using an API (not
shown here), or by cloning existing components.

Every time any of a constraint system’s variables is assigned to, a
constraint solver determines which methods to execute in which order
to enforce so that all constraints become enforced. When specifying
dependencies as multiway dataflow constraint systems, a programmer
essentially describes many reactive programs, or many dataflows at
once, of which the constraint solver chooses the most appropriate one
in each state.

Constraint systems have been studied extensively in the context of
user interfaces and a large number of declarative, constraint-based GUI
systems have been proposed, including Sketchpad [18], Amulet [19],
Garnet [20], and ThingLab I and II, DeltaBlue, and SkyBlue [21]. The
applications of these (now old) systems were mostly for expressing
geometric constraints, e.g., for automatic widget layout. A modern
realization of a constraint-based layout is Apple’s Auto Layout [22].

In HotDrink GUIs, the use of constraint systems extends beyond
layout: the view-model is a constraint system. The programmer binds
widgets to the constraint systems’ variables, user events on widgets
inform the system that a variable’s value has changed, which triggers a
constraint solver to produce a new variable valuation and update views
through bindings. We have shown that using constraint-systems as
view-models allows for implementing several GUI features as reusable
algorithms [15,23,24]. E.g., HotDrink knows at all times which vari-
ables have pending values (so that widgets bound to them can show an
indicator) or which variables are irrelevant in the current dataflow (so
that widgets bound to them can be disabled automatically).

HotDrink allows for building constraint systems piecemeal from
components. Some of the variables of a component can be references,
which can be bound to variables of other components to form con-
straints across components. This binding is accomplished simply by
assigning a variable to a reference. Connecting and disconnecting Hot-
Drink components is then the low-level plumbing that WarmDrink
 h

3

Fig. 2. A GUI for planning the schedule for a sequence of events.

component Agenda {
var start="09:00", duration="00:00";

}
component Talk {
var title, start, duration, end,

&prevStart, &prevDuration;
constraint EndIsStartPlusDuration {
(start, duration -> end) => addTimes(start, duration);

}
constraint AdjacentTalks {
(prevStart, prevDuration -> start) =>
addTimes(prevStart, prevDuration);

}

Listing 1: The constraint system specification for the conference
scheduler application.

uilds upon: structural modifications are realized by connecting and
isconnecting HotDrink components—and making the corresponding
iew changes. To keep the terminology clear, below we refer to Hot-
rink’s constraint system components as cs-components.

.2. Running example: a conference day

As an example of a user interface with connected cs-components,
onsider the application in Fig. 2 for scheduling events on an agenda,
.g., talks at a conference. For each talk the GUI shows the title, start
time, duration, and end time. This last data item is the combined duration
of the current talk and all prior ones.

As seen in Listing 1, the constraint system underlying the GUI
comprises one Agenda and many Talk cs-component instances. The
value of Agenda’s variable start determines when a conference day
begins. Talk’s three variables start, duration and end store,
respectively, the current talk’s start time, duration, and end time. The
references prevStart and prevDuration connect two talks; when
appending a new talk to a sequence of talks in JavaScript, the pro-
grammer assigns variables start and duration of the preceding talk
to prevStart and prevDuration, respectively, which enables the
component to use information from the previous talk when computing
its own variables. Thus, each talk in the sequence stores two references
to its preceding talk. The first talk connects the two references differ-
ently, to an Agenda component’s variables start and duration.
The latter variable is never updated nor shown in the GUI, but it is
needed by the first talk of the sequence.

Talk’s EndIsStartPlusDuration constraint maintains the
ternary relation on the current talk’s start time, duration and end
time: the method2 that writes a new value to its output end executes

2 This simple constraint has only one method; in general a constraint can
ave several methods, each defining a different dataflow.

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

i
i

2

a
b
a
a
t
t
c
i
c
i
t
a
t
c
u

a
a
t
e
a

3

t
d
t

Fig. 3. The GUI from Fig. 2 augmented with proper structure manipulation features.
n
S
n
s
e
a
h
f

g
c
a

b

t

i
e
a
a
m
v

f
⟨

m

when either of its inputs, start or duration, changes. The second
constraint, AdjacentTalks, ensures that each talk starts when the
previous talk ends.

To add a new talk to the agenda is not entirely trivial. We do not
show the code, but describe the main points. One must first create
an instance of the Talk cs-component, and connect it to the previous
Talk instance. The view visible to the user must also be extended. This
means creating a few new DOM elements to display the cs-component
instance’s content:

<input data-bind="title" />
<input data-bind="start" />
<input data-bind="duration" />
<input data-bind="end" disabled />

In this code the data-bind attributes specify that a view element
s bound to a particular variable in a cs-component; HotDrink can
nspect these attributes and realize these bindings.

.3. Manipulating agendas

The GUI in Fig. 2 supports only one simple structural operation:
dding a new talk. A user-friendly GUI needs many more: Fig. 3 adds
uttons for moving talks up or down, making them the first or last,
nd deleting them. Implementing such removal and reordering oper-
tions involves both updating the view and the connections between
he cs-components in the constraint system. For example, removing a
alk means disconnecting it from its predecessor and successor, then
onnecting the successor to the predecessor. Removing the first talk
n an agenda is a special case, since it has no predecessor but is
onnected to the agenda’s two variables. If cs-components are stored
n some container in the model, that container must be updated; in
he conference planner described in Section 4.4, for example, agendas
re nested in another structure. The view must be modified to reflect
he new state, some DOM-nodes must be removed, and if the GUI is
onnected to a backend server, also the data on the server need to be
pdated.

It is clear that the agenda structure is notably more complex than
container object with predefined operations for addition, deletion,

nd reordering. Different aspects of this incidental structure appear in
he view, model, and backend server. It falls on the programmer to
nsure that these different aspects stay in sync with each change to the
genda’s structure.

. WarmDrink: a DSL for structure manipulation

The goal of our WarmDrink DSL is to relieve the programmer from
he kind of tedious low-level programming of structural operations
escribed in the previous section. Below we use WarmDrink to extend

he conference day application with functionality to swap two adjacent c

4

talks, to move a talk to the beginning or the end of the agenda, and to
remove a talk from the agenda. These structural manipulations should
perform corresponding updates of the connections between the talks
and the agenda in the constraint system.

A WarmDrink specification is a tuple ⟨𝐒,𝐅𝚓𝚜,𝐑,𝐓⟩, where:

• 𝐒 is a structure specification,
• 𝐅𝚓𝚜 is a set of subroutines defined on elements of the structure,
• 𝐑 is a set of finitary relations defined on elements of the structure,
• 𝐓 is a set of transformation rules that express (all) possible manip-

ulations that modify component relations.

The structure specification defines semantically meaningful compo-
ents of a GUI, which are called wd-components in what follows.
yntactically, a declaration of a wd-component consists of the compo-
ent name, bindings to a constraint system component (which define
ome of cs-component’s variables and references as connectors: a ref-
rence of one component can be bound to a variable of another),
nd nested wd-components (within curly braces). Nested components
ave a cardinality, which can either be 1 or 0..𝑛 (denoted by ∗). The
ull grammar of the WarmDrink specification language is given in
Appendix.

Formally, a GUI structure  = (𝑉 ,𝐸) is a rooted directed acyclic
raph where (1) 𝑉 is a set of labeled vertices that represent wd-
omponents; (2) 𝑣root ∈ 𝑉 is a designated root vertex; and (3) 𝐸 is
set of labeled edges with labels of the form 𝑓 or 𝑓 ∗ that represent

features inside structural elements and define the cardinality of those
features (no superscript means one, ∗ means zero or more). An edge
(𝑣𝐴, 𝑣𝐵) with label 𝑓 means that the wd-component 𝑣𝐵 is nested in the
wd-component 𝑣𝐴, and 𝑣𝐴 is said to be the parent of 𝑣𝐵 .

Each subroutine in 𝐅𝚓𝚜 is either a predicate or a procedure, and its
ody contains blocks of imperative JavaScript code.

A relation 𝑟 in 𝐑 is defined on instances of wd-components and is a
riple ⟨𝑟𝚝𝚎𝚜𝚝, 𝑟𝚎𝚜𝚝𝚊𝚋𝚕𝚒𝚜𝚑, 𝑟𝚞𝚗𝚎𝚜𝚝𝚊𝚋𝚕𝚒𝚜𝚑⟩, where:

• 𝑟𝚝𝚎𝚜𝚝 is a call to a predicate from 𝐅𝚓𝚜 that tests whether the relation
holds;

• 𝑟𝚎𝚜𝚝𝚊𝚋𝚕𝚒𝚜𝚑 is an optional code block that establishes the relation;
• 𝑟𝚞𝚗𝚎𝚜𝚝𝚊𝚋𝚕𝚒𝚜𝚑 is an optional code block that unestablishes the rela-

tion.

Syntactically a relation specification is a name, a list of arguments
n parentheses, and three code blocks (test, establish, and un-
stablish) enclosed in curly braces. An (imperative) code block is
sequence of statements, where each statement is a function call to
subroutine in 𝐅𝚓𝚜 or a reference update of the form a.x = b.y; its
eaning is to bind the reference x in wd-component a’s model to the

ariable y in wd-component b’s model.
Transformation rules perform structural modifications and are de-

ined in terms of relations. A transformation rule 𝑡 in 𝐓 is a tuple
𝑡premises, 𝑡conseq⟩, where 𝑡premises is a sequence of premises, relations that
ust hold for the rule to be applicable, and 𝑡conseq is a sequence of
onsequences, relations that shall hold after the rule has been applied.

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

d

c
d


(
o
r
(
t
o
c

d
a
A
i
a
r
t

s
i
l
(
l

o
c
t

p
T
c
o
c
T

<body>
<div ...>

<input data-bind="title" />
<input data-bind="start" />
<input data-bind="duration" />
<input data-bind="end" disabled />

<input data-bind="title" />
<input data-bind="start" />
<input data-bind="duration" />
<input data-bind="end" disabled />

...

<button id="add-new" onclick="addTalk()">Add talk
</button>

</div>
</body>

Listing 2: An HTML snippet from our example GUI.

An application of a transformation rule 𝑡 unestablishes all relations
from 𝑡premises, establishes all relations from 𝑡conseq, and tests that they
hold. Syntactically, a rule specification is a name, followed by a list of
arguments in parentheses and the rule’s body enclosed in curly braces.
The body is a (possibly empty) list of premises, an arrow sign, and a
(possibly empty) list of consequences.

3.1. Running example: specifying structures

The first step with a WarmDrink specification is to define the
structure of a GUI. The DOM reflects this structure to an extent; in our
example GUI, an agenda and talks form a fraction of a tree, which is
reflected in its HTML representation, as shown in Listing 2. The DOM
and its HTML, however, contains clutter: layout- and styling-specific
tags and tags that do not map to semantically meaningful components
of the GUI. WarmDrink’s structure declaration below expresses the
structure without clutter: the conference day application contains an
agenda, which is a list of talks.

structure
root ConferenceApp {
agenda: Agenda

}
Agenda [[var start, var duration]] {
talks: Talk*

}
Talk [[var start, var duration, var end, ref prevStart,

ref prevDuration]]

We call the elements ConferenceApp, Agenda, and Talk in this
eclaration wd-components.
ConferenceApp’s feature agenda defines a nested wd-comp-

onent Agenda which has cardinality 𝟣. Component Talk is nested in
Agenda, and it has cardinality 0..𝑛, which is denoted by the star (∗) to
the right of Talk.

A wd-component stores all information related to the structural
element it represents. E.g., a wd-component of a talk holds references to
the view, the part of the DOM-tree that displays the talk’s information,
and to the model, a cs-component storing all its data. The programmer
5

does not have to hold on to wd-components: one can access the rele-
vant wd-component from any DOM-element that is part of a semantic
component.

The bindings, variable names in double square brackets, define
some of cs-component’s variables and references as connectors: a ref-
erence of one component can be bound to a variable of another.

3.2. Running example: the populated structure at run time

When the application is running, the GUI structure  is populated
with instances of wd-components. This populated structure ̂ is a tree,
where each node 𝑠̂ ∈ ̂ stores a reference to the instance of its cs-
omponent and the corresponding DOM-node, which we, respectively,
enote by 𝖬𝗈𝖽𝖾𝗅(𝑠̂) and 𝖵𝗂𝖾𝗐(𝑠̂).

The realization of ̂ is a JavaScript object that follows the structure
: its keys correspond to features that refer to nested wd-components

cardinality 𝟣) or nested arrays of wd-components (cardinality ∗). This
bject that represents the conceptual – or semantic – structure holds
eferences to the bits of the view (fragments of the DOM) and the model
constraint system components) that constitute the entire concretiza-
ion of the structure. When the structure is manipulated by the rules
f the DSL, changes to the conceptual structure effect the appropriate
hanges to the concretization.

Fig. 4 shows a schematic of a populated structure of the conference
ay GUI. The 𝙰𝚐𝚎𝚗𝚍𝚊 node represents the structural element Agenda
nd stores a view reference to the corresponding div-node in the DOM.
genda’s talks feature is a subtree 𝚃𝚊𝚕𝚔 ∗, whose view reference

s to the ul-node. The child nodes’ view references are to li-nodes
nd model references to instances of Talk cs-components. All the view
eferences are bidirectional, so that one can get to wd-components from
he DOM.

Formally, given a structure specification  = (𝑉 ,𝐸), the populated
tructure ̂ = (𝑉 ,𝐸) is defined as follows: (1) for vertex 𝑣root in 𝑉 , there
s a vertex 𝑣root with label root in 𝑉 ; (2) for an edge (𝑣𝐴, 𝑣𝐵) ∈ 𝐸
abeled 𝑓 with cardinality 𝟣, there is an edge (𝑣𝐴, 𝑣𝐵) ∈ 𝐸 labeled 𝑓 ; and
3) for an edge (𝑣𝐴, 𝑣𝐵) ∈ 𝐸 labeled 𝑓 ∗, there is an edge (𝑣𝐴, 𝑣𝑓∗) ∈ 𝐸
abeled 𝑓 , and an edge (𝑣𝑓∗, 𝑠̂) for each instance 𝑠̂ of wd-component 𝑣𝐵 .

The node 𝑣𝑓∗ is a container node, which is distinct from an instance’s
parent node for features with cardinality ∗.

3.3. Running example: manipulating the populated structure

Listing 3 shows the complete WarmDrink program that generates an
API for swapping talks in the conference day GUI. It is in many ways
limited, yet sufficient for an overview of different parts of a WarmDrink
program. The sections that follow give further details.

Line 2 in Listing 3 imports the functions hasNext and insert-
After used in the program; Section 4.1 discusses their implementa-
tion. WarmDrink’s simple module system is explained in Section 5.4.

Lines 5–8 repeat the structure specification discussed above. Swap-
ping is based on the binary relation precedes, on line 9, that expresses
the fact that a talk instance 𝑠̂𝚊 precedes another instance 𝑠̂𝚋 in a given
agenda in the populated structure. A relation has test code for checking
if the relation holds (line 10). It also has establish code for making the
relation hold: line 13 inserts the instance 𝑠̂𝚋 after the instance 𝑠̂𝚊 in
the populated structure. The hasNext and insertAfter functions
perate on instances of wd-component Talk. Lines 15–15 define the
onnections between the cs-components 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚋) and 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚊) when
hey are adjacent.

The transformation rule swapBetween in lines 20–23 defines swap-
ing of two adjacent talks b and c, surrounded by talks a and d.
his context is needed so that the swapped elements’ cs-components’
onnections to a and d are correctly updated. The premises (line 20)
f this rule specify what should hold before the rule is applied: pre-
edes for the pairs (𝑠̂𝚊, 𝑠̂𝚋), (𝑠̂𝚋, 𝑠̂𝚌), and (𝑠̂𝚌, 𝑠̂𝚍) of Talk instances.
he consequences (line 22) specify what should hold after the rule is

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

a

Fig. 4. (a), (b) visual representation of the structure  and a populated structure ̂ of the conference day GUI; (c) XPath-like expressions used to navigate the populated structure.
Note the difference between the parent and the container of 𝚃𝚊𝚕𝚔1.
1 module org.example.conference
2 import warmdrink.library.lists.* // imports hasNext

and insertAfter
3
4 structure
5 root ConferenceApp { agenda: Agenda }
6 Agenda [[var start, var duration]] { talks: Talk* }
7 Talk [[var start, var duration, var end,
8 ref prevStart, ref prevDuration]] relations
9 precedes(Talk a, Talk b) { test {

10 hasNext(a, b) // relation holds if the next
element of a is b

11 }
12 establish {
13 insertAfter(b, a); // put b after a // update

constraint system's dependencies
14
15 b.prevStart = a.start; b.prevDuration = a.

duration; }
16 }
17 // other relations ...
18
19 rules
20 swapBetween(Talk a, Talk b, Talk c, Talk d) { a

precedes b, b precedes c, c predeces d =>
21 // given order a, b, c, d
22 a precedes c, c predeces b, b precedes d //

establish a, c, b, d
23 } // other rules ...

Listing 3: The outline of WarmDrink code for structural manipulation
of the conference day GUI.

pplied: precedes for the pairs (𝑠̂𝚊, 𝑠̂𝚌), (𝑠̂𝚌, 𝑠̂𝚋), and (𝑠̂𝚋, 𝑠̂𝚍). That is,
the instances 𝑠̂𝚋 and 𝑠̂𝚌 should be swapped.

The code generated from this rule tests the premises, unestablishes
them (nothing to do in this example) and then establishes the con-
sequences, by running the relations’ establish code. It swaps the
instances 𝑠̂𝚋 and 𝑠̂𝚌 in the populated structure, and updates the con-
straint system dependencies to the new order. The swapping here is
limited to cases where neither the first nor the last element is swapped.
6

functions
bool hasNext(any a, any b) {
structure { js' ' '«a/following-sibling» === «b»' ' ' }

}
void insertAfter(any b, any a) {
structure { js' ' '
const indexX = «a/container».indexOf(«a»)
const indexY = «a/container».indexOf(«b»)
if (indexY !== -1) «a/container».splice(indexY, 1)
«a/container».splice(indexX + 1, 0, «b»)

' ' ' }
view { js' ' '«a/container».insertBefore(«b», «a/

following-sibling»)
' ' ' }

}

Listing 4: The definitions of functions hasNext and insertAfter.

Section 4.3 elaborates on how to implement general swapping that does
not have this limitation.

4. Defining relations and transformation rules

This section describes WarmDrink’s basic features in detail.

4.1. Defining relations

WarmDrink supports relations of arbitrary arity and argument types.
Relations are defined using functional notation, and their uses assume
either prefix (for unary relations) or infix (for relations with arity two
or higher) notation.

As described in Section 3, a relation defines the code blocks for
testing, establishing, and unestablishing the relation. These imperative
code blocks are where the real work happens. For the most part,
the functions that are called from those blocks are reusable and can
be considered to be part of WarmDrink’s ‘‘standard library’’, but an
application programmer might write them too. We show the definitions
of hasNext and insertAfter in Listing 4.

Functions are either predicates (return bool) or procedures (return
void). Their body is split into two concerns, structure and view,
which represent the changes to, respectively, nodes in the populated
structure and their views (DOM nodes). These blocks are JavaScript

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

t
a
f
i
f
a
m
t

a
b

T
o
t
f
c

i
p
a
a
d
t
a
T

c
t
o

t
p
t
T
s
𝖬

a
i
o
p
c

𝖬

𝖬

𝖬

relations
...
isFirstTalkIn(Talk t, Talk* talks) {
test {
isFirstInItsContainer(t)

}
establish {
insertAtBeginning(talks, t);
t.prevStart = |t/parent|.start;
t.prevDuration = |t/parent|.duration;

}
}
isLastTalk(Talk t) {
test {
isLastInItsContainer(t)

}
}

Listing 5: The definitions of relations isFirstTalkIn and
isLastTalk.

code, enclosed in triple quotation marks; the JavaScript code can be
spliced with WarmDrink code, as explained below.

The hasNext predicate is invoked from the test-block of pre-
cedes, and possibly other relations. It queries the populated struc-
ture and the view to confirm that b follows a, as expected. The
insertAfter procedure modifies the populated structure, which
requires some messy array manipulation. The corresponding manipula-
tion of the DOM is simple; the assumption here is that the view consists
of consecutive DOM-elements. Would this not hold, the application
programmer would write a different procedure.

To facilitate navigation within the populated structure, we intro-
duce x-expressions, similarly to how XPath expressions are used to
navigate XML trees [25]. From within a function’s JavaScript code,
one can splice x-expressions using guillemets (« and »), similar to
template strings in Eclipse Xpand [26]. As in XPath expressions, an
x-expression is a sequence of steps separated by ‘‘/’’. The first step is
a component instance, which can be either the root element (root) of
he structure, or an argument (e.g., a). Each subsequent step is either an
xis specifier (one of parent, container, preceding-sibling,
ollowing-sibling, first-child, last-child) or a feature

n the structure ̂ (e.g., agenda, talks). The parent axis is defined
or all nodes in ̂ but the root; container, preceding-sibling
nd following-sibling are defined for nodes that are list ele-
ents; and first-child and last-child are defined for nodes

hat are lists. Examples of x-expressions are given in Fig. 4(c).
A spliced x-expression 𝑥 that appears within a structure-block of

function refers to a node 𝑠̂ ∈ 𝑆, whereas 𝑥 appearing within a view
lock refers to 𝖵𝗂𝖾𝗐(𝑠̂).

Accessing elements with x-expressions simplify relation definitions.
he precedes relation in Listing 3, for example, is defined simply
n two consecutive Talk instances, without mentioning the container
hey reside in. This is possible, because the container can be accessed
rom any of its elements: if a is an element, a/container is the
ontainer.

In Listing 5, we present two more relations, isFirstTalkIn and
sLastTalk, to showcase different approaches to access nodes of the
opulated structure. These relations, as well as the relation precedes,
re used in transformation rules that implement swapping, inserting,
nd removing talks in an agenda. The isFirstTalkIn relation is
efined on a talk and a list of talks. This relation expresses the fact
hat a is the first child of talks, and it is established by inserting a
t beginning of talks, both in the populated structure and the view.
he isLastTalk relation is analogous, but for the last element. The
7

functions
...
bool isFirstInItsContainer(any x) {
structure { js' ' '
«x/container/first-child» === «x»

' ' ' }
}
void insertAtBeginning(any cont, any x) {
structure { js' ' '
const indexX = «cont».indexOf(«x»)
if (indexX !== -1) «cont».splice(indexX, 1)
«cont».splice(0, 0, «x»)

' ' ' }
view { js' ' '
«cont».insertBefore(«x», «cont/first-child»)

' ' ' }
}
bool isLastInItsContainer(any x) {
structure { js' ' '
«x/container/last-child» === «x»

' ' ' }
void insertAtEnd(any cont, any x) { /* ... */ }

Listing 6: The definitions of the functions used in relations
isFirstTalkIn and isLastTalk.

unestablish-blocks are not necessary on either relation, and since
our program only uses isLastTalk as a premise in a transformation
rule, it does not need an establish-block.

The above two relations rely on four new functions, defined in List-
ing 6. Note that the two predicates isFirstInItsContainer and
isLastInItsContainer operates only on the populated structure;
one can assume that whenever the predicates hold for the structure,
they also hold for the view.

4.2. Defining transformation rules

Section 3.3 discussed briefly the transformation rule for swapping
talks (lines 20–23 in Listing 3) and explained how the rule ‘‘executes’’
by running the unestablish codes of the premises and establish
odes of the consequences. The premise and consequence lists define
he order in which relations are unestablished and established; the
rder may matter since the (un)establishing code is imperative.

We now explain in more details how the models’ dependencies be-
ween cs-components get updated based on the two assignments in the
recedes relation in line 15–15 (of Listing 3). This specification states

hat for every pair (𝑠̂𝑖, 𝑠̂𝑖+1) of adjacent instances of wd-component
alk, the references prevStart and prevDuration of 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝑖+1)
hould respectively point to the variables start and duration of
𝗈𝖽𝖾𝗅(𝑠̂𝑖). The rule involves altogether four Talk arguments a, b, c,

nd d, of which it swaps the middle two. Hence, some consecutive
nstances 𝑠̂𝚊, 𝑠̂𝚋, 𝑠̂𝚌 and 𝑠̂𝚍 end up in order 𝑠̂𝚊, 𝑠̂𝚌, 𝑠̂𝚋 and 𝑠̂𝚍. All
ld connected pairs of instances should be disconnected, and the new
airs connected. That is, before the transformation rule is applied, the
omponents of the constraint system are connected as follows:

𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚋).𝚙𝚛𝚎𝚟𝚂𝚝𝚊𝚛𝚝 ≡ 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚊).𝚜𝚝𝚊𝚛𝚝

𝗈𝖽𝖾𝗅(𝑠̂𝚋).𝚙𝚛𝚎𝚟𝙳𝚞𝚛𝚊𝚝𝚒𝚘𝚗 ≡ 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚊).𝚍𝚞𝚛𝚊𝚝𝚒𝚘𝚗

𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚌).𝚙𝚛𝚎𝚟𝚂𝚝𝚊𝚛𝚝 ≡ 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚋).𝚜𝚝𝚊𝚛𝚝

𝗈𝖽𝖾𝗅(𝑠̂𝚌).𝚙𝚛𝚎𝚟𝙳𝚞𝚛𝚊𝚝𝚒𝚘𝚗 ≡ 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚋).𝚍𝚞𝚛𝚊𝚝𝚒𝚘𝚗

𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚍).𝚙𝚛𝚎𝚟𝚂𝚝𝚊𝚛𝚝 ≡ 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚌).𝚜𝚝𝚊𝚛𝚝

𝗈𝖽𝖾𝗅(𝑠̂).𝚙𝚛𝚎𝚟𝙳𝚞𝚛𝚊𝚝𝚒𝚘𝚗 ≡ 𝖬𝗈𝖽𝖾𝗅(𝑠̂).𝚍𝚞𝚛𝚊𝚝𝚒𝚘𝚗
𝚍 𝚌

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

d
r

c

f
c
o
a
a
w
c

o
w
f
b
A
t
i

u
𝑠
𝑠
𝑠
𝑠
i
F
i

4

c
r
o
w
t
p
a
p
b

p
d
o
n
s
(
b

swapAtBeginning(Talk b, Talk c, Talk d, Talk* talks) {
b isFirstTalkIn talks, b precedes c, c precedes d =>
c isFirstTalkIn talks, c precedes b, b precedes d

}
swapAtEnd(Talk a, Talk b, Talk c, Talk* talks) {
a precedes b, b precedes c, isLastTalk c =>
a precedes c, c precedes b, isLastTalk b

}
swapWhenOnlyTwo(Talk b, Talk c, Talk* talks) {
b isFirstTalkIn talks, b precedes c, isLastTalk c =>
c isFirstTalkIn talks, c precedes b, isLastTalk b

}

Listing 7: The definitions of transformation rules
swapAtBeginning, swapAtEnd, and swapWhenOnlyTwo.

Unestablishing all three precedes relations in the rule’s premises
isconnects these connections, and establishing the three precedes
elations in consequences reconnects the cs-components as follows.

𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚌).𝚙𝚛𝚎𝚟𝚂𝚝𝚊𝚛𝚝 ≡ 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚊).𝚜𝚝𝚊𝚛𝚝

𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚌).𝚙𝚛𝚎𝚟𝙳𝚞𝚛𝚊𝚝𝚒𝚘𝚗 ≡ 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚊).𝚍𝚞𝚛𝚊𝚝𝚒𝚘𝚗

𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚋).𝚙𝚛𝚎𝚟𝚂𝚝𝚊𝚛𝚝 ≡ 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚌).𝚜𝚝𝚊𝚛𝚝

𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚋).𝚙𝚛𝚎𝚟𝙳𝚞𝚛𝚊𝚝𝚒𝚘𝚗 ≡ 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚌).𝚍𝚞𝚛𝚊𝚝𝚒𝚘𝚗

𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚍).𝚙𝚛𝚎𝚟𝚂𝚝𝚊𝚛𝚝 ≡ 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚋).𝚜𝚝𝚊𝚛𝚝

𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚍).𝚙𝚛𝚎𝚟𝙳𝚞𝚛𝚊𝚝𝚒𝚘𝚗 ≡ 𝖬𝗈𝖽𝖾𝗅(𝑠̂𝚋).𝚍𝚞𝚛𝚊𝚝𝚒𝚘𝚗

This explains why swapping needs to be defined in terms of four
elements.

4.3. Defining multi-case transformation rules

The swapBetween rule in Listing 3 generates code for swapping
Talk instances 𝑠̂𝚋 and 𝑠̂𝚌, as long as the surrounding instances 𝑠̂𝚊 and
𝑠̂𝚍 are present in the container. The rule cannot thus be applied if 𝑠̂𝚋 is
the first or 𝑠̂𝚌 the last element of the list, or both. We need the three
additional rules shown in Listing 7 to cover the missing cases. In total,
four different rules are needed because the handling of connections is
different in each case: swapping the first element means connecting
its references to variables in the Agenda component, not to another
Talk, for example.

Four separate rules is a workable solution: for each rule one
JavaScript function is generated and the application programmer makes
sure to invoke the right one in each of the four cases. For example, to
swap two wd-components a and b of type Talk at the beginning of
a list talks, the programmer invokes swapAtBeginning(a, b,
talks).

The rules are, however, very similar. They all swap the middle two
talks b and c, but differ in whether or not there is an element that
precedes b or follows c. Similarly, to support insertion of elements at
the beginning of a list, in the middle, and at the end, one would have to
write several rules, all with the same purpose of inserting an element.
For such situations, WarmDrink provides multi-case rules that reuse
the commonalities of several rules. The transformation rules swapBe-
tween, swapAtBeginning, swapAtEnd, and swapWhenOnlyTwo
can be combined into one multi-case transformation rule, as shown in
Listing 8. Like the original rules, this new rule swaps component in-
stances represented by arguments b and c. Additionally, the arguments
a, d, and talks are defined as implicit arguments of the rule3; they

3 Note that when b and c are adjacent, they are necessarily in the same
ontainer, hence one could have defined the argument talks in terms of c.
8

swap(Talk a = b/preceding-sibling, Talk b, Talk c,
Talk d = c/following-sibling, Talk* talks = b/container)

{
case a precedes b, b precedes c, c precedes d =>

a precedes c, c precedes b, b precedes d

case b isFirstTalkIn talks, b precedes c, c precedes d =>
c isFirstTalkIn talks, c precedes b, b precedes d

case a precedes b, b precedes c, isLastTalk c =>
a precedes c, c precedes b, isLastTalk b

case b isFirstTalkIn talks, b precedes c, isLastTalk c =>
c isFirstTalkIn talks, c precedes b, isLastTalk b

}

Listing 8: The definition of the multi-case transformation rule swap.

can be computed from b and c using x-expressions. When using the
unction generated from a multi-case rule, the application programmer
an invoke the transformation function with only the explicit arguments
f the rule, in this case the two instances of wd-component Talk that
re to be swapped. The application programmer does not have to write
complicated if-else statement (we give an example of this in Section 6)
hen responding to swap events; WarmDrink figures out the correct

ase to apply.
The machinery works as follows. First, the rule computes instances

f the implicit arguments in the current populated structure. In cases
here the instance of an implicit argument is missing, such as ‘‘the

irst child in an empty list’’, the implicit argument becomes null; test-
locks of relations that refer to a null value will always return false.
fter the implicit arguments are computed, each subrule is tried in

heir declaration order. The first subrule for which all premises hold
s applied. If no such rule exists, an error is reported.

The multi-case rule swap, when applied to instances 𝑠̂𝚋 and 𝑠̂𝚌,
ses implicit arguments to compute three additional instances: 𝑠̂𝚊 =
̂𝚋/preceding-sibling, 𝑠̂𝚍 = 𝑠̂𝚌/following-sibling, and
̂𝚝𝚊𝚕𝚔𝚜 = 𝑠̂𝚋/container. The first subrule applies if all instances 𝑠̂𝚊, 𝑠̂𝚋,
̂𝚌, and 𝑠̂𝚍 are present in the populated structure. The second applies if
̂𝚋 is the first element in the container; 𝑠̂𝚊 is then null. The third applies
f 𝑠̂𝚌 is the last element in the container and 𝑠̂𝚋 has a previous element.
inally, if 𝑠̂𝚋 and 𝑠̂𝚌 are the only elements in the list, the fourth subrule
s applied; 𝑠̂𝚊 and 𝑠̂𝚍 are then null.

.4. Defining parameterized rules

The transformation rule for swapping is written for particular wd-
omponent types and relations for those types. A closer inspection
eveals that the rule does not rely on specific properties of those types,
r relations. A swap rule for a sequence of any kind of components,
ith any kinds of connections between them, would be essentially

he same rule. This is where parameterized rules, transformation rules
arameterized over component types and relations, come in. Swapping
nd other such common structural operations can be defined using
arameterized rules in a standard library, to be reused with different,
ut structurally similar, GUIs.

We explain parameterized rules by extending the conference day
lanner to a full conference planner that lets the user plan several
ays, each of which contains its own agenda. Fig. 5 shows a snapshot
f the application’s GUI. The GUI manipulation specification concerns
ow the wd-components Week, Day, and Talk. We implement the
ame structure manipulation functionality as in the previous sections
i.e., swapping two adjacent components, moving a component to the
eginning or the end of a container), this time for both talks and days—

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

t
b

s
i
A
i
c
W
w
p
i
t
g

e

Fig. 5. A screenshot of the extended conference planning application, where both days and talks within a day can be swapped. The buttons for swapping talks appear for the day
that is hovered by the mouse, e.g., Thursday in this screenshot.
}

D
c
d

D
t
p
t
a

structure
root ConferenceApp {
week: Week

}
Week [[var start]] {
days: Day*

}
Day [[ref prev, var day, var start, var duration]] {
talks: Talk*

}
Talk [[var start, var duration, var end, ref prevStart,

ref prevDuration]]

Listing 9: The specification of the conference planner application
structure.

component Week {
var start = 0;

}
component Day {
var number, name, &prev, start = 0;
constraint {
increment(prev -> number) => prev + 1;

}
constraint {
updateDayName(number -> name) => {
const days = ["Monday", "Tuesday", ...];
return days[(number - 1) % 7]; }

}
}

Listing 10: The HotDrink specification for the cs-components Week
and Day.

he same parameterized transformation rules suffice for manipulating
oth kinds of structural components.

The WarmDrink specification of the conference planner application
tructure, shown in Listing 9, is as follows. The wd-component Talk
s the same as in the conference day planner introduced in Section 3.1.

corresponding constraint system component is associated with each
nstance of Week, Day, and Talk, respectively. The HotDrink specifi-
ation for cs-component Talk is the same as the one in Section 2.2,
eek and Day are defined in Listing 10. The number variable is the
eekday as an ordinal, name its familiar name. The prev reference
oints to the previous day’s number (except for the first day, for which
t points to the week’s start variable). The increment constraint
hus advances the day from the previous, and dayName constraint
uarantees that name has the correct weekday.

Since we now have two different substructures, we need differ-
nt relations for days and talks that express what it means for one
 l

9

relations
precedesDay(Day a, Day b) {
test { hasNext(a, b) }
establish {
insertAfter(b, a);
b.prev = a.day;

}
}
precedesTalk(Talk a, Talk b) {
test { hasNext(a, b) }
establish {
insertAfter(b, a);
b.prevStart = a.start;
b.prevDuration = b.duration;

}
}

Listing 11: The definitions of relations precedesDay and
precedesTalk.

swap<FirstIn, Precedes, IsLast>(
any a = b/preceding-sibling, any b, any c,
any d = c/following-sibling, any cont = b/container) {
case a Precedes b, b Precedes c, c Precedes d =>

a Precedes c, c Precedes b, b Precedes d
case b FirstIn cont, b Precedes c, IsLast c =>

c FirstIn cont, c Precedes b, IsLast b
case b FirstIn cont, b Precedes c, c Precedes d =>

c FirstIn cont, c Precedes b, b Precedes d
case a Precedes b, b Precedes c, IsLast c =>

a Precedes c, c Precedes b, IsLast b

Listing 12: The definition of the parameterized multi-case rule swap.

component to immediately precede another; we define precedes-
ay and precedesTalk in Listing 11. Note that Day and Talk
annot share the same (parameterized) precedes relation because of the
ifferent reference bindings in the establish block.

Now, instead of defining two multi-case rules, the one for swapping
ay instances and the other Talk instances, we define one parame-

erized rule in Listing 12. Both multi-case and standard rules can be
arameterized on relations. A parameterized rule is syntactically equal
o a non-parameterized rule but additionally specify a list, enclosed in
ngle brackets, of relations on which it is parameterized on.

A parameterized rule is instantiated by specifying a concrete re-
ation name for each of the relation parameters. The name of an

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

i

a
I
t
t
a

𝐑

h

n
t
c
f

J
e
a
t
f

p
b

insert<FirstIn, Precedes, IsLast, NotInContainer>(
any cont, any a, any b, any c) {

case a Precedes c, b NotInContainer cont =>
a Precedes b, b Precedes c

case c FirstIn cont, b NotInContainer cont =>
b FirstIn cont, b Precedes c

case IsLast a, b NotInContainer cont =>
a Precedes b, IsLast b

case b NotInContainer cont =>
b FirstIn cont

}

Listing 13: The definition of the parameterized multi-case rule
insert.

nstantiated rule, given after the as keyword, becomes the name of
the generated JavaScript function. A rule parameterized on different
relations may still have the same type signature in the generated
JavaScript functions, and thus, all instantiations must have unique
names.

The conference application instantiates the parameterized swap
rule twice:

instantiate swap<isFirstTalkIn, precedesTalk,
isLastTalk> as swapTalks

instantiate swap<isFirstDayIn, precedesDay, isLastDay>
as swapDays

The relations isFirstTalkIn and isLastTalk are those de-
fined in Section 4.1; the relations isFirstDayIn and isLastDay
are defined in a similar way.

Our running example uses two more transformation rules, insert
for inserting a new element in a container, remove for the opposite.
We show the insert rule, remove is a similar generic multi-case
rule. The insert rule, shown in Listing 13, is parameterized over
four relations and defined in terms of the four arguments cont, a, b,
nd c. The rule inserts b between a and c in their container cont.
t again distinguishes between different cases: b inserted (1) between
wo elements, (2) as the first element, (3) as the last element, and (4) as
he only element. We instantiate insert for inserting talks and days
s follows.

instantiate insert<isFirstDayIn, precedesDay, isLastDay,
dayIsNotInContainer> as insertDay

instantiate insert<isFirstTalkIn, precedesTalk,
isLastTalk, talkIsNotInContainer> as insertTalk

5. From WarmDrink specifications to JavaScript code

5.1. Code generated from a WarmDrink specification

The transformation rules specified in WarmDrink produce an API
in the host language (JavaScript) for manipulating GUI structures4.
Table 1 summarizes how wd-components, functions, predicates, rela-
tions, and transformation rules from a WarmDrink specification ⟨𝐒,𝐅𝚓𝚜,
,𝐓⟩ are transpiled into JavaScript.

For a structure specification 𝐒, a JavaScript object root is gener-
ated. Its keys are the names of 𝐒’s features: nested components become
objects and features with cardinality ∗ become arrays.

4 The WarmDrink library’s source code can be found on the git-repository
ttps://git.app.uib.no/warmdrink-cola/warmdrink-ide.
 p

10
Table 1
An overview of how concepts in a WarmDrink specification are transpiled into
JavaScript. The generated exported functions are used by an application programmer
to implement structure manipulations.

WarmDrink specification
⟨𝐒,𝐅𝚓𝚜 ,𝐑,𝐓⟩

Generated JavaScript Exported?

Structure 𝐒 Object root whose keys are names
of the features in 𝐒

wd-component 𝐶𝑖 in 𝐒 Function new𝐶𝑖(view) that
creates a semantic GUI component
and establishes references between
it, the corresponding cs-component,
and the DOM element view

✔

Function/predicate
f(a1, . . . , a𝑛) in 𝐅𝚓𝚜

Function WD_FUNC__f(a1, . . . ,
a𝑛) whose body contains the
JavaScript code specified in
structure- and view-blocks of
f, with spliced x-expressions
expanded

Relation
r(C1 c1, . . . , C𝑛 c𝑛) in 𝐑

Object WD_RELATION__r with
keys test, establish,
unestablish, each of which is
an anonymous function

Transformation rule
t(C1 c1, . . . , C𝑛 c𝑛) in 𝐓

Function t(c1, . . . , c𝑛) checking
rule’s premises, then unestablishing
all of them, and then establishing
all consequences and testing that
they hold

✔

Multi-case rule
t(C1 c1, . . . , C𝑛 c𝑛) in 𝐓

Function t(c1, . . . , c𝑛) whose
body has a conditional statement
for each case, checking whether the
premises of that case hold

✔

Parameterized rule
t<r1, . . . , r𝑛>(any c1,
. . . , any 𝑐𝑛) in 𝐓

Function t(r1, . . . , r𝑛) that
returns an anonymous function
with signature (c1, . . . , c𝑛) whose
behavior is analogous to functions
generated for ordinary rules

Rule instantiation
t<rel1, . . . , rel𝑘> as
tinst of a parameterized
rule t<r1, . . . , r𝑘>(any
c1, . . . , any 𝑐𝓁) in 𝐓

Function tinst(c1, . . . , c𝓁) invoking
t(rel1, . . . , rel𝑛)(c1, . . . , c𝓁)

✔

Rule instantiation of a
parameterized multi-case
rule

Same as previous ✔

WarmDrink language constructs within specifications of relations

x-expression 𝑥1/𝑥2/⋯/𝑥𝓁 Expression 𝑥1.𝑥2.⋯.𝑥𝓁 n/a

Function call f(c1, . . . ,
c𝑛)

Function call WD_FUNC__f(c1,
. . . , c𝑛)

n/a

Constraint system reference
update 𝑎.𝑥 = 𝑏.𝑦 ;

𝑎._model.vs.𝑥 =
𝑏._model.vs.𝑦;
𝑎._model.system.update();

n/a

For each wd-component 𝐶 in a structure, an exported function
ew𝐶(v) is generated. This function creates an instance 𝐶 ready

o be inserted into the structure, and sets references from 𝐶 to the
orresponding view v and constraint system component 𝖬𝗈𝖽𝖾𝗅(𝐶), and
rom v to 𝐶.

Each function f declared in WarmDrink is transpiled into a
avaScript function WD_FUNC__f with the same signature. This gen-
rated function contains the JavaScript code from the structure-
nd view-blocks of f. Spliced x-expressions of the form 𝑥1/𝑥2/⋯/𝑥𝓁
hat appear in these blocks are expanded into JavaScript code of the
orm 𝑥1.𝑥2.⋯.𝑥𝓁 , where 𝑥𝑖 is either a feature which is expanded5

5 Note that all spliced x-expressions that appear within a function are
recomputed and stored in variables. This is because the structure-, view-
locks of a function must start their execution in the same state of the
opulated structure ̂. Otherwise, changes to ̂ in the structure-block

https://git.app.uib.no/warmdrink-cola/warmdrink-ide

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

}

i
W
t
c
c
o
f

w
E
T
i
T
(
i

g
e
w
o

function WD_FUNC__insertAfter(b, a) {
const __a__container = a?.container;
const __a__following_sibling = a?.following_sibling;
// structure
const indexA = __a__container.indexOf(a);
const indexB = __a__container.indexOf(b);
if (indexB !== -1) __a__container.splice(indexB, 1);
__a__container.splice(indexA + 1, 0, b);
// view
__a__container?._view.insertBefore(b?._view,

__a__following_sibling?._view);

Listing 14: The JavaScript function generated from the WarmDrink
function insertAfter.

nto a JavaScript object key, or one of the axes defined in Section 4.1.
d-components have a getter function for each axis; the getters are at-

ached at the components’ initialization. E.g., a/container/first-
hild in WarmDrink is expanded to a?.container?. first_
hild (the JavaScript operator ’’?.’’ short-circuits to null if the left
perand is null). Listing 14 shows the JavaScript function generated
rom the WarmDrink function insertAfter defined in Listing 4.

For each 𝑘-ary relation 𝑟, a JavaScript object WD_RELATION__𝑟
ith three keys, test, establish, and unestablish, is generated.
ach of these keys store an anonymous function with 𝑘 arguments.
he first function is a predicate that checks whether each statement

n the test-block of the relation specification returns a true value.
he second and the third functions are symmetrical: they establish
unestablish) the relation 𝑟, by executing the imperative code specified
n the establish (unestablish) block of the specification of 𝑟.

Within a relation specification, call to a WarmDrink function 𝑓 is
transpiled to a JavaScript function call WD_FUNC__𝑓 . The assignments
to cs-component references of the form 𝑎.x = 𝑏.y are transpiled into
JavaScript as follows:

𝑎._𝚖𝚘𝚍𝚎𝚕.𝚟𝚜.𝑥 = 𝑏._𝚖𝚘𝚍𝚎𝚕.𝚟𝚜.𝑦;
𝑎._𝚖𝚘𝚍𝚎𝚕.𝚜𝚢𝚜𝚝𝚎𝚖.𝚞𝚙𝚍𝚊𝚝𝚎();

The vs member of the _model gives access to a cs-component’s
variables and its system member to the underlying constraint sys-
tem. The system.update() call forces HotDrink to enforce all con-
straints. Listing 15 shows the JavaScript code generated for the relation
precedesTalk.

Each transformation rule 𝑡 is transpiled into an exported JavaScript
function as follows. For an ordinary rule defined on arguments 𝑎1, . . . ,
𝑎𝑘, the signature of the generated function is 𝑡(𝑎1, . . . , 𝑎𝑘). This function
first checks the rule’s premises by calling the corresponding test
member for every premise. If the premises hold, it invokes unestab-
lish for every premise and establish for every consequence of
the rule. After that, the function invokes test for every consequence,
checking that they have indeed been established. An error is reported
if any of the checks fails.

For a multi-case rule with arguments 𝑎1, . . . , 𝑎𝑘, and implicit ar-
guments 𝑤1, . . . , 𝑤𝑚 initialized with x-expressions 𝑥1, . . . , 𝑥𝑚, the
signature of the generated exported function is 𝑡(𝑎1, . . . , 𝑎𝑘). First,
the parameters 𝑤𝑖 are initialized with values computed by evaluating
𝑥𝑖. For each case of the rule, an if-then statement is generated
that checks whether the premises of that case hold. The body of
the conditional statement is analogous to the body of the function

might rearrange the structural elements and lead to incorrect behavior in the
two other blocks. With the spliced x-expressions precomputed, the order of the
two blocks is not significant.
11
const WD_RELATION__precedesTalk = {
test: (a, b) => (true && WD_FUNC__hasNext(a, b)),
establish: (a, b) => {
WD_FUNC__insertAfter(b, a);
b._model.vs.prevStart = a._model.vs.start;
b._model.vs.prevDuration = a._model.vs.duration;
b._model.system.update();

},
unestablish: (a, b) => { }

}

Listing 15: The JavaScript function generated for the WarmDrink
relation precedesTalk. The establish block invokes the JavaScript
function generated from insertAfter, updates a reference binding

between the two corresponding cs-components of a and b, and
notifies the constraint system that there was a change.

function insert(FirstIn, Precedes, IsLast,
NotInContainer) {

return (cont, a, b, c) => {
if (true && c && a && cont && b && Precedes.test(a, c) &&

NotInContainer.test(b, cont)) {
Precedes.unestablish(a, c);
NotInContainer.unestablish(b, cont);
Precedes.establish(a, b);
Precedes.establish(b, c);
if (!(Precedes.test(a, b) && Precedes.test(b, c))) {
throw error("Failed to apply rule ...");

}
}
else if (true && c && cont && b && FirstIn.test(c, cont)

&& NotInContainer.test(b, cont)) { ... }
else if (true && a && cont && b && IsLast.test(a) &&

NotInContainer.test(b, cont)) { ... }
else if (true && cont && b && NotInContainer.test(b,

cont)) { ... }
else { console.error(

"Failed: couldn't match any cases ...") }
}

}

Listing 16: JavaScript code generated for the parameterized
multi-case rule insert. The anonymous function inserts element b

between elements a and c in container cont.

enerated from an ordinary rule: it unestablishes the premises and
stablishes the consequences. The conditional statement is concluded
ith a return statement: this guarantees no fall-through the other cases
f the multi-case rule.

For a rule parameterized on abstract relations 𝑅1, . . . , 𝑅𝑚 and
defined on arguments 𝑎1, . . . , 𝑎𝑘, the generated JavaScript function
has signature 𝑡(𝑅1, . . . , 𝑅𝑚). It returns an anonymous function with
signature (𝑎1, . . . , 𝑎𝑘), whose behavior is analogous to functions gener-
ated for non-paramaterized rules. Listing 16 shows an example of the
JavaScript function generated from the parameterized multi-case rule
insert shown in Listing 13.

For a rule 𝑡inst that instantiates a parameterized rule 𝑡<𝑅1, . . . ,
𝑅𝑘>(𝑎1 ⋯ 𝑎𝓁) with relations rel1, . . . , rel𝑘, the generated exported
JavaScript function has signature 𝑡inst(𝑎1, . . . , 𝑎𝓁). Its body is of the
form return 𝑡(rel1, . . . , rel𝑘)(𝑎1, . . . , 𝑎𝓁), i.e., it calls the anonymous
function returned by 𝑡(rel , . . . , rel) with the arguments 𝑎 ,… , 𝑎 .
1 𝑘 1 𝓁

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

1

7
c

c
t
s
i
a

(
c

c
t
l
c
t
n
t
t
(
o

t
F

The generated function for an instantiation of a parameterized multi-
case rule is exactly the same as for an instantiation of a parameterized
ordinary rule.

Finally, two auxiliary JavaScript functions are generated: anchor,
that locates the structural component corresponding to a current view,
and get, that identifies components in relation to the anchor, using
x-expressions for navigating component trees. The machinery of these
functions is explained in detail in the next subsection.

5.2. Running example: the generated JavaScript API

Of importance to the application programmer are the exported
JavaScript functions which are generated from WarmDrink transfor-
mation rules. Each such generated function has the same name as the
corresponding transformation rule and the same number of arguments,
which are the wd-components on which the transformation rule is to
be applied.

Consider the code below implementing an event handler append-
NewTalk that reacts to clicks on the buttons for adding a new talk at
the end of a day in the running example (see Fig. 3).

1 function appendNewTalk(event) {
2 const talkView = (// create view nodes using JSX

<input data-bind="title" />
3
4 <input data-bind="start" />
5 <input data-bind="duration" />
6 <input data-bind="end" disabled />
7);
8 const t = newTalk(talkView);
9 anchor(event.target);
0 insertTalk(get("./talks"), get("./talks/last-child"),

t, null); }

In order to append a new talk, one must first create its view (lines 2–
), then bind the view to the corresponding HotDrink and WarmDrink
omponents (function newTalk in line 8), and finally invoke the

WarmDrink transformation rule insertTalk (lines 9–10).
Function newTalk in line 8 constructs an instance of the wd-

omponent Talk. It expects a view (DOM-element) to be passed as
he argument, creates a wd-component and an instance of the corre-
ponding cs-component, binds the latter’s variables to DOM elements
n talkView, and establishes references between the wd-component
nd cs-component, and form the talkView to the wd-component.

For navigating and accessing components in the populated structure
using x-expressions), the generated JavaScript API has functions an-
hor and get. An invocation of anchor locates the wd-component

corresponding to the current view, and sets it as a reference point for
navigating the populated structure.6 Line 9 invokes anchor with the
licked button to set the currently operated on wd-component Day as
he reference point. Subsequent calls to get identify components in re-
ation to the reference point. In line 10, get("./talks") returns the
urrent day’s container of talks and get("./talks/last-child")
he last element of this container. With these arguments as context, the
ew talk can be inserted after the last element. The insertTalk func-
ion takes care of all bookkeeping and changes in the cs-component and
he view. This function has the same arguments as the insertTalk
Section 4.4) transformation rule from which it was generated: a list
f talks, the talk that should precede the inserted talk, the talk to be

6 The links from the view to a wd-component make it possible to access
he component with ease, e.g., from the target object of an event handler.
or example, the event handlers of the button-elements in Fig. 5 find

the matching structural elements through these references: starting from the
clicked button element, the DOM-tree is walked up to find an element that
has a reference to a wd-component instance.
12
inserted, and the talk that should follow the inserted talk. Here the last
argument is null, as the talk is inserted at the end.

As examples of using two different instantiations of a parameterized
rule we show code that swaps adjacent talks and code that swaps
agendas of adjacent days. The first example first sets the anchor and
then performs two swaps: the first swaps a talk with the talk that
follows it, the second swaps them back.

anchor(t);
// assume t is in the view of the talk of interest

swapTalks(get("."), get("./following-sibling"));
// move talk down

swapTalks(get("./preceding-sibling"), get("."));
// move talk up

Code for swapping the agenda of two adjacent days of the week –
that is, shifting a day to the left or to the right – differs only on the
chosen name of the rule instance:

anchor(d);
// assume d is in the view of the day of interest

swapDays(get("."), get("./following-sibling"));
// shift day right

swapDays(get("./preceding-sibling"), get("."));
// shift day left

5.3. Architecture of a WarmDrink-based application

Fig. 6 shows a sketch of an application developed with WarmDrink.
It comprises a HotDrink specification (see Fig. 6a) and an API generated
from a WarmDrink specification (Fig. 6b) that are used in an applica-
tion’s main file (Fig. 6d) and an HTML file with the application’s view
(Fig. 6c).

The HotDrink specification file exports definitions of the cs-co-
mponents, which are then imported by WarmDrink-generated API. For
each wd-component that the WarmDrink program specifies to have a cs-
component, the HotDrink file must declare a HotDrink component with
the same name and must include the variables and variable references
specified in the WarmDrink program.

The API is used by the application programmer to implement func-
tionality that deals with manipulating structures in the GUI of the
application. This is done in the application’s main file, where GUI event
listeners are defined. The HTML file loads the application’s JavaScript
file and defines the skeleton of the GUI view. The body of the HTML
file includes a div-tag with the attribute data-warmdrink-root to
indicate the populated structure’s root element.

5.4. The WarmDrink IDE

We have implemented an integrated development environment
(IDE) for writing WarmDrink code. The IDE handles transpiling Warm-
Drink programs to JavaScript, and provides common IDE-features for
the language, such as validation, syntax highlighting, and suggestions.

The WarmDrink IDE is implemented with the language workbench
Eclipse Xtext [27]. Based on specifications of a language’s syntax and
typing rules, a language workbench [28] produces a code generator
and tailored IDE with standard services, including a syntax-aware
editor, code completion, code folding, automatic code corrections,
and basic code refactoring [29]. From the grammar specification for
WarmDrink, Xtext generates a model using Eclipse Modeling Frame-
work [26]. The model is populated during parsing, producing an ab-
stract syntax tree that can be further analyzed or transformed. We use
Eclipse Xtend’s [30] transformation language to generate the JavaScript
code. Fig. 7 presents a screenshot of a working Eclipse instance of
WarmDrink.

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

t
p

a
u
o
n
n

Fig. 6. Architecture of an application developed with HotDrink and WarmDrink: (a) specification of HotDrink components; (b) WarmDrink specification; (𝑏′) API generated from
he WarmDrink specification; (c) application’s HTML file; (d) application’s JavaScript file. Solid arrows designate imports. Dashed arrow designates code generation. The application
rogrammer writes parts a, b, c, and d.
The IDE for WarmDrink performs validation of the source code
nd reports standard code issues, such as duplicate declarations or
ndeclared identifiers. In addition, we have implemented a wide range
f WarmDrink-specific validations, such as checking that there are
o cycles in a structure declaration; checking that types of compo-
ents match; type-checking the return types of functions in test-

and (un)establish-blocks of relations; correct scoping in constraint
system assignments (for example, a constraint system variable in the
left hand side must be a reference, and only eligible references are
shown in autocomplete menus); inferring types and typechecking ar-
guments in parameterized rules for each of their instantiations; and
so on. In addition, the IDE supports automatic code corrections –
‘‘quickfixes’’ – that can be used both to correct an erroneous code
fragment (e.g., by suggesting identifiers in a correct scope whenever
an undeclared identifier is met).

Code written in WarmDrink can be stored in modules, and modules
can import other modules. Importing makes wd-components, func-
tions, relations, properties, and rules visible to the importing module.
Modules enable creating a standard library of transformation rules
for common structural manipulations (such as swapping and inserting
elements in lists).
13
6. Evaluating WarmDrink

The GUI programming community seems to always be chasing the
ultimate GUI architecture; there is a long history of different patterns
with different trade-offs. To evaluate the experience of programming
GUIs with WarmDrink and compare it with alternative approaches,
we implemented the conference planner application in three different
ways: (i) as a React application, without the use of any constraint
system library; (ii) as a React application that uses the HotDrink library
to manage the dataflow between widgets in the GUI; and (iii) as a
JavaScript application that uses HotDrink to manage the dataflow and
WarmDrink to manage the structural changes in the GUI.

There are obviously several more implementation choices, including
using plain JavaScript without using any libraries or frameworks, using
HotDrink without WarmDrink, or using any of the many popular GUI
frameworks [10,31–33]. Approaches that do not use any modern GUI
framework leave many low-level details as the application program-
mer’s responsibility, which is the reason for not considering a plain
JavaScript implementation. Amongst the popular GUI frameworks, we
chose React as a point of comparison, as many consider it to be a
representative of the state of the art today.

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

J
b
c
i
m

c
t
s
r

c
t
t

Fig. 7. A screenshot of the Eclipse IDE for WarmDrink. The IDE, implemented with Eclipse Xtext, supports syntax highlighting, auto-completion, hyperlinking, hover tooltips, and
rename refactoring.
b
u
R

p
W
i

I

c
o
i
i
t

t
r
r
t
e
p

c
a
l

To evaluate different GUI implementation approaches and how
resilient they are to minor changes in requirements, we implement the
same conference planner application in the three approaches (i)–(iii)
and subject the implementations to two requirement changes 𝑅1 and
𝑅2. In 𝑅1, we introduce an author to every talk and, whenever two
consecutive talks share the same author, give a warning to the user. 𝑅2
provides more flexibility for scheduling talks: while the base conference
planning application allows the user to modify only the duration of each
talk, from which the ending time (and the subsequent start times) are
computed, the new GUI lets the user edit the start time of any talk—
and the GUI is expected to adjust the start times of the earlier and later
talks.

With this experiment, we seek to answer the question whether our
approach with explicit specifications of structural changes in ‘‘dataflow-
rich’’ GUIs leads to succinct and intuitive GUI implementations, where minor
changes in requirements mean minor changes in implementation.

Base implementations

The implementation approach (i) uses only React and plain
avaScript; the programmer gets no support for maintaining relations
etween different state properties from a constraint system. In the
onference planner application this means that the code that, say,
nserts a new talk loops over all talks after the insertion point and
odifies their start times.

In the implementation approach (ii), we store the HotDrink’s cs-
omponents in the states of React components whose structure matches
he constraint system. Subscriptions to cs-components’ variables trigger
tate changes in the corresponding React components, so that React
ender functions keep the view in sync with the constraint system.

Modifying the structure of the components (adding or reordering
onference days or talks) is left to the GUI programmer. For example,
he moveUp function in Listing 17 that swaps a talk at index ind with

he preceding talk, accesses the list of HotDrink cs-components in the u

14
React component’s state, creates a new copy of that list, ensures that
the talk to be moved up is not the first talk, updates the connections
etween cs-components, swaps the two elements in the new list, and
pdates the React component’s state with that list, to be rendered by
eact. Other structure-manipulation operations require similar code.

In the implementation approach (iii), the functionality for swap-
ing, inserting, and removing talks is implemented by using the
armDrink relations and instantiating the parameterized rules swap,
nsert, and remove.

mplementing requirement change 𝑅1

In approach (i), a helper function constructs a new list of talks
alculating their start and end times in one loop, and is used by all
perations that perform structural changes or handle user edits. To
mplement 𝑅1, this loop has to check whether the current talk’s author
s the same as the previous talk’s author, and, if so, present a warning
o the user.

To implement 𝑅1 in approach (ii), we add an extra constraint in
he HotDrink specification that indicates when the no-same-author
equirement between consecutive talks is violated. The constraint has
eferences to the current and previous talks’ authors; the reference
o the previous talk’s author needs to be kept consistent after ev-
ry structural change. Therefore, the implementations of all functions
erforming structural operations change.

To implement 𝑅1 in approach (iii), the same HotDrink specification
hange is needed. The relations precedesTalk, isFirstTalkIn,
nd talkIsNotInContainer are modified to describe the changed
inking between two consecutive talks. The transformation rules remain

naltered.

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

t
t
u

moveUp(ind) {
const tmpTalkList = [...this.state.hdTalks];
if (ind === 0) {
throw Error("Cannot move first talk up...");

}
tmpTalkList[ind-1].vs.prevStart =
tmpTalkList[ind].vs.start;

tmpTalkList[ind-1].vs.prevDuration =
tmpTalkList[ind].vs.duration;

if (ind === 1) {
tmpTalkList[ind].vs.prevStart =
this.state.hdStart.vs.start;

tmpTalkList[ind].vs.prevDuration =
this.state.hdStart.vs.duration;

} else {
tmpTalkList[ind].vs.prevStart =
tmpTalkList[ind-2].vs.start;

tmpTalkList[ind].vs.prevDuration =
tmpTalkList[ind-2].vs.duration;

}
if (ind < tmpTalkList.length-1) {
tmpTalkList[ind+1].vs.prevStart =
tmpTalkList[ind-1].vs.start;

tmpTalkList[ind+1].vs.prevDuration =
tmpTalkList[ind-1].vs.duration;

}
defaultConstraintSystem.update();
const moved = tmpTalkList.splice(ind, 1)[0];
tmpTalkList.splice(ind-1, 0, moved);
this.setState({ hdTalks: tmpTalkList });

}

Listing 17: The JavaScript function moveUp from the
implementation approach (ii). When the function is called with the
index of a talk, the talk is moved one step up in the list of talks.

Implementing requirement change 𝑅2

After 𝑅2, editing start time and editing duration lead to different
dataflows. In approach (i), this implies more complicated looping struc-
tures. We add a new helper function to deal with changes to starting
times, which computes start times towards the beginning and towards
the end of the day in two separate loops.

In approaches (ii) and (iii), a small change to the HotDrink speci-
fication’s AdjacentTalks constraint defined in Listing 1 suffices. In
the new definition below, we add a new method (line 4) to compute
the previous talk’s start time from its duration and the current talk’s
start time.7

1 constraint AdjacentTalks {
2 (prevStart, prevDuration -> start) =>
3 addTimes(prevStart, prevDuration);
4 (start, prevDuration -> prevStart, prevDuration) =>

[subtractTimes(start, prevDuration),
prevDuration];

5 }

7 The second method includes prevDuration as output to ensure that
he constraint system chooses the dataflow defined by the first method when
he user edits the talk duration, and the one defined by the second when the
ser edits the start time.
15
Discussion

The main difference between the approach (i) and the other two
approaches is that in the latter, the dependencies between variables in
different talk components have a concrete programmatically accessible
representation as the constraint system, while in the former, they do
not. In other words, without a constraint system, the programmer
writes an algorithm, in any way convenient, that computes new values
for the variables in all talks after a user edit or a structural change,
whereas with a constraint system, the programmer specifies a structure
of dependencies that keep variables’ values consistent, and how to
modify that structure (concisely expressing these modifications is War-
mDrink’s raison d’être). The dependency and structure specifications
make the implementations with approaches (ii) and (iii) slightly longer8

than that with (i), but on the other hand, code modifications due
to new requirements that affect the dataflow are localized in these
specifications, instead of requiring a new algorithm for value updates.

In approach (i), the change of the update algorithm due to 𝑅1
is minor, but 𝑅2 requires a completely new algorithm. In approach
(ii), since every structural operation is responsible for maintaining the
dependency representation, implementing 𝑅1 requires a large number
of changes— each of these operations must be modified. In approach
(iii), these changes are not needed because structural transformations
are defined in terms of a small number of relations; only the definitions
of these relations are affected. Implementing 𝑅2 is a one-line change in
both approaches (ii) and (iii).

We remark that approach (iii) satisfies the goal of minor changes
in the requirements leading to minor changes in the implementation:
neither 𝑅1 nor 𝑅2 affect the high-level structure of the data that the
GUI displays and indeed no changes are needed in code that deals with
structural changes.

Our experiment, which is somewhat idealized to emphasize im-
plementing and maintaining the dataflow aspect of a GUI, gives us
some assurance of the benefits of explicitly specifying GUI structures
and structural changes, but, of course, not conclusive evidence. To
dispel threats to validity of our evaluation, we eventually need to
gain experience with WarmDrink-based implementations of ‘‘industrial
strength’’ GUIs with all their varied problems and nuances.

7. Related work

Throughout the text we relate WarmDrink with contemporary GUI
programming frameworks, patterns, and approaches. We also describe
how our work builds on language work benches and other DSL tech-
nologies. In this section we describe a few more connections to prior
research.

Many programming approaches aspire to make application pro-
gramming primarily to be about assembling together predefined
components, describing their connections declaratively. The fairly re-
cent Déjà Vu [34] framework is a concrete realization of this idea:
fully componentized micro-services implement high-level concepts that
programmers instantiate and plug together to applications. Like most
component approaches, this approach is silent about manipulating the
structures composed of connected concepts. This is not surprising:
Déjà Vu’s concepts encapsulate substantially complex functionalities
(geolocation, scheduling times, authentication) that would perhaps not
often appear as repeating parts of another complex structure.

Several other approaches pursue the goal of clear and unmuddled
specifications of GUI structures, but choose a different kind of gener-
ative approach from ours. For example, the JavaScript library JSON
Forms [35] and the WebDSL [36] language start from concise high-
level specifications of structure (and some behavior), and generate full
GUI implementations based on these specifications. The generated GUI
structures can come with a rich set of features, such as entry validation,

8 About 10 lines of HotDrink code and 40 lines of WarmDrink code.

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

𝐼

Fig. A.8. An outline of the concrete syntax grammar of the WarmDrink language. Optional sequences of terminals and nonterminals are enclosed within square brackets. Notation
𝐷↪𝐴 designates an identifier that is a cross-reference to an identifier declared in a substring derived from nonterminal 𝐴.
layout, access control, and structure modification behaviors, but the
generator determines the implementation of the structures and along
with it much of the application too. WarmDrink, instead, can impose
an explicit structure representation over implicit GUI structures, and
generate code for manipulating those structures.

Regarding constraint systems, we use HotDrink [14] to maintain
the underlying data dependencies in the examples of this paper. There
are other constraint system-based libraries and languages that could be
used in a similar fashion, but would require modifying the WarmDrink
DSL and its JavaScript generator. For example, ConstraintJS [37] is
another JavaScript dataflow constraint library, and Babelsberg a gen-
eral framework for integrating constraint systems into object-oriented
languages [38]. HotDrink’s handling of multi-way dataflow constraint
systems is based on the QuickPlan solver algorithm [17].

Our approach arises from practical programming concerns: we im-
pose a (tree) structure over components that appear in a GUI’s models
and views, and provide structural operations over it. Although our
implementation uses trees to structure user interfaces, programmers
may want to define more complicated aggregation relationships be-
tween graphical components than containment. We have tentatively
investigated hypergraphs for a general basis of populated structures,
with vertices representing GUI components and edges 𝑛-ary relations
between the components, and hyperedge replacement grammars [39]
16
for specifying modifications in such structures. Such grammars may
be a well-fitting formalism for expressing a larger set of structures,
and with more precision (e.g., a list with different component types
alternating is easily expressible).

Using a hypergraph as the underlying populated structure would
necessitate a more complex mapping from the structure’s vertices to
the visual UI elements. Such mappings could be specified with data
dependency algebras (DDA) [40–42]. With DDAs, programmers could
define, for instance, grid structures where hyperedges relate cells to
their cardinal neighbors. Further investigation of these connections
remains as future work.

8. Conclusion

This paper is an exploration of a new approach for managing the
complexity of GUI programming. Much of this complexity can be
attributed to tasks that manipulate various structures that appear on
GUIs, in particular because the same structures have multiple projec-
tions to models and views. Our work is a step towards understanding
how structures in GUIs manifest as different projections to views and
models. By providing a DSL that lets the programmer manipulate these
different projections as one structure, GUI programming is simplified.

K.A. Stokke, M. Barash and J. Järvi Journal of Computer Languages 74 (2023) 101175

e
W
r
m

a
h
c
c
o

t
e

D

c
i

A

R

The DSL presented in this paper allows the programmer to make
xplicit GUI structures that would otherwise be incidental and implicit.
ith the DSL the programmer specifies a (semantic) structure, defines

elations between elements in the structure, and defines rules for
anipulating the structure in terms of how these relations change.

The relation specifications capture the intricacies of how relations
re established and unestablished in views and models, in particular
ow links, references, and other connections between the elements
hange with these operations. The actual transformation rules remain
lear and concise, and it is therefore easy to provide an extensive set of
perations, a comprehensive API, for making changes to the structure.

For the application programmer, the API presents a semantic struc-
ure that can be navigated with x-expressions and manipulated with
ase using high-level operations.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ppendix. Outline of the WarmDrink grammar

See Fig. A.8.

eferences

[1] ApplyTexas web application https://www.applytexas.org (Accessed: 2022-11-24).
[2] B.A. Myers, M.B. Rosson, Survey on user interface programming, in: Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’92,
Association for Computing Machinery, New York, NY, USA, 1992, pp. 195–202,
http://dx.doi.org/10.1145/142750.142789.

[3] S. Parent, A possible future for software development, in: Keynote Talk at the
Workshop of Library-Centric Software Design, 2006, URL https://stlab.cc/legacy/
figures/Possible_future.pdf.

[4] K.A. Stokke, M. Barash, J. Järvi, Manipulating GUI structures declaratively, in:
Proceedings of the 19th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, in: GPCE 2020, Association for Com-
puting Machinery, New York, NY, USA, 2020, pp. 63–69, http://dx.doi.org/10.
1145/3425898.3426956.

[5] B.A. Myers, Separating application code from toolkits: Eliminating the spaghetti
of call-backs, in: Proceedings of the 4th Annual ACM Symposium on User
Interface Software and Technology, 1991, pp. 211–220.

[6] G.E. Krasner, S.T. Pope, A cookbook for using the model-view controller user
interface paradigm in smalltalk-80, J. Object Oriented Program. 1 (3) (1988)
26–49.

[7] J. Gossman, Introduction to Model/View/ViewModel pattern for building WPF
apps, 2005, URL https://docs.microsoft.com/en-us/archive/blogs/johngossman/
introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps.

[8] M. Potel, MVP: Model-view-presenter: The Taligent programming model for C++
and Java, 1996, URL http://www.wildcrest.com/Potel/Portfolio/mvp.pdf.

[9] E. Czaplicki, The Elm Architecture, URL https://guide.elm-lang.org/architecture.
[10] J. Farrar, KnockoutJS Web Development, Packt Publishing, 2015.
[11] React—A JavaScript library for building user interfaces, 2020, https://reactjs.or

g/ (Accessed: 2020-05-02).
[12] M. Madsen, O. Lhoták, F. Tip, A semantics for the essence of React, in:

R. Hirschfeld, T. Pape (Eds.), 34th European Conference on Object-Oriented
Programming, ECOOP 2020, November 15-17, 2020, Berlin, Germany (Virtual
Conference), in: LIPIcs, 166, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020, pp. 12:1–12:26, http://dx.doi.org/10.4230/LIPIcs.ECOOP.2020.12.

[13] ReactiveUI—An advanced, composable, functional reactive model-view-
viewmodel framework for all .NET platforms, https://www.reactiveui.
net.

[14] J. Freeman, J. Järvi, G. Foust, HotDrink: A library for web user inter-
faces, SIGPLAN Not. 48 (3) (2012) 80–83, http://dx.doi.org/10.1145/2480361.
2371413.

[15] G. Foust, J. Järvi, S. Parent, Generating reactive programs for graphical user
interfaces from multi-way dataflow constraint systems, in: Proceedings of the
2015 ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences, in: GPCE 2015, ACM, New York, NY, USA, 2015,
pp. 121–130, http://dx.doi.org/10.1145/2814204.2814207.

[16] J. Järvi, HotDrink, 2021, URL https://www.npmjs.com/package/hotdrink.
[17] B. Vander Zanden, An incremental algorithm for satisfying hierarchies of multi-

way dataflow constraints, ACM Trans. Program. Lang. Syst. 18 (1) (1996) 30–72,
http://dx.doi.org/10.1145/225540.225543.

[18] I.E. Sutherland, Sketchpad: A man-machine graphical communication system, in:
DAC ’64: Proceedings of the SHARE Design Automation Workshop, ACM, New
York, NY, USA, 1964, pp. 6329–6346.
17
[19] B.A. Myers, R.G. McDaniel, R.C. Miller, A.S. Ferrency, A. Faulring, B.D. Kyle,
A. Mickish, A. Klimovitski, P. Doane, The Amulet environment: New models
for effective user interface software development, Softw. Eng. 23 (6) (1997)
347–365.

[20] B. Myers, D. Giuse, R. Dannenberg, B. Zanden, D. Kosbie, E. Pervin, A. Mickish,
P. Marchal, Garnet: Comprehensive support for graphical, highly interactive user
interfaces, Computer 23 (11) (1990) 71–85.

[21] M. Sannella, Skyblue: A multi-way local propagation constraint solver for
user interface construction, in: UIST ’94: Proceedings of the 7th Annual ACM
Symposium on User Interface Software and Technology, ACM, New York, NY,
USA, 1994, pp. 137–146.

[22] Apple Inc., View layout, 2022, https://developer.apple.com/documentation/
uikit/view_layout (Accessed: 2022-02-02).

[23] J. Järvi, M. Marcus, S. Parent, J. Freeman, J.N. Smith, Algorithms for user
interfaces, in: GPCE’09: Int. Conf. on Generative Programming and Component
Engineering, ACM, New York, NY, USA, 2009, pp. 147–156, http://dx.doi.org/
10.1145/1621607.1621630.

[24] J. Freeman, J. Järvi, W. Kim, M. Marcus, S. Parent, Helping programmers help
users, in: GPCE’11: Int. Conference on Generative Programming and Component
Engineering, ACM, New York, NY, USA, 2011, pp. 177–184, http://dx.doi.org/
10.1145/2047862.2047892.

[25] J. Clark, S. DeRose, XML path language (XPath), W3C Recommendation, 1999,
https://www.w3.org/TR/1999/REC-xpath-19991116/ (Accessed: 2021-04-19).

[26] D. Steinberg, F. Budinski, M. Paternostro, E. Merks, EMF : Eclipse Modeling
Framework, Addison-Wesley, Upper Saddle River, N.J, 2008.

[27] M. Eysholdt, J. Rupprecht, Migrating a large modeling environment from XM-
L/UML to Xtext/GMF, in: W.R. Cook, S. Clarke, M.C. Rinard (Eds.), Companion
to the 25th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, SPLASH/OOPSLA, ACM, 2010, pp.
97–104, http://dx.doi.org/10.1145/1869542.1869559.

[28] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman, W. Cook, A.
Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P. Molina, M. Palatnik,
R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu, E. Visser, J.
Woning, Evaluating and comparing language workbenches: Existing results and
benchmarks for the future, Comput. Lang. Syst. Struct. 44 (2015) 24–47, http:
//dx.doi.org/10.1016/j.cl.2015.08.007.

[29] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend, Packt
Publishing, 2016.

[30] S. Efftinge, S. Zarnekow, Xtend—modernized Java, 2020, https://www.eclipse.
org/xtend/ (Accessed: 2020-07-15).

[31] Elm programming language, 2021, URL https://elm-lang.org (Accessed:
2021-04-17).

[32] Google LLC, Angular, 2020, https://angular.io/ (Accessed: 2020-07-15).
[33] Svelte: Cybernetically enhanced web apps, 2022, https://github.com/sveltejs/

svelte/ (Accessed: 2022-06-01).
[34] S. Perez De Rosso, D. Jackson, M. Archie, C. Lao, B.A. McNamara III, Declarative

assembly of web applications from predefined concepts, in: Proceedings of the
2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, in: Onward!, Association for
Computing Machinery, New York, NY, USA, 2019, pp. 79–93, http://dx.doi.org/
10.1145/3359591.3359728.

[35] JSON Forms, 2021, https://jsonforms.io/ (Accessed: 2021-04-18).
[36] D.M. Groenewegen, Z. Hemel, L.C. Kats, E. Visser, WebDSL: A domain-specific

language for dynamic web applications, in: Companion To the 23rd ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, in: OOPSLA Companion ’08, Association for Computing Machinery,
New York, NY, USA, 2008, pp. 779–780, http://dx.doi.org/10.1145/1449814.
1449858.

[37] S. Oney, B. Myers, J. Brandt, ConstraintJS: Programming interactive behaviors
for the Web by integrating constraints and states, in: Proceedings of the 25th
Annual ACM Symposium on User Interface Software and Technology, UIST ’12,
Association for Computing Machinery, New York, NY, USA, 2012, pp. 229–238,
http://dx.doi.org/10.1145/2380116.2380146.

[38] T. Felgentreff, A. Borning, R. Hirschfeld, Specifying and solving constraints on
object behavior, J. Object Technol. 13 (4) (2014) 1:1–38, http://dx.doi.org/10.
5381/jot.2014.13.4.a1.

[39] F. Drewes, H.-J. Kreowski, A. Habel, Hyperedge replacement graph grammars, in:
Handbook of Graph Grammars and Computing by Graph Transformation: Volume
I. Foundations, World Scientific Publishing Co., Inc., USA, 1997, pp. 95–162.

[40] W.L. Miranker, A. Winkler, Spacetime representations of computational
structures, Computing 32 (2) (1984) 93–114.

[41] E. Burrows, M. Haveraaen, A hardware independent parallel programming model,
J. Log. Algebr. Program. 78 (7) (2009) 519–538.

[42] E. Burrows, M. Haveraaen, Programmable data dependencies and placements,
in: Proceedings of the 7th Workshop on Declarative Aspects and Applications of
Multicore Programming, 2012, pp. 31–40.

https://www.applytexas.org
http://dx.doi.org/10.1145/142750.142789
https://stlab.cc/legacy/figures/Possible_future.pdf
https://stlab.cc/legacy/figures/Possible_future.pdf
https://stlab.cc/legacy/figures/Possible_future.pdf
http://dx.doi.org/10.1145/3425898.3426956
http://dx.doi.org/10.1145/3425898.3426956
http://dx.doi.org/10.1145/3425898.3426956
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb5
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb5
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb5
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb5
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb5
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb6
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb6
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb6
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb6
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb6
https://docs.microsoft.com/en-us/archive/blogs/johngossman/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps
https://docs.microsoft.com/en-us/archive/blogs/johngossman/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps
https://docs.microsoft.com/en-us/archive/blogs/johngossman/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
https://guide.elm-lang.org/architecture
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb10
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2020.12
https://www.reactiveui.net
https://www.reactiveui.net
https://www.reactiveui.net
http://dx.doi.org/10.1145/2480361.2371413
http://dx.doi.org/10.1145/2480361.2371413
http://dx.doi.org/10.1145/2480361.2371413
http://dx.doi.org/10.1145/2814204.2814207
https://www.npmjs.com/package/hotdrink
http://dx.doi.org/10.1145/225540.225543
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb18
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb18
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb18
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb18
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb18
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb19
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb19
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb19
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb19
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb19
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb19
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb19
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb20
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb20
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb20
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb20
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb20
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb21
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb21
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb21
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb21
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb21
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb21
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb21
https://developer.apple.com/documentation/uikit/view_layout
https://developer.apple.com/documentation/uikit/view_layout
https://developer.apple.com/documentation/uikit/view_layout
http://dx.doi.org/10.1145/1621607.1621630
http://dx.doi.org/10.1145/1621607.1621630
http://dx.doi.org/10.1145/1621607.1621630
http://dx.doi.org/10.1145/2047862.2047892
http://dx.doi.org/10.1145/2047862.2047892
http://dx.doi.org/10.1145/2047862.2047892
https://www.w3.org/TR/1999/REC-xpath-19991116/
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb26
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb26
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb26
http://dx.doi.org/10.1145/1869542.1869559
http://dx.doi.org/10.1016/j.cl.2015.08.007
http://dx.doi.org/10.1016/j.cl.2015.08.007
http://dx.doi.org/10.1016/j.cl.2015.08.007
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb29
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb29
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb29
https://www.eclipse.org/xtend/
https://www.eclipse.org/xtend/
https://www.eclipse.org/xtend/
https://elm-lang.org
https://angular.io/
https://github.com/sveltejs/svelte/
https://github.com/sveltejs/svelte/
https://github.com/sveltejs/svelte/
http://dx.doi.org/10.1145/3359591.3359728
http://dx.doi.org/10.1145/3359591.3359728
http://dx.doi.org/10.1145/3359591.3359728
https://jsonforms.io/
http://dx.doi.org/10.1145/1449814.1449858
http://dx.doi.org/10.1145/1449814.1449858
http://dx.doi.org/10.1145/1449814.1449858
http://dx.doi.org/10.1145/2380116.2380146
http://dx.doi.org/10.5381/jot.2014.13.4.a1
http://dx.doi.org/10.5381/jot.2014.13.4.a1
http://dx.doi.org/10.5381/jot.2014.13.4.a1
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb39
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb39
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb39
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb39
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb39
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb40
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb40
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb40
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb41
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb41
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb41
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb42
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb42
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb42
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb42
http://refhub.elsevier.com/S2590-1184(22)00072-7/sb42

	A domain-specific language for structure manipulation in constraint system-based GUIs
	Introduction
	Baseline: structures in contemporary GUI programming
	Constraint systems for GUIs
	Running example: a conference day
	Manipulating agendas

	WarmDrink: a DSL for structure manipulation
	Running example: specifying structures
	Running example: the populated structure at run time
	Running example: manipulating the populated structure

	Defining relations and transformation rules
	Defining relations
	Defining transformation rules
	Defining multi-case transformation rules
	Defining parameterized rules

	From WarmDrink specifications to JavaScript code
	Code generated from a WarmDrink specification
	Running example: the generated JavaScript API
	Architecture of a WarmDrink-based application
	The WarmDrink IDE

	Evaluating WarmDrink
	Base implementations
	Implementing requirement change R1
	Implementing requirement change R2
	Discussion

	Related work
	Conclusion
	Declaration of Competing Interest
	Appendix. Outline of the WarmDrink grammar
	References

