
Gene expression analysis in cancer microarray datasets, 
investigating the role of an Embryonic Stem Cell Factor 

in prognosis 

Deepankar Chakroborty 
Master’s Thesis 

Master’s Degree Programme in Bioinformatics 
Department  of  Information Technology 

University of Turku 
September 2014 

The originality of this thesis has been checked in accordance with the University of Turku 
quality assurance system using the Turnitin OriginalityCheck service.  



  

 

UNIVERSITY OF TURKU 
Department of Information Technology 
 
CHAKROBORTY, DEEPANKAR : Gene expression analysis in cancer microarray 

datasets, investigating the role of an Embryonic 
Stem Cell Factor in prognosis 

Master’s thesis 70 p. 
Master’s Degree Programme in Bioinformatics 

September 2014 

Keywords 

Cancer, Stem Cells, Embryonic Stem Cell Factor, Gene Expression Analysis, Differential expression 
Analysis,ROTS, Survival analysis, Prognosis, Microarray dataset, Co-Expression, Gene-centric 
Microarray study. 

 Cancer is a condition that is demanding more research with new cases being reported 
each year. In this thesis the aim was to investigate the behaviour of a embryonic stem cell 
factor and its partners in various types of cancers. The embryonic stem cell factor under 
study in this thesis is responsible for the maintenance of pleuripotency in stem cells and its 
interaction partners maintain the self-renewal ability of the embryonic stem cells. With the 
discovery of cancer stem cells and detections of stem cell like gene signatures from cancers, 
it becomes important to address the issue to identify the responsible genes. The embryonic 
stem cell factor of our interest when knocked down in cell line studies showed downregula-
tion of stem cell pleuripotency factors therefore, we believe it may be playing a key role in 
cancer tissues where it is expressed. 

 We use gene expression analysis of microarray data of cancer patient samples along 
with the available survival information to test whether the gene and its partners have any ef-
fect on survival. We use correlation measures to establish that partners of the embryonic stem 
cell factor of our interest might be co-expressed in patient samples. In particular, we were 
able to identify colon cancer and seminoma samples that express our gene of interest at high 
levels. We used T-test and ROTS (Reproducibility Optimized Test Statistic) on these datasets 
to detect which genes are differentially expressed. 

 The project also presents a different approach to microarray data analysis where the 
focus is not on the disease or condition but a set of genes are central theme of the study, and 
the research is done to find the cancer or datasets where the gene set is perturbed. This is de-
sired under situations similar to the premise of this project, that if an embryonic stem cell 
factor is expressed in adult tissues it is a sign of problems. 

 The project suggests that the embryonic stem cell factor under question alone cannot 
be held responsible for poor survival of the cancer patients, instead it seems that it is a pro-
survival factor after all. But further analyses are being done in this area to uncover more in-
formation and also to find factors that can explain the poor survival of the samples for the 
cancer datasets under study. 
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1. Introduction  

 Cancer affects millions of people globally, [1] and thousands of new cases are reported 

in Finland each year [2]. However with more research being conducted on cancer more 

knowledge is being revealed and more questions are raised. In the last decade of the 20th century 

Cancer Stem Cells were identified for the first time [3] and then in the first decade of the 21st 

century much research has been done characterizing them and in identifying them in various 

cancer tissues [4]–[6]. Embryonic stem cell transcription factors are shown to be highly 

expressed in cancer samples [7], [8]. In this study we investigate the role of a novel embryonic 

stem cell factor, which we refer as ESC-1, in different cancers. More information about ESC-

1 and its properties is presented in section 2.4.  

Gene expression analysis was performed on several cancer datasets (description of 

datasets presented in section 4.1) spanning over 5500 samples. The gene expression of ESC-1 

along with its partners was studied to see how they behave in different cancers. This study was 

necessary because not much information is available about ESC-1 in cancer samples. It was 

important to look into ESC-1 because it is an embryonic stem cell factor and should not be 

expressed in normal healthy adult tissue. It was established that there is a positive correlation 

between ESC-1 and its interaction partners in cancer samples in section 5.3. Cancer samples 

that were expressing ESC-1 at high levels were identified (section 5.7).  

Differentially expressed genes between the samples expressing ESC-1 at high levels and the 

samples that were not expressing ESC-1 were also identified (section 5.9). There was overlap 

among the differentially expressed genes between the different colon cancer datasets that we 

used in this project, more about this in section 5.9. Survival information was analyzed from 

cancer datasets and contrary to our initial hypothesis, which was that ESC-1 will have a 

negative effect on survival of patients, there are indications from four colon cancer datasets 

that ESC-1 might be a positive prognostic factor, in section 5.10. However, further research 

investigations are required to understand the role of ESC-1 in cancer. 

This thesis is a part of a project aimed at characterizing ESC-1in a better way and to 

study its properties and investigation of its role in cancer. The research work in this project was 

conducted under the guidance of Dr. Laura Elo Computational Biomedicine group at Turku 

Centre for Biotechnology. The research work in this project is a part of collaboration between 

laboratories of Prof. Riitta Lahesmaa and Dr. Laura Elo. The funding for this project was 

received from Sigrid Juselius Foundation and Cancer Foundation. 
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2.1 Cancer  

In today’s world, everyone is aware of the 

devastating impact cancer has on our society. World 

Cancer Research Fund states that in 2012 globally 

there were 14.1 million reported cases of cancer [9]. 

Finland has 15,000 new reported cases of cancer every 

year [2]. Cancer is a biological condition where a 

group of cells, which all living beings are made of, 

loose control over their processes and start to behave 

abnormally [10]. As they are altered self-cells* our 

immune system is also helpless most of the time. 

Under normal circumstances events from cell birth to 

its death are well regulated by the signals received 

from growth factors, growth inhibitors and apoptotic 

factors. The important mechanisms in the cell that are 

impaired when the cell becomes cancerous are cell 

division, DNA repair, apoptosis (programmed cell 

death) and cell signalling [11]. However, most often we 

find that there is a combination of pathways and 

mechanisms that are disrupted in a cancer cell and not 

just one, which makes it difficult to target. On top of this 

there are several components in the pathways and finding 

out the key factors that are not behaving properly is a 

large task at hand. Along with this the cancer cells take the route of the circulatory system and 

lodge themselves at different sites, away from their place of origin. Now they cause problems not 

on just local but on a systemic level, a condition defined by the term ‘metastasis’ [11].  

The primary cause of these deviations from the normal life trajectory of the cells (from 

birth → fulfil function → orchestrated death) is genetic damage to the genes that regulate the 

important processes. The target genes that are affected by this genetic damage are classified 

into two groups. The first group of genes are proto-oncogenes, which are when activated due 

Fig 2.1 A) Pie chart showing the 
breakdown of 14.1 million new 
incidences[9] of cancer worldwide in 
2012. B) Pie chart showing the 
breakdown of 8.2 million deaths[1] due 
to cancer worldwide in 2012. 

19%
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million
deaths 

13%

12%

10%
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* Self-cells are cells of our body that our immune system is trained to recognize so that it does not initiate an 
immunological response once it encounters them. 
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to mutations become oncogenic (i.e. cancer causing). These genes promote growth of the tissue 

where they are activated or promote production of a product that promotes growth [11]. The 

other group is tumour suppressor genes, which are the genes that keep a check on abnormal 

growth [11]. Most genes in this group are regulators and effectors of cell cycle, apoptosis and 

DNA damage repair. Cancer causing mutations are acquired during the lifespan of cells due to 

the influence of carcinogens, like UV light, some chemical agents like acetaldehyde, which is 

commonly introduced in the human system by smoking tobacco. As these mutations mostly 

occur in somatic cells*[12] instead of germ cells#[12], thankfully it is not passed on to the next 

generation. However, there are certain mutations that are carried on through the germ cells, 

which increase the probability of acquiring cancer. For instance, mutated BRCA1 and BRCA2 

genes elevate the risk of developing breast cancer up to 80% and the risk of ovarian cancer up 

to 40% in a woman’s lifetime [13]. 

2.1.1 Hallmarks of Cancer 

  There is a constant presence of mutagens in the environment, most importantly in the 

form of Ultra Violet light from the Sun. However despite this fact, we do not observe such high 

rates of mutations (eventually causing cancer) because our body has certain mechanisms to 

repair these damages and to keep the cells with irreparable DNA damage from dividing [12]. 

However, there are certain traits that help a cancer breach through the lines of defence of an 

organism. These help them to start growing as a tumour and cause more damage over time, and 

becoming life threatening in most cases.  The development of cancer is characterized by certain 

“Hallmarks of Cancer” [14] which represent the procurement of a capability by the cancer cell 

that marks a successful breach in one of the anti-cancer mechanisms. A brief explanation is 

presented below:  

1. Self sufficiency in growth signals: Under normal circumstances a cell requires 

signal from external factors that bind to the cellular receptors and give a signal for 

mitogenesis (i.e. initiation of mitosis), but several cancer tissues gain independence 

from these growth signals by either over expressing the cell surface receptors [15], or 

 

# Germ Cells – Reproductive cells (also known as gametes e.g. ovum, sperm), undergo meiosis, progeny is 
haploid, precursor may be haploid or diploid, genetic recombination occurs thus the progeny is not identical 
to its precursor cells [12], [14]. 

* Somatic Cells – Non reproductive cells, undergo mitosis, ploidy same as parent cell, progeny identical to 
parent cell in genetic content (no recombination occurs in most cases with some exceptions) [12], [14]. 
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by a mutation that keeps the cell surface receptor active irrespective of the binding of 

the growth signal, which is also known as ligand independent signalling [14].  

2. Insensitivity to anti-growth signals: Cancer cells become insensitive to factors 

that keep a check on cell growth and division, e.g. mutation in the pRB 

(Retinoblastoma protein) and other components in its pathway make the cell 

insensitive to several anti-growth signals. [14] 

3. Evading apoptosis: Apoptosis or Programmed Cell Death is an orchestrated 

destruction of a cell once it receives the signal about its fate. There are several 

conditions that trigger this in a normal and healthy cell. Apoptosis can be initiated 

by extra cellular factors, like deficiency of IL-3 survival factor [16], or by some 

intracellular signals such as signal after detection of DNA damage and signalling 

imbalance caused by an oncogene [17] to name a few. However, mutations in the 

apoptotic genes or the receptor molecules for death or survival signals, confers on 

the cancer cells the ability to evade apoptosis. [14] 

4. Limitless potential for replication (i.e. limitless cell division): The above three 

capabilities facilitate the cancer cells to divide and over time generate macroscopic 

tumours. In contrast to cancerous cells, normal human cells cannot divide infinitely, 

which is governed by Hayflick limit, which showed that cells in a culture have a 

finite replicative potential of about 60-70 doublings [18]. This is primarily due to a 

phenomenon called ‘telomere shortening’, which is basically the loss of ends or 

terminals of chromosomes called telomeres (which are made up of short 

hexanucleotide repeats, in vertebrates it is TTAGGG), every time a cell divides. It 

is inevitable and over time when too much information is lost, the cell loses its 

capability to divide further on [18]. But there is an enzyme called telomerase, which 

is not expressed under normal circumstances but when expressed in tumours it 

repairs the telomeres by restoring the fragments lost during cell division. 85% to 

90% of the malignant cells use the activation of telomerase enzyme for the 

maintenance of telomeres [19]. Role of telomerase in immortalizing cells in-vitro 

was demonstrated in 1998 [20], [21]. 
5. Tissue invasion and metastasis: 90% of human cancer deaths are caused by 

metastasized tumour [22]. Some cancer cells escape from their location and invade 

the neighbouring tissue to create a new tumour. They also take the route of the 

circulatory system to transport the cancer cells to distant body parts and create new 

tumours over time [14]. 
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6. Sustained angiogenesis: To ensure a proper supply of nutrients and oxygen to the 

tumour once it grows to macroscopic scale, the cancer tissue initiates angiogenesis 

(i.e. formation of blood vessels). It is necessary for the tumour to develop means of 

blood supply in order to grow bigger [23]. 

 

Cancer Biology is an active field of research, ranging from studies to diagnose and 

characterize cancer through image analysis [24], to in-silico simulation studies [25], [26], to 

studies investigating use of natural compounds to compound cancer [27], to studies with novel 

methods of treatment e.g. using oncolytic viruses as cancer therapy [28].  

 

2.2 Stem Cells 

Stem cells are undifferentiated cells that have the capability to give rise to progeny that 

can differentiate into different cell types [11], [29]. They are found in most multicellular 

organisms. There are two types of stem cells Adult stem cells, found in various tissues (e.g. 

bone marrow has hematopoietic stem cells) and Embryonic stem cells, which are isolated from 

the inner cell mass of a blastocyst [29]–[31]. Embryonic Stem Cells are pluripotent [10], i.e. 

they are capable of giving rise to all cell types of an adult body, if they are provided with the 

right set of signals to do so. In the recent years (Nobel Prize in Medicine, 2012) there have 

been studies to induce pluripotency in adult somatic cells [32]. Adult somatic cells do not have 

properties of the stem cells but introduction of certain transcription factors can convert these 

cells to stem cells [32]–[34]. 

 

2.2.1 Properties of Stem Cells 

Stem cells are well characterized and are recognized to possess the following 

properties: 

State of differentiation: Stem cells are in an undifferentiated state[29], i.e. they have 

not yet specialized to carry out a particular function. Despite having the same genetic content, 

the stem cells are not able to perform the functions that the other somatic cells are capable 

of[11]. For instance, Neural Stem Cells (NSCs)[35] and neurons both are found in adult 

mammalian brain, but the difference between them is that NSCs are undifferentiated and hence 

cannot transmit nerve impulses while their counterparts neurons are differentiated to carry out 
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nerve impulses. 

Self-Renewal: Stem cells have the ability to go through several cycles of cell division 

while maintaining the capacity to divide further. The stem cells do this while maintaining their 

undifferentiated state [11]. 

Potency: Stem cells have the ability of a stem cell to differentiate into multiple cell types 

based on the signals it receives [32].  

Homing: Homing is the migration of cells to their tissue of origin, Hematopoietic Stem 

Cells undergo this process to reach Bone marrow [36], [37]. It is noteworthy to mention that 

all stem cells do not perform homing. 

Plasticity: Adult stem cells derived from one tissue can be reprogrammed to differentiate 

into cell types from different germ layers (they are the three primary germ layers in the 

mammalian embryo: ectoderm, mesoderm, and endoderm [30]). This is known as stem cell 

transdifferentiation or stem cell plasticity [38]. For instance, Neural Stem Cells from brain 

(which are derived from ectoderm), can be reprogrammed to differentiate into other cells 

derived from either of the three germ layers [35]. 

 

2.3 Cancer Stem Cells 

Some of these properties of stem cells are similar to the properties of cancer cell. In a 

condition like cancer when the cells lose their sensitivity to regulatory elements and resort to 

various means to sustain themselves in the body, it is not unlikely that they start adopting some 

properties of stem cells. This is observed in cases where the cancer relapses even after the 

tumour resection and chemotherapy. This is due to the presence of certain cells in the cancer 

tissue that have stem cell like properties, primarily the property of Self-Renewal and the ability 

to give rise to all cells found in that particular cancer. These cells, though very few in number, 

are called Cancer Stem Cells (CSC) [39]. CSCs are, therefore, capable of giving rise to the 

whole tumour by themselves [39]. This is what is suspected to take place when there is a tumour 

relapse after surgery and drug therapy. Both CSCs and Stem cells are known to be stress 

resistant and have the ability to survive as well as perform their functions in challenging 

conditions [40], [41]. CSCs are a recent concept in Cancer Biology as they were first cited in 

1990s and then, only after a decade there has been a significant focus on research pertaining to 

CSCs [5] and their properties.  



14 
 

The first Cancer Stem Cells were suspected and identified in the case of leukaemia (a 

hematological malignancy) [3]. The study found that a small volume of leukaemia cells were 

able to generate colonies in “Colony Forming Assay” and later on it was proved that not all 

leukaemia cells but only certain cells are capable of doing this. The study showed that when 

the cells from Human Acute Myeloid Leukaemia(AML) when transplanted in SCID mice 

(Severe Combined Immuno-Deficiency) [42], (in these mice the adaptive immune system is 

compromised), the transplanted human AML cells initiated AML in the mice[3]. Later similar 

observations were made in colon cancer and colon cancer stem cells[4] were identified using a 

similar procedure of transplanting human colon cancer initiating cells to SCID mice [4]. The 

study also suggested that CSCs need to be targeted for cancer therapy to be effective [4]. CSCs 

have been shown to provide drug resistance to tumours like in lung cancer [43], pancreatic 

cancer and breast cancer [44].   

Following these discoveries, cancer stem cells were identified in other tissues like colon 

[45] and also in-silico analyses were done which identified stem-cell like gene expression [7] 

signature in malignancies, e.g. ovarian cancer [46]. Studies have also been conducted to predict 

the prognosis of the patients in ovarian cancer [46]. 

 

2.4 ESC-1 and other Pluripotency factors 

ESC-1 is a pseudonym for our gene of interest as the findings are unpublished. This 

acronym will be used throughout this thesis. The aim of this study was to study gene expression 

of ESC-1 and its partners in various cancer patients. The following findings of collaborators 

were the motivation for pursuing this study: 

a. ESC-1 is an embryonic stem cell marker and is highly expressed in human 

embryonic stem cells (hESCs).  
b. ESC-1 is downregulated rapidly in response to differentiation, i.e. it is expressed 

when cell is in an undifferentiated state.  
c. ESC-1 is required for maintenance of the self-renewal capacity of the hESCs.  
d. ESC-1 depletion resulted in downregulation of key markers of undifferentiated 

embryonic stem cells.  
e. ESC-1 was highly expressed in Seminoma (Tcam2 cell line) and Embryonal 

Carcinoma (2012Ep cell line).  
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f. ESC-1 is an RNA binding protein and also binds to RNA Helicase A.  
The hypothesis was that if an embryonic stem cell factor is being expressed in an adult 

tissue, it is not a good sign as it is not supposed to be expressed there. 

 

2.5 Gene Expression Quantification 

In this project we analyse the gene expression of patients across several cancer types. We 

chose to investigate the gene expression because the varying gene expression in different 

tissues is due to the varying combination of genes that are on and off in a particular tissue. It is 

because of this that our skin cells are morphologically and functionally so much different than 

the neurons in our brain, or how the muscle cells of our stomach function in ways highly 

contrasting to the way muscle cells in our heart function. 

The identification of differential gene expression, i.e. genes having a different expression 

level as compared to normal tissues, is among the very first methods a bioinformatician can 

use to judge that is there something unusual going on in the samples under study. The gene 

expression data is available abundantly on various public portals. 

 

2.5.1 Affymetrix Platform for microarray 

Microarray is a chip with a 2-dimensional array of microscopic dots where the DNA, 

RNA or Protein binding probes are present. In each of the cells or individual compartments 

which are called “spots”, lies a chromogenic probe or an antibody that detects its target and 

emits a signal. This signal is detected when the microarray chip is scanned by a microarray 

reader which subsequently generates an image file [47]. The raw intensities from each of the 

spots representing a gene is retrieved by processing the image file. 
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Affymetrix GeneChip microarrays have probes chemically synthesized on the chip 

itself. Each probe corresponds to a specific region of its target gene’s RNA or cDNA[47]. These 

probes are 25-30 bases long oligonucleotides. They are synthesized by a process called 

photolithography [47], more information can be found on the website of Affymetrix. For each 

gene there are 2 probes, one Perfect Match (PM) to the target gene and one Mismatch (MM) 

which serves as a control for hybridization specificity [47].  

 

2.5.2 Why perform gene expression analysis ? 

The basic idea behind gene expression analysis is to identify the genes that are 

statistically significantly differentially expressed between two or more groups under 

consideration. Differential expression implies the difference in gene expression levels between 

two groups of samples. The gene expression in the same tissue type varies not only from 

individual to individual but it varies within the same individual based on different sampling 

time. This is due to the fact that gene expression is not a static in nature, instead it is a dynamic 

phenomenon. So there are several differences that arise due to the basic biology of the 

individual and they might have nothing to do with the actual disease or condition we want to 

study. To resolve this ambiguity and to judge which genes are actually differentially expressed 

and are not just a consequence of natural variation we use statistics.  

Fig 2. – A) – Microarray image file[76], showing output from an Affymetrix GeneChip, which is 
shown on the right (B) Affymetrix GeneChip Human Genome U133 Plus 2.0.[77] 
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With the help of statistical tests we determine how likely is it to have a gene expression 

profile like our Gene X. If it is unlikely that we have a gene expression profile like that, we call 

that result statistically significant. We can use several statistical tests to do this, but most 

common is Student’s T-test (described in section 4.6.1). Followed by this, conventionally we 

look at the resulting genes, and look for their annotations to identify in which biological 

processes they are involved and try to look for the set(s) of genes that work together, or genes 

from a pathway that are enriched in that particular cancer or disease under study. 
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Section 3) Hypothesis & Workflow 

 

 

 

 

3.1 Hypotheses 
 
 

3.2 Workflow 
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3.1 Hypothesis 
Hypothesis: 

x It is possible to differentiate between cancer and non cancer samples using ESC-1 alone. 

x ESC -1 explains the survival of patient.  

Alternate Hypothesis: 

x It is not possible to differentiate between cancer and non cancer samples using ESC-1 

alone. 

x ESC -1 alone does not explain the survival of patient.  

 

3.2 Workflow 

 

Fig. 3.1 – Flowchart showing the workflow of this project while mentioning the sections and images that 
correspond to that part. 
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This project was different from conventional gene expression data analysis projects in 

two main aspects. Primarily, in conventional gene expression analysis projects there is a disease 

of interest and we are looking for genes that are differentially expressed (between the healthy 

and diseased samples). Then we draw the conclusion that these genes might be involved in the 

pathogenesis or development of that condition/disease. Contrary to that in this project there 

were genes of interest and the key interest was to find cancers in which they are perturbed. 

Secondly, the sample size for this study was much larger as compared to a conventional 

microarray study. In this study over 5500 cancer samples were analysed.  

A flowchart representing the workflow of this project is presented as Fig. 3.1 and a 

flowchart highlighting the differences between the conventional microarray analysis and this 

project is shown as Fig. 3.2. 

 

 

Fig. 3.2 – Flowchart showing the contrast between conventional microarray data analysis pipeline and our 
approach. 
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4.1 Datasets 

4.1.1 TCGA 

 The first source of datasets used was TCGA [48] (The Cancer Genome Atlas), as they 

had raw as well as normalized data for a large number of samples along with clinical 

information (e.g. Tumour stage, Tumour size and most important of all survival information). 

They also host RNA sequencing, SNP, Methylation, Protein Expression data along with Exome 

Sequence. But the prime interest in this study was in gene expression data for various cancer 

types.  

 

4.1.2 Datasets from TCGA 

Datasets that were used from TCGA in this study are enumerated in the Table IV.I below. 

 Dataset 
ID 

Cancer Type Number 
of Probes 

Number 
of 

Samples 

Tumour & 
Normal count Platform 

TCGA 
COAD 

Colon 
Adenocarcinoma[49] 90797 174  Tumour 19 : 

Normal 155 

Agilent 244K Custom 
Gene Expression 
G4502A-07-3 

TCGA 
LUAD 

Lung 
Adenocarcinoma[50] 90797 32 Tumour 32 : 

Normal 0 

Agilent 244K Custom 
Gene Expression 
G4502A-07-3 

TCGA 
LUSC 

Lung Small Cell 
Carcinoma [51] 90797 153 Tumour 153 : 

Normal 0 

Agilent 244K Custom 
Gene Expression 
G4502A-07-3 

TCGA 
OV 

Ovarian serous 
cystadenocarcinoma[52] 22277 586 Tumour 586 : 

Normal 8* 

Affymetrix HT Human 
Genome U133 Array 
Plate Set 

TCGA 
OV 

Ovarian serous 
cystadenocarcinoma[52] 90797 588 Tumour 588 : 

Normal 8* 

Agilent 244K Custom 
Gene Expression 
G4502A-07-3 

TCGA 
GBM Brain Glioblastoma [53] 22277 519 Tumour 519 : 

Normal 0 

Affymetrix HT Human 
Genome U133 Array 
Plate Set 

TCGA 
GBM Brain Glioblastoma [53] 90797 89 Tumour 89 : 

Normal 0 

Agilent 244K Custom 
Gene Expression 
G4502A-07-1 

TCGA 
GBM Brain Glioblastoma [53] 90797 473 Tumour 473 : 

Normal 0 

Agilent 244K Custom 
Gene Expression 
G4502A-07-2 

 

 
Table IV.I – Table listing the datasets from TCGA with the details like sample count, probe count.  
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4.1.3 GEO 

Gene Expression Omnibus [54], [55], generally referred by its abbreviation GEO, is a database 

for Gene expression data hosted by the National Centre for Biotechnology Information at the 

United States of America. GEO provides access to raw data (or normalized at some occasions 

depends on what authors have provided). However the additional clinical information about 

the samples is rarely provided by the authors at GEO, which is partly due to the fact that GEO 

requires the data to comply to MIAME (Minimum Information About a Microarray 

Experiment) standards, which do not have the clinical information as mandatory. Therefore 

most authors choose to leave it out. GEO is one of the most widely used portal for the retrieval 

and submission of Microarray datasets[54]. There are datasets from several experiment types 

like mRNA Expression, miRNA and siRNA studies from several organisms and conditions. 

 

4.1.4 Datasets from GEO 

Datasets that were used in this thesis from GEO are listed below in Table IV.II. Nicknames 

are assigned to the datasets for this thesis. This was done specifically for the Colon cancer 

datasets, as there were 5 of them.  

 Dataset ID Cancer Type 
Number 
of 
Probes 

Number 
of 
Samples 

Tumour & 
Normal 
count 

Platform 
Dataset 
Nickname 
in Thesis 

GSE3218 [56] Seminoma 22283 107 Tumour 101 : 
Normal 6 Affymetrix HG U133 Seminoma 

GSE8671 [57] Colon 
Adenoma 54675 64 Tumour 32 : 

Normal 32 
Affymetrix HG U133 Plus 
2.0 Colon1 

GSE2109 [58] 
Expression 
Project for 
Oncology 

54675 2158 Tumour 2158 Affymetrix HG U133 Plus 
2.0 ExPO 

GSE14333 [59] Colon Cancer 54675 290 Tumour 290 Affymetrix HG U133 Plus 
2.0 Colon2 

GSE17536 [60] Colon Cancer 54675 177 Tumour 177 Affymetrix HG U133 Plus 
2.0 Colon3 

GSE33113 [61] Colon Cancer 54675 96 Tumour 90 : 
Normal 6 

Affymetrix HG U133 Plus 
2.0 Colon4 

GSE17537 [60] Colon Cancer 54675 57 Tumour 57 Affymetrix HG U133 Plus 
2.0 Colon5 

 

 

Table IV.II – Table listing the datasets from GEO with the details like sample count, probe count 
and the nickname used for the datasets later on in the thesis.  
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4.2 Normalization 

  Microarray experiments are susceptible to variation due to the fact that there are several 

sources that may affect the quantification of gene expression. Normalization is the process 

which tries to compensate for such variation. In other words it removes, or rather attempts to 

remove the variations that can be attributed to factors other than biological variation itself [62]. 

It is also worth mentioning that the various factors affect different experiments to different 

extents as all of the runs are independent events. Thus, it becomes even more important to 

normalize the data so that the different microarrays are comparable to each other. 

Normalization also attempts to bridge the gap between different platforms [62]. However, there 

are separate methods for implementing those. As the datasets in this work were analysed 

independent of each other and at the results were compared at the end, it is not relevant to 

discuss them in-depth here. 

 Some sources or variation (other than biological phenomenon) that might affect the 

microarray data are dye bias (not required on 1-channel array e.g. Affymetrix), scanner 

malfunction, batch effect and array design. Also another very significant issue is the variation 

introduced by the experimenters themselves. 

 

4.2.1 RMA Normalization 

 Among the assortment of normalization methods, RMA (Robust Multiarray Average) 

was chosen in this study as the method for normalizing the arrays from Affymetrix platform as 

it performs global background correction as well as does quantile normalization across-array 

[63]. RMA also fits a linear model per probe set which removes probe-specific affinities. It 

makes the distribution of the expression values across the arrays identical, and thereby making 

them more comparable to one another [63]. 

 Normalization of the microarray expression data from the Affymetrix platform was 

performed using the “affy” package [64], [65] from Bioconductor. In case of the TCGA 

datasets, the normalized expression values were downloaded directly from the TCGA 

website[48]. This was done keeping in mind that it would be easier for other researchers to 

replicate the results. Otherwise there are a lot of small things like the version of the 

normalization software, the parameters etc. that can influence the results. 

 The “affy” package [65] in Bioconductor provides functions to read and analyse the 
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raw microarray data files, having the extension .CEL. The basic process involves reading the 

.CEL files stored in a directory using the ReadAffy() function, followed by normalization 

using the rma() function. There is also another option to use the justRMA() function which 

does not require using the ReadAffy() function instead, it can be invoked directly once the 

current working directory is set to the location where the .CEL files are stored. The function 

justRMA() was used because it is an implementation of RMA method in C programming 

language, which is fast as well as uses lesser primary memory (RAM) as compared to using 

the ReadAffy() → rma() [65].   

# Installing affy package 

source("http://bioconductor.org/biocLite.R") 

biocLite("affy") 

library(affy) 

  

# Normalizing the expression values 

# Also reads the .CEL files from the current working directory 

result<-justRMA() 

dat2<-exprs(result) 

  

4.2.2 UPC Normalization 

UPC (Universal exPression Code) is a normalization method which uses a mixture 

model to estimate the activation status of a Gene in a sample [66]. The mixture model that UPC 

uses is made of two components 1) Background noise and 2) Background noise + Biological 

signal [61]. UPC also corrects for platform-specific background noise. As UPC scores are 

derived from the information within a sample theoretically, it should perform equally well if 

ran on the whole dataset all together or on individual samples or even on batches of samples 

for that matter. These claims made in the publication seemed to hold well during the analyses. 

Therefore, UPC was chosen as another approach to normalize the data. 

UPC produces standardized scores or UPC values which are on a 0 to 1 continuous 

scale, where the lower value indicates that it is likely to be in the background while a higher 

value indicates that the gene is transcriptionally active [66]. UPC score represents the 

probability that a gene is expressed in that sample, and in the publication they classify UPC > 

0.5 as active and UPC ≤ 0.5 as inactive[66]. Using UPC has an added advantage that samples 

from different profiling techniques can be compared e.g. RNA-seq and Microarray. 

Additionally, it computes the background noise on a per-sample basis, thereby making it 
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possible to account for sample-specific bias[66]. 

It is noteworthy to shed some light on the contrast between RMA and UPC scores. As 

evident from the density distribution of RMA scores (Fig. 4.1 A) a lot of the samples are 

accumulated in the medium region (between 6-8.5), which is where maximum of the 

background noise lies in an Affymetrix signal. However, exactly the opposite of that is 

happening in the case of UPC scores (Fig 4.1 B), where there are very few samples in the 

middle region.  

     

 
# Computing UPC scores  
library(SCAN.UPC) 
UPCresult = UPCfast(celFilePattern="*.CEL")  
 
# UPCresult is the object with UPC scores 
# Retreiving UPC scores as expression set 
 
mat=exprs(UPCresult) mat=mat[,sort(colnames(mat))] 

 

UPC however, is a very processor and primary memory (RAM) intensive normalization 

method, much more than RMA. Therefore, I divided the datasets into batches of 30-50 samples 

and then ran UPC and later on assembled the results (UPC scores for all the probes/genes in 

each sample) from those individual runs into a matrix for one dataset.  

 

 

Fig. 4.1 – The density distribution plots for a gene in samples of dataset GSE17536 A) RMA 
normalized intensity for ESC-1. B) UPC scores for the same gene.  

B A 
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4.3 Statistical Terms 

Some of the statistical terms are explained here with small examples, to facilitate quick 

understanding or recap. 

4.3.1 Mean, Median & Quartiles 

 Let us consider a set V = {0 ≤ x ≤ 100 , x ϵ N} so that “V” is a set of Nautral numbers 

from 0 to 100. Now mean (µ) is the average of observations i.e. Sum of observations divided 

by total number of observations. In this case the mean is 50. The median of a set of 

observations is the observation that divides the data into two equal sized halves, i.e. lower half 

which comprises of set of observations less than it and upper half which comprises of 

observations higher than it [67]. If the set of observations is finite and can be written in an 

ordered fashion then the median would be the middle one. For set V, the median is 50. This 

can only be done when there are odd number of observations, but in case of even number of 

observations there is never going to be a middle element. In that case the median is the mean 

of the two centre-most elements. 

 Quartiles are the statistical quantities that divide a dataset into quarters (1/4th) i.e. into 

four groups of equal sizes just like the median divides into two groups of equal sizes [67]. First 

Quartile (Q1) is the middle observation between the smallest observation of the set and the 

median, Median is the second Quartile (Q2), and the Third Quartile (Q3) is the middle 

observation between the median and the highest observation. For our set V the Q1 is 25 , Q2 

also known as median is 50 and Q3 is 75. Inter Quartile Range (IQR) is the difference of Q1 

and Q3, IQR =Q3 - Q1. In our case IQR is 50. 

Let us redefine our variable V = {1 ≤ x ≤ 100 , x ϵ N} so that “V” is a set of Natural 

numbers from 1 to 100. Now this has 100 observations as opposed to 101, as in the previous 

definition of set V. It can be seen how this affects the values of our statistics. µ is 50+51
2 = 50.5. 

The Quartiles also change in the same manner, Q1 is 25.75 and Q3 is 75.25 and IQR is 49.5. 

 Median is more resistant as compared to mean to the presence of outliers in the data. 

The reason is that mean computes the sum of the observations (i.e. includes those extreme 

observations). However, median orders the observations and picks the middle one, and as the 

order is unaffected by the extreme observations, median manages to stay robust. 
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4.3.2 Standard Deviation and Variance 

 Standard Deviation (σ) is a statistical quantity representing the amount of dispersion of 

the data around mean [67]. Low σ means that observations tend to be scattered very close to 

the mean (µ), and a high σ means that the observations are scattered far away from the mean. 

The Standard Deviation is defined as: σ =√∑ (𝑥𝑖−𝜇)2𝑛
𝑖=1

𝑛 , where n is the number of observations 

in sample and µ is the true mean of the population. If population mean is used then we get 

Population Standard Deviation. However, in most cases we do not know the true mean µ and 

we are bound to use the sample mean 𝜇 ̂ =  1
𝑛 ∑ 𝑥𝑖

𝑖=𝑛
𝑖=1  (where n is the number of observations 

in sample). The Sample Standard Deviation can then be calculated as: σs =√∑ (𝑥𝑖−�̂�)2𝑛
𝑖=1

𝑛−1 , where 

n is number of observations in sample and �̂� is sample mean. Variance is the Square of Standard 

deviation i.e. σ2 = ∑ (𝑥𝑖−�̂�)2𝑛
𝑖=1

𝑛−1 .  

 

4.4 Plots and Diagrams 

  Some of the plots and diagrams 

used in this thesis are discussed here along 

with their features to facilitate better 

comprehension of those images and to 

instigate critical thinking. 

4.4.1 Boxplot 

 Boxplot is a graphical way to 

represent a dataset through the use of 

quartiles [67]. In the example boxplot (Fig. 

4.3) of random data the variables are on the Y axis and the value of the observations are on the 

X axis, (this orientation does not matter it can be the other way around as well). Here we have 

a pseudo-randomly generated matrix with dimensions 200 x 5. The values are drawn from the 

standard normal distribution [67] with mean µ = 0 and standard deviation σ =1. Now in the 

individual box plot for each variable we have a box marked with First Quartile (Q1) forming 

the lower bound and the Third Quartile (Q3) forming the upper bound. The thick line within 

the box is the Median (Q2). Dotted lines radiating from the box are called “whiskers”. The 

Fig. 4.3 – Boxplot of pseudo-random data. 
1-Whisker, 2-Outlier, 3-Box , 4-Median. 

① 

③ 

④ 

② 
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whiskers generally extend from the nearest quartile to 1.5 times the IQR (or till the maximum 

value, if it lies within Quartile + 1.5 x IQR). However, if there are observations outside this 

mark, then they are denoted by circles and those observations are called “outliers”. The red 

line here is drawn to show the mean of the whole data, unlike the median which is calculated 

for each variable. It is an additional statistical feature in this plot which is conventionally not 

drawn in a boxplot. 

4.4.2 Heatmap 

 Heatmap is a 2D 

representation of a matrix, with 

cells organized in rows and 

columns. The heatmap allows us 

to see in a single plot how each 

observation in a particular sample 

fares with respect to others of the 

same variable as well as other 

variables. Fig 4.4 shows an 

example of a heatmap for a data 

matrix (10 x 10) which was 

generated pseudo randomly from 

standard normal distribution with 

the µ = 0 and σ =1.  The colour key 

shown in the top left corner can be seen and each cell representing an observation in the matrix. 

Rows were named to be samples, so that it is analogous to a gene expression matrix, where 

there are samples on one margin and genes (represented by probes) on the other margin. We 

can also see the dendrogram which is a representation how the rows cluster if we use 

hierarchical clustering. Hierarchical clustering makes a cluster by two approaches 1) 

Agglomerative, i.e. keep adding samples one by one in a cluster till the algorithm has 

incorporated all and made a cluster containing all samples, or 2) Divisive, i.e. the algorithm 

keeps removing samples from one large cluster, until all the samples are removed. The order 

of incorporating or removing the samples is represented using a dendrogram (tree like structure 

with binary splits). 

 

Fig. 4.4 – Heatmap of a pseudo-random data matrix with 
colour key and dendrograms (showing hierarchical 
clustering of rows, as well as of columns). 
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4.4.3 Scatterplot 

 Scatterplot is another graphical tool used to visualize each observation in a dataset on 

two orthogonal dimensions. It plots points, representing each observation, while representing 

its value in the variables under consideration on the axes. For an example of a scatterplot see 

Fig. 4.6 (under section 4.5.1 Principal Component Analysis). 

4.4.4 Venn diagram 

 Venn diagram is from Set Theory [68], and shows 

all possible logical relations between sets under 

consideration (generally speaking, they are finite sets). 

The conception of Venn Diagrams and their use in 

mathematics is attributed to John Venn, a British 

Philosopher and logician.  

Let us define:  
Set 1 = {"a", "b", "c", "d", "e", "f"}; 

Set 2 = {"d", "e", "f", "g", "h", "i"}; 

Set 3 = {"a", "b", "f", "g", "h", "i", "j"}; 

And let us consider the universal set (𝜉) made of all lower case English alphabet, which 

are 26 in number. Now the Venn diagram (Fig. 4.5) illustrates that there is one letter that is present 

in all the 3 sets, written as 𝑆𝑒𝑡 1 ∩ 𝑆𝑒𝑡 2 ∩ 𝑆𝑒𝑡3, and if one examines the three sets they can see 

that it indeed is the letter “f”. There are two letters common between Set 1 and Set 2, “d” and 

“e”, that is not common with Set 3. It can be written as (𝑆𝑒𝑡 1 ∩ 𝑆𝑒𝑡 2) \ 𝑆𝑒𝑡3 [68]. 

A table with common symbols used in set theory is presented here as Table IV.III. 

Symbol Operation Name Description of operation 
∑ Universal Set Contains everything under consideration. 
ϵ Element of 1 ϵ Set A, implies 1  is a member of Set A. 
∩ Intersection A ∩ B, implies, common elements of A and B. 
∪ Union A ∪ B, implies all unique elements of A and B. 
- Difference  A - B, means unique items of A that are not in B. 
 ‘ Complement A' means, Everything but not A. 

\ 
Relative 
complement 

A \ B means elements in A that are not in B. It is 
the same as the Difference operator “-“. 

Fig. 4.5 – Venn diagram for three sets.  

Table IV.III – List of commonly used symbols in Set theory and their mathematical interpretation. 
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4.5 Dimensionality Reduction 

Gene expression experiments deal with tens of thousands of probes and even hundreds 

of samples. In this case visualization of the data in such high dimensions is not possible. This 

is because we are limited by the 3 dimensional space we live in. In such a scenario we require 

methods which scale down the data while preserving as much variance as possible. 

Dimensionality reduction [69] is the mathematical technique which is used to do so. There are 

several methods for this, but I used Principal Component Analysis and implemented it in R. 

4.5.1 Principal Component Analysis 

  Principal Component Analysis (PCA) reduces the dimensionality of the data by 

applying orthogonal linear transformation [69]. The objective of this method is to find Principal 

components (or dimensions) which represent the maximum amount of variance of the data, in 

simpler words, it aims at finding the attributes that can account for most variation or differences 

in the dataset. The unique property of these Principal components (PCs) is that they are 

orthogonal to each other, i.e. perpendicular. Each PC represents a specific proportion of the 

Total Variance in the data [69] and it is orthogonal to its preceding components (to make sure 

that there is no correlation). The number of PCs that we get is less than or equal to the number 

of variables. In large datasets with thousands of variables the first two components are chosen 

to represent the scaled down version of the data because they are the two components 

explaining the largest proportion of the total variance of the data. When the number of PCs 

approaches the number of variables all the variance in the data is accounted for by all the 

preceding components.  

If we want to get a bird’s eye view of the data and find out if there is any organization 

in the data, we can use PCA as it is an unsupervised method. If there is a correlation/clustering, 

among the samples then it will be visible. However, if it is none, then there will be no 

organization among the samples in the plot. 

We can understand this by an example. There is a dataset called ‘iris’ in R (it can be 

loaded using the command data(iris) which contains 150 observations of Sepal length and 

Width and Petal Length and Width. It has 50 flowers each from the three species of Iris genus 

viz. I. setosa, I. versicolor and I. virginica. This dataset was collected by Sir Ronald Fisher in 

the year 1936 [70]. 
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In the scatter plot (Fig. 4.6 A) we can see that the first two components are explaining 

the differences well. The I. setosa species are separated very well from the other two. The plot 

also suggests that there is not such a clear difference between the other two species. Although 

most of them are well separated with just a few samples in the twilight zone. But we must 

remember that this is a separation just based on four parameters. We can also have a look at 

the box plot (Fig. 4.6 B) of these four parameters to visualize the data space and values of 

parameters.  

PCA does not tell us what the different components mean or represent, but we can 

attempt to find it out. PCA on the iris dataset (four numeric parameters) returns us four 

components, the standard deviations of which are: 

> pca$sdev #prcomp returns standard deviations of PCs as sdev. 

PC1  PC2  PC3  PC4      

2.365402e+01  9.850791e+00  1.224728e+00  3.266697e-15 

 

Now we can compute the variance by squaring these standard deviations, the variances are: 

> (v=pca$sdev^2) #Std. Dev is square root if Variance, therefore squaring Std.Dev. 

PC1  PC2  PC3  PC4      

5.595128e+02 9.703808e+01 1.499959e+00 1.067131e-29 

 

The proportion of the total variance that each component explains is: 

Fig. 4.6 – A) Scatter plot of PCA Eigen values on the First two Principal Components of the iris 
dataset. The colours represent the species of the flower, legend on the bottom left of the plot. B) 
Boxplot of the 4 parameters in the iris dataset (for all 150 samples). Y-axis values are in 
centimetres. 
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> v*100/sum(v) 

PC1  PC2  PC3  PC4      

85.02577  14.74629  0.2279398 1.621654e-30 

Now we should look at the variance of the four parameters of the iris dataset and the 

percentage each makes up for the total variance. 

> (var2=apply(iris[,1:4],2,var)) 

Sepal.Length Sepal.Width Petal.Length Petal.Width  

   0.6856935 0.1899794 3.1162779 0.5810063  

 

> apply(iris[,1:4],2,var)*100/sum(var2) 

Sepal.Length Sepal.Width Petal.Length Petal.Width  

   14.994532 4.154411  68.145793    12.705264  

 

We can see that Petal Length represents the most variance in the dataset followed by 

Sepal Length which in turn is closely followed by Petal Width. This is also evident from the 

Boxplot (Fig. 4.6 B). But a key thing to note here is that amount of variance represented by the 

Principal Components does not necessarily comply with the proportion of variance the 

individual variables represent in the dataset e.g. here the PC1 represents 85% of the total 

variance of the dataset but the maximum variance is represented by any of the actual parameters 

is 68%. And most often we encounter this kind of a situation with gene expression datasets, 

where a particular PC comprises of different proportions of several variables and not just one. 

However, we can conclude that the Petal Length forms a large portion of the PC1 here. 

   

4.6 Differential Expression Analysis 

  Genes in living systems have a lot of heterogeneity when it comes to their activity and 

expression level. The differences in these levels give rise and sustain the complex system Life 

is. All cells in our body have the complete DNA that is unique to us, but each tissue functions 

differently, and therefore has different gene expression. It is an aggregated effect of these 

differences that, for instance makes cells and tissue in our intestines work in a way different 

than our heart which in turn works in a completely different way as compared to our Brain. 

Apart from these tissue specific differences, the genes are not always expressed exactly at the 

same level in our tissues, instead the expression changes depending on the task the tissue is 
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doing or if there is any disorder then there is a difference due to that. This gives us two scenarios 

when the gene expression in a tissue undergoes variation.  

1) Under normal circumstances the gene expression varies, but stays within particular 

bounds, and there are no drastic changes in the expression under healthy conditions.  

2) In the case of a disease or a condition like cancer there are changes of different degrees 

in the gene expression as a lot of mechanisms that are involved in controlling and 

regulating it are disrupted. 

A common method to detect if there is anything different going on in a tumour tissue 

as compared to a healthy tissue is to do a Differential Expression (DE) analysis [71] using 

microarray of RNA sequencing data. Generally, the observations are compared taking into 

account the range of the expression of a particular gene in different individuals under the same 

condition (i.e. either healthy, or affected by the same disorder). The most popular method is 

using a T-test to compare the means of groups under study [67]. 

  

4.6.1 T-test 

The T-test is a parametric statistical test which assumes the data has a Student’s T 

distribution which is very close to Normal distribution (also called Gaussian distribution) in 

properties [67]. The Null hypothesis (H0) here when doing DE analysis is that the means of the 

two groups under consideration are equal (i.e. µ1 = µ2), the alternate hypothesis (H1) is that the 

means are not equal (i.e. µ1 ≠ µ2). This is done by computing the test statistic called t-statistic 

in this case as: T= 𝜇1−𝜇2

√𝜎12
𝑛1

+𝜎22
𝑛2

 , where the µ1 and µ2 are means of two groups under study and 𝜎1
2 

and 𝜎2
2 are the variances of the two groups under study. The number of samples in two groups 

is denoted by n1 and n2. Then, we compare the values of “T” with a T-distribution with n1 + n2 

– 2 degrees of freedom to find out the P-value. More about this can be found in a statistics 

course book[67]. 

After performing the T-test we get the P-value, which tells us how significant the result 

is. The p-value is on a scale from 0 to 1, the closer the p-values is to 0, the more significant the 

differences between the two groups are. The smaller the P-value, the more significant is the 

result. Generally speaking we consider a result significant if the P-value < 0.05. 

When doing DE analysis, conventionally there are tens of thousands of probes in a 
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dataset and we encounter a problem which is called “multiple-testing” problem in statistics 

because we are making so many comparisons. One needs to control for this problem when 

doing analysis. In this study the FDR (False Discovery Rate) method of P-value correction was 

used. 

 

4.6.2 ROTS (Reproducibility Optimized Test Statistic) 

ROTS is a test statistic developed to retain the good features of the T-test while 

neutralizing the fact that it assumes the data to have a certain distribution (i.e. parametric) [71]. 

ROTS facilitates the optimization of a test statistic of T-type based on the data itself. Let’s 

consider a gene having its expression levels in two groups as xg= {xg1, xg2, … ,𝑥𝑔𝑛𝑥} and yg= 

{yg1, yg2, … ,𝑦𝑔𝑛𝑦}. The sample mean is defined as �̅�𝑔 =  1
𝑛𝑥

∑ 𝑥𝑔𝑖
𝑛𝑥
𝑖=1  and the sample variance 

as 𝜎2 =  1
𝑛𝑥−1 ∑ (𝑥𝑔𝑖 −𝑛𝑥

𝑖=1  �̅�𝑔)2. 

ROTS computes the test statistic, for a gene g as 𝑑𝛼(𝑔) = | �̅�𝑔−�̅�𝑔|
𝛼1+𝛼2.𝜎𝑔

 where the estimated 

parameters are 𝛼1 ∈ {0, ∞) and 𝛼2 ∈ {0,1}. �̅�1and �̅�2 are means of the two groups for the gene 

g, and σg= standard deviation. In case 𝛼2 = 0, the statistic dα(g) is essentially the same as the 

signal log-ratio if logarithmic expression values are used. Setting  𝛼2 = 1 gives the SAM-

statistic with a regularization constant 𝛼1. The standard T-statistic is a special case 

where 𝛼1 = 0, 𝛼2 = 1. 

ROTS returns FDR corrected P-value, which are calculated by randomly permuting the 

sample labels. Also ROTS computes the Reproducibility denoted as 𝑅𝑘(𝑑𝛼), which is the 

average overlap of k top-ranked genes over several bootstrapped datasets. 500 bootstrapped 

datasets were considered in this work. The reproducibility statistic indicates how robust the 

findings are. ROTS is available for R [72] on MacOS and Windows from the website of 

University of Turku at: 

http://www.utu.fi/en/units/sci/units/math/Research/biomathematics/projects/Pages/rots.aspx. 

4.7 Co-Expression analysis 

A method to test the co-expression for a set of genes in-silico is to test the correlation 

between the expression levels of genes across samples. If they have a high positive correlation 

then it is likely that they are being co-expressed. But it should be kept in mind that it is an 

http://www.utu.fi/en/units/sci/units/math/Research/biomathematics/projects/Pages/rots.aspx
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indirect quantification of co-expression, and actual co-expression can be determined by co-

staining samples for the two proteins or mRNA transcripts. 

There can be several types of correlation measures [67] between observations. In this 

study, Spearman Rank Correlation was chosen because it is a non-parametric method and it is 

unaffected by the magnitude of the observation. It Ranks the observations and computes 

correlation based on the difference in ranks of the observations. It signifies the statistical 

dependence of one variable over the other. Spearman Rank correlation coefficient is denoted 

by Greek letter rho (ρ), as 𝜌 =  1 − 6(∑ 𝑑𝑖
2𝑛

𝑖=1 )
(𝑛3−𝑛) , where n is number of observations and di is the 

difference in ranks of the observation. 

 

 

 

 

 

 

 

 

The calculation of rho is demonstrated with an example shown as Table IV.IV. Here 

we have computed the 𝑑𝑖
2 for each student (see last row in Table IV.IV). Now we can calculate  

∑ 𝑑𝑖
2𝑛

𝑖=1  = 230, now filling this in the formula for rho ρ we get: 

 

𝜌 = 1 − (6 ∗ 230)
(103) − 10 = 1 − 1380

990 = −0.39394  

By this we learn that there is a negative correlation between X and Y in our example 

set, which means that as value of X increases the value of Y tends to decrease in this example 

set (Table IV.IV). Correlation can be between -1 to +1 with 0 implying there is no linear 

correlation between the observations [67]. 
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X 52 67 75 64 89 76 72 82 53 58 

Y 86 79 76 70 52 82 87 60 58 90 

Rank x (Rx) 1 5 7 4 10 8 6 9 2 3 

Rank y (Ry) 8 6 5 4 1 7 9 3 2 10 

d=|Rx-Ry| 7 1 2 0 9 1 3 6 0 7 

d2 49 1 4 0 81 1 9 36 0 49 

Table IV.IV – Table for example of calculating Spearman Rank correlation populated with fictitious 
data. X and Y are random integer observations, Rx and Ry are ranks of the observation in that 
variable, with rank 1 for the lowest and rank 10 for highest valued observation.  



37 
 

4.8 Annotating the data matrix after normalization 

The data matrix for a typical microarray dataset is a two-dimensional matrix with rows 

representing genes and columns representing samples. Conventionally the column names are 

the sample names and the row names are the Probe IDs. As mentioned earlier in section 2.5.1, 

probes correspond to genes which are the focus of studies in almost all cases. But checking the 

gene which a particular probe detects can get cumbersome therefore two columns were added 

to the data matrices, one for the official gene symbol and one for the gene name. Both of these 

information are provided by the manufacturer of the chip and are freely available from platform 

descriptions on GEO as well as in R through Bioconductor. R annotation databases were used 

to annotate as follows. 

# Computing UPC scores  
library(SCAN.UPC) 
UPCresult = UPCfast(celFilePattern="*.CEL")  
 
# Retreiving UPC scores as expression set 
 
mat=exprs(UPCresult) # UPCresult is the object with UPC scores 
mat=mat[,sort(colnames(mat))] 
 
# Installing the annotation library corresponding to the platform, in the case of 
the Affymetrix datasets, all except few were from Affymetrix Human GeneChip U133 
plus 2.0 array therefore the database “hgu133plus2.db” 
 
source("http://bioconductor.org/biocLite.R") 
biocLite("hgu133plus2.db")  
 
library(hgu133plus2.db); 
symbol<-gsub("\'", "", data.frame(unlist(as.list(get(paste("hgu133plus2", 
"SYMBOL", sep="")))))[rownames(mat),]) 
genename<-gsub("\'", "", data.frame(unlist(as.list(get(paste("hgu133plus2", 
"GENENAME", sep="")))))[rownames(mat),]) 
genename <- gsub("#", "", genename);symbol <- gsub("'", "", symbol);genename <- 
gsub("'", "", genename) 
 
# The annotated matrix is assembled as a data frame because in R matrix can only 
have one type of elements while data frame can be composed of several types of 
objects. 
 
annotated_mat=data.frame(symbol, description=genename, mat) 
 

4.9 Filtering out Genes from a Heatmap 

Occasionally, the heatmaps are composed of genes whose expression levels are 

homogenous across the dataset, which although give some information but occasionally cause 

problems with clustering and visualizing the results as they make it more crowded. In this study 

when such situation (refer Fig 5.13) was encountered, the genes/probes in the heatmap were 
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filtered based on the standard deviation, σ, so that we eliminate the ones that are uniform 

(uniformly high, low or medium, i.e. any gene that was homogenous). Filtering was performed 

using two different cut-offs. First, the σg, the standard deviation for each gene g was calculated 

based on the UPC scores (using the same matrix which was used to create the heatmap). Then 

the genes were then filtered keeping the genes (rows in the matrix) that were having σ > median 

(σg) or then those that were having σ > Q3 (σg). Below there is an example to explain this 

process. In the Table IV.V we have UPC scores for genes for samples and standard deviations 

for each row computed. 
 

 

 

 

 

Now if we compute the median (σg) we get a value, and if the σ for a gene (represented 

by row) is higher than the median then we keep that row (gene) as it implies that there is 

heterogeneity in that gene’s expression among the samples.  
 

4.10 Software used 

 Majority of the computation in this project was done using R and Bioconductor. Text 

processing e.g. editing sample names or gene names for convenience was done using Python.  

The input for python scripts (generally they are probe ids or sample names that need to be fixed 

like removing a repeating part to make them shorter) is written on disk to a file and then python 

is called from that directory executed with a structure like system("python script.py") and 

then python code is written to process and store its output to a file which is then read in R and 

then the variable that was to be edited is updated with the new values. 

 

N.B. As the work in this thesis is yet to be published, the source code is not being released. 

 Sample 1 Sample 2 Sample 3 Sample 4 Standard deviation σg 
Gene 1 0.66 0.58 0.68 0.62 0.044347116 
Gene 2 0.15 0.14 0.86 0.75 0.38370996 
Gene 3 0.5 0.3 0.75 0.92 0.273053719 

…. … … … … … 
Gene Nth 0.79 0.88 0.76 0.92 0.075 

Table IV.V – Example Table the UPC scores for genes (as rows) for samples (as columns) and the 
standard deviation, σ, computed for each gene (i.e. each row), as a measure of heterogeneity 
among the samples for that gene. The higher the standard deviation, the more heterogeneous the 
gene’s expression is.  
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5.1 Oncomine Database and initial leads for ESC-1 differential expression 
 

The Oncomine database showed at a glance (Fig. 5.1) the expression of ESC-1 in different 

datasets and it can be seen in which of those datasets it is differentially expressed between 

groups. The Oncomine search for ESC-1 showed that colorectal cancer and seminoma would 

be interesting starting point for the investigation. 

 

 
 

5.2 Overall expression of ESC-1 and its interactome from Oncomine data 
Before starting investigating individual datasets and analysing the expression of ESC-1 it 

was informative to see how its interaction partners behave in different cancers and for that the 

data in Oncomine [73] was retrieved for ESC-1 and 18 of its interaction partners. These 

interaction partners were chosen from a list of 306 validated interaction partners, by our 

collaborators. The complete 306 partners were used for investigation later on with the GEO 

datasets as in Oncomine the data had to be retrieved manually and it was not feasible on a large 

scale. 

In the heatmap (Fig. 5.2) the expression pattern of ESC-1 and its partners across several cancer 

types can be seen. The colour red corresponds to high expression and blue corresponds to low 

and wheat colour corresponds to medium. White regions indicate missing data as some of the 

datasets for a particular cancer organ/tissue type did not contain probes or measurement for 

Fig. 5.1 – Summary View of Oncomine for ESC-1. Red represents studies where the gene is highly 
expressed and blue where gene is lowly expressed. The numbers are representatives of the 
number of different studies/analyses conducted with the dataset and not number of datasets, i.e. 
there are studies based on subtype and survival status on the same dataset. 



41 
 

that particular gene. In the heatmap were cluster of the genes based on similarity of expression 

profile. The samples were kept in original order so that the samples from same cancer type 

were together. It can be seen that there is a lot of heterogeneity within Colon Cancer group and 

which was the motivation to look into this cancer type. This heatmap (Fig. 5.2) represents a 

summary from 4614 samples across multiple datasets and cancer types.   

 

I would also like to mention that seminoma datasets cannot be seen here in the heatmap 

(Fig. 5.2) above because initially there were three conditions on which the datasets in 

Oncomine were filtered: 

a) Dataset should be an mRNA expression study (there were other study types too e.g. 

copy number variation study etc.). 

b) Dataset should have survival information (to see whether ESC-1 has any effect on 

prognosis) 

c) Dataset should have normal samples in the study (to use as a reference for base line 

expression in healthy tissue). 

Fig. 5.2 Heatmap for data from 4614 samples across various cancer types (samples are placed 
alphabetically based on the original tissue/system). Red represents high expression and blue 
represents low, wheat colour represents average expression or medium expression. Heterogeneity 
e.g. within colon cancer and lung cancer for ESC-1 can be seen here.  
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5.3 High positive correlation between ESC-1 and its partners 
Our collaborators had evaluated the effect of suppressing ESC-1 in cell lines and had seen 

that some stem cell pluripotency factors are downregulated and I wanted to test this hypothesis 

in actual cancer samples too. Also I wanted to know that are some of its partners co-expressed 

with ESC-1 or not. To check co-expression I measured the statistical correlation between the 

expression levels of two genes on matched samples, i.e. expression value for Gene 1 on a set 

of samples, then expression 

level of Gene 2 is taken on the 

same set of samples. (Note: 

All the genes were not 

measured in all the datasets 

and samples.) 

 

 

 

Table V.I shows the Spearman rank correlation scores for 

the partners of ESC-1 are among the highest scores. 

These are the partners which seem to be key in the 

findings of our collaborators. It is not known yet exactly 

how do they work, but it was nice to see a high correlation 

in actual cancer samples. The density distribution in the 

ESC-1 x ESCP-10  0.786296987 
ESCP-6 x ESC-1  0.718597423 
ESC-1 x ESCP-12  0.665228209 
ESC-1 x ESCP-14  0.605962362 
ESC-1 x ESCP-11  0.587469136 
ESCP-7 x ESC-1  0.50288815 
ESCP-4 x ESC-1  0.502513074 
ESC-1 x ESCP-13  0.429524675 
ESC-1 x ESCP-17  0.362293953 
ESC-1 x ESCP-18  0.329618695 
ESCP-9 x ESC-1  0.285209016 
ESCP-5 x ESC-1  0.27456626 
ESCP-8 x ESC-1  0.272217547 
ESC-1 x ESCP-15  0.235972907 
ESC-1 x ESCP-16  0.190357291 
ESCP-2 x ESC-1  0.11459401 
ESCP-3 x ESC-1  0.074644636 
ESCP-1 x ESC-1  -0.036683977 
 

 

Table V.I – The Spearman Rank 
Correlation scores of ESC-1 with 
its 18 interaction partners 
across thousands of matched 
samples (sample count ranging 
from 1270 being lowest 
common count, up to 3688 
being highest common number 
of samples). 

Fig. 5.3 Density distribution of spearman rank correlation 
scores for the Blue dotted line is for the correlation scores 
between a random data. The Black solid curve is for the 
correlation scores of for the 171 possible combination of 
the 19 genes of interest, [ 19C2 = 171 unique pairs]. 
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Fig. 5.3 shows that the mean of the correlation scores is far away from random (0) and is instead 

positive, being +0.5. Also it can be seen that the bulk of the population lies in the positive 

region (i.e. greater than zero). Both of these indicate that the set of genes being investigated 

have high coherence in the samples that were collected in our study. 

5.4 Interactome of ESC-1 in cancer 
I further investigated the coherence 

in results by making networks (e.g. Fig. 

5.4) in Cytoscape using the data from 

Oncomine and computing the correlation 

between two genes for matched samples 

(e.g.  Expression level of Gene X and Gene 

Y in the same sample). The network 

showed that ESC-1 had statistically high 

correlation scores with its most important 

partners ESCP-14, and ESCP-12, two 

proteins which are down-regulated when 

ESC-1 is depleted. 

 

5.5 Problem with Oncomine data 

and our Analysis model 
 

I was sceptical about the approach of analysing all the gathered data together which are 

from different tissue and cancer type but also are from different research laboratories and 

different platforms. There were a couple of more hurdles in our way as well. Oncomine is a 

great resource to get the overall report of how a gene behaves in different cancers but it had 

two major drawbacks for our study: 

a) In Oncomine the data is pre-analysed and they have performed median-centering to 

bring data from different datasets to a comparable level. But median-centering is 

performed on the expression level of all the genes in the dataset and the basic approach 

behind it is to alter the levels of the expression such that the median of the whole dataset 

is 0 so that the data is centred around the median. This method introduces ambiguity e.g. 

if a gene is shown as slightly negative it cannot be concluded with certainty that whether 

Fig. 5.4 – Network made from spearman rank 
correlation scores. Thick lines are statistically 
significant (FDR corrected p-value<0.05) 
correlation, thin lines statistically insignificant 
scores. Straight lines represent that correlation 
was >=+0.5, dotted lines are for pairs with the 
correlation <+0.5 for matched samples. 
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the gene is being expressed or not, of course if the scores are towards the extremes i.e. 

high positive or negative score one can surely make conclusions about the gene’s 

expression. This was of importance to this study as the gene of interest is an embryonic 

stem cell pluripotency factor and the samples which were expressing it slightly were 

equally interesting as much as the samples expressing ESC-1 highly. 

 

b) In Oncomine if one wants to look at the gene expression of all the genes in the study, 

there is no convenient way to do so. The results are shown as plots (i.e. images) and the 

values are stored in the code of the webpage. If I wanted to get the expression values for 

all the genes in a dataset I would have had to search each gene and then manually look 

for and copy code showing the values and then filter them. I used this approach for our 

19 genes (ESC-1 + 18 partners), which took a couple of weeks to completely get the data 

as it was a manual process, but it surely is not a feasible approach if one wants to analyse 

thousands of genes.  

 

Regarding the analysis model with Oncomine data, i.e. analysing all the datasets 

spanning different cancer types together, I investigated its robustness. The scatter plot (Fig5.5) 

shows the expression score distribution between ESC-1 (on x-axis) and ESCP-14 (one of ESC-

1’s important interaction partners on y-axis). Here it can be seen that the expression pattern of 

Fig 5.5 – Scatter plot 
showing the expression 
score of the samples 
(each point) in two 
genes (on the two 
axes). The Colours are 
for different cancer 
subtypes, e.g. in the 
figure the two biggest 
groups are ovarian 
carcinoma (red) and 
ovarian serous 
adenocarcinoma 
(yellow). The shapes 
represent the survival 
status of the patient: 
circle for alive, triangle 
for dead and square for 
normal samples.  
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ovarian carcinoma (shown in red) is different from ovarian serous adenocarcinoma (in yellow). 

Similar results were found when the expression of genes was compared in almost all the cancers 

where there were more than one subtype (with substantial number of samples, e.g. more than 

20). I was also looking at the survival status of the samples when comparing the expression in 

the datasets and therefore there are different point shapes i.e. square, circle and triangles. 

In the plot (Fig. 5.6 Part A) I was very surprised to see that some of the points are 

concentrated in a specific region and some are scattered. The points with blue are for the normal 

prostate tissue sample and the red is for the tumour. I was surprised to see that even the normal 

tissue samples are having such large differences. Then I investigated whether these differences 

are due to the samples being from two different datasets, and as soon as I plotted the image 

(Fig. 5.6 Part B) it was revealed that the two data clusters were from two different studies (and 

of course 2 datasets). Similar results from other cancer types suggested that it is not practical 

to analyse different datasets together, instead a better approach would be to analyse them 

independently and then compare their results. 

 

 

 

 

 

Fig. 5.6 – Scatter plots showing the expression score of the samples (each point) in two genes (on the 
two axes). Part A- Colour represents tissue Blue for Prostate gland, Red for the Prostate Carcinoma. 
In Part B- the colours represent the study/dataset. The shapes of points are representing the survival 
status as in Fig 5.4. 

Part B Part A 

  



46 
 

5.6 Analysis of TCGA datasets 
 

TCGA or The Cancer Genome Atlas [48] was the first destination of choice for datasets as 

it is a repository of data from various experiment types e.g. Sequencing, Microarray 

experiments, Methylation study, etc. on cancer samples from various cancer types. They have 

data for more than 30 types of cancer types (as on 02-07-2014) and have a large collection of 

samples too e.g. for Colon adenocarcinoma they have 462 samples, for Breast invasive 

carcinoma they have 1101 samples. In addition to their large sample collection, they contain 

clinical information too e.g. tumour stage, tumour size (in some cases), and most importantly 

the survival information.  

I analysed the datasets mentioned in section 4.1.1, for Brain Cancer, Colon Cancer, 

Lung Cancer and Ovarian Cancer. I chose to investigate these datasets based on the findings 

from analysing the Oncomine data. In the TCGA datasets I was not able to find any cancer type 

to be having enough samples with high expression or even medium expression to test the 

hypothesis. Table V.II summarizes the results with few statistics about the expression level of 

ESC-1 in the TCGA datasets. The table also shows the number of samples in the datasets and 

the Range of whole dataset (i.e. min to max). For all of them it can be seen that the median and 

mean are low as well as the third quartile is also low in all the studies. 

 

TCGA Colon Adenocarcinoma, Agilent G4502A-07-3 
Min. 1st Qu. Median Mean 3rd Qu. Max.  Samples Range 
-7.494 -4.4 -2.439 -2.341 -0.6239 3.996 174 -13.29 : +17.35 
TCGA GlioBlastoma Multiforme (Brain Cancer), Affymerix HG-U133 
Min. 1st Qu. Median Mean 3rd Qu. Max.  Samples Range 
3.285 3.604 3.728 3.769 3.892 8.919 519 +2.80 : +14.47 
TCGA GlioBlastoma Multiforme (Brain Cancer), Agilent (G4502A-07-1) 
Min. 1st Qu. Median Mean 3rd Qu. Max.  Samples Range 
-7.088 -5.704 -4.917 -4.826 -4.143 -0.071 89 -9.83 : +12.09 
TCGA GlioBlastoma Multiforme (Brain Cancer) Agilent (G4502A-07-2) 
Min. 1st Qu. Median Mean 3rd Qu. Max.  Samples Range 
-8.695 -5.915 -5.167 -5.125 -4.543 -0.877 473 -13.73 : +16.04 
TCGA Lung Adenocarcinoma, Agilent G4502A-07-3 
Min. 1st Qu. Median Mean 3rd Qu. Max.  Samples Range 
-7.134 -5.413 -5.004 -4.934 -4.464 -2.159 32 -13.78 : +12.00 
TCGA Lung SC Carcinoma, Agilent G4502A-07-3 
Min. 1st Qu. Median Mean 3rd Qu. Max.  Samples Range 
-7.095 -5.705 -5.202 -5.152 -4.656 -1.138 153 -12.61 : +13.08 
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I found some samples that might be feebly expressing ESC-1 (Fig. 5.7) but there is no 

certainty in those cases and it is hard to make inferences. Thus, I decided to investigate more 

datasets to get a clearer understanding. 

 

 
 

 

The heatmap (Fig. 5.8) for ESC-1 and its partners gave me motivation to look more in 

Colon Adenocarcinoma as among the samples that were expressing ESC-1 (slightly, but in the 

set that was in the TCGA dataset, they are the highest ESC-1 expressing samples, marked by a 

black box in Fig. 5.8), it can be seen that all of them are from cancer samples. But it is also 

baffling that a lot of normal samples are present in the region between 0 to -2.5 (see colour key 

in Fig. 5.8). There is no clustering of samples in Fig. 5.8 when the samples are ordered on the 

ESC-1 expression levels, which makes it clear that ESC-1 is not playing a role in defining the 

cancer stage. 

TCGA Ovarian serous cystadenocarcinoma, Affymetrix HG-U133 
Min. 1st Qu. Median Mean 3rd Qu. Max.  Samples Range 
2.475 2.753 2.877 2.957 3.002 7.413 586 +2.07 :  +13.75 
TCGA Ovarian serous cystadenocarcinoma, Agilent G4502A-07-3 
Min. 1st Qu. Median Mean 3rd Qu. Max. Samples Range  
-8.416 -6.074 -5.461 -5.275 -4.693 0.53 588 -14.66 : +12.96 

Fig. 5.7 – Density distribution plots for all the samples from TCGA Colon Adenocarcinoma (A) For 
expression values of all the genes across all the samples. (B) Expression values for gene ESC-1 
(comprising of three probes, as the Agilent platform has three probes for measuring ESC-1) across 
all the samples. It can be seen that the majority of the samples lie in the negative region, with only 
a small fraction in the positive region. 

B A 

Table V.II – Table showing the 5 number summary for ESC-1 (Minimum, 1st Quartile, Median, 3rd 
Quartile, Maximum) and mean too. The table also shows the number of samples in each dataset and 
the Range of the expression scores for all the probes (for different genes) in the dataset in the format 
Minimum observation : Maximum observation. 
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5.7 Results from GSE8671 (Colon Cancer) and GSE3218 (Seminoma) 

I went back to my Oncomine [73] results (Fig. 5.2) to look for datasets where some of the 

samples are expressing the gene of interest, ESC-1. To test the hypotheses datasets that have 

samples expressing the gene of interest are needed. I found some datasets (description in 

section 4.1.2) which had samples expressing ESC-1 but none of them had survival information 

or any clinical information for that matter. However, I still wanted to proceed with them as 

they gave me the opportunity to test whether any of the partners of ESC-1 are differentially 

expressed between the sample groups or not. These datasets were GSE8671 for Colon cancer 

[57] (colorectal adenomas) and GSE3218 Seminoma (Male Germ Cell tumour) [56]. In both 

of these datasets (as see in Fig. 5.9 and Fig. 5.10) there were subsets of samples expressing 

ESC-1 highly.  

The heatmaps (Fig. 5.9 and Fig. 5.10) also show a colour code for each sample based on 

the expression level of ESC-1 in that sample, Red represents high expression i.e. RMA 

normalized [63] intensity (RNI) >10, Cyan represents medium expression where 7 ≤ RNI ≤ 10, 

Blue represents under expressed RNI < 7, and Green is for representing normal tissue samples 

regardless of their expression level. It can be seen that in Seminoma as well as Colon Cancer 

Fig. 5.8 – Heatmap for three probes measuring ESC1 in the TCGA Colon Adenocarcinoma where 
the expression is ordered in ascending order and a colour code on top represents the stage of the 
tumour (Black, Cyan, Blue, Yellow and Red). It shows that samples that are expressing ESC-1 , 
though at low levels (marked with black box) are mostly cancers of higher stage ( blue, yellow and 
red) and none of them are normal (black). 
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dataset the ESC-1 Expressing samples have a different expression profile than the normal 

samples based on this gene set. One can also see this by the way the samples are clustered 

(through the dendrogram at the top of the heatmaps, they show the hierarchical clustering of 

samples (columns) and genes (rows)). The genes in the heatmap apart from the evident ESC-1 

are the partners of ESC-1 (only those that were measured in that particular dataset) which do 

not show much heterogeneity in expression.  Also, I included some housekeeping genes as 

reference e.g. NDUFA1 (NADH Dehydrogenase), POL2RA (RNA polymerase II) and PSAT-

1 (Phosphoserine aminotransferase 1).  

 

 

 

 

Through the Fig. 5.10 one can see that ESC-1, ESCP-12 and ESCP-14 cluster together 

which signifies that their expression levels are highly correlated, a fact that is for the first time 

shown in cancer patient samples. I included KRAS, the classical oncogene, to see if there is 

any correlation between its expression levels and that of ESC-1, but from Fig. 5.10 it seems 

clear. 

Fig. 5.9 – Heatmap showing expression levels of ESC-1 in colorectal adenoma tumour samples and 
matched normal colon tissue controls from dataset GSE8671, showing a subset of samples having 
high ESC-1 expression. There is a colour code on top marking samples based on their expression 
status for ESC-1.  
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In the scatterplots (Fig. 5.11) from the Principal Component Analysis (PCA), where the 

points represent samples in the two datasets and the X axis represents the First Principal 

Component and the Y axis represents the second principal component, one can see that the 

normal samples are different than the tumour samples. The difference is very clear in the case 

of Colon Cancer (Fig. 5.11 A), as it can be seen that the normal samples (shown by green 

points) are present far away from the tumour samples. Similarly in the case of Seminoma 

dataset (Fig. 5.11 B) it can be seen that the normal samples are clustered distinctly, although 

there is not such a big degree of separation. This fact does not imply any important and 

noteworthy deductions but it is just a visual interpretation of the plots. They should also not be 

compared directly with each other as the number of normal samples and the type of normal 

samples in both the datasets is different. For the Colon cancer there were matched control (i.e. 

normal) samples which means that the normal samples (32 in number) were taken from the 

same patients from whom the tumour samples (32 in number) were derived from, while in the 

case of Seminoma dataset there were six normal organ samples as control tissue. But still it 

indicates that there are definite differences in the gene expression profile of the normal tissue 

and the tumour tissue.  

Fig. 5.10 – Heatmap showing expression levels of ESC-1 in Seminoma samples and 6 normal tissue 
controls from dataset GSE3218, showing a subset of samples having high ESC-1 expression. The 
colour code on top categorizes samples based on their expression intensity for ESC-1 (legend is on 
bottom left side). 
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One more point to note was that in the Seminoma dataset (Fig. 5.11 B) the samples not 

expressing ESC-1 (show in blue colour) cluster together, and the samples expressing ESC-1 

(shown in red) form a group although it still has several samples expressing ESC-1 at medium 

levels (shown in cyan colour). This cannot however be seen clearly in the colon cancer dataset 

(Fig. 5.11 A), partly because there are few samples tagged as ESC-1 negative as most of the 

normal samples are also not expressing ESC-1 which can be seen clearly in the heatmap (Fig. 

5.9), this was a good sign and kept me motivated to look further into Colon Cancer datasets. 

  

 

On the other hand for the Seminoma dataset the normal samples lied in the twilight zone 

or almost at the lower edge of the medium expressing zone. This can be inferred from the 

heatmap for Seminoma dataset (Fig. 5.10), therefore I paused with the Seminoma dataset.  

 
5.8 Results from Colon Cancer Datasets & Prognosis 

I decided to investigate more into Colon Cancer dataset after I came across the dataset from 

International Genomics Consortium's Expression Project for Oncology on GEO with accession 

number GSE2109 [58]. The dataset had 2158 samples from various cancer types on the 

platform GPL570 Affymetrix Human Genome U133 Plus 2.0 Array. I was interested to see if 

there are cancer types other than Seminoma or Colon Cancer where ESC-1 is highly expressed. 

B A 

Fig. 5.11 – Scatter plot showing the first 2 Principle components for the complete expression 
matrix (i.e. all the probes) with the points representing the samples and the colours representing 
the expression level of ESC-1 (legend is on top right side) and green for normal samples. A) Samples 
from colon cancer dataset GSE8671, B) Samples from Seminoma (Male Germ Cell Tumour) dataset 
GSE3218. 
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Therefore I analysed this dataset after normalizing it through RMA and log2 transforming the 

intensities. The boxplot (Fig. 5.12) shows the expression intensities for ESC-1 in different 

cancer types, it can be seen that colon cancer (3rd from left, marked with a black dotted box) 

has a large number of samples expressing ESC-1. Also the median expression level for samples 

of Colon Cancer is highest among all cancer types. The boxplot shows 15 cancer types that 

had largest number of samples. A wide range was covered by this method as the highest is 381 

samples for Breast cancer and the lowest in this plot is 17 samples for both Pancreatic and 

Cervical cancer. 

 

The results from datasets GSE8671 (Colon1) (Fig.5.9 and Fig. 5.11A) and GSE2109 

(ExPO) (Fig. 5.12) I found and worked on colon cancer datasets that had survival information 

available. 

I found four more datasets with GEO accession numbers GSE14333(Colon2) [59], 

GSE17536 (Colon3) [60], GSE17537 (Colon4) [60] and GSE33113 (Colon5) [61] (description 

in section 4.1.2) that had the survival information available for the samples. This was of 

immense importance as MIAME (Minimum Information About a Microarray Experiment) 

standards do not require this information to be provided and there is a severe lack of datasets 

with such accessory information.  

Fig. 5.12 – Boxplot showing RMA normalized intensity for ESC-1 from the samples in dataset 
GSE2109 from the 15 cancer types that had most number of samples. Colon Cancer (black dotted 
box) has a large number of samples in the range of medium to high expression, which is also 
reflected in the median of the expression intensities. The labels on X axis also include the number 
of samples for that particular cancer type. 
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Another concern while working with Microarray datasets is that for the very high and 

very low signal intensities one can conclude the expression state with a great deal of certainty, 

but not enough can be said about samples whose intensities lie in the middle of the scale. 

Therefore, I chose to use UPC (see section 4.2.2) normalization. To be sure to a higher level, I 

chose UPC ≥ 0.75 as expressing the gene of interest ESC-1 and samples with UPC < 0.75 were 

treated as not expressing ESC-1 (shown as blue dots in Fig. 5.13).  

Also it is worth mentioning here that in case there were two probes corresponding to a 

gene in Affymetrix HG U133 Plus 2.0 and only one in Affymetrix HG U133 microarray 

platform, the probe (Probe 1) that was common between the two platforms was chosen for 

deciding if the sample is expressing a gene or not (i.e. Probe 1 is common and Probe 2 is 

additional probe in the Plus 2.0 array for the gene). Fig 5.13 shows the correalation of UPC 

scores between the probes. 

     

 

The heatmap in Fig. 5.14 shows the UPC scores for ESC-1 and its partners along with 

some housekeeping genes like NDUFA1 (NADH Dehydrogenase), POL2RA (RNA 

polymerase II) and PSAT-1 (Phosphoserine aminotransferase 1) in the  dataset GSE17537 

(colon5) for expression levels based on.  I also included a well-known oncogene KRAS to see 

if it is perturbed in the samples, but here KRAS had a low signal in all the samples in 

GSE17537. The heatmap (Fig. 5.14) is also having a colour code for Alive (pink) and Dead 

(Black) for the samples. From the heatmap it can be seen that there are several genes/probes 

that are homogenous throughout the samples.  

I performed filtering (section 4.9) of the genes based on the Standard deviation (σ), so 

Fig. 5.13 – Scatter plot in three Colon Cancer datasets for UPC scores of a gene for 2 probes. The 
dots represent samples coloured blue for ‘Active’ if UPC score for Probe 1 ≥ 0.75. 
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that these rows that are uniformly high or low can be get rid of, because I was interested in 

heterogeneity in gene expression. 

 

 

 

As evident in the heatmap (Fig.5.15) even after filtering by taking the median as 

Fig. 5.14 – Heatmap of GSE17537 (Colon5) for ESC-1 and its partners along with some 
housekeeping genes like POL2RA, NDUFA1, etc. and KRAS (a well-known oncogene). The two 
probes for ESC-1 are present as the last 2 rows in the heatmap above, with only a subset of samples 
expressing it (as seen earlier in Fig 5.9 and 5.10). 

Fig. 5.15 – Heatmap of GSE17537 (Colon5) for ESC-1 and its partners filtered based on standard 
deviation, by keeping the genes (represented by rows) that have σg > median(σg). The colour coding 
on top, pink represents “no death” and black represents “death”. ESC-1 rows highlighted with a 
black rectangle. 
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threshold I still had rows with homogeneity, so I performed a more strict filtering (see section 

4.9) by keeping rows (genes) that had standard deviation σg higher than the third Quartile (Q3) 

of the standard deviations for all genes, in the matrix used to create the original unfiltered 

heatmap (Fig. 5.14). After this I got a heatmap (Fig. 5.16) that is comprised of most 

heterogeneous genes. I applied the same procedure to other datasets as well and here I present 

only those heatmaps (Fig. 5.17, 5.18 and 5.19) here. 

 

 

 

Fig. 5.16 – Heatmap of GSE17537 (Colon5) for ESC-1 and its partners filtered based on standard 
deviation, by keeping the genes (represented by rows) that have σ > Q3(σg). The colour coding on 
top, pink represents “no death” and black represents “death”. ESC-1 rows highlighted with a black 
rectangle. 

Fig. 5.17 – Heatmap of GSE14333 (Colon2) for ESC-1 and its partners filtered based on standard 
deviation, by keeping the genes (represented by rows) that have σ > Q3(σg). The colour coding on 
top, pink represents “Alive” and black represents “death”, white is for samples with missing status. 
ESC-1 rows are highlighted in black. 
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From these four heatmaps (Fig. 5.16 - 5.19) it seems that there is no proper segregation 

of the samples based on this gene list of partners of ESC-1. Also it is interesting to point out 

that in line with the finding from GSE8671 (Colon1) for colon cancer (heatmap in Fig. 5.9) 

ESCP-12 or ESCP-14 are not there in the heatmaps with the set of genes that are having a 

heterogeneous expression. Instead they are having at low signal for intensity across all samples. 

This came as a surprise, it was expected based on the previous findings, that they would be co-

expressing with ESC-1 (section 5.3) i.e. having a high correlation. However, those results were 

from a study including a variety of cancers, and as we know cancer is a disorder which is full 

of unique properties of its own and one should always keep a sense of caution in mind when 

extrapolating findings. But to my surprise I found ESCP-17 among the heterogeneous genes, 

in all the 4 colon cancer datasets. Although, here it did not have a high correlation with ESC-

1, which was expected based on my previous findings (section 5.3, also see Table V.I). It is 

also interesting to mention that in the dataset GSE8671 (Colon1) (Fig. 5.9) ESCP-17 seems to 

be homogenously giving a signal in medium range.  

 

 

Fig. 5.18 – Heatmap of GSE17536 (Colon3) for ESC-1 and its partners filtered based on σ (std. dev.), 
by keeping the genes (represented by rows) that have σg > Q3(σall probes). The colour coding on top, 
pink represents “no death” and black represents “death”. Rows corresponding to ESC-1 are 
highlighted in black. 
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From these heatmaps (Fig. 5.16 through to 5.19) one can see that among the samples 

expressing ESC-1 there are larger proportion of Alive samples or non-metastatic samples while 

very few have their status as Dead or metastatic. This is a theme that reoccurs during my 

investigation in the colon cancer datasets, and it came as a surprise that it might be that ESC-1 

is a positive prognostic factor after all, instead of being a negative one. But I have done further 

analyses like Kaplan-Meier survival analysis with these datasets and am trying to find out 

reasons or factors that could explain this phenomenon. Also I am looking if it is actually true 

and significant or is it just a mere coincidence. But I am not at the liberty to disclose those 

results yet. 

 

5.9 Differential expression analysis and overlap among results 
I also performed analysis to find out differentially expressed genes (only significant results 

reported i.e. FDR p-value < 0.05) between the samples expressing ESC-1 and the samples not 

expressing ESC-1 (based on the UPC score, as mentioned earlier I decided that UPC ≥ 0.75 as 

active or expressing and UPC < 0.75 as inactive or not expressing). In the Venn diagram one 

can see the overlap between differentially expressed genes between the four Colon Cancer 

Fig. 5.19 – Heatmap of GSE33113 (Colon4) for ESC-1 and its partners filtered based on standard 
deviation, by keeping the genes (represented by rows) that have σg > Q3(σg). The colour coding on 
top, pink represents “no metastasis or reoccurrence in 3 years” and black represents “metastasis 
or reoccurrence in 3 years”. Normal samples are shown in green. Rows corresponding to ESC-1 are 
highlighted in black. 
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datasets GSE14333 (Colon2), GSE17536 (Colon3), GSE17537 (Colon4) and GSE33113 

(Colon5) [59]–[61]. The analysis was done using the UPC scores for the datasets by the method 

ROTS (Reproducibility Optimized Test Statistic) [71], where the statistic is optimized, based 

on the data, among a family of T-type statistics. I chose this method because it does not assume 

the sample (i.e. the data provided) to have a particular type of distribution e.g. the T-test 

assumes the data to follow a normal distribution, which the data, or in general any microarray 

data does not, see Fig. 4.1 A and 4.1 B.  

It can be seen in Fig. 5.20 that there were a lot more detections in the dataset GSE14333 

(Colon2) than in the other datasets, which might be attributed to the fact that it had most 

samples, 290 tumour samples, among the four datasets under consideration. In fact this trend 

can be observed in other datasets too, after GSE17536 (Colon3) which had 177 tumour 

samples, then there is GSE33113 (Colon4) with 90 tumour samples and the least number of 

detections in GSE17537 (Colon5) with 57 tumour samples. Similar pattern was observed with 

the T-test results too. 

          

I also wanted to check how many of the interaction partners of ESC-1 were 

differentially expressed between the ESC-1 expressing and ESC-1 not expressing samples. It 

can be seen in the Fig. 5.21 that the result looks very disappointing as there is just 1 among the 

306 partners that is common to all four Datasets, and even that is ESC-1 itself. But when I 

compared the findings to Fig. 5.21A I saw that the dataset size may be a factor behind this. The 

dataset GSE17537 had just two Differentially Expressed genes being detected. I was motivated 

to do this kind of comparison because of the previous result (Fig. 5.22) with GSE8671 (Colon 

Cancer) and GSE3218 (Seminoma). 

Fig. 5.20 – Venn diagram for showing overlap among the four colon cancer datasets. Differentially 
expressed genes detected using ROTS for the four datasets, (B) ROTS if the dataset GSE17537 
(Colon4) is excluded as it had only two detections. For names refer to Table IV.II. 

B A 



59 
 

 

 

 

 

Fig. 5.21 – Venn diagram for 
showing overlap among the 
306 partners of ESC1 and the 
colon cancer datasets 
differentially expressed genes 
detected using ROTS. Datasets 
labelled with their nicknames 
similar to Fig5.19, for more 
information refer Table IV.II, 
and 306Partner is the list of 
interaction partners I received 
from our collaborators. A) The 
overlap among the 4 new 
datasets. B) As Colon5 dataset 
had very few differentially 
expressed genes, the dataset 
colon1 from section 5.7 was 
used to see the overlap. But as 
there are few detections in 
colon3 and colon4 datasets 
the intersection is still 1, but 
there are more common 
interaction partners 
differentially expressed in 
colon1. 

B 

A 
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As evident from the Venn diagram (Fig. 5.22) for the analyses on Colon Cancer (Colon1, 

GSE8671 [57]) and Seminoma dataset (GSE3218 [56]) (Section 5.7), I saw that quite a lot of 

partners of ESC-1 were differentially expressed in these two datasets. Therefore I decided to 

investigate more. There were 51 partners of ESC-1 being differentially expressed in the two 

datasets (Fig. 5.22). Also in Fig. 5.21 A it can be seen that there are 10 of the partners of ESC-

1 that are differentially expressed in the dataset with largest number of samples (290) 

GSE14333 (labelled as Colon2) and in Fig. 5.21 B it can be that there are several partners (113 

to be precise) being differentially expressed in GSE8671 (labelled as Colon1). This again is a 

testimony to the heterogeneity in cancer and demands more research. 

  

Fig. 5.22 – Venn diagram for showing overlap among the 306 partners of ESC1 and the 
differentially expressed genes in Seminoma (GSE3218) and Colon Cancer (GSE8671 or Colon1) 
detected using ROTS. It can be seen all the 306 partners were differentially expressed in one or 
more of the datasets. Colour of the circles is just for aesthetics. ESC-1 partners are interaction 
partners of ESC-1 validated by our collaborators (they were 306 in total). 
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5.10 Impact on Survival ? 
The prime focus of this study has been to investigate if there exists any relationship between 

ESC-1 and the survival of the patient. If there isn’t any direct impact then finding out if there 

is any impact of some of its partners together with ESC-1 on the survival of a patient.  

I have been working with the colon cancer datasets (GSE17537, GSE17536, GSE 14333 

and GSE33113 [59]–[61]; results from them shown in section 5.8) that had survival 

information. Not being at the liberty to disclose much details, I would present a simple 

percentage table (Table V.IV) for these four colon cancer datasets. 

 Dataset Property ESC-1 positive ESC-1 negative 
All 

Samples 

GSE14333 

Number 64 28.3% 162 71.7% 226 
Mean DFS Time ^ 52.92 - 39.8 - 43.52 

Dead 7 14.0% 43 86.0% 50 
Alive 57 32.4% 119 67.6% 176 

GSE17536 

Number 53 29.9% 124 70.1% 177 
Mean DFS Time * 48.65 - 32.79 - 37.54 

Dead 12 21.8% 43 78.2% 55 
Alive 41 33.6% 81 66.4% 122 

GSE17537 

Number 29 52.7% 26 47.3% 55 
Mean DFS Time 44.35 - 29.75 - 32.94 

Dead 3 15.0% 17 85.0% 20 
Alive 26 74.3% 9 25.7% 35 

GSE33113 

Number 32 36.0% 57 64.0% 89 
Median Time to Meta 1222 - 1175 - 1184 

Metastasis Yes 7 38.9% 11 61.1% 18 
Metastasis No 25 35.2% 46 64.8% 71 

Note: For ESC-1+ve and -ve groups T-Test P value ^ = 0.00442, *= p value : 0.05405.  

It seems that ESC-1 negative patients of colon cancer have a poorer survival related 

statistics i.e. higher percentage of dead, low Disease Free Survival, higher occurrence of 

metastasis, but this requires more investigation. Since cancer is so heterogeneous[74] it is 

rational to test a hypothesis on different cancers instead of attempting to extrapolate findings 

from one cancer type to others. This is what is going to be done in the future course of time 

(Future plans mentioned in section 6). 

Table V.III – Table summarizing the survival information in the respective datasets to give a bird’s 
eye view. It is worth keeping in mind that in the datasets the ESC-1 +ve samples are less in number 
(~ 30% of total). 
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6. Conclusions & Future 
 

Throughout the project work different challenges were encountered which required 

changes to be made to the research strategy to overcome them. This project gave insight into 

how the gene ESC-1 and its partners are expressed in various cancer types especially colon 

cancer, in which we found a subset of samples expressing ESC-1 at high levels which was 

previously unknown. We also found that it is not necessary that ESC-1 expressing samples will 

also be expressing ESCP-12 or ESCP-14, the two important embryonic pluripotency factors.  

There were several cases where there was no presence of ESCP-12 and ESCP-14 in 

colon cancer (Fig 5.9 and 5.11), but there were certain cases in seminoma where ESCP-14 and 

ESCP-12 both were being expressed in the same set of samples where ESC-1 was being highly 

expressed (Fig. 5.10), which is a new finding as well. We found the differentially expressed 

genes between the samples expressing ESC-1 and the samples not expressing ESC-1, where 

we found that there are several interaction partners of ESC-1 that are differentially expressed 

(Fig. 5.19). We also established that many interaction partners are co-expressed in a wide range 

of samples, by demonstrating a positive statistical co-relation (Fig. 5.3 and Table V.I). The 

studies with the survival information show that ESC-1 alone is not able to explain the poor 

survival of patients, instead it might be a positive prognostic factor after all. 

But as Statistical significance does not imply causation, more research is being done 

with the survival information so that it is possible to narrow down the list of genes that explain 

the survival of the patients along with ESC-1 (because ESC-1 alone is not able to explain the 

survival of the patients). Our collaborators will then co-stain tumour samples with similar 

properties (e.g. Type of cancer, Stage at diagnosis, Age, etc.) to verify if those genes are 

actually expressed in the same samples.  

If they do succeed in verifying this in-vitro, then we plan to build a model that would 

predict the probability of survival of the patients based on the gene expression profile. Initially 

it would be cancer specific because we do not want to generalize findings too soon. However, 

on further investigation we hope to gain more knowledge and build a unified model that would 

predict the survival based on gene expression.  

The amount of sequencing data publicly available for analysis is increasing with time. 

Also, there is a trend where the world is inching away from microarray based studies towards 
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next generation sequencing (NGS)[75]. This is because NGS it is a one stop solution for 

sequence information, gene expression quantification with high sensitivity[75], and it also 

assists in analysing mutations, so in the future the findings of this thesis and the methodology 

too, might be adapted to incorporate Next Generation Sequencing information. But, these are 

rather long term goals and applications of the findings of this thesis. 
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