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ABSTRACT: 
 
The aim of our research was to examine whether simulated forest data can be utilized for training supervised classifiers. We included 
two classifiers namely the random forest classifier and the novel convolutional neural network classifier that utilizes feature images. 
We simulated tree parameters and created a feature vector for each tree. The original feature vector was utilised with random forest 
classifier. However, these feature vectors were also converted into feature images suitable for input into a YOLO (You Only Look 
Once) convolutional neural network classifier. The selected features were red colour, green colour, near-infrared colour, tree height 
divided by canopy diameter, and NDVI. The random forest classifier and convolutional neural network classifier performed similarly 
both with simulated data and field-measured reference data. As a result, both methods were able to identify correctly 97.5 % of the 
field-measured reference trees. Simulated data allows much larger training data than what could be feasible from field measurements.    
 
 

1. INTRODUCTION 

There is increasing demand for single tree inventory. With the 
higher resolution of available remote sensing datasets this 
becomes possible. Tree species classification is a main task for 
automatic tree inventory from remote sensing data. The species 
information can be utilized, for example, by the forest owner to 
confirm boundaries and quality as well as market values of a 
stand. Knowing about each single tree, also enables close 
monitoring of tree growth. 
 
Tree species can be classified using different machine learning 
methods such as random forests and support vector machines 
(Raczko and Zagajewski, 2017) and fairly recently convolutional 
neural networks (Ferreira et al., 2020; Weinstein et al., 2019; 
Natesan et al., 2019; Nezami et al., 2020). In point cloud-based 
approaches, voxelization and waveform representations (Guan et 
al., 2015) have been utilized. In addition, support vector 
machines, random forests and neural networks (Deng et al., 2016) 
have been suggested for tree species classification from 3D point 
clouds. Despite the variety of approaches, the tree species 
classification problem remains an open research topic for single 
trees over a wide area 
 
Since McCulloch and Pitts (1943) published ideas of neural 
networks, they have developed significantly. Early deep learning 
approaches (e.g. Ivakhnenko, 1971) with several layers were 
difficult to train, and deep learning did not become popular until 
the 2010s. Convolutional neural networks are specialized to 
handle grid-like data, such as images. Modern convolutional 
neural networks were introduced by Lecun et al. (1998). One 
significant step that made convolutional neural networks popular 
was AlexNet (Krizhevsky et al., 2012) that consists total of eight 
layers from which five are convolutional layers and the 
remaining three layers are fully connected. 
 
                                                                 
*  Corresponding author 
 

Convolutional neural networks have become widely applied for 
object detection and image classification, seeing use particularly 
in databases with large numbers of parameters to be trained 
(Dhillon and Verma, 2020). In recent years, many applications of 
convolutional neural networks have been studied, such as 
detection of trees depending on age (Mubin et al., 2019), 
recognition of human actions in videos (Serrano et al., 2018), 
object classification for autonomous driving (Dreossi et al., 
2017), and semantic segmentation of point clouds (Zhang et al., 
2019). The architectures utilized for different applications are 
diverse, with varying input image sizes, and parameter numbers 
ranging from a few thousand to over a hundred million (Shin et 
al., 2016). With a large number of pre-trained networks available, 
transfer learning can be a viable approach (Gopalakrishnan et al., 
2017), as a fine-tuned model can provide adequate results with a 
relatively small set of training data (Afridi et al., 2018).  
 
Simulation is an alternative to field measurements for obtaining 
data to train supervised classifiers. Especially, neural networks 
require relatively large training datasets for the network to 
correctly recognize features, and real data may be difficult to 
obtain (Ødegaard et al., 2016). Simulated data can be used to get 
a large training dataset with varying features without need for 
field measurements (Ji et al., 2019). Simulated data has also been 
widely utilized to train convolutional neural networks in various 
applications, such as electron detection (van Schayck et al., 
2020), ultrasound image enhancement (Perdios et al., 2018), and 
identification of fish species (Allken et al., 2019). A network 
trained with simulated data can potentially be directly applicable 
to real data (Nair et al., 2018), though real data may differ from 
the simulated data, and the network may need to be adjusted to 
address this difference (van Oort et al., 2019).  
 
Recent tree species classification approaches typically utilise 
unmanned aerial vehicles (UAVs) and either RGB (e.g. Franklin, 
2018; Natesan et al., 2019; Ferreira et al., 2020) or hyperspectral 
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(Sothe et al., 2019) cameras or mobile laser scanners (Ramalho 
de Oliveira et al., 2021), or combinations of these (Colgan et al., 
2012; Wu and Zhang, 2020). Lower-density airborne laser 
scanning data and imaging (Weinstein et al., 2019), as well as 
satellite imaging (Krahwinkler and Rossmann, 2013) and 
terrestrial laser scanning (Holmgren et al., 2008; Othmani et al., 
2013) have also been applied.  
 
The aim of this paper is to examine whether simulated forest data 
can be utilized for training supervised classifiers. In addition, we 
examine a novel classification method that utilises feature images 
and convolutional neural networks. As a comparison, we tested 
the random forest classifier with the same data. We conducted 
also a preliminary examination how well training with simulated 
data performed with reference data from field inventory.   
 
 

2. MATERIALS AND METHODS 

2.1 Simulating tree features 

In order to experiment and compare classification methods, a 
simulated set of tree features was created. We selected three tree 
species, namely spruce, pine and birch, to be simulated. 
Simulation was implemented in Matlab. 
 
The simulation allows to change the number of trees. The starting 
point is a trunk diameter at breast height (DBH). We set mean 
DBH, standard deviation as well as minimum and maximum 
DBH. From DBH, we derive tree height by utilizing the 
Näslund’s height curve (Näslund, 1936): 
 

 ℎ = 𝐷𝐵𝐻𝑚(𝑏0+𝑏1𝐷𝐵𝐻)𝑚 + 1.3   (1) 

 
Parameter m depends on the tree species and is 2 for pine and 
birch, and 3 for spruce. Coefficients 𝑏 and 𝑏ଵ also vary 
depending on tree species. We utilized mean parameters 
estimated in Siipilehto and Kangas (2015), presented in Table 1. 
We added some variation with given standard deviation to 
resulting heights. However, it was ensured that a tree could not 
exceed the characteristic maximum height of the corresponding 
tree species. 
 
Table 1. The values of applied coefficients 𝑏 and 𝑏ଵ(Siipilehto 
and Kangas, 2015). 

 𝑏 𝑏ଵ 
Spruce 1.635 0.330 
Pine 1.195 0.242 
Birch 0.898 0.242 

 
The mean tree crown diameter of each tree species (Table 2) was 
taken from Korpela et al. (2014). Again, some variation with a 
given standard deviation was added.    
 
Table 2. The values of applied mean crown diameters. (Korpela 
et al., 2014). 

 crown diameter (m) 
Spruce 2.9 
Pine 2.8 
Birch 2.6 

 
We decided to simulate false colour, namely near infrared (NIR), 
red and green, values for each tree species. To add some 
challenge and imitate reality, we created two colour cases for 
each tree species corresponding to the cases where the treetop is 

well illuminated and when it is in shadows. This is especially 
important for the convolutional neural network method because 
it is detecting patterns in images, and illuminated and shadowed 
cases look very different.  
 
For simulation, we applied mean reflectance values (Table 3) 
from Korpela et al. (2014) that were converted into colour values 
by multiplying with 255 and then linearly enhanced according to 
real colour samples of a corresponding tree from an aerial image. 
We selected manually representative colours for both illuminated 
and shadowed cases for each tree species. The coefficients for 
linear transformation were found by regression (Figure 1 and 
Figure 2). In addition, we added some variation with given 
standard deviation to colours. 
 
Table 3. The mean reflectance values for illuminated and 
shadowed canopies (Korpela et al., 2014). 

 
Red Green 

Near 
infrared 
(NIR) 

Spruce, illuminated 0.032 0.047 0.224 
Pine, illuminated 0.037 0.051 0.220 
Birch, illuminated 0.043 0.060 0.322 
Spruce, shadow 0.024 0.035 0.155 
Pine, shadow 0.030 0.041 0.169 
Birch, shadow 0.031 0.044 0.227 

  

 
Figure 1. The regression for finding coefficients of a linear 
transformation in the illuminated case. The blue dots from left to 
right correspond to colours red, green and NIR, respectively. 
 

  
Figure 2. The regression for finding coefficients of a linear 
transformation in the shadowed case. The blue dots from left to 
right correspond to colours red, green and NIR, respectively. 
 
The R2 values reveal that the relative ratios of applied reflectance 
values fit well with true R, G and NIR observations. Figure 3 
illustrates simulated colour variations between tree species and 
compares them with a real sample of a pine from an aerial image. 
The simulation randomly selected if illuminated or shadowed 
case was created. In addition, a small variation with a given 
standard deviation was added to colour values. To get more 
descriptors for a feature vector, some derived measures were 

y = 1.206x + 120.82
R² = 0.9999
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utilized, such as tree height divided by crown diameter and the 
normalized difference vegetation index (NVDI): 
 

   𝑁𝑉𝐷𝐼 = 𝑁𝐼𝑅െ𝑟𝑒𝑑𝑁𝐼𝑅+𝑟𝑒𝑑     (2) 
 
The final feature vector (𝑓) that was utilized for tree species 
classification was: 
 

                  𝑓 = ⎣⎢⎢⎢
⎡ 𝑟𝑒𝑑𝑔𝑟𝑒𝑒𝑛𝑁𝐼𝑅𝑡𝑟𝑒𝑒 ℎ𝑒𝑖𝑔ℎ𝑡/𝑐𝑟𝑜𝑤𝑛 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑁𝐷𝑉𝐼 ⎦⎥⎥⎥

⎤
  (3) 

 
 

Simulated colours,  
an illuminated case 

Spruce   
Pine   
Birch   

  
Simulated colours,   
a shadowed case 

Spruce   
Pine   
Birch   

 
Figure 3. Simulated colour values and a sample of a pine taken 
from an aerial image. 
 
2.2 Creation of feature images and labelling 

In order to utilize convolutional neural networks, the feature 
vectors were converted into feature images (Figure 4). The size 
of the final feature image was decided on the basis of divisibility 
by 32, as that is the requirement for an unmodified YOLO v3 
neural network. Therefore, the final size of our feature images 
was decided to be 96 x 96 x 3 pixels. Applying a colour image 
structure minimised the need to modify YOLO. First, we created 
an empty image of the size of 6 x 6 pixels. Then, the five values 
from a feature vector (eq. 3) were placed to area [2:4, 2:3] (last 
pixel was left empty). Two last elements were rescaled to the 
colour range [0, 255]. Finally, the images were scaled to the size 
of 96 x 96 pixels and the first layer was copied to two other layers. 
Figure 5 illustrates samples from resulting feature images for 
following six tree classes: illuminated spruce, shadowed spruce, 
illuminated pine, shadowed pine, illuminated birch, and 
shadowed birch.  
 
 
 

 
 
 
Figure 4. The areas of a feature image corresponds to selected 
feature elements. 

      
         Spruce, 1                       Pine, 1                      Birch, 1           

       
          Spruce, 2                     Pine, 2                       Birch, 2 
Figure 5. Examples of feature images. Number 1 corresponds to 
an illuminated case and number 2 corresponds to a shadowed 
case.  
 
2.3 Simulated and field reference data 

We created a training data set of 1000 trees per tree species. 
However, because this was divided randomly to the illuminated 
and shadowed cases, each sub-class did not have exactly 500 
samples but close to it. Separate data sets were created for testing.  
 
To test classification with real data, we applied data from forest 
inventory done in three forest sample plots in Evo, Finland. 
Inventory data was collected in 2014 as a joint effort by Finnish 
Geospatial Research Institute FGI and University of Helsinki. 
However, crown diameters were measured only from pines 
(Pinus sylvestris). Pine was the dominant tree species in the area. 
According to known locations and tree heights, trees were 
superimposed into an aerial image (UltraCam Eagle Mark 1 f100, 
year 2019). Red, green and near-infrared colours were attached 
to trees by selecting the median colour value from a small area 
within a tree area. Figure 6 illustrates the distribution and location 
of 40 reference pines in three inventory areas. Test plots included 
only few grown-up spruces and birches. Unfortunately, the crown 
diameter data of them were not available. However, the potential 
to detect spruces (picea abies) and birches (betula sp.) was 
examined by giving the expected crown diameter to them.  
 

   
Figure 6. Reference trees superimposed into an aerial image.  
 
2.4 Utilizing convolutional neural network 

As a convolutional neural network, we selected YOLO (You 
Only Look Once) (Redmon et al., 2016) with the default full 
106-layer yolov3 model (75 convolutional layers and 31 
maxpool, route, up-sampling, and YOLO layers). Training was 
performed in the 64-bit c++ version of the open-source neural 
network Darknet (https://pjreddie.com/darknet/) in the Windows 
10 operation system with GPU support. The pre-trained weights 
of yolov3.weights were applied as a starting point.  
 

A sample of a pine 
from an aerial image 

Corresponds to 
red colour 

Corresponds to 
green colour 

Corresponds to 
a tree height 
divided by a 
crown diameter 

Corresponds to 
NDVI 

Not in use 

Corresponds to 
near infrared 
colour 
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Training a convolutional neural network requires many 
iterations. However, at some point the model starts overfitting, 
i.e. the model performs much better on the training dataset than 
on the test dataset, hence does not generalize well. Therefore, the 
mean average precision (mAP) was followed to detect an optimal 
number of iterations. In our case, we found that the weights at 
13000 iteration rounds performed the best. For testing the trained 
YOLO neural network, OpenCV libraries were utilized with 
Python.     
 
2.5 Random forest classification 

We decided to apply also the well-known random forest classifier 
(Breiman, 2001). Random forest classification is based on 
decision trees and has become a popular classification method. 
We utilized randomForest library in R (version 4.0.3). The 
random forest classifier was trained and tested with the same data 
set than YOLO. The “Number of Trees to Grow” parameter of 
the random forest classifier was set to 300.  
  
 

3. RESULTS 

In Table 4, the confusion matrices of classifications with both 
classifying methods are listed. In Table 5, illuminated and 
shadowed classes were combined into three main tree species 
classification. In Table 6, the overall accuracy and Cohen’s 
Kappa are presented for both classifiers. In Figure 7, we illustrate 
examples when YOLO has detected the feature image area and 
classified feature images to correct classes.  
 
Table 4. Confusion matrices for YOLO v3 and Random Forest 
classifiers trained with 1000 reference tree for each tree species. 
The number 1 refers to an illuminated case and the number 2 to 
a shadowed case. 

YOLO v3, N=3000 

truth\predicted spruce
1 

spruce
2 

pine
1 

pine
2 

birch
1 

birch
2 

spruce1 475 0 30 0 0 0 
spruce2 0 494 0 1 0 0 
pine1 16 0 469 0 0 0 
pine2 0 0 0 515 0 0 
birch1 0 0 0 0 499 0 
birch2 0 0 0 0 0 501 

Random forest, N=3000 
 spruce

1 
spruce

2 
pine

1 
pine

2 
birch

1 
birch

2 
spruce1 477 0 28 0 0 0 
spruce2 0 495 0 0 0 0 
pine1 23 0 462 0 0 0 
pine2 0 0 0 515 0 0 
birch1 0 0 0 0 499 0 
birch2 0 0 0 0 0 501 

 
Table 5. The results from Table 6, converted into three main tree 
classes. 

YOLO v3  
truth\predicted spruce pine birch 
spruce 969 31 0 
pine 16 984 0 
birch 0 0 1000 

Random forest 
 spruce pine birch 
spruce 972 28 0 
pine 23 977 0 
birch 0 0 1000 

Table 6. The overall accuracy and Cohen’s Kappa (6 classes)  
 Overall 

accuracy (%) 
Cohen’s 
Kappa 

YOLO  98.43 0.981 
Random forest 98.30 0.980 

     
                            
                                     
                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Examples of correctly classified (YOLO v3) feature 
images.  
 
In addition, both methods were applied to detect 40 reference 
pines that were measured in the field. Both methods succeeded to 
classify the same 39 reference trees correctly and classified one 
pine to the birch class leading to the 97.5% classification 
accuracy. However, to achieve this result the brightness of 
colours needed adjustment.  
 
 

4. DISCUSSION 

Applying 1000 simulated training samples per tree species 
seemed to work both with random forest and YOLO. Tests 
against simulated test data showed that the overall performance 
of tested methods was very similar even if there was some 
variation which trees were misclassified. When the classifiers 
tested with field-measured reference data, the colours needed 
adjustment. If we compare Figure 3 and Figure 6, it can be seen 
that there is a clear difference in colours, because the examples 
are taken from different images. To successfully identify pines 
only brightness needed to be adjusted to the level of training data. 
 
Even if we had no crown diameter information of spruces and 
birches from the forest test plots, we examined them by giving 
expected canopy diameters to four spruces and seven birches. 
This examination revealed that the same brightness correction 
that worked with pines did not give satisfying results with other 
tree species. However, after adjusting brightness and stretching 
the histogram of individual colour layers, it was possible to 
classify all trees correctly. In practice, we needed to modify only 
near-infrared colours for spruces and green colours for birches to 
detect them correctly. This indicates that simulated data is a 
feasible way to get large training and testing data sets, but when 
a new aerial image is applied, colours need to be adjusted to meet 
the expected colour levels. This needs to be done separately to 
each colour layer and it might need both brightness adjustment 
and histogram stretching. Ideally, colour values should be 
changed to something that is invariant to changes in photographs. 
An alternative to simulation is data augmentation, if some 
training data is available. However, this is a topic for future 
research.  
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Converting feature vectors into feature images and applying 
convolutional neural networks for classification is an 
unconventional approach. In other words, by converting feature 
vectors into feature images, we enable YOLO to detect and 
classify a tree in focus. Actually, we would not need all the 
properties of convolutional neural networks, since localization at 
the image plane could be avoided. After all, the feature 
information is always located at the same place in feature images. 
In this experiment, we utilized only five features, and each 
feature filled a small area in a feature image. Therefore, 
convolution operations did not dismiss any features. If each 
feature would correspond to only one pixel in a feature image, it 
would be expected that the order of features might have influence 
to results, and the significance of features could vary. However, 
this is a topic for further research. In addition, in the future it 
would be interesting to compare the results of our way to utilize 
YOLO with the results of traditional fully connected multilayer 
neural networks.  
 
We selected features that can be extracted from dense laser point 
clouds and photogrammetric images in practice. NVDI was 
added mainly to get larger pattern area in feature images. Since 
NVDI is derived from colour values, it most likely makes no 
difference to random forest classification. However, the effect for 
YOLO classification needs further research. The good 
performance of both classifying methods indicate that such 
simulation approach has potential to work in a practical forest 
inventory. However, we believe that the presented method can be 
further developed. We expect that simulation data can be 
improved by utilizing more species-wise knowledge about 
variation of the selected features. In addition, it might be possible 
to fine-tune training data for a specific classifier to improve the 
performance. For example, the convolutional neural network 
classifier might benefit if the training data set was larger than we 
applied. Our crown parameters came from field data, and it is a 
topic for future research how the method works with crown 
parameters extracted from laser scanning or photogrammetric 
data.  
       
In our case, the use of a novel convolutional neural network 
classification method gave very similar outcome than the random 
forest classifier. The convolutional neural network classifier is 
expected to be scalable to handle many feature elements in a 
feature image, if needed. Theoretically, a feature image of the 
same size than we applied can hold 9216 features. Optimizing the 
structure of YOLO for operating with feature images is a good 
topic for further research. As an example, the current 
implementation of a full YOLO searches targets with different 
scales. However, the size of our feature image did not change. 
Therefore, a convolutional neural network could be modified to 
operate only with an optimal scale. In addition, the size of our 
feature images might not be optimal. However, this is not 
expected to affect to the classification accuracy, but merely to the 
computation speed.  
 
 

5. CONCLUSIONS 

The aim of our research was to examine whether simulated forest 
data can be utilized to train supervised classifiers. We created a 
simulator that can produce realistic tree feature vectors. These 
features were directly applied to a random forest classifier. In 
addition, we converted feature vectors into feature images 
suitable for a YOLO convolutional neural network. The random 
forest classifier and convolutional neural network classifier 
performed similarly both with simulated data and field-measured 
reference data. As a result, both methods were able to identify 

correctly 97.5% of the field-measured reference trees. This 
indicates that simulation is a feasible method to train classifiers. 
Simulated data allows much larger training data than could be 
feasible from field measurements.  However, the colour levels of 
images need to be adjusted to expected levels when a new image 
is applied. Using feature images and convolutional neural 
networks should scale well and the method is not limited to a 
single application.  
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