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Abstract: In this article, we propose a general nonlinear sufficient dimension reduction (SDR)

framework when both the predictor and response lie in some general metric spaces. We

construct reproducing kernel Hilbert spaces whose kernels are fully determined by the distance

functions of the metric spaces, then leverage the inherent structures of these spaces to define a

nonlinear SDR framework. We adapt the classical sliced inverse regression of Li (1991) within

this framework for the metric space data. We build the estimator based on the corresponding

linear operators, and show it recovers the regression information unbiasedly. We derive the

estimator at both the operator level and under a coordinate system, and also establish its

convergence rate. We illustrate the proposed method with both synthetic and real datasets

exhibiting non-Euclidean geometry.

Key words and phrases: Covariance operator; Metric space; Reproducing kernel Hilbert space;
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1. Introduction

High-dimensional data are now prevailing in almost every branch of science and

business, whereas dimension reduction plays a central role in the analysis of such

data. A particularly useful reduction paradigm is sufficient dimension reduction

(SDR), which embodies a family of methods that aim to reduce the dimensionality

while losing no information in a regression setting. Since the pioneering work of sliced

inverse regression (Li, 1991, SIR), SDR has enjoyed a rapid development in the past

three decades. For a univariate response Y and a p-dimensional predictor X, SDR

seeks a low-dimensional representation, usually in the form of linear combinations

βTX, for a p× d matrix β = (β1, . . . , βd) with d ≤ p, such that,

Y X | βT

1X, . . . , β
T

dX. (1.1)

As such, βTX contains full regression information of Y given X, and since d is often

much smaller than p, dimension reduction is achieved. SDR then seeks the minimum

subspace spanned by β, called the central subspace, which uniquely exists under very

mild conditions (Yin et al., 2008). Originating from SIR (Li, 1991), there has been a

large body of methods proposed for SDR, mostly in a model-free fashion that does

not impose any specific parametric form for the association between Y and βTX.

Examples include Cook and Weisberg (1991); Li (1992); Cook and Li (2002); Xia

et al. (2002); Li and Wang (2007); Ma and Zhu (2012, 2013), among many others.
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See also Li (2018b) for a comprehensive review.

SDR in (1.1) achieves linear dimension reduction, as the low-dimensional rep-

resentation takes the form of linear combinations of X. It preserves the original

coordinates of X and is easier to interpret; nevertheless, it is less flexible. A more

recent line of SDR research instead seeks nonlinear dimension reduction (Fukumizu

et al., 2004, 2009; Li et al., 2011; Lee et al., 2013; Li and Song, 2017), such that,

Y X | f1(X), . . . , fd(X), (1.2)

where f1, . . . , fd are some functions in a Hilbert space. Nonlinear SDR is more flexible,

and may require a smaller number of functions than its linear counterpart to capture

the full regression information, though it is generally harder to interpret.

Despite the substantial progress of SDR, most existing SDR solutions target data

that reside in a Euclidean space. However, modern data objects are becoming in-

creasingly complex, and often reside in non-Euclidean spaces. Such data are routinely

collected in a wide range of applications, such as medical imaging, computational biol-

ogy, and computer vision, and it is of great interest to understand associations among

those complex data objects (Lin et al., 2017; Cornea et al., 2017; Dubey and Müller,

2019; Petersen and Müller, 2019; Lin and Yao, 2019; Pan et al., 2020). As examples,

we consider geometric data, positive definite matrix data, and compositional data

in this article. For instance, in applications such as brain structural and functional

connectivity analysis (Zhu et al., 2009; Zhang et al., 2020), the data usually come in
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the form of positive definite matrices, which measure the connectivity strengths of

pairs of nodes of a network and admit a certain manifold structure. In applications

such as chemistry, geology, and microbiome analysis (Lu et al., 2019), the data are

the proportions of individual components that sum to a fixed constant. Meanwhile,

there are many other examples of complex object data (Wang and Marron, 2007).

In all these examples, the data reside in some non-Euclidean spaces, and a proper

metric is needed in each case to characterize the intrinsic features of the data.

In this article, we propose a general nonlinear SDR framework when both the

predictor and response lie in some general, and possibly different, metric spaces.

Our key idea is to construct a pair of reproducing kernel Hilbert spaces (RKHS),

whose kernels are fully determined by the distance functions of the metric spaces.

We then leverage the inherent structures of these spaces to define a nonlinear SDR

framework for the metric space data, and further adapt sliced inverse regression of Li

(1991) within this framework. We build the estimator based on some linear operators,

and show it recovers the regression information unbiasedly. We derive the estimator

at both the operator level and under a coordinate system. We also establish the

convergence rate of the estimator under both settings when the response lies on a

general metric space, and when the response is categorical. We illustrate the proposed

method with both synthetic and real datasets exhibiting non-Euclidean geometry.

Our proposal is related to but also clearly differs from the nonlinear SDR method
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of Lee et al. (2013), and some recent SDR solutions involving functional or non-

Euclidean data such as Yeh et al. (2008); Li and Song (2017); Tomassi et al. (2019);

Ying and Yu (2020); Lee and Li (2022). In particular, Lee et al. (2013) devel-

oped a general framework for nonlinear SDR and proposed to estimate the functions

f1, . . . , fd in (1.2) as the eigenfunctions of some linear operator defined on a Hilbert

space H, but they still targeted the Euclidean data. Besides, they took H to be an

L2-space at the population level and an RKHS at the sample level. Our framework is

similar to theirs, but we aim at data residing in a general metric space. Moreover, we

take H to be an RKHS at both the population and sample levels, which makes the

connection between the population and sample versions of the estimation procedure

more transparent. Yeh et al. (2008) proposed kernel SIR under the framework of

(1.2), but required a functional version of the linearity condition. We instead adopt

a general form of conditional independence based on σ-fields and avoid relying on

the linearity condition. Li and Song (2017) considered nonlinear SDR for functional

data, where X is a function residing in some Hilbert space. Relatedly, Lee and Li

(2022) studied linear SDR when both X and Y are functions in some Hilbert space.

By contrast, we consider more general data objects than functional data. Tomassi

et al. (2019) developed linear SDR for compositional data, but restricted to a specific

set of parametric models for the conditional distribution of X given Y . Ying and

Yu (2020) developed SDR when the response is in a metric space and the predictors
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reside in a Euclidean space. Since the dimension reduction is to be performed for the

predictors, our method differs considerably from that of Ying and Yu (2020).

The rest of the article is organized as follows. Section 2 develops the general

framework of nonlinear SDR for data in metric spaces, and Section 3 derives the

metric version of SIR under this framework. Section 4 describes the finite-sample

implementation, and Section 5 studies the convergence properties of the estimator.

Section 6 presents the numerical studies, and the Supplementary Appendix collects

all the technical proofs.

2. Nonlinear SDR for Metric Space Data

In this section, we propose a general framework for conducting nonlinear SDR for

data residing in arbitrary metric spaces. It involves three main steps: defining a

minimal σ-field that captures full regression information, constructing reproducing

kernel Hilbert spaces of both X and Y from the metric spaces, and using the RKHSs

to define a representation of the minimal σ-field that is easier to estimate.

Let (Ω,F , P ) be a complete probability space. Let (Ω0
X , dX), (Ω0

Y , dY ) be arbi-

trary separable metric spaces, in which the predictor and the response, respectively,

take values. We make no further assumption on the data space and, depending on

Ω0
X , Ω0

Y , there may be multiple feasible choices for the metrics dX , dY . See, for in-

stance, Section 6 where we take Ω0
X to be some manifold spaces and consider different
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choices of metrics for dX .

Let FX and FY be the Borel σ-fields generated by the open sets in the metric

topology in Ω0
X and Ω0

Y , respectively. Consider X : Ω → Ω0
X that is a F/FX-

measurable random variable with the distribution PX = P ◦X−1, and Y : Ω → Ω0
Y

that is a F/FY -measurable random variable with the distribution PY = P ◦Y −1. For

simplicity, suppose the joint random variable (X, Y ) is F/(FX × FY )-measurable.

Let PX|Y : FX × Ω0
Y → R be the conditional distribution of X given Y = y, and

suppose the set {PX|Y (· | y) | y ∈ Ω0
Y } is dominated by a σ-finite measure. Let σX be

the σ-field generated by X. We adopt the following definition from Lee et al. (2013).

Definition 1. A sub-σ-field G of σX is said to be a sufficient dimension reduction

σ-field for Y given X, if the random elements Y and X are conditionally independent

given G, in that Y X | G. When the set of conditional distributions, {PX|Y (· | y) |

y ∈ Ω0
Y } is dominated by a σ-finite measure, the intersection of all SDR σ-fields is

itself an SDR σ-field. It is called the central σ-field, and denoted by GY |X .

Definition 1 suggests that there exists uniquely a smallest SDR σ-field. In our pursuit

of nonlinear SDR, we seek a set of functions f1, . . . , fd lying in some suitable function

spaceHX that are GY |X-measurable, and dimension reduction is achieved by replacing

X with the corresponding sufficient predictors f1(X), . . . , fd(X).

A natural candidate for the function space HX is L2(PX), the class of all square

integrable functions f : Ω0
X → R and, indeed, this is what Lee et al. (2013) used.
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We instead take HX to be a suitably defined reproducing kernel Hilbert space, a

choice that makes the subsequent methodology and theory development considerably

simpler. More specifically, to connect the RKHS HX to the metric structure of the

space Ω0
X , we consider a positive semi-definite kernel, κX : Ω0

X ×Ω0
X → R, for which

there exists a function ρ : R→ R, such that, for all x1, x2 ∈ Ω0
X ,

κ(x1, x2) = ρ{dX(x1, x2)}, (2.3)

where dX is the metric of Ω0
X . We further impose the following finite second-order

moment requirement for the kernel function, which is essentially the RKHS-equivalent

of requiring a random variable to be square integrable, and is a rather mild condition.

Assumption 1. Suppose E{κX(X,X)} <∞, and E{κY (Y, Y )} <∞.

There are multiple choices for this type of kernel function, for instance, the Gaussian

kernel and the Laplace kernel, among others. Throughout our implementation, we

employ the Gaussian kernel with a positive covariance.

Given the kernels κX and κY , let H0
X and H0

Y be the RKHSs generated by κX and

κY , respectively. By Assumption 1, we have that H0
X ⊆ L2(PX) and H0

Y ⊆ L2(PY ).

Moreover, by the Riesz representation theorem, there exist a unique mean element

µX ∈ H0
X , and a unique covariance operator Σ0

XX , such that,

〈f, µX〉H0
X

= E{f(X)}, for all f ∈ H0
X ,

〈f,Σ0
XXf

′〉H0
X

= Cov{f(X), f ′(X)}, for all f, f ′ ∈ H0
X .
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Note that every f0 ∈ ker(Σ0
XX) satisfies that Var{f0(X)} = 〈f0,Σ0

XXf0〉H0
X

= 0, and

is almost surely equal to a constant, where ker(·) denotes the null space. As such,

we further restrict our attention to HX = ran(Σ0
XX), where ran(·) denotes the range,

and ran(·) denotes the closure of the range.

Lemma 1. Suppose Assumption 1 holds. There exists a set ΩX ⊆ Ω0
X , such that

PX(ΩX) = 1, and κX(·, x)− µX ∈ HX for all x ∈ ΩX .

Lemma 1 reveals that the functions κX(·, x) − µX , for x ∈ ΩX , belong to the space

HX , which allows us to perform centering through the inner product, 〈f, κX(·, x) −

µX〉HX
= f(x) − E{f(X)}. Its proof also shows that the space HX admits an al-

ternative characterization, i.e., HX = span{κX(·, x) − µX : x ∈ ΩX}, where span(·)

denotes the closure of the say spanned by the set of functions. We briefly remark that

a similar result was obtained in Li and Song (2017, Lemma 1). However, their proof

implicitly assumed that the only set for which PX assigns a zero probability is the

empty set, essentially ruling out all continuous distributions, whereas our Lemma 1

fixes this issue. We also remark that, this characterization does not imply that the

elements f ∈ HX are centered in the sense that E{f(X)} = 0. Instead, focusing on

HX removes the constant functions that are of no interest in our dimension reduction

pursuit. We construct µY , Σ0
Y Y , and the RKHS HY in an analogous manner.

Definition 2. We call the set of all f ∈ HX that are GY |X-measurable the central

class, and denote this set by SY |X .
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We make two remarks. First, our notion of dimension reduction is based on the

smallest SDR σ-field, i.e., the central σ-field. In our setting, the concept of “dimen-

sionality” is less obvious than that in the classical SDR setting, which is simply the

dimension of the central subspace. This is because there are sets that generate the

same σ-field, but with very different dimensions. Nevertheless, our formulation is

useful when one is interested in reducing the dimensionality in the class sense, as the

central class induced by the central σ-field contains all such sets of functions generat-

ing the same σ-field, and we seek the smallest one. Second, the relation between the

central σ-field GY |X and the central class SY |X is analogous to the relation between

the central subspace and the sufficient predictors in the classical setting. That is, in

lieu of estimating GY |X , we search for subsets of elements of SY |X , which are more

concrete and easier to estimate.

3. Metric Sliced Inverse Regression

In this section, we derive the population-level sliced inverse regression for metric space

data. Recall the classical SIR (Li, 1991) when both X and Y lie in an Euclidean space.

It estimates the central subspace by the range of the matrix,

Var(X)−1Var{E(X | Y )}, (3.4)

We next derive the operator analogue for (3.4) for two cases: the general case of Y

residing in a metric space, and the special case of Y being a discrete random variable.
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3.1 Metric response

3.1 Metric response

We first define a number of covariance operators that serve as the main building

blocks of our nonlinear metric SIR procedure.

ΣXX : HX → HX , 〈f,ΣXXf
′〉HX

= Cov{f(X), f ′(X)},

ΣXY : HY → HX , 〈f,ΣXY g〉HX
= Cov{f(X), g(Y )}, (3.5)

ΣY Y : HY → HY , 〈g′,ΣY Y g〉HY
= Cov{g′(Y ), g(Y )},

for f, f ′ ∈ HX and g, g′ ∈ HY . In addition, the cross-covariance operator ΣY X :

HX → HY can be obtained as ΣY X = Σ∗XY , the adjoint of the operator ΣXY . We also

note that, because HX = ran(Σ0
XX), we have ker(ΣXX) = {0}, and ran(ΣXX) = HX .

We next introduce two regularity conditions.

Assumption 2. Suppose that HX +R and HY +R are dense in L2(PX) and L2(PY ),

respectively, where + denotes the direct sum.

Assumption 3. Suppose ran(ΣY X) ⊆ ran(ΣY Y ), and ran(ΣXY ) ⊆ ran(ΣXX).

Assumption 2 is typical in kernel learning and generally holds, e.g., when κX is a

Gaussian kernel (Fukumizu et al., 2009). In this assumption, by “dense” we mean

that, for every f ∈ L2(PX), there exists a sequence of elements fn ∈ HX , such that

var{f(X) − fn(X)} → 0, as n → ∞. Assumption 3 is essentially a smoothness

condition on the relation between X and Y (Li, 2018a), and similar conditions are
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3.1 Metric response

commonly imposed in SDR (Ying and Yu, 2020; Li and Song, 2022). It guarantees

that the operator Σ†Y Y ΣY X is both well-defined and bounded (Douglas, 1966, The-

orem 1), where † denotes the Moore-Penrose pseudo-inverse of ΣY Y ; see Li (2018a)

for more details on the Moore-Penrose pseudo-inverse of an operator.

The next lemma provides some useful expressions for the conditional moments of

X given Y at the operator level. They are essential to construct the operator analogue

for the SIR estimator (3.4). In addition, they help turn conditional moments into

unconditional ones, avoiding the slicing step in the original SIR.

Lemma 2. Suppose Assumptions 1, 2 and 3 hold. Then,

(a) For any f ∈ HX , E{f(X) | Y } − E{f(X)} = 〈Σ†Y Y ΣY Xf, κY (·, Y )− µY 〉HY
;

(b) For any f, f ′ ∈ HX , Cov[E{f(X) | Y },E{f ′(X) | Y }] = 〈f,ΣXY Σ†Y Y ΣY Xf
′〉HX

.

By Lemma 2, the operator ΣXY Σ†Y Y ΣY X can be seen as the analogue of the matrix

Var{E(X | Y )} in (3.4). Besides, the operator Σ†XX can be seen as the analogue of

Var(X)−1 in (3.4). Consequently, a direct operator counterpart of (3.4) is,

ΛSIR = Σ†XXΣXY Σ†Y Y ΣY X . (3.6)

This operator is well-defined by Assumption 3. Moreover, it is interesting to note

that, if we choose linear kernels κX , κY , then ΛSIR reduces precisely to the matrix of

the canonical correlation analysis (CCA).
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3.2 Discrete response

The next theorem shows that the operator ΛSIR is bounded, and that the closure

of its range is unbiased for the central class, which is parallel to the classical SIR for

linear SDR of Euclidean data. We need an additional regularity condition.

Assumption 4. Suppose the set ran(ΣXX) ∩ S⊥Y |X is dense in the set S⊥Y |X , where

the orthogonal complement is taken with respect to HX .

Assumption 4 requires that the intersection between ran(ΣXX) and S⊥Y |X is suitably

rich in S⊥Y |X , which is a mild condition, since ran(ΣXX) is, by definition, dense in its

closure HX . Similar condition has been imposed implicitly in Li and Song (2017).

Theorem 1. Suppose Assumptions 1 to 4 hold. Then ΛSIR is a bounded operator,

and ran(ΛSIR) ⊆ SY |X .

Theorem 1 suggests that we can recover the central class by the range of ΛSIR, or

equivalently, by the spectral decomposition of ΛSIRΛ∗SIR. This is the foundation for

our estimation procedure developed in Section 4. We call our proposed nonlinear

SDR method based on ΛSIR as metric sliced inverse regression (MSIR).

3.2 Discrete response

Next, we consider a special case when Y lies in the usual Euclidean space and is

discrete. This is the scenario that is perhaps most often encountered in real appli-

cations. The main difference between this special case and the general case is that,
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3.2 Discrete response

when Y is discrete, we can obtain direct RKHS representations for the conditional

moments, instead of resorting to the unconditional representations as in Lemma 2.

More specifically, suppose Ω0
Y = {1, . . . , K}, and let πk = P (Y = k), πk > 0

for all k ∈ Ω0
Y . By the Riesz representation theorem, there exists the elements

γX|k ∈ HX , k = 1, . . . , K, such that, for any f ∈ HX ,

E{f(X) | Y = k} − E{f(X)} = 〈γX|k, f〉HX
,

The elements γX|k can be seen to provide a discrete counterpart of Lemma 2(a). We

then define the covariance operator,

ΓXX|Y =
K∑
k=1

πk(γX|k ⊗ γX|k) : HX → HX , (3.7)

where ⊗ denotes the tensor product. It satisfies that, for any f, f ′ ∈ HX ,

Cov[E{f(X) | Y },E{f ′(X) | Y }] = 〈f,ΓXX|Y f ′〉HX
,

Consequently, the counterpart of ΛSIR in (3.6) when Y is categorical is,

ΛSIR,D = Σ†XXΓXX|Y . (3.8)

This operator is well-defined under the following smoothness condition, and the clo-

sure of its range provides an unbiased estimator of the central class.

Assumption 5. Suppose ran(ΓXX|Y ) ⊆ ran(ΣXX).

Theorem 2. Suppose Assumptions 1, 2, 4, 5 hold. Then ΛSIR,D is a bounded opera-

tor, and ran(ΛSIR,D) ⊆ SY |X .
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4. Sample Estimation

In this section, we develop the sample estimator for the proposed metric SIR, first at

the operator level, then under a coordinate system, given the i.i.d. random sample

observations {(X1, Y1), . . . , (Xn, Yn)} of (X, Y ).

4.1 Estimation at the operator level

For the general case when the response Y resides in a metric space, we first obtain

the sample estimators of the mean elements by µ̂X = En{κX(·, X)}, and µ̂Y =

En{κY (·, Y )}, where En is the sample mean operator, such that Enω = n−1
∑n

i=1 ωi

for the samples ω1, . . . , ωn from ω. We next obtain the sample estimators of the

covariance operators ΣXX ,ΣXY ,ΣY Y in (3.5) as,

Σ̂XX = En[{κX(·, X)− µ̂X} ⊗ {κX(·, X)− µ̂X}],

Σ̂XY = En[{κX(·, X)− µ̂X} ⊗ {κY (·, Y )− µ̂Y }],

Σ̂Y Y = En[{κY (·, Y )− µ̂Y } ⊗ {κY (·, Y )− µ̂Y }].

Moreover, we have Σ̂Y X = Σ̂∗XY . We then obtain the sample estimator of the metric

SIR operator ΛSIR in (3.6) as,

Λ̂SIR = (Σ̂XX + τ1I)−1Σ̂XY (Σ̂Y Y + τ2I)−1Σ̂Y X ,

where we utilize the ridge regularization to estimate the pseudo-inverses, τ1, τ2 are

the ridge parameters, and I is the identity operator. Finally, we estimate the range of
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4.2 Estimation under a coordinate representation

ΛSIR through the spectral decomposition of the operator Λ̂SIRΛ̂∗SIR. Suppose f̂1, . . . , f̂d

are the d leading eigenfunctions of Λ̂SIRΛ̂∗SIR. Then the estimated sufficient predictors

corresponding to the observation X ∈ Ω0
X are f̂1(X), . . . , f̂d(X).

For the special case when Y resides in the usual Euclidean space and is discrete,

we obtain the sample estimator of the covariance operator ΓXX|Y in (3.7) as,

Γ̂XX|Y =
1

n

K∑
k=1

nk(γ̂X|k ⊗ γ̂X|k),

where nk is the number of samples belonging to the class k, I(·) is the indicator

function, and γ̂X|k = (n/nk)En{I(Y = k)κX(·, X)} − µ̂X , for k = 1, . . . , K. We then

obtain the sample estimator of the metric SIR operator ΛSIR,D in (3.8) as,

Λ̂SIR,D = (Σ̂XX + τ1I)−1Γ̂XX|Y .

Finally, we estimate the range of ΛSIR,D via the spectral decomposition of Λ̂SIR,DΛ̂∗SIR,D.

4.2 Estimation under a coordinate representation

We next develop the estimation procedure under a chosen coordinate system. We

divide the procedure into three main steps. We focus on the general case when Y

resides in a metric space, and briefly discuss the special case when Y is discrete.

In Step 1, we choose the kernel function κX and κY . There are multiple choices of

kernel functions, while we employ the Gaussian kernel throughout our implementa-

tion. We use the leave-one-out cross-validation to determine the bandwidth parame-
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4.2 Estimation under a coordinate representation

ters in κX and κY , following a similar strategy as in Lee et al. (2013). We then com-

pute the Gram matrixKX = (κX(Xi, Xi′))
n
i,i′=1 ∈ Rn×n, andKY = (κY (Yi, Yi′))

n
i,i′=1 ∈

Rn×n, where the kernel functions κX and κY are evaluated under the given metrics

dX , dY as in (2.3). Let Q = I − n−111T denote the centering matrix, where 1 ∈ Rn is

a vector of ones. We then compute the centered version of the Gram matrices as

GX = QKXQ, and GY = QKYQ. (4.9)

In Step 2, we compute the coordinate representation of the sample metric SIR

operator Λ̂SIR. Toward that end, consider the sample counterpart of the space H0
X ,

which is the span of the sample elements, Ĥ0
X = span

{
κX(·, Xi) | i = 1, . . . , n

}
. We

impose the following linear independence assumption, which is a mild requirement.

When it does not hold, we can simply delete a subset of the elements to obtain a

linearly independent set. Alternatively, we can also construct a linearly independent

basis via Karhunen-Loève expansion, see, e.g. Lee and Li (2022).

Assumption 6. The elements κX(·, Xi), i = 1, . . . , n, are linearly independent.

Under Assumption 6, the elements κX(·, Xi), i = 1, . . . , n, form a basis for Ĥ0
X

and, given an arbitrary member f ∈ Ĥ0
X , we define its coordinate [f ] ∈ Rn as

the vector of its coefficients under this basis. As such, for any f ∈ Ĥ0
X and X ∈

Ω0
X , f(X) = [f ]TkX(X), where kX(X) = (κX(X,X1), . . . , κX(X,Xn))T. In addition,

we take the inner product of Ĥ0
X to be the bilinear form, (f, f ′) 7→ 〈f, f ′〉Ĥ0

X
=
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4.2 Estimation under a coordinate representation

[f ]TKX [f ′], for f, f ′ ∈ Ĥ0
X , and the Gram matrix KX is ensured to be positive

definite by Assumption 6. Analogously, consider the sample counterpart of the space

HX , which is the span of the centered sample elements, ĤX = span
{
κX(·, Xi)− µ̂X |

i = 1, . . . , n
}

. We construct the sample spaces Ĥ0
Y and ĤY similarly.

Correspondingly, following Fukumizu et al. (2009), the coordinates of the sample

covariance operators Σ̂XX , Σ̂XY , Σ̂Y X , Σ̂Y Y are,

[Σ̂XX ] = n−1GX , [Σ̂XY ] = n−1GY , [Σ̂Y X ] = n−1GX , [Σ̂Y Y ] = n−1GY ,

where GX , GY are as defined in (4.9). We also clarify that, the above coordinate

representation seems to suggest that Σ̂Y X does not depend on Y , which is not the

case. Actually, Σ̂XX and Σ̂Y X share the same coordinate, which is n−1GX , but they

involve two different sets of bases, as Σ̂XX and Σ̂Y X have different range spaces. For

simplicity, we drop the involvement of the underlying bases in the coordinate bracket

notation. But we remind that Σ̂Y X depends on Y through the underlying bases. A

similar discussion applies to Σ̂XY too.

We then obtain the coordinate representation of Λ̂SIR in the next lemma. Its

proof follows immediately by the definition of Λ̂SIR, and is thus omitted.

Lemma 3. The metric SIR operator Λ̂SIR has the coordinate representation,

[Λ̂SIR] = G†XGYG
†
YGX , (4.10)

where † denotes the Moore-Penrose pseudo-inverse of a matrix.
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4.2 Estimation under a coordinate representation

To improve numerical stability, we replace the pseudo-inverse G†X in Lemma 3

with its ridge-regularized counterpart {GX + τ1In}−1, where τ1 is taken to be c ×

φ1(GX), φ1(·) is the largest eigenvalue of the designated matrix, and c = 0.2. A

similar procedure was also employed in Lee and Li (2022). Similarly, we replace G†Y

by {GY + τ2In}−1 with τ2 = c× φ1(GY ).

In Step 3, we estimate the range of Λ̂SIR through the eigen-decomposition of its co-

ordinate in (4.10). Letting v1, . . . , vd denote the d leading eigenvectors of [Λ̂SIR][Λ̂SIR]T,

the estimated sufficient predictors corresponding to an observation X ∈ Ω0
X are

vT
1QkX(X), . . . vT

dQkX(X), where kX(X) = (κX(X,X1), . . . , κX(X,Xn))T. Alterna-

tively, one can also use the eigenvectors of the matrix [Λ̂SIR].

We remark that, the computational complexity of our proposed method is of the

order O(n3). When the sample size n is huge, the computation can be intensive.

For such a case, we propose an alternative estimation strategy similar to that of

Hung and Huang (2019). That is, we first divide all the sample observations into

Q disjoint subsets I1, . . . , IQ. We then estimate the sufficient predictors given each

subset Iq, for q = 1, . . . , Q. To accommodate for possible discrepancy in the signs of

the resulting eigenvectors, we choose their signs such that, for each j = 1, . . . , d, the

sum
∑Q

q,q′=1 v
T
j,qvj,q′ is maximized, where vj,q is the jth eigenvector of [Λ̂SIR][Λ̂SIR]T

computed based on the qth subset Iq. We then average the estimated sufficient

predictors over all Q subsets to produce the final estimate for the full samples.
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For the special case when Y resides in the usual Euclidean space and is discrete,

the coordinate representation of γX|k is [γ̂X|k] = (1/nk)1k− (1/n)1, where the ith ele-

ment of the vector 1k ∈ Rn is the indicator I(Yi = k), i = 1, . . . , n. Correspondingly,

the coordinate representation of Λ̂SIR,D is,

[Λ̂SIR,D] = G†XQ

(
K∑
k=1

1

nk
1k1

T

k

)
QGX .

Finally, we briefly comment on the problem of selecting the reduced dimension d

in SDR. There have been a number of information criterion-based selection proposals

for SDR of the Euclidean data (Zhu et al., 2006; Luo et al., 2009; Xia et al., 2015).

We expect a similar information criterion is applicable for our metric SIR as well,

while we leave the full investigation as future research.

5. Asymptotic Theory

In this section, we establish the convergence rate of the proposed metric SIR estimator

at the operator level for both the general Y and categorical Y settings.

We begin with some regularity conditions.

Assumption 7. Suppose the kernel functions κX and κY are continuous.

Assumption 8. Suppose E{κX(X,X)2} <∞, and E{κY (Y, Y )2} <∞.

Assumption 9. Suppose ran(ΣY X) ⊆ ran(Σ2
Y Y ), and ran(ΣXY ) ⊆ ran(Σ2

XX).
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Assumption 7 is quite mild, and together with the separability of the metric spaces

Ω0
X ,Ω

0
Y , it ensures that the RKHS HX ,HY are separable (Hein and Bousquet, 2004),

which in turn ensures that HX ,HY admit countable orthonormal bases. Assump-

tion 8 is analogous to the requirement that a random variable has a finite fourth

moment, and is reasonable. Assumption 9 can be seen as a stronger version of As-

sumption 3; that is, in comparison with Assumption 3, the mapping of ΣXY needs

to concentrate even more on the leading eigen-spaces of ΣXX and ΣY Y . This, again,

can be understood as a smoothness condition.

In our sample estimation, we employ the ridge regularization for the pseudo-

inverses. For simplicity, in our theoretical analysis, we suppose the ridge parameters

τ1 = τ2 = τ , and τ approaches zero as the sample size n diverges. Denote the operator

norm of a linear operator A : H → H′ as ‖A‖OP = sup{‖Af‖H′ : ‖f‖H = 1}. The

next theorem establishes the convergence of Λ̂SIR in terms of the operator norm for

the general response case.

Theorem 3. Suppose Assumptions 7 to 9 hold. Then, as n→∞,

∥∥∥Λ̂SIR − ΛSIR

∥∥∥
OP

= Op
(
τ +

1

τ
√
n

)
.

For the special case of Y being categorical, we replace the smoothness condition

of Assumption 9 with the following counterpart.

Assumption 10. Suppose ran(ΓXX|Y ) ⊆ ran(Σ2
XX).
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Theorem 4. Suppose Assumptions 7, 8, and 10 hold. Then, as n→∞,

∥∥∥Λ̂SIR,D − ΛSIR,D

∥∥∥
OP

= Op
(
τ +

1

τ
√
n

)
.

Theorems 3 and 4 suggest that our metric SIR estimator is consistent. Its convergence

rate consists of two parts. The first part is due to the ridge regularization, and the

second part represents the convergence of the sample operators to their population

counterparts. If τ = n−β for some constant β > 0, then the convergence rate becomes

n−β + nβ−1/2, implying that the best possible convergence rate given by our result is

O(n−1/4), achieved when β = 1/4. We remark this is the same as the rate obtained

by Li and Song (2017) in nonlinear SDR for functional data.

6. Numerical Studies

In this section, we study the empirical performance of our proposed metric sliced

inverse regression (MSIR), under difference choices of distance metrics. We also

compare with the nonlinear SIR method of Lee et al. (2013, GSIR). Although GSIR

was originally formulated through the Euclidean geometry, it can be easily extended

to incorporate an arbitrary distance metric.

6.1 Torus manifold data

As the first example, we consider a two-dimensional torus as the predictor, while we

simulate the response using different distance metrics. A torus is best visualized as
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6.1 Torus manifold data

a unit square [0, 1]2 for which the opposite edges have been “glued together”. We

consider two different generative models.

Model 1: Yi = dG{Xi, (0.5, 0.5)T}+ εi;

Model 2: Yi = dG{Xi, (1, 1)T}+ εi,

where the 2-dimensional predictor Xi is uniformly distributed in [0, 1]2, the error term

εi is drawn from a normal distribution with mean zero and variance σ2, and dG denotes

the geodesic distance. Since the point (0.5, 0.5)T is in the middle of the unit square,

we have dG{Xi, (0.5, 0.5)T} = dE{Xi, (0.5, 0.5)T}, where dE denotes the Euclidean

distance. Consequently, in Model 1, the true relation between the response and the

predictor is a smooth function of the Euclidean distance between the predictor and

the center point of the square, and we expect the two distance functions to perform

similarly under Model 1. The same is not true for Model 2, however, where the

reference point (1, 1)T lies at the corner of the square. This means that the true

regression relationship is not a smooth function of the Euclidean distance, but it

is so for the geodesic distance, making the geodesic distance more favorable under

Model 2. For both models, we consider two sample sizes n = 250, 500, and two noise

levels σ = 0.05, 0.10. We further divide the data into 80% training samples, and 20%

testing samples. We consider two distance metrics, the geodesic distance and the

Euclidean distance.
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6.1 Torus manifold data

Table 1: The torus data example: the average distance correlation (with the standard

deviation in the parenthesis) between the response and estimated sufficient predictors.

Model 1 n = 250 n = 500

σ = 0.05 σ = 0.10 σ = 0.05 σ = 0.10

MSIR dG 0.912 (0.025) 0.766 (0.058) 0.911 (0.018) 0.777 (0.038)

GSIR dG 0.719 (0.082) 0.611 (0.088) 0.715 (0.071) 0.599 (0.081)

MSIR dE 0.926 (0.021) 0.779 (0.060) 0.926 (0.014) 0.790 (0.037)

GSIR dE 0.654 (0.092) 0.563 (0.091) 0.646 (0.083) 0.552 (0.082)

Model 2 n = 250 n = 500

σ = 0.05 σ = 0.10 σ = 0.05 σ = 0.10

MSIR dG 0.912 (0.025) 0.784 (0.054) 0.913 (0.017) 0.775 (0.040)

GSIR dG 0.726 (0.079) 0.623 (0.094) 0.724 (0.073) 0.616 (0.082)

MSIR dE 0.841 (0.046) 0.729 (0.067) 0.845 (0.032) 0.722 (0.046)

GSIR dE 0.602 (0.087) 0.526 (0.098) 0.587 (0.084) 0.509 (0.085)

Table 1 reports the distance correlation between the response and the first two

estimated sufficient predictors evaluated on the testing samples and averaged over

200 data replications. It is seen that the proposed MSIR outperforms the competing

GSIR, by achieving a higher distance correlation and a smaller standard error. More-
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6.2 Positive definite matrix data

over, the Euclidean metric is slightly better suited to Model 1, where the toroidal

geometry plays no role, while the geodesic metric is considerably better for Model 2,

where the toroidal geometry plays a crucial role. The increased sample size mostly

helps to reduce the standard error of the estimator. Figure 1 further provides a vi-

sualization of the estimated sufficient predictors for a single data replication under

Model 2 with n = 500 and σ = 0.05. It agrees with the qualitative patterns observed

in Table 1 that MSIR produces more informative sufficient predictors than GSIR.

6.2 Positive definite matrix data

As the second example, we consider a positive definite matrix data example from a

neuroimaging based autism study (Di Martino et al., 2014). Autism is an increasingly

prevalent neurodevelopmental disorder, characterized by symptoms such as social dif-

ficulties, communication deficits, stereotyped behaviors and cognitive delays (Rudie

et al., 2013). The dataset consists of n = 795 subjects, among whom 362 were diag-

nosed with autism, and the rest healthy controls. For each subject, a resting-state

functional magnetic resonance imaging (fMRI) scan was obtained, which measures

the intrinsic functional architecture of the brain through the correlated synchroniza-

tions of brain systems. The corresponding brain functional connectivity network

has been shown to alter under different disorders or during different brain develop-

mental stages. Such alterations contain crucial insights of both disorder pathology
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6.2 Positive definite matrix data
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Figure 1: The torus data example: the sufficient predictors under two SDR methods

and two distance metrics.

and development of the brain (Fox and Greicius, 2010). It is thus of great scientific

importance to understand the association between the autism status and the brain

connectivity network, and our goal is to produce sufficient predictors to separate the

autism patients from those healthy controls.

We follow the data processing procedure of Sun and Li (2017), and summarize

the brain connectivity network for each subject as a 116 × 116 correlation matrix,
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6.2 Positive definite matrix data

corresponding to the synchronizations of 116 brain regions-of-interest under the com-

monly used Anatomical Automatic Labeling atlas (Tzourio-Mazoyer et al., 2002).

Moreover, most of the observed connectivity matrices of this data are numerically

rank-deficit, with the typical numerical rank ranging from 60 to 80. As such, we

employ common principal components analysis, and project the connectivity matri-

ces to the space of the top 30 common principal components, such that the minimal

eigenvalue is at least 10−4 for each resulting matrix.

We consider six distance metrics between two positive definite matrices M1 and

M2. These include the affine invariant metric, dA(M1,M2) = ‖Log(M
−1/2
1 M2M

−1/2
1 )‖F ,

where Log(·) denotes the matrix logarithm, and ‖ · ‖F the Frobenius norm, the log-

Euclidean metric, dLE(M1,M2) = ‖Log(M1) − Log(M2)‖F , the S-divergence (Sra,

2016), dS(M1,M2) = log |(M1+M2)/2|−(1/2) log |M1M2|, where |·| denotes the deter-

minant, the symmetrized Kullback-Leibler divergence, dKL(M1,M2) = {h(M1,M2)+

h(M2,M1)}/2, where h(M1,M2) = {tr(M−1
1 M2)+log |M1|−log |M2|}/2, the standard

Euclidean metric, dE(M1,M2) = ‖M1−M2‖F , and the Pearson metric, dP (M1,M2) =

‖M1/‖M1‖F −M2/‖M2‖F‖F . Among these six distance metrics, the first three prop-

erly acknowledge the geometry of the matrix spaceMd, the fourth one hinges on the

normality distribution, and the last two only leverage the Euclidean geometry.

Figure 2 shows the first two estimated sufficient predictors graphically. It is seen

that the first sufficient predictors found by MSIR and GSIR are both able to sepa-
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6.2 Positive definite matrix data
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Figure 2: The positive definite matrix data example: the sufficient predictors under

two SDR methods and six metrics, with two groups of subjects, autism or control,

marked by different colors.

rate the two groups of subjects to a good extent, whereas MSIR achieves generally

a better separation than GSIR. Moreover, the first three distance metrics achieve
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6.3 Compositional data

Table 2: The positive definite matrix data example: the leave-one-out cross-validation

prediction error under two SDR methods and three metrics.

Affine invariant S-divergence Euclidean

MSIR 0.306 0.302 0.333

GSIR 0.319 0.328 0.357

a better separation than the last three metrics, which agrees with our expectation.

Table 2 reports the leave-one-out cross-validation prediction error when applying a

quadratic discriminant analysis classifier to the extracted first two sufficient predic-

tors. For simplicity, we only consider three metrics, the affine invariant metric, and

the S-divergence metric, due to their competitive performance as shown in Figure 2,

and the Euclidean metric, which serves as a benchmark. It confirms with the vi-

sual observation from Figure 2 that MSIR outperforms GSIR, and the metrics that

acknowledge the matrix geometry outperform the one that does not.

6.3 Compositional data

As the final example, we consider a compositional dataset from a gut microbiota study

(Guo et al., 2016). The dataset consists of n = 83 subjects, among whom 41 suffered

from gout, and the rest not. For each subject, p = 3684 operational taxonomic units

(OTUs) were measured, which characterizes the structure of the subject’s intestinal
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6.3 Compositional data

microbiota. It is of great scientific interest to understand the association between the

gout status and the OTU compositions (Guo et al., 2016), and we aim to produce

sufficient predictors to reflect the gout status.

We follow the data processing procedure of Pan et al. (2020) who analyzed the

same data. Specifically, we first standardize the OTUs, so that the OTU measure-

ments for each subject sum to one, and thus the data are compositional. In addition,

the data are highly sparse, in that, on average, only 202 out of 3684 measurements

are non-zero. As in Pan et al. (2020), we map the standardized vector to the p-

dimensional unit sphere by taking element-wise square roots of the coordinates.

We consider three distance metrics. The first metric is the arc length distance

between two transformed compositions. The second metric is the Hamming dis-

tance evaluated on the dichotomized transformation of the compositions; i.e., all the

nonzero entries are turned into one. This is motivated by the observation that the

compositions are very sparse, and the positions rather than the magnitudes of the

nonzero entries are more relevant. The third metric is the usual Euclidean distance.

Figure 3 shows the estimated top two sufficient predictors graphically. It is seen

that the first sufficient predictors found by MSIR and GSIR are both able to separate

the two groups of subjects to some extent. Particularly, MSIR with the Hamming

distance metric achieves the best separation. Table 3 reports the leave-one-out cross-

validation prediction error when applying a quadratic discriminant analysis classifier
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6.3 Compositional data
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Figure 3: The compositional data example: the sufficient predictors under two SDR

methods (row) and three metrics (column), with two groups of subjects, gout or not,

marked by different colors.

to the extracted sufficient predictors when d is taken as 1 and 2, respectively. Again,

the proposed MSIR with the Hamming distance metric achieves the best prediction

accuracy. Moreover, there is little difference between d = 1 and d = 2, suggesting a

single summary predictor is sufficient, which agrees with our expectation since the

response is only binary.

To conclude this study, we give an example on how to interpret the obtained

sufficient predictors. The key idea is to compute the correlations between the suf-

ficient and original predictors. Figure 4 shows the histograms of the correlations
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6.3 Compositional data

Table 3: The compositional data example: the leave-one-out cross-validation predic-

tion error under two SDR methods, three metrics, and two working dimensions.

d Method Arc length Hamming Euclidean

1
MSIR 0.241 0.229 0.253

GSIR 0.253 0.229 0.289

2
MSIR 0.229 0.229 0.277

GSIR 0.253 0.229 0.289

between the first sufficient predictor obtained by MSIR and the original predictor

under the three metrics, which demonstrate a relatively clear bimodal pattern. By

Figure 3, a large value of the first MSIR sufficient predictor indicates the presence of

gout in a subject. As such, we expect the rightmost peaks of the three histograms

in Figure 4 to correspond to OTUs that are associated with gout. To confirm this,

we note that Guo et al. (2016) identified the OTUs of the geni Coprococcus (78 in

total) and Barnesiella (14 in total) as the ones mostly associated with non-gouty and

gouty subjects, respectively. The OTUs of these two geni have been colored in the

rugs below the histograms of Figure 4 and they are indeed roughly divided between

the two modes of the histograms, with Coprococcus concentrating to the left peak

and Barnesiella to the right. This effect is most pronounced in the middle histogram

corresponding to the Hamming distance, which is in line with our result that the
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6.3 Compositional data
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Figure 4: The compositional data example: the histograms of the correlations be-

tween the first sufficient predictor obtained by MSIR and the original predictor under

the three metrics.

Hamming distance gives the best performance out of the three distance metrics.

Supplementary Materials

The Supplementary Appendix contains the proofs of our theoretical results.
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