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ABSTRACT
Background: Constructing a sample of real users as participants in user studies is
considered by most researchers to be vital for the validity, usefulness, and
applicability of research findings. However, how often user studies reported in
information technology academic literature sample real users or surrogate users is
unknown. Therefore, it is uncertain whether or not the use of surrogate users in place
of real users is a widespread problem within user study practice.
Objective: To determine how often user studies reported in peer-reviewed
information technology literature sample real users or surrogate users as participants.
Method: We analyzed 725 user studies reported in 628 peer-reviewed articles
published from 2013 through 2021 in 233 unique conference and journal outlets,
retrieved from the ACM Digital Library, IEEE Xplore, and Web of Science archives.
To study the sample selection choices, we categorized each study as generic (i.e., users
are from the general population) or targeted (i.e., users are from a specific
subpopulation), and the sampled study participants as real users (i.e., from the study
population) or surrogate users (i.e., other than real users).
Results: Our analysis of all 725 user studies shows that roughly two-thirds (75.4%)
sampled real users. However, of the targeted studies, only around half (58.4%)
sampled real users. Of the targeted studies sampling surrogate users, the majority
(69.7%) used students, around one-in-four (23.6%) sampled through crowdsourcing,
and the remaining 6.7% of studies used researchers or did not specify who the
participants were.
Conclusions: Key findings are as follows: (a) the state of sampling real users in
information technology research has substantial room for improvement for
targeted studies; (b) researchers often do not explicitly characterize their study
participants in adequate detail, which is probably the most disconcerting finding; and
(c) suggestions are provided for recruiting real users, which may be challenging for
researchers.
Implications: The results imply a need for standard guidelines for reporting the types
of users sampled for a user study. We provide a template for reporting user study
sampling with examples.
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INTRODUCTION
Sampling real users for user studies is vital for ensuring a user study’s validity, usefulness,
and applicability. Real users are study participants that are drawn from the specific target
population. The target population is the entire group of people that a researcher is
interested in studying and analyzing, which is often related to a system or phenomenon.
Examples of a target population could be the customers of a company, people who own a
given device, or the residents of a particular country. However, the target users could also
be the general population, meaning any person would be included in the target population.
Examples include generic search services, smartphone interactions, or broad social media
platforms that target a global user base. Defining the real users of a technology raises the
interesting concept of “non-users.” While there has been a degree of conceptual work on
distinguishing between users and non-users (Augustin et al., 2021), much of the focus of
information technology (IT) user studies has traditionally been on the ‘user,’ whereas the
‘non-user’ has been neglected. However, the research reported here tackles the adjacent
problem of sampling real or surrogate users in user studies.

Real users are selected from the target population using one or more sampling
techniques and become the sample used for the study. The sample is the set of people
representing the target population participating in the investigation. Sampling is the
process of determining the participants taken from the target population for the study and
can use techniques such as a sample frame (e.g., a list of individuals in the target
population). The methodology used to sample a larger population depends on the analysis
and may include, for example, random, stratified, or systematic sampling techniques. The
people who participate in the user study are referred to as participants. So, the terms ‘user’
and ‘participant’ are roles that refer to actual people concerning the study. In the ‘user’ role,
people use the technology, and in the ‘participant’ role, people engage in the study.

Although findings from real users may be confounded by sampling issues such as
convenience sampling (Etikan, 2016), the employment of real users from the target
population is a critical first step in the user study process. If researchers sample surrogate
users (i.e., those who are not part of the intended target population of the tested
technology) in place of real users (i.e., those who belong to the intended target population
of the tested technology), they risk gaining feedback and reporting results that do not
correspond with actual use cases or that do not reflect the views of the intended users of the
technology, thereby conveying erroneous findings to the research community. While using
real users is not the only step in an appropriate sampling process, it is undoubtedly a
necessary first step. Additionally, as presented in the discussion section of the current
article, there may be situations where surrogate users can provide useful feedback.
However, in the main, it seems reasonable that one would choose real users vs. surrogate
users for most user studies, in most cases.
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The type of users sampled is critical because many systems, algorithms, user interfaces,
and techniques require feedback from real users (Fotler et al., 2022) to be adequately
evaluated, given that they are designed for specific target populations (Fischer, Peine &
Östlund, 2020). For example, testing an application to facilitate the workflow of homecare
nurses with anonymous crowd workers could yield questionable or even dangerous
conclusions (as in harming populations that are dependent on the technology being tested)
about user behavior. Concerns about not sampling real users but surrogate users have
caused some publication venues to issue warnings. For example, the Journal of Advertising
Research, at the time of the study, warns that sampling students or crowd workers in
primary studies may lead to a desk rejection:

“Authors should clearly articulate the sampling frame and relevant details including
response rates and tests for non-response bias. While samples using students or Amazon’s
Mechanical Turk (MTurk) are appropriate for pilot studies, use in main studies likely will
lead to desk rejection. We strongly prefer more generalizable sample populations.”1

However, prior work is ambivalent on the actual impact of sampling real vs. surrogate
users for user studies, with some decrying the practice (e.g., Chandler & Shapiro, 2016;
Galloway, 2005; Peterson & Merunka, 2014; Pickering & Blaszczynski, 2021) and others
stating that it is not a serious problem (e.g., Hultsch et al., 2002; Losada et al., 2021;
Steelman, Hammer & Limayem, 2014). While sampling real users is considered essential by
many researchers for determining a study’s validity and practical impact, due to the need
for appropriate sampling, it is unclear how frequently user studies in IT (e.g., computer
science, information science, and human-computer interaction (HCI)) employ real users
vs. surrogate users. If researchers frequently employ surrogate users, this may indicate a
problem with the external validity of the body of research. However, if researchers usually
employ real users employing appropriate sample techniques to select the study
participants, there may not be a widespread issue. The current body of knowledge does not
clearly indicate how common the practice of sampling real vs. surrogate users is for user
studies in the IT fields. Thus, the lack of insight concerning this vital issue is the motivation
for our research.

To investigate this issue, we pose the following research questions (RQs):

� RQ1: Do user studies reported in IT literature sample real users or surrogate users as
participants?

� RQ2: If sampling surrogate users, what are the types of participants in these user studies?

� RQ3: Are there differences in the sampling of real users or surrogate users as participants
in the IT fields being studied?

To address these RQs, we extract information from 725 user studies using an approach
similar to that employed in related review work (Chan et al., 2019; Yasen & Jusoh, 2019).
We analyze the results using a mixed-method approach, providing both quantitative and
qualitative analyses. Our objective is to better understand the sampling of real and
surrogate users in IT. For this review, a user study is defined as a methodical evaluation

1 Journal of Advertising Research Guide-
lines for Contributors: http://www.
journalofadvertisingresearch.com/sites/
default/files/Additional_assets/JAR%
20Guidelines.pdf.
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using people interacting with IT to assess the performance of a system, and/or people’s
reactions to the technology or technology outputs. User studies can take many forms, such as
A/B testing with a specific algorithmic technique, system, or various usability evaluations.
IT can refer to a complete system, a software application, or a component of an overall
information system. A system can refer to a complete system or a component of a system,
such as an algorithm, interface, or software output (e.g., a search result listing).

This work presents a systematic literature review (Snyder, 2019). A systematic literature
review has clearly formulated research questions, identifies relevant studies related to those
questions, appraises the quality of the relevant articles, and summarizes the evidence using
an explicit methodology (Khan et al., 2003). A systematic review usually uses two or more
academic databases for article retrieval, applying a well-defined search strategy that is
made public and can be replicated by other scholars. Each located article is screened for
inclusion/exclusion based on predefined screening criteria, and then analyzed using data
extraction (typically a spreadsheet) that leverages a predefined set of criteria that address
the research questions. Our systematic review provides an analysis of practice in the state-
of-the-art of user studies concerning the single theme of sampling real or surrogate users.
Including 628 articles spanning nearly a decade of research, the number of research articles
we analyze covers a wide range of IT fields. The articles are drawn from two major digital
libraries and further supplemented with snowball-inspired sampling (for a detailed review
of snowballing sampling, see Wohlin, 2014) to identify relevant and influential sources
from a third digital library. Therefore, we believe the results of our research will provide
impactful insights for the IT community.

Why do real users matter?
Three distinct foundational problems (FP) of not sampling real users in user studies are
discussed in this section.

FP1: Validity
Regarding how well findings can be generalized to other situations, user studies that do not
employ real users face external validity issues (Cohen, Manion & Morrison, 2017; Gundry
& Deterding, 2019). Particularly, if the participants do not belong to the target population
(i.e., surrogate users), they may lack the motivation, ability, or expertise (Yesilada, Brajnik
& Harper, 2009) to give valid responses (Krawczyk, Topolewski & Pallot, 2017; Muhib
et al., 2001; Ritchie et al., 2013). Although the employment of real users does not
necessarily address the potential lack of motivation, it does ensure a sufficient degree of
domain expertise for external and ecological validity (i.e., how well the results predict
behavior in real life).

FP2: Usefulness
While scientific validity is aimed at the accuracy and precision of results, there is a
quintessential question underlying the employment of the research findings: Are the results
useful for researchers and practitioners? (Beel & Langer, 2015; Brittain, 1975; Kosara
et al., 2003). Usefulness—or accuracy—is unlikely to be achieved when using surrogate
users, as the needs and problems discovered may not match those faced by the intended
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users of the technology (Arkush & Stanton, 1988). Therefore, regardless of sampling
validity, surrogate users are unlikely to provide helpful feedback when compared to
feedback drawn from real users.

FP3: Applicability
When real users are not included in the sample, researchers may miss valuable insights for
improving the technology (Rahi, 2017; Schillewaert, Langerak & Duharnel, 1998; van
Berkel & Kostakos, 2021). This is related to the issue that the sample may not represent the
underlying population that will employ the technology (Kujala & Kauppinen, 2004). Since
surrogate users lack intimate knowledge of a domain, subject matter, or problem space,
they cannot provide feedback that would foreseeably lead to new features and
functionalities addressing an impactful problem for the targeted population.

Research gap
Compatible with the aforementioned reasoning, researchers in several fields have raised
the need to engage with real users. First, many user-centered design studies (Kashfi,
Nilsson & Feldt, 2017) speak of sampling real users by adopting the users’ point of view
(Dourish, 2006) (p. 542), and Abras et al. (2004) advocate the involvement of real users in
testing designs and prototypes.

Second, researchers in business studies (e.g., tourism, marketing, management) have
long emphasized “value co-creation” (Mustak, Jaakkola & Halinen, 2013), meaning letting
customers participate in product development in one way or another. This can be seen as a
form of sampling real users.

Third, the idea of customer involvement has also been raised in the IT startup sector,
where influencers (Blank, 2013; Ries, 2011) have vigorously argued for testing and
validating ideas in the real world and “getting out of the building” to meet the real
customers early on in the product development process. This notion of enabling user or
customer participation in the development cycles of products has also been embodied in
the developmental concept of the “living lab” (Almirall & Wareham, 2009) that many
modern startup incubators and research laboratories embody.

Finally, academics in various sectors have warned against the excessive use of students
as study participants when performing empirical investigations (Carver et al., 2004). The
concern is that this may yield non-representative samples of the target population (Blair &
Zinkhan, 2006), and the sampling of students certainly raises questions of participant
motivation, as well as issues of ethics, undue pressure, and fair compensation.

Specifically, one can observe a need to engage with real users being presented by
researchers from nearly all disciplines:

� From user-centered design, “[optimal designs] can only truly be achieved by involving
real users throughout the design process.” (Wilkinson & De Angeli, 2014, p. 627), and “it is
crucial that real users are included as workshop participants. Without real users [one]
runs the danger of ‘spinning in the air’ and simply iterate existing assumptions and
prejudices about the context of use.” (Svanaes & Seland, 2004, p. 482);
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� From service design, “[be cautious of] generalizing your own personal and subjective
experience without cross-checking with real users” (Buchenau & Suri, 2000, p. 432), and
“it is crucial for getting managers outside their narrow organizational view and into the
minds and hearts of real customers.” (Liedtka & Ogilvie, 2012, p. 9);

� From business/tourism, “It is suggested that the testing of new services should be
conducted live, with real customers, and in real transactions.” (Konu, 2015, p. 4) and
“prototyping and experimentation produced conversations with real customers, a better
source of information than PowerPoint presentations to colleagues in conference rooms.”
(Liedtka, 2014, p. 44);

� From entrepreneurship, lean startups use a ‘get out of the building’ approach called
customer development to test their hypotheses. They go out and ask potential users,
purchasers, and partners for feedback on all elements of the business model” (Blank, 2013,
p. 1).

From a scientific perspective, sampling users from the targeted population has long been
a tenet for valid sampling techniques. After all, using real users for a user study makes
intuitive sense, and evaluating the use of a system designed for a target population with
members of that population is clearly the most sensible approach. Therefore, the issue of
whether or not real users are being employed in IT research is of paramount importance
for the validity (FP1), usefulness (FP2), and applicability (FP3) of user study findings.
However, while these merits and concerns associated with sampling real users are
recognized in theory, there are no guarantees for their realization in practice, as the
practical research work often contains multiple sources of distraction. For example, budget
requirements, stringent deadlines, and the difficulty of recruiting subject-matter experts
incentivize researchers, in a real sense, to seek convenience samples such as surrogate users.

These considerations indicate a need for literature analysis (Torraco, 2005). Overall, the
IT community should be aware of the state of using real users in user studies so as to be
able to trust the reported findings of such research. Therefore, it is somewhat surprising
that previous IT research does not provide a detailed answer to whether user studies use
real users, and instead, the focus of literature surveys on user studies in the IT fields has
mostly been on methods, findings, and data sources.

Table 1 shows that the sample size of reviewed articles in surveys addressing aspects of
user study research is often small, and there is a lack of consideration for real vs. surrogate
users (Bautista, Lin & Theng, 2016;He & King, 2008; Lee & Cunningham, 2013; Van Velsen
et al., 2008; Varghese, 2008). Our research addresses this specific and essential point that is
missing in the prior literature. As shown, only one of the user study reviews in the existing
literature addresses the use or nonuse of real users in the studies. Kim et al. (2013) focused
on user studies in the smart homes field, finding that, of the fifty-eight articles reviewed,
only 20 included user studies with rigorous evaluation, and 12 (20.7%) of the studies used
what could be defined in this research as real users. This finding hints at concerns for the
external validity of user studies in this area.
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SURVEY METHODOLOGY
Implementing a systematic review requires using a framework to synthesize findings from
multiple research studies. To address our research questions, a systematic search using the
search phrase ‘user study’ was conducted on the major information technology databases
ACM Digital Library and IEEE Xplore, with further snowball-inspired sampling
conducted on the Web of Science database to accrue high impact articles published from 1
January 2013 to 31 December 2021. We limited the search to peer-reviewed articles or
conference proceedings published within this period, with the full text of the article
available and written in English. We explain the process in more detail immediately below.

Collection of articles
Figure 1 illustrates the literature collection process using the PRISMA flow diagram
(Sarkis-Onofre et al., 2021). As a systematic review, we found the PRISMA flow diagram
and process (Amin et al., 2018) to be helpful in presenting and reporting our data
collection process.

We first searched the ACMDigital Library (ACMDL) with the phrase ‘user study’ in the
advanced search bar, as the ACMDL is a comprehensive archive of IT research containing
arguably the leading HCI conferences in the field, several related conferences, and related
leading IT journals that report user study research. The ACMDL also spans a wide
assortment of IT fields, and user study research conducted in these fields. We conducted
the search on 22 March 2022, with a date limit of 2013 through 2021, for full-text articles.
The search yielded 11,653 results published until 2021, which from a practical perspective,
were too many to classify manually. In particular, we needed a manageable sample size for
manual classification because identifying whether a study uses real or surrogate users
requires human insight and cannot be determined automatically. Therefore, we narrowed
the results to articles with ‘user study’ included in the article’s keywords. This search
yielded 658 unique articles—a number that was deemed manageable for manual
classification. The articles were then downloaded from ACMDL for manual classification.
The specific search query used was:

“query”: {Keyword:("user study")}
“filter”: {Publisher: Association for Computing Machinery, Publication Date:
(01/01/2013 TO 12/31/2021), ACM Content: DL}

Table 1 Previous literature reviews focusing on user studies. There is a lack of addressing the use of
real users, and the studies generally review a small number of articles.

Author Addresses use of real users Sample size

He & King (2008) no 82

Varghese (2008) no 101

Van Velsen et al. (2008) no 63

Bautista, Lin & Theng (2016) no 10

Lee & Cunningham (2013) no 198

Kim et al. (2013) yes 20
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In order to mitigate possible source bias by collecting user studies from just the ACMDL
database (despite it being a diverse archive), we then searched the IEEE Xplore digital
library with the phrase ‘user study’ as the keyword in the advanced search feature, as IEEE
Xplore is another comprehensive archive of IT research. IEEE Xplore also contains a wide
assortment of IT fields and user study research in these fields. This search yielded 2,576
results published from 2013 to 2021, which were again too many to manually classify, and
from a review of the abstracts, most did not contain a user study. Since using the keyword
field returned too many false positives, we instead searched for articles with ‘user study’
included in the article’s title for conferences and journals published in IEEE Xplore. This
search yielded 91 unique articles—a number that was deemed manageable for manual
classification. The articles were then downloaded from IEEE Xplore for manual
classification. The specific query applied was:

("Document Title":"user study")
Filters Applied: “Conferences Journals” 2013–2021
Finally, using a snowball-inspired sampling approach, we identified a further 13 highly

cited user study articles in the Web of Science (WoS) database from various journal outlets
by using the ‘highly cited’ feature in the WoS interface and the search phrase “user study.”
As we wished to keep all of the articles in the study within the same period, we again
limited the selection to articles from 2013 to 2021. Snowballing using citations of sources
employed in the returned articles is a common technique in systemic reviews (Wohlin,
2014). Our approach of using highly cited articles from the WoS is similar, but rather than
using the reference lists of the selected articles, we leverage this additional database to
identify relevant and highly cited articles. As mentioned byWohlin (2014), there is always a

Figure 1 PRISMA flow diagram of the literature collection process, with a full explanation provided
in the text. Full-size DOI: 10.7717/peerj-cs.1136/fig-1
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need to identify relevant literature, and so different techniques should be employed to
maximize the chances of discovery. The use of the WoS feature of filtering for highly cited
articles is certainly more efficient than the traditional method of picking cited articles from
the reference list of articles contained in the initial dataset. However, further
experimentation would be needed to determine the pros and cons of the two techniques of
traditional snowball sampling or snowball-inspired sampling.

The combined searches on three archival databases resulted in 762 articles. Our focused
search criteria and snowball-inspired sampling resulted in no duplicate articles needing to
be removed. We manually screened the articles by inspecting whether each retrieved article
actually reported a user study. To determine studies to be included in this review, the
following inclusion/exclusion criteria were used: (a) The article had to report an actual
empirical user study involving interaction with an IT system. So, for example, if the article
was a literature review, it was excluded. The article was also excluded if it reported only a
survey (i.e., without an IT interaction). (b) The article had to report the involvement of
study participants. Articles that only discussed algorithms or other technical aspects were
excluded. Applying the inclusion/exclusion criteria via manual inspection led to 134
articles (17.6%) that did not contain an empirical user study of an IT system being
discarded.

Accordingly, the number of articles with actual user studies was 628 (82.4%). Of these,
10 (1.6%) articles contained three separate studies, and 77 (12.3%) articles contained two
separate user studies. Combined with the 541 (86.1%) articles containing one user study,
this resulted in 725 unique user studies for our evaluation (541 + (10 × 3) + (77 × 2)). The
725 studies were methodically reviewed in order to extract the relevant data. To organize
the findings in each article, the type of IT study, the type of users, and the IT domain were
used as the analysis framework. For each selected article, the pertinent information was
recorded in a spreadsheet (see Appendix 1 for details of each article).

Data extraction
We extracted a range of information from the articles (see Table 2).

To classify whether an article samples real users or not, we define the following
concepts:

� Real user is a participant in the user study that is likely to be from the target population
that uses the technology that the research article is presenting.

� Surrogate user is a participant in the user study that is not likely to be from the target
population that uses the technology that the research article is presenting (i.e., a
participant that is not a real user).

In our definitions, by ‘likely’, we mean that the participants would/would not
probabilistically belong to the target population. We acknowledge that the distinction
between real and surrogate is not always clear and distinct. For example, student
participants would be surrogate users if used to evaluate an IT system designed for
experienced medical professionals, but medical student participants that are about to
graduate might qualify as real users. Another example would be user studies of virtual
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reality gaming. Technically, these technologies could target everyone. However, when
testing a new virtual reality game, some interest or expertise in gaming would seem
appropriate. Another edge case example would be mobile technology. Most mobile phone
studies would be generic. However, some such studies focused on specific domains, such as
virtual reality gaming or tourism in a particular location. So, this required a manual
evaluation of each study in order to make the determination.

Coding principles and categories
Manual coding was carried out by reading the articles and saving the information in a
spreadsheet. If multiple studies were part of the same article, they were analyzed separately
(e.g., if an article had one qualitative study with eleven participants and one quantitative
study with 201 participants, the two studies were recorded in separate rows).

Type of user study
Some technologies that are tested do not have a specific target group in mind but are rather
designed for a general population. Therefore, we devised a study classification of Targeting
(see Table 2), with the values Generic and Targeted. There is no predefined target
population for generic technologies, so every person is potentially a user of the technology.
For targeted technologies, however, there is a defined user population. We acknowledge
that there may be situations where the difference betweenGeneric and Targeted technology
is fuzzy or that generic technology could later be employed with a targeted population.

Generic technology examples could be testing a search result page, a mobile phone UI,
or something else intended for the general public. In contrast, targeted technologies have a
specific target group, such as nurses, hikers, graphic designers, etc. A mobile application for
nurses only targets nurses, so students (unless they are nursing students) are not real users.
Targeting can be based on factors such as demographics (e.g., “the needs of the elderly”:
Diepold et al., 2017), physical condition (e.g., “visually impaired people”: Alkhanifer &
Ludi, 2014), or behavior (e.g., “the motion sickness experienced by passengers who read

Table 2 User study information extracted from the articles. [A] denotes automatic retrieval using ACMDL, IEEE Xplore, and WoS export
function, while [M] denotes manual extraction researchers.

Attribute Definition

Article focus

Title [A] Article title

Year [A] Year of publication

Domain [M] Domain of the study (e.g., mobile computing)

Outlet [A] Venue that published article

Type of publication [M] Type of publication venue (Journal/Conference).

User studies reported within the article focus

Targeting [M] Type of targeting (Generic – no defined user group/Targeted – defined user population)

No. of participants [M] The number of participants in the user study.

Type of users [M] Participants in the user study (e.g., real users or surrogate users)

Type of Surrogate User [M] If surrogate users, then what type (e.g., students, crowdworkers, researchers, not mentioned)
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using tablet computers or phones”: Hanau & Popescu, 2017). Often, targeted technologies
require specific skills that not everyone would have (e.g., professional skills). We generally
consider the Internet, email, online search engines, and mobile phones to be standard
technologies available to the general public in most parts of the world. For generic
technologies, because everyone is a potential user, all users in generic technology studies
were automatically coded as real users.

Type of users employed
Even with the employed definitions, determining real users remains partly subjective.
Overall, the process for determining real users involved creating the operational definition
of real users, internalizing its meaning, and then using the definition to manually classify
the reviewed studies in the selected articles. Most user study research articles do not
explicitly mention real users, and this observation is evident from reading the articles in
our sample. Therefore, we needed to infer this from reading the article. The applied user
types are (a) real users and (b) surrogate users (corresponding to the definitions provided in
the earlier section).

Moreover, studies use different expressions to describe users—such as volunteers,
participants, or stakeholders—and the population focus of the technology is not always
clearly presented, nor the targeted population explicitly defined. For these reasons, human
judgment is needed to determine if the study uses real users. Examples of real users include
hikers (Posti, Schöning & Häkkilä, 2014), housekeeping staff (Doke & Joshi, 2015), and
nurses and clinicians (Müller, 2017), with the qualitative analysis providing more
examples.

For surrogate users, we further categorized them into four groups:

� students—people who is studying at a school or college.

� crowdworkers—people recruited via a crowdsourcing platform or via means such as
listserv or social media

� researchers—people conducting academic or scientific research, or a faculty or staff
member at an educational institution

� not mentioned—people who was a participant in a user study, but their categorization
was not mentioned in the article

For a small number of studies, there is a mix of participants, and we choose the largest
group as the demonstrative group. In nearly all of the studies with mixed participants, they
involved students together with researchers and/or academic staff. For example:

“We recruited a total of 20 participants […], with ages ranging from 22 to 58 years (M =
31.65). Participants were recruited from the university students and staff and personal
contacts of the authors. Nineteen participants had computer gaming experience, and only
nine participants had experience with VR.” (Chen et al., 2017) (p. 112)

In this example, it appears that most participants are students, who are not real users of
the technology, so we choose surrogate users, specifically students.
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Fields
We defined IT fields based on our open coding, using standard domain terms as labels (see
Table 3). An IT field refers to a defined sphere of knowledge.

The categories for IT fields were created using an open coding technique (Glaser &
Strauss, 1967), which is appropriate when there is a lack of suitable pre-existing
taxonomies (Hruschka et al., 2004). We considered using the ACM Computing
Classification System, but we found it inadequate for distinguishing between the fields. For
example, the system lacks explicit classes for Mobile Computing and Recommender
Systems. Therefore, we developed our own taxonomy for user studies. This taxonomy was
developed inductively by analyzing the types of user studies in the sample. Even though
not all conceivable fields may be represented, the sample included hundreds of studies
across different fields, and the resulting taxonomy encompasses an extensive array of fields
where user studies are conducted. The 19 IT fields used to classify the 725 user studies are
as follows:

� 3D Models and Interfaces

� Business Applications

Table 3 IT fields of user studies. The taxonomy presents the fields of user study articles based on open
coding using real and surrogate users. The bolded row shows the mid-point (the average).

Domains Real users % Surrogate users % Total

Security & privacy 39 97.5% 1 2.5% 40

Wearable technology 28 93.3% 2 6.7% 30

Input devices & technologies 51 91.1% 5 8.9% 56

Recommender systems 26 89.7% 3 10.3% 29

Mobile & ubiquitous computing 34 85.0% 6 15.0% 40

e-Health & accessibility 55 84.6% 10 15.4% 65

Online content & social media 20 83.3% 4 16.7% 24

Games 15 83.3% 3 16.7% 18

Government & non-profit 8 80.0% 2 20.0% 10

Driving & transportation 19 76.0% 6 24.0% 25

Collaborative work & remote experiences 29 70.7% 12 29.3% 41

Mid-point (Average) 76.1% 23.9%

Business applications 32 69.6% 14 30.4% 46

3D models & interfaces 13 68.4% 6 31.6% 19

Software development 19 67.9% 9 32.1% 28

Information processing & search 63 67.7% 30 32.3% 93

Robotics &
artificial intelligence

19 63.3% 11 36.7% 30

Digital analytics & visualization 27 61.4% 17 38.6% 44

Virtual &
augmented reality

38 58.5% 27 41.5% 65

e-Learning & education 12 54.5% 10 45.5% 22

Grand total 547 75.4% 178 24.6% 725
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� Collaborative Work and Remote Experiences

� Digital Analytics and Visualization

� Driving and Transportation

� e-Health and Accessibility

� e-Learning and Education

� Games

� Government and Non-Profit

� Information Processing and Search

� Input Devices and Technologies

� Mobile and Ubiquitous Computing

� Online Content and Social Media

� Recommender Systems

� Robotics and Artificial Intelligence

� Security and Privacy

� Software Development

� Virtual and Augmented Reality

� Wearable Technology

Business Applications include industrial and consumer-market applications (e.g., electric
power grids: Romero-Gómez & Diez, 2016), aeronautics (Rice et al., 2016), supermarkets
(Kalnikaitė, Bird & Rogers, 2013), banking (Panjwani et al., 2013), shipping (Vartiainen,
Ralph & Björndal, 2013), smart homes, and others with applicability within an industry
niche, although not necessarily comprising a full system. Collaborative Work and Remote
Experiences include group- and teamwork-related studies, as well as crowdsourcing
(Kairam & Heer, 2016). Digital Analytics and Visualization is similar to information
processing in that it deals with information. However, this category focuses explicitly on
analytical tasks (Vimalkumar et al., 2021), such as the presentation of numbers, ontologies
(Zhang et al., 2015), tables, metrics (Miniukovich & De Angeli, 2015), and summarizations
(Rudinac & Worring, 2014).

Driving, Digital Analytics, and Wearable Technology are separated into their own
categories due to a large number of respective studies, although they could be considered as
directed business verticals. Driving and Transportation include automated vehicles (Walch
et al., 2015), along with pedestrians (Bertel et al., 2017). Information Processing and Search
deals with various cognitive aspects relating to users (Song, Liu & Zhang, 2021). This
category includes search, email search (Kim et al., 2017), cognitive strategies (Raptis, Fidas
& Avouris, 2017), and website usability (Alhadreti & Mayhew, 2017). Input Devices and
Technologies include studies focusing on immediate physical contact with the end users,
for example, via tactile displays (Chu et al., 2017) and voice-controlled systems (Kiseleva
et al., 2016). Security and Privacy include studies on authentication (Winkler et al., 2015),
passwords (Haque, Wright & Scielzo, 2013), and so on. Wearable Technology includes
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smart glasses (Zhao et al., 2017), smart watches (Dibia et al., 2015), and smart handbags
(Pakanen et al., 2016).

When a study has characteristics from more than one category, e.g., mobile computing
and search, we choose the more dominant one. For example, mobile computing can be a
context when the study is really focused on understanding the information processing of
the searchers (Lagun, McMahon & Navalpakkam, 2016).

The material was coded by a primary researcher who had participated in drafting the
coding definitions and was, therefore, highly familiar with their purpose. The researcher
reviewed each study carefully to identify whether the study was testing targeted or generic
technology and then, for targeted technologies, whether the study participants were real or
surrogate users. The consistency of the coding was validated via an inter-rater reliability
test. A secondary researcher independently coded a sample of 50 randomly selected articles
that the primary researcher had already coded. The agreement between these two coders
was then calculated using inter-rater reliability metrics, Cohen’s Kappa (K), and Interclass
correlation (ICC). The obtained scores (ICC = 0.96, K = 0.879, p < 0.01) indicate near-
perfect agreement (Gisev, Bell & Chen, 2013). The number of disagreements nearly
exclusively concerned whether a system was designed for a general population (for which
students or general crowdworkers might be considered to be real users), or a targeted
population (for which students or general crowdworkers might be considered as surrogate
users). Once the type of technology employed in the user study was identified (generic or
targeted), the classification of user type was notably easier, as all generic studies employed
real users by default.

The results of our coding of the 725 studies are included as Supplemental Material for
this article.

RESULTS
After coding the data for analysis, 725 actual user studies were found in the screened 628
articles. These user studies vary by sample size (average = 308; max = 113,682; min = 1; std
= 442; median = 23). The most common publication venue was conferences, with 654
(90.2%) user studies published in articles from conferences, and 71 (9.8%) published in
journal articles.

Concerning the screened articles, 541 (86.1%) of the articles were from the ACMDigital
Archive, 74 (11.8%) from IEEE Xplore, and 13 (2.1%) from WoS. There were 233 unique
venues where the 628 unique articles were published. The distribution of articles reporting
on user studies presented in this research was generally consistent by year (2013: n = 86,
13.7%; 2014: n = 88, 14.0%; 2015: n = 85, 13.5%; 2016: n = 96, 15.3%; 2017: n = 134, 21.3%;
2018: n = 47, 7.5%; 2019: n = 5, 0.8%; 2020: n = 11, 1.8%; 2021: n = 76, 12.1%), although
with dips in 2019 and 2020.

We now address our research questions.

Salminen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1136 14/30

http://dx.doi.org/10.7717/peerj-cs.1136#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1136
https://peerj.com/computer-science/


RQ1: Do user studies reported in the IT literature sample real users or
surrogate users as participants?
Of the 725 user studies, 547 (75.4%) employed real users, and 178 (24.6%) employed
surrogate users. However, this includes the 303 (42.8%) user studies that were generic,
meaning that any participant would be a real user. There were 422 (58.2%) targeted studies
in the 725 user studies. Examining the targeted studies, 244 (57.8%) employed real users as
participants, and 178 (42.2%) employed surrogate users as participants.

So, nearly half of the user studies in the IT literature that we analyzed concern generic
technologies for which any participant is potentially a real user, and just over half of the
targeted technology studies sample real users as participants.

RQ2: If sampling surrogate users, what are the types of participants in
these user studies?
Examining the 422 targeted user studies, 178 (42.2%) sampled surrogate users as
participants. Of these, 124 (69.7%) studies sampled students, and 42 (23.6%) studies
sampled crowdworkers. Seven (3.9%) studies did not disclose the participant type, and five
(2.8%) studies sampled researchers as participants.

So, about seven times out of 10, user studies in IT fields employing surrogate users use
students as participants.

RQ3: Are there differences in the sampling of real users or surrogate
users as participants by IT field being studied?
We now examine the use of real or surrogate users by IT field, with the results shown in
Table 3.

As shown in Table 3, Security & Privacy has the highest occurrence of studies with real
users (97.5%), with the fields of Wearable Technology, Input Devices & Technologies, and
Recommender Systems also at 90% or higher for the sampling of real users as participants.

At the other end of the spectrum, e-Learning & Education has the lowest sampling of
real users (54.5%), with Virtual & Augmented Reality only slightly higher (58.5%).

Given the mid-point of the sampling of real users (see Table 3) at 76.1%, there are
apparent differences by IT field. A Chi-Square Goodness of Fit Test was performed to
determine whether the proportion of studies with real users was equal among the IT fields.
The test showed that the proportions did differ by the sampling of real users, X2(18, 547)
= 142.61, p < 0.0001. So, there is a statistically significant difference in the sampling of real
users by IT field.

Figure 2 visualizes the percentage of real users and surrogate users in samples across the
various fields.

Security and Privacy had the highest proportion of real users (n = 39, 97.5%) (see
Table 3). Wearable Technology had the second-highest proportion (n = 28, 93.3%), and
Input Devices & Technologies (n = 51, 91.1%) was the third-highest. e-Learning &
Education had the highest proportion of surrogate users (n = 10, 45.5%), while Virtual &
Augmented Reality had the second-highest proportion (n = 27, 41.5%), and Digital
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Analytics & Visualization (n = 17, 38.6%) was the third-highest. As shown in Fig. 2, most
user studies in all domains employed real users.

The above results concerning the use of real users by domain bring into question the
sampling of targeted and generic user studies in these fields, which we report in Table 4.

As shown in Table 4, Recommender Systems had the lowest percentage of targeted
user studies (13.8%), with Security & Privacy only slightly higher (17.5%). Conversely,
e-Learning & Education had the highest percentage of target studies (90.9%), closely
followed by Government & Non-Profit (90.0%).

When comparing the findings presented in Table 3 with those in Table 4, there appears
to be a correlation between conducting generic studies and sampling real users (or
conducting targeted studies and sampling surrogate users). A Spearman’s rank correlation
was computed to assess the relationship between generic studies and the use of real
users, and the results showed a positive correlation between the two variables, r(723)
= 0.616, p < 0.05, indicating a moderate positive relationship.

DISCUSSION
General discussion about the findings
Returning to our research questions, 75.4% of the user studies in our dataset employ real
users rather than surrogate users as participants (RQ1). However, this percentage includes
generic user studies, meaning any participant would be from the targeted population.
When examining only user studies of targeted technology, just over half of studies (58.4%)
sample real users, indicating substantial room for improvement in this regard.

Of the targeted studies employing surrogate users (RQ2), the most common type of
non-real participant in these user studies is far and away ‘students’ (accounting for
69.7% of the studies from this research). The use (and perhaps overuse) of students in
academic peer review research and the impact on the reported findings is an area for future

Figure 2 Real vs. surrogate users across IT fields. Full-size DOI: 10.7717/peerj-cs.1136/fig-2
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research. Notably, results from studies using students as participants (perhaps in exchange
for extra credit in a course) may suffer from ‘student bias’ (i.e., a lack of motivation where
students do the bare minimum to get the extra credit). Prior studies have also raised issues
with the use/overuse of students as study participants (Ashraf & Merunka, 2016; Hanel &
Vione, 2016; Johansen, 2022).

Concerning differences in the sampling of real users as participants in the IT field
(RQ3), there are statistically significant differences by field, with some fields nearly always
sampling real users. All of the fields examined in this research had studies that employed
surrogate users, although most of the user studies in every field employed real users, which
is a positive signal. However, many of these user studies were generic studies. Again, the
sampling of surrogate users in targeted studies was substantially higher (41.6% of the user
studies reported here), which is not a positive sign and poses questions about the findings’
validity, applicability, and usefulness. There was also a moderately positive, statistically
significant correlation between the testing of generic technologies and the sampling of real
users.

The use of surrogate users appears less frequently in fields where user studies are more
formally controlled by mechanisms such as using Institutional Review Boards (IRBs) like
as e-Health and Accessibility, and is more frequent in fields where there is less external

Table 4 Fields of user studies. The taxonomy presents the IT fields of user study articles based on open
coding using targeted or generic user studies.

Domains Targeted % Generic % Total

Recommender systems 4 13.8% 25 86% 29

Security & privacy 7 17.5% 33 83% 40

Input devices & technologies 18 32.1% 38 68% 56

Online content & social media 9 37.5% 15 63% 24

Wearable technology 12 40.0% 18 60% 30

Mobile & ubiquitous computing 19 47.5% 21 53% 40

Information processing & search 46 49.5% 47 51% 93

Collaborative work & remote experiences 21 51.2% 20 49% 41

Virtual & augmented reality 39 60.0% 26 40% 65

3D models & interfaces 12 63.2% 7 37% 19

Games 12 66.7% 6 33% 18

Digital analytics & visualization 30 68.2% 14 32% 44

Business applications 36 78.3% 10 22% 46

Robotics & artificial intelligence 25 83.3% 5 17% 30

e-Health & accessibility 56 86.2% 9 14% 65

Driving & transportation 22 88.0% 3 12% 25

Software development 25 89.3% 3 11% 28

Government & non-profit 9 90.0% 1 10% 10

e-Learning & education 20 90.9% 2 9% 22

Grand total 422 58.2% 303 42% 725
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control, such as e-Learning & Education. IRBs, or related processes, for example, may be
exempt or expedited in these domains, but overall, the fields can be grouped based on their
tendency to employ real users:

� High prevalence of sampling real users (i.e., well above the mean): Security & Privacy,
Wearable Technology, and Input Devices & Technologies

� Moderate prevalence of sampling real users (i.e., within a standard deviation of the
mean): Driving & Transportation and Collaborative Work & Remote Experience

� Low prevalence of sampling real users (i.e., well below the mean): Virtual &
Augmented Reality and e-Learning & Education

Research novelty
In terms of novelty, our study addresses three key gaps in the previous surveys of user
study research:

Not Focused on Types of Users: The focus of many of those surveys was on other
aspects of the users, such as the methods employed (Van Velsen et al., 2008), rather than
who the users participating in the studies actually were. In this research, we specifically
focused on finding out if user studies involved real users or surrogate users, where surrogate
users were recruited from, and if the use of real or surrogate users varied by IT field.

Small Set of Articles: The previous literature reviews analyzed small samples, usually
tens rather than hundreds of studies (Bautista, Lin & Theng, 2016; Kim et al., 2013). The
sample we analyzed here—725 user studies—is substantially larger than the size of the
largest previous review.

Single Domain: While the earlier surveys tended to focus on one context or domain
such as software systems (Varghese, 2008), music (Lee & Cunningham, 2013), or social
television (Bautista, Lin & Theng, 2016), our sample covers a variety of IT fields—19 to be
specific—, thus providing a broader perspective on IT user studies than earlier surveys.

Is there a systematic flaw in user studies?
In terms of the findings of this survey, most IT user studies (75.4%) sample real users.
However, this includes many studies that are focused on generic technologies that are
testing technologies for all user segments. We stress that the use of surrogate users can be
seen as problematic only when testing specific technologies and not when testing generic
technologies (unless specific demographic or behavioral attributes are being evaluated).
We also acknowledge that there can be cases where surrogate users can provide beneficial
feedback or findings, and surrogate usersmight be appropriate in some cases, such as pilot
or exploratory user studies.

Of the targeted technology studies, only 58.4% use real users, which we feel is a low
percentage, and perhaps indicates a problem in the external validity of the findings
reported in some of these studies. At the very least, the findings reported in these studies
should be taken with a ‘grain of salt’ (i.e., viewed with skepticism). This percentage is also
substantially higher than that reported in Kim et al. (2013) analysis of 58 articles, finding
that only 12 (20.7%) of the studies sampled what could be defined as real users. In the
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targeted technology studies that sample surrogate users, 69.7% use students, and 23.6% use
crowdworkers, with the remaining employing faculty/staff, or not even mentioning the
make-up of the sample. These user types are considered as surrogates for real users when
they are not from the target population of the technology developed, and the impact of the
high use of surrogate users for targeted technologies is an exciting area for future research.

At some level, the use of surrogate users is understandable for many researchers, as the
availability of real users can be limited, recruitment of real users in sufficient numbers can
be quite challenging, and the payment of real users in substantial numbers can be
somewhat expensive. However, there are methods to address or at least mitigate these
hurdles. Based primarily on the experience of the authors, some of these techniques are:

� Crowdworker Platforms: Unlike MTurk, which at the time of this study provides
limited sample selection features, some other crowdworker platforms offer rather
sophisticated sampling methods and access to populations of real users from various
domains, demographics, and experiences, mitigating access issues to real users and
offering the payment of real users at a reasonable cost. Additionally, some of these
platforms offer advance quality control features, although, of course, there are both pros
and cons of using these crowdworker platforms (Peer et al., 2022; Salminen, Jung &
Jansen, 2021).

� Partnering with Commercial Companies, Non-profits, and Governmental
Organizations: Paying real users, especially in some specialty domains, can be rather
expensive. A technique to help mitigate the cost of real users for user studies is to partner
with a commercial entity (or non-profit or government agency) to provide participants
and conduct the user study at the workplace to minimize disruptions to the employees’
work schedules. The authors find the offering of a ‘thank you’ such as a gift card to be a
nice touch. Others have also called for closer collaborations by academia with these
other forms of organizations (Lutchen, 2018; Mullin, 2021; Turin et al., 2022).

� Mix of Real and Surrogate Users: Some studies may require a substantial number of real
users that may be unrealistic to recruit or pose a prohibitive expense. A workaround
can be a mix of real users and surrogate users; basically, running two user studies – one
with a smaller sample of real users and one with a larger sample of surrogate users,
comparing the results between the two samples. For example, say you need 200
participants to achieve some effect size, and recruiting this number of real users is
unrealistic, given the availability of real users or cost. One technique could be to run user
study one with 200 surrogate users that are easier to recruit or less expensive. Then,
conduct user study two with, say, 30 real users (a much more manageable number) as an
external validity check. However, this approach does come with the additional cost of
executing more than one user study.

The practicalities of the research process (i.e., the constraints in which researchers
design their studies and sampling strategies) further complicate the picture. Namely, one
can argue that lab-based experiments sacrifice external validity and realism for internal
validity and control (see Fig. 3). Such experiments often use convenience samples,
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performing contrived tasks in artificial environments. Thus, sampling surrogate users
makes sense when maximizing external validity is not the aim of the study. In contrast,
other kinds of studies (e.g., naturalistic workplace studies) may sacrifice internal validity to
improve external validity. When the study’s purpose is to maximize external validity (as
typically is the case for user studies), sampling real users is appropriate. As shown in Fig. 3,
conventionally, some researchers might think that in order to obtain a high internal
validity (control), they need to recruit surrogate users; and in contrast, using sampling
techniques that maximize external validity would result in lower internal validity. This
thinking is illustrated by the grey cells in the figure. However, said trade-off imposes a
logical fallacy, as it is possible to obtain both a high external and internal validity using a
sample of real users, as indicated by the green cell. Naturally, using real users is not the only
factor for establishing external validity, with appropriate sampling being an example.

How are real users used?
The analysis verified that the real users in the sampled studies conformed to our working
definition of a participant in a user study being likely to be from the target population that
uses the technology that the research article presents.

There was a variance in the level of detail provided within the articles on the users; some
studies were thorough in describing their users, while others lacked details such as
demographics and the means of recruiting the participants. Moreover, some studies
provided no details of the participants, or their details were obfuscated.

The real users included various groups such as domain experts, stakeholders, members
of the general public, and targeted members of the public like children, income groups,
visually impaired users, or communities of gamers, illustrating the diversity of contexts
where user studies are carried out. Also, in most cases, whether generic or targeted, the
participants were selected via convenience sampling, although some crowdworker
platforms (e.g., Prolific) allowed for stratified sampling. The high use of convenience
sampling for recruiting participants in user studies is another area of concern and prompts
an area for future research to find a way to incorporate more rigorous sampling methods.

Figure 3 External and internal validity trade-off. It is possible to obtain both a high external and
internal validity using a sample of real users, as indicated by the green cell.

Full-size DOI: 10.7717/peerj-cs.1136/fig-3

Salminen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1136 20/30

http://dx.doi.org/10.7717/peerj-cs.1136/fig-3
http://dx.doi.org/10.7717/peerj-cs.1136
https://peerj.com/computer-science/


Contribution to the research community
To ensure the validity of user feedback, we encourage researchers to test their technologies
using a “3 Reals” approach: (1) real users, (2) real use cases, and (3) real contexts.

Although these points are not novel in the IT community (for example, see Dourish,
2006; Greenberg & Buxton, 2008), a repetition of these points seems to be in order. Our
contribution is that we stress the point of employing real users specifically for studies testing
targeted technologies, as researchers do not always explicitly describe their user study
sample. The conceptual division between “generic” and “targeted” technologies is
necessary in order to judge user study samples appropriately.

Along with this division, IT publications (i.e., journals and conferences publishing user
studies) should make real users a requirement for user study research that deals with
targeted technologies or require justification for why real users are not used as participants.
To achieve this, a practical solution would be to require, upon submission, an explicit
statement from researchers on (a) whether the study tests targeted or generic technology,
and (b) whether it employs real users or surrogate users for the tested technology. These
actions would increase the level of transparency in reporting the outcomes of user studies
and instill a sense of confidence in the obtained results. They would also make the authors
consider whether their technology requires real users to achieve validity and usefulness.
This ‘self-questioning’ is worthwhile, as we believe there may be a lack of awareness, along
with confusion, as to whom researchers should recruit for their user studies.

A concern is that the IT community often implicitly assumes the use of real users,
instead of requiring an explicit statement of this from the researchers. We suggest making
this explicit in each user study by reporting it in a manner similar to an IRB inspection or
related processes. So, while IRB is specifically concerned with the ethical aspects of user
study research (Benke et al., 2020), there is still a gap when considering the validity aspects
of targeted technologies user studies.

However, we note that the problem is not only one of validity (i.e., whether the results
represent those obtained in real-world circumstances) but also one of value (i.e.,
developing the technology with and for the users). Currently, most authors do not
explicitly mention if they used real users or not, which forces the readers of these articles to
make this conclusion for themselves. For those who lack the sophisticated skills to read
academic research papers, this might hinder correctly interpreting the findings.

Practical implications
We suggest an explicit user study statement for IT user studies, with the following template
being provided for researchers and publication venues to report the sampling of users in
user studies:

“This study tests [NAMEOF TECHNOLOGY BEING TESTED] that is classified as a
[TARGETED/GENERIC TECHNOLOGY]”. To test this technology, we conducted
the study in a [WORKPLACE/LABORATORY/ONLINE] environment. For the
sample participants, we use [REAL USERS/SURROGATE USERS, who are

Salminen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1136 21/30

http://dx.doi.org/10.7717/peerj-cs.1136
https://peerj.com/computer-science/


CROWDWORKERS/STUDENTS/RESEARCHERS/OTHER]. The sampling
technique employed was [RANDOM/SYSTEMIC/CONVENIENCE/CLUSTER/
STRATIFIED/OTHER].

For example, a user study focusing on testing an interactive algorithmically-generated
persona system using real users could be reported as follows: The study tests an
algorithmically generated persona system that is classified as a targeted technology. To test
this technology, we conducted the study in a workplace environment. For the sample
participants, we use real users. The sampling technique employed was random.

As another example, a user study focusing on testing an interactive algorithmically-
generated persona system using surrogate users could be reported as follows: The study
tests an algorithmically generated persona system that is classified as a targeted technology.
To test this technology, we conducted the study in a laboratory environment. For the sample
participants, we use surrogate users, who are crowdworkers. The sampling technique
employed was convenience.

An example of a generic study that always employs real users as participants could be
reported as follows: The study tests an algorithmically generated persona system that is
classified as a generic technology. To test this technology, we conducted the study in a
workplace environment. For the sample participants, we use real users. The sampling
technique employed was convenience.

Limitations and future research avenues
The findings reported here involve some limitations. This systematic review is based on
articles that self-identify as user studies and were published between 2013 and 2021. Our
selection of user studies is skewed towards articles that explicitly refer to ‘user study’, even
though some of the research in computing sciences may not do so. At the same time, ‘user
study’ is an established conceptual phrase in IT, HCI, computing science, and related
research when referring to testing technology with external stakeholders. Other selection
methods for identifying user studies in IT could be pursued in future research.
Additionally, one limitation of any archival database is the scope of the articles contained
within it. The presented study could be replicated on other databases; however, the archival
databases employed in this study were significantly large in both quantity and scope, and
the articles employed were from 233 unique conference and journal outlets.

Another limitation concerns the interplay among user types, sampling techniques, and
study validity. While real users are generally critical for most user studies, depending on
the type and purpose of the study (Hu, Chen & Wang, 2021), there might be situations
where the use of surrogate users would be appropriate, such as with pilot studies. Also, even
if using real users, if the sampling technique is inappropriate, the external validity of the
study might be questionable, as noted in the discussion of Fig. 3. Given the large number of
user studies in our research that employed convenience sampling, this appears to be a
concern. However, our research focused exclusively on the employment of real or
surrogate users and did not examine the interplay with sample and validity or the use of
control groups (Li et al., 2022). This is an interesting and challenging area for future work.
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Moreover, follow-up research could address these five questions:

� Who are the real users that user studies target? Answering this question would provide a
more nuanced understanding of the various types of real users.

� What is the prevalence and impact of using students as participants? Although students
are often low-cost and convenient sub-populations, there are open questions concerning
their use to represent real users, even for generic technologies.

� Is the technology tested with an authentic use case? This is another potential concern for
validity, since testing technology in the circumstances of the real end-user is likely to
result in more reliable findings.

� Are there differences in the use of real users and surrogate users by publication venue?
This would lead to insights into the practices of researchers publishing in different venue
types.

� Who are the non-users of a technology? The focus of most samples in the IT fields has
been (when considered at all) identifying the users of that technology. A further avenue
to explore may be identifying the non-users of a technology.

CONCLUSIONS
Our analysis of 725 user studies shows that there is a potential systematic flaw in user
studies for information technology regarding the sampling of real users, as nearly half of
the user studies involving targeted technologies did not employ real users. Moreover, some
IT fields have a higher prevalence of using surrogate users, especially students. Given the
critical nature of real users in user studies, publication outlets should require an explicit
statement in the article clarifying the type of users recruited for the research.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Joni Salminen conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

� Soon-gyo Jung analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

� Ahmed Kamel performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

� Willemien Froneman performed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Salminen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1136 23/30

http://dx.doi.org/10.7717/peerj-cs.1136
https://peerj.com/computer-science/


� Bernard J. Jansen performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

This is a literature review; there is no raw data or code. The coding sheet with details for
each article is available as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1136#supplemental-information.

REFERENCES
Abras C, Maloney-Krichmar D, Preece J, Bainbridge W. 2004. User-centered design. In:

Bainbridge, W. Encyclopedia of Human-Computer Interaction. Vol. 37. Thousand Oaks: Sage
Publications, 445–456.

Alhadreti O, Mayhew P. 2017. To intervene or not to intervene: an investigation of three think-
aloud protocols in usability testing. Journal of Usability Studies 12(3):111–132.

Alkhanifer AA, Ludi S. 2014. Visually impaired orientation techniques in unfamiliar indoor
environments: a user study. In: Proceedings of the 16th International ACM SIGACCESS
Conference on Computers & Accessibility. New York: ACM, 283–284.

Almirall E, Wareham J. 2009. Contributions of living labs in reducing market based risk. In:
Technology Management Conference (ICE), 2009 IEEE International. Piscataway: IEEE, 1–11.

Amin A, Basri S, Hassan MF, RehmanM. 2018. A snapshot of 26 years of research on creativity in
software engineering—a systematic literature review. In: Kim KJ, Joukov N, eds. Mobile and
Wireless Technologies 2017. Berlin: Springer, 430–438.

Arkush ES, Stanton SA. 1988.Measuring the value of end-user computing. Journal of Information
Systems Management 5(4):62–63 DOI 10.1080/07399018808962942.

Ashraf R, Merunka D. 2016. The use and misuse of student samples: an empirical investigation of
European marketing research. Journal of Consumer Behaviour 16(4):295–308
DOI 10.1002/cb.1590.

Augustin L, Kokoschko B, Wolffram A, Schabacker M. 2021. Defining the non-user: a
classification of reasons for nonuse. Design for Tomorrow—Volume 1:339–349
DOI 10.1007/978-981-16-0041-8.

Bautista JR, Lin TT, Theng Y-L. 2016. How and why users use social TV systems? A systematic
review of user studies. In: 2016 49th Hawaii International Conference on System Sciences
(HICSS). 3868–3877.

Beel J, Langer S. 2015. A comparison of offline evaluations, online evaluations, and user studies in
the context of research-paper recommender systems. In: Kapidakis S, Mazurek C, Werla M, eds.
Research and Advanced Technology for Digital Libraries. Berlin: Springer International
Publishing, 153–168.

Benke I, Feine J, Venable J, Maedche A. 2020. On implementing ethical principles in design
science research. AIS Transactions on Human-Computer Interaction 12(4):206–227
DOI 10.17705/1thci.00136.

Salminen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1136 24/30

http://dx.doi.org/10.7717/peerj-cs.1136#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1136#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1136#supplemental-information
http://dx.doi.org/10.1080/07399018808962942
http://dx.doi.org/10.1002/cb.1590
http://dx.doi.org/10.1007/978-981-16-0041-8
http://dx.doi.org/10.17705/1thci.00136
http://dx.doi.org/10.7717/peerj-cs.1136
https://peerj.com/computer-science/


Bertel S, Dressel T, Kohlberg T, von Jan V. 2017. Spatial knowledge acquired from pedestrian
urban navigation systems. In: Proceedings of the 19th International Conference on Human-
Computer Interaction with Mobile Devices and Services. 32.

Blair E, Zinkhan GM. 2006. Nonresponse and generalizability in academic research. Journal of the
Academy of Marketing Science 34(1):4–7.

Blank S. 2013. Why the lean start-up changes everything. Harvard Business Review, May
2013. Available at https://hbr.org/2013/05/why-the-lean-start-up-changes-everything.

Brittain JM. 1975. Information needs and application of the results of user studies. In: Debons A,
Cameron WJ, eds. Perspectives in Information Science. Dordrecht: Springer, 425–447.

Buchenau M, Suri JF. 2000. Experience prototyping. In: Proceedings of the 3rd Conference on
Designing Interactive Systems: Processes, Practices, Methods, and Techniques. 424–433.

Carver J, Jaccheri L, Morasca S, Shull F. 2004. Issues in using students in empirical studies in
software engineering education. In: Software Metrics Symposium, 2003. Proceedings. Ninth
International. 239–249.

Chan G, Arya A, Orji R, Zhao Z. 2019. Motivational strategies and approaches for single and
multi-player exergames: a social perspective. PeerJ Computer Science 5(3):e230
DOI 10.7717/peerj-cs.230.

Chandler J, Shapiro D. 2016. Conducting clinical research using crowdsourced convenience
samples. Annual Review of Clinical Psychology 12(1):53–81
DOI 10.1146/annurev-clinpsy-021815-093623.

Chen H, Dey A, Billinghurst M, Lindeman RW. 2017. Exploring the design space for multi-
sensory heart rate feedback in immersive virtual reality. In: Proceedings of the 29th Australian
Conference on Computer-Human Interaction. 108–116.

Chu S, Zhang F, Ji N, Zhang F, Pan R. 2017. Experimental evaluation of tactile patterns over
frictional surface on mobile phones. In: Proceedings of the Fifth International Symposium of
Chinese CHI. 47–52.

Cohen L, Manion L, Morrison K. 2017.Validity and reliability. In: Research Methods in Education.
8th. Abingdon-on-Thames: Routledge.

Dibia V, Trewin S, Ashoori M, Erickson T. 2015. Exploring the potential of wearables to support
employment for people with mild cognitive impairment. In: Proceedings of the 17th
International ACM SIGACCESS Conference on Computers & Accessibility. New York: ACM,
401–402.

Diepold K, Götzl K, Riener A, Frison A-K. 2017. Automated driving: acceptance and chances for
elderly people. In: Proceedings of the 9th International Conference on Automotive User Interfaces
and Interactive Vehicular Applications Adjunct. 163–167.

Doke P, Joshi A. 2015. Mobile phone usage by low literate users. In: Proceedings of the 7th
International Conference on HCI, India, HCI 2015. 10–18.

Dourish P. 2006. Implications for design. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 541–550.

Etikan I. 2016. Comparison of convenience sampling and purposive sampling. American Journal of
Theoretical and Applied Statistics 5(1):1 DOI 10.11648/j.ajtas.20160501.11.

Fischer B, Peine A, Östlund B. 2020. The importance of user involvement: a systematic review of
involving older users in technology design. The Gerontologist 60(7):e513–e523
DOI 10.1093/geront/gnz163.

Fotler D, Germann R, Gröbe-Boxdorfer B, Engeln W, Matthiesen S. 2022. User-centered design
– evolution of an interdisciplinary process approach utilizing empirical research methods. In:

Salminen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1136 25/30

https://hbr.org/2013/05/why-the-lean-start-up-changes-everything
http://dx.doi.org/10.7717/peerj-cs.230
http://dx.doi.org/10.1146/annurev-clinpsy-021815-093623
http://dx.doi.org/10.11648/j.ajtas.20160501.11
http://dx.doi.org/10.1093/geront/gnz163
http://dx.doi.org/10.7717/peerj-cs.1136
https://peerj.com/computer-science/


Ahram T, Taiar R , eds. Human Interaction, Emerging Technologies and Future Systems V.
Berlin: Springer International Publishing, 431–442.

Galloway A. 2005.Non-probability sampling. In: Encyclopedia of Social Measurement. Amsterdam:
Elsevier, 859–864.

Gisev N, Bell JS, Chen TF. 2013. Interrater agreement and interrater reliability: key concepts,
approaches, and applications. Research in Social & Administrative Pharmacy: RSAP 9(3):330–
338 DOI 10.1016/j.sapharm.2012.04.004.

Glaser BG, Strauss AL. 1967. The discovery of grounded theory: strategies for qualitative research.
Piscataway: Transaction Publishers.

Greenberg S, Buxton B. 2008. Usability evaluation considered harmful (some of the time). In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 111–120.

Gundry D, Deterding S. 2019. Validity threats in quantitative data collection with games: a
narrative survey. Simulation & Gaming 50(3):302–328 DOI 10.1177/1046878118805515.

Hanau E, Popescu V. 2017. MotionReader: visual acceleration cues for alleviating passenger E-
reader motion sickness. In: Proceedings of the 9th International Conference on Automotive User
Interfaces and Interactive Vehicular Applications Adjunct. 72–76.

Hanel PHP, Vione KC. 2016. Do student samples provide an accurate estimate of the general
public? PLOS ONE 11(12):e0168354 DOI 10.1371/journal.pone.0168354.

Haque SM, Wright M, Scielzo S. 2013. Passwords and interfaces: towards creating stronger
passwords by using mobile phone handsets. In: Proceedings of the Third ACM Workshop on
Security and Privacy in Smartphones & Mobile Devices. 105–110.

He J, King WR. 2008. The role of user participation in information systems development:
implications from a meta-analysis. Journal of Management Information Systems 25(1):301–331
DOI 10.2753/MIS0742-1222250111.

Hruschka DJ, Schwartz D, John DCS, Picone-Decaro E, Jenkins RA, Carey JW. 2004. Reliability
in coding open-ended data: lessons learned from HIV behavioral research. Field Methods
16(3):307–331 DOI 10.1177/1525822X04266540.

Hu X, Chen J, Wang Y. 2021. University students’ use of music for learning and well-being: a
qualitative study and design implications. Information Processing & Management 58(1):102409
DOI 10.1016/j.ipm.2020.102409.

Hultsch DF, MacDonald SWS, Hunter MA, Maitland SB, Dixon RA. 2002. Sampling and
generalisability in developmental research: comparison of random and convenience samples of
older adults. International Journal of Behavioral Development 26(4):345–359
DOI 10.1080/01650250143000247.

Johansen P. 2022. Advantages & disadvantages of using college students in psychological research.
Education - Seattle PI. Retrieved 14 August, 2022. Available at https://education.seattlepi.com/
advantages-disadvantages-using-college-students-psychological-research-1342.html.

Kairam S, Heer J. 2016. Parting crowds: characterizing divergent interpretations in crowdsourced
annotation tasks. Proceedings of the 19th ACM Conference on Computer-Supported Cooperative
Work & Social Computing - CSCW 16:1635–1646 DOI 10.1145/2818048.

Kalnikaitė V, Bird J, Rogers Y. 2013. Decision-making in the aisles: informing, overwhelming or
nudging supermarket shoppers? Personal and Ubiquitous Computing 17(6):1247–1259
DOI 10.1007/s00779-012-0589-z.

Kashfi P, Nilsson A, Feldt R. 2017. Integrating user eXperience practices into software
development processes: implications of the UX characteristics. PeerJ Computer Science 3(11):
e130 DOI 10.7717/peerj-cs.130.

Salminen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1136 26/30

http://dx.doi.org/10.1016/j.sapharm.2012.04.004
http://dx.doi.org/10.1177/1046878118805515
http://dx.doi.org/10.1371/journal.pone.0168354
http://dx.doi.org/10.2753/MIS0742-1222250111
http://dx.doi.org/10.1177/1525822X04266540
http://dx.doi.org/10.1016/j.ipm.2020.102409
http://dx.doi.org/10.1080/01650250143000247
https://education.seattlepi.com/advantages-disadvantages-using-college-students-psychological-research-1342.html
https://education.seattlepi.com/advantages-disadvantages-using-college-students-psychological-research-1342.html
http://dx.doi.org/10.1145/2818048
http://dx.doi.org/10.1007/s00779-012-0589-z
http://dx.doi.org/10.7717/peerj-cs.130
http://dx.doi.org/10.7717/peerj-cs.1136
https://peerj.com/computer-science/


Khan KS, Kunz R, Kleijnen J, Antes G. 2003. Five steps to conducting a systematic review. Journal
of the Royal Society of Medicine 96(3):118–121 DOI 10.1177/014107680309600304.

Kim JY, Craswell N, Dumais S, Radlinski F, Liu F. 2017. Understanding and modeling success in
email search. In: Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 265–274.

KimMJ, OhMW, ChoME, Lee H, Kim JT. 2013. A critical review of user studies on healthy smart
homes. Indoor and Built Environment 22(1):260–270 DOI 10.1177/1420326X12469733.

Kiseleva J, Williams K, Hassan Awadallah A, Crook AC, Zitouni I, Anastasakos T. 2016.
Predicting user satisfaction with intelligent assistants. In: Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in Information Retrieval. New York:
ACM, 45–54.

Konu H. 2015. Developing a forest-based wellbeing tourism product together with customers-An
ethnographic approach. Tourism Management 49(3):1–16 DOI 10.1016/j.tourman.2015.02.006.

Kosara R, Healey CG, Interrante V, Laidlaw DH, Ware C. 2003. Thoughts on user studies: Why,
how, and when. IEEE Computer Graphics and Applications 23(4):20–25
DOI 10.1109/MCG.2003.1210860.

Krawczyk P, Topolewski M, Pallot M. 2017. Towards a reliable and valid mixed methods
instrument in user eXperience studies. In: 2017 International Conference on Engineering,
Technology and Innovation (ICE/ITMC). 1455–1464.

Kujala S, Kauppinen M. 2004. Identifying and selecting users for user-centered design. In:
Proceedings of the Third Nordic Conference on Human-Computer Interaction. 297–303.

Lagun D, McMahon D, Navalpakkam V. 2016. Understanding mobile searcher attention with
rich ad formats. In: Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management. 599–608.

Lee JH, Cunningham SJ. 2013. Toward an understanding of the history and impact of user studies
in music information retrieval. Journal of Intelligent Information Systems 41(3):499–521
DOI 10.1007/s10844-013-0259-2.

Li Y, Fan Z, Yuan X, Zhang X. 2022. Recognizing fake information through a developed feature
scheme: a user study of health misinformation on social media in China. Information Processing
& Management 59(1):102769 DOI 10.1016/j.ipm.2021.102769.

Liedtka J. 2014. Innovative ways companies are using design thinking. Strategy & Leadership
42(2):40–45 DOI 10.1108/SL-01-2014-0004.

Liedtka J, Ogilvie T. 2012. Helping business managers discover their appetite for design thinking.
Design Management Review 23(1):6–13 DOI 10.1111/j.1948-7169.2012.00165.x.

Losada DE, Elsweiler D, Harvey M, Trattner C. 2021. A day at the races: using best arm
identification algorithms to reduce the cost of information retrieval user studoies. Applied
Intelligence. Available at https://eprints.whiterose.ac.uk/176732/.

Lutchen KR. 2018. Why companies and universities should forge long-term collaborations.
Harvard Business Review. Available at https://hbr.org/2018/01/why-companies-and-universities-
should-forge-long-term-collaborations.

Miniukovich A, De Angeli A. 2015. Computation of interface aesthetics. In: Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems. New York: ACM,
1163–1172.

Muhib FB, Lin LS, Stueve A, Miller RL, Ford WL, Johnson WD, Smith PJ. 2001. A venue-based
method for sampling hard-to-reach populations. Public Health Reports 116(1_suppl):216–222
DOI 10.1093/phr/116.S1.216.

Salminen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1136 27/30

http://dx.doi.org/10.1177/014107680309600304
http://dx.doi.org/10.1177/1420326X12469733
http://dx.doi.org/10.1016/j.tourman.2015.02.006
http://dx.doi.org/10.1109/MCG.2003.1210860
http://dx.doi.org/10.1007/s10844-013-0259-2
http://dx.doi.org/10.1016/j.ipm.2021.102769
http://dx.doi.org/10.1108/SL-01-2014-0004
http://dx.doi.org/10.1111/j.1948-7169.2012.00165.x
https://eprints.whiterose.ac.uk/176732/
https://hbr.org/2018/01/why-companies-and-universities-should-forge-long-term-collaborations
https://hbr.org/2018/01/why-companies-and-universities-should-forge-long-term-collaborations
http://dx.doi.org/10.1093/phr/116.S1.216
http://dx.doi.org/10.7717/peerj-cs.1136
https://peerj.com/computer-science/


Müller L. 2017. Solving the wrong problem: when technology is making us blind. In: Proceedings of
the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2017 ACM International Symposium on Wearable Computers. New York:
ACM, 1012–1015.

Mullin M. 2021. Learning from local government research partnerships in a fragmented political
setting. Public Administration Review 81(5):978–982 DOI 10.1111/puar.13395.

Mustak M, Jaakkola E, Halinen A. 2013. Customer participation and value creation: a systematic
review and research implications. Managing Service Quality: An International Journal
23(4):341–359 DOI 10.1108/MSQ-03-2013-0046.

Pakanen M, Lappalainen T, Colley A, Häkkilä J. 2016. User perspective for interactive handbag
design. In: Proceedings of the 18th International Conference on Human-Computer Interaction
with Mobile Devices and Services Adjunct. 1155–1158.

Panjwani S, Ghosh M, Kumaraguru P, Singh SV. 2013. The paper slip should be there!:
perceptions of transaction receipts in branchless banking. In: Proceedings of the 15th
International Conference on Human-Computer Interaction with Mobile Devices and Services.
328–331.

Peer E, Rothschild D, Gordon A, Evernden Z, Damer E. 2022. Data quality of platforms and
panels for online behavioral research. Behavior Research Methods 54(4):1643–1662
DOI 10.3758/s13428-021-01694-3.

Peterson RA, Merunka DR. 2014. Convenience samples of college students and research
reproducibility. Journal of Business Research 67(5):1035–1041
DOI 10.1016/j.jbusres.2013.08.010.

Pickering D, Blaszczynski A. 2021. Paid online convenience samples in gambling studies:
questionable data quality. International Gambling Studies 21(3):1–21
DOI 10.1080/14459795.2021.1884735.

Posti M, Schöning J, Häkkilä J. 2014. Unexpected journeys with the HOBBIT: the design and
evaluation of an asocial hiking app. In: Proceedings of the 2014 Conference on Designing
Interactive Systems. 637–646.

Rahi S. 2017. Research design and methods: a systematic review of research paradigms, sampling
issues and instruments development. International Journal of Economics & Management
Sciences 6(2):2–5 DOI 10.4172/2162-6359.1000403.

Raptis GE, Fidas CA, Avouris NM. 2017. On implicit elicitation of cognitive strategies using gaze
transition entropies in pattern recognition tasks. In: Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems. 1993–2000.

Rice M, Tay HH, Ng J, Lim C, Selvaraj SK, Wu E. 2016. Comparing three task guidance interfaces
for wire harness assembly. In: Proceedings of the 2016 CHI Conference Extended Abstracts on
Human Factors in Computing Systems. 2279–2284.

Ries E. 2011. The lean startup. London: Penguin Books Ltd.

Ritchie J, Lewis J, McNaughton Nicholls C, Ormston R. 2013. Qualitative research practice: a
guide for social science students and researchers. Thousand Oaks: Sage.

Romero-Gómez R, Diez D. 2016. Alarm trend catcher: projecting operating conditions in the
electrical power grid domain with interactive alarm visualization. In: Proceedings of the XVII
International Conference on Human Computer Interaction. 35.

Rudinac S, Worring M. 2014. Making use of semantic concept detection for modelling human
preferences in visual summarization. In: Proceedings of the 2014 International ACM Workshop
on Crowdsourcing for Multimedia. New York: ACM, 41–44.

Salminen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1136 28/30

http://dx.doi.org/10.1111/puar.13395
http://dx.doi.org/10.1108/MSQ-03-2013-0046
http://dx.doi.org/10.3758/s13428-021-01694-3
http://dx.doi.org/10.1016/j.jbusres.2013.08.010
http://dx.doi.org/10.1080/14459795.2021.1884735
http://dx.doi.org/10.4172/2162-6359.1000403
http://dx.doi.org/10.7717/peerj-cs.1136
https://peerj.com/computer-science/


Salminen J, Jung S, Jansen BJ. 2021. Suggestions for online user studies. In: Stephanidis C,
Soares MM, Rosenzweig E, Marcus A, Yamamoto S, Mori H, Rau PLP, Meiselwitz G, Fang X,
Moallem A, eds. HCI International 2021—Late Breaking Papers: Design and User Experience.
Berlin: Springer International Publishing, 127–146.

Sarkis-Onofre R, Catalá-López F, Aromataris E, Lockwood C. 2021. How to properly use the
PRISMA Statement. Systematic Reviews 10(1):117 DOI 10.1186/s13643-021-01671-z.

Schillewaert N, Langerak F, Duharnel T. 1998. Non-probability sampling for WWW surveys: a
comparison of methods. Market Research Society. Journal 40(4):1–13
DOI 10.1177/147078539804000403.

Snyder H. 2019. Literature review as a research methodology: an overview and guidelines. Journal
of Business Research 104(5):333–339 DOI 10.1016/j.jbusres.2019.07.039.

Song X, Liu C, Zhang Y. 2021. Chinese college students’ source selection and use in searching for
health-related information online. Information Processing & Management 58(3):102489
DOI 10.1016/j.ipm.2021.102489.

Steelman ZR, Hammer BI, Limayem M. 2014. Data collection in the digital age: innovative
alternatives to student samples. MIS Quarterly 38(2):355–378
DOI 10.25300/MISQ/2014/38.2.02.

Svanaes D, Seland G. 2004. Putting the users center stage: role playing and low-fi prototyping
enable end users to design mobile systems. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 479–486.

Torraco RJ. 2005. Writing integrative literature reviews: guidelines and examples. Human
Resource Development Review 4(3):356–367 DOI 10.1177/1534484305278283.

Turin TC, Chowdhury N, Rumana N, Lasker MAA, Qasqas M. 2022. Partnering with
organisations beyond academia through strategic collaboration for research and mobilisation in
immigrant/ethnic-minority communities. BMJ Global Health 7(3):e008201
DOI 10.1136/bmjgh-2021-008201.

van Berkel N, Kostakos V. 2021. Recommendations for conducting longitudinal experience
sampling studies. In: Karapanos E, Gerken J, Kjeldskov J, Skov MB, eds. Advances in
Longitudinal HCI Research. Berlin: Springer International Publishing, 59–78.

Van Velsen L, Van Der Geest T, Klaassen R, Steehouder M. 2008. User-centered evaluation of
adaptive and adaptable systems: a literature review. The Knowledge Engineering Review
23(3):261–281 DOI 10.1017/S0269888908001379.

Varghese RR. 2008. User studies in the electronic environment: review and brief analysis. The
International Information & Library Review 40(2):83–93
DOI 10.1080/10572317.2008.10762766.

Vartiainen E, Ralph M, Björndal P. 2013. Challenges of using information technology onboard
ships. In: Proceedings of the 11th Asia Pacific Conference on Computer Human Interaction. 226–
230.

Vimalkumar M, Gupta A, Sharma D, Dwivedi Y. 2021. Understanding the effect that task
complexity has on automation potential and opacity: implications for algorithmic fairness. AIS
Transactions on Human-Computer Interaction 13(1):104–129 DOI 10.17705/1thci.00144.

Walch M, Lange K, Baumann M, Weber M. 2015. Autonomous driving: investigating the
feasibility of car-driver handover assistance. In: Proceedings of the 7th International Conference
on Automotive User Interfaces and Interactive Vehicular Applications. 11–18.

Wilkinson CR, De Angeli A. 2014. Applying user centred and participatory design approaches to
commercial product development. Design Studies 35(6):614–631
DOI 10.1016/j.destud.2014.06.001.

Salminen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1136 29/30

http://dx.doi.org/10.1186/s13643-021-01671-z
http://dx.doi.org/10.1177/147078539804000403
http://dx.doi.org/10.1016/j.jbusres.2019.07.039
http://dx.doi.org/10.1016/j.ipm.2021.102489
http://dx.doi.org/10.25300/MISQ/2014/38.2.02
http://dx.doi.org/10.1177/1534484305278283
http://dx.doi.org/10.1136/bmjgh-2021-008201
http://dx.doi.org/10.1017/S0269888908001379
http://dx.doi.org/10.1080/10572317.2008.10762766
http://dx.doi.org/10.17705/1thci.00144
http://dx.doi.org/10.1016/j.destud.2014.06.001
http://dx.doi.org/10.7717/peerj-cs.1136
https://peerj.com/computer-science/


Winkler C, Gugenheimer J, De Luca A, Haas G, Speidel P, Dobbelstein D, Rukzio E. 2015. Glass
unlock: enhancing security of smartphone unlocking through leveraging a private near-eye
display. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. 1407–1410.

Wohlin C. 2014. Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In: Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering. 1–10.

Yasen M, Jusoh S. 2019. A systematic review on hand gesture recognition techniques, challenges
and applications. PeerJ Computer Science 5:e218 DOI 10.7717/peerj-cs.218.

Yesilada Y, Brajnik G, Harper S. 2009. How much does expertise matter? A barrier walkthrough
study with experts and non-experts. In: Proceedings of the 11th International ACM SIGACCESS
Conference on Computers and Accessibility. 203–210.

Zhang Y, Tudorache T, Horridge M, Musen MA. 2015. Helping users bootstrap ontologies: an
empirical investigation. In: Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. 3395–3398.

Zhao Y, Hu M, Hashash S, Azenkot S. 2017. Understanding low vision people’s visual perception
on commercial augmented reality glasses. In: Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. 4170–4181.

Salminen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1136 30/30

http://dx.doi.org/10.7717/peerj-cs.218
http://dx.doi.org/10.7717/peerj-cs.1136
https://peerj.com/computer-science/

	Who is in the sample? An analysis of real and surrogate users as participants in user study research in the information technology fields ...
	Introduction
	Survey methodology
	Results
	Discussion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


