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Tor is an overlay anonymization network that provides anonymity for clients surfing
the web but also allows hosting anonymous services called hidden services. These
enable whistleblowers and political activists to express their opinion and resist
censorship. Administrating a hidden service is not trivial and requires extensive
knowledge because Tor uses a comprehensiveprotocol and relies on volunteers. Mean-
while, attackers can spend significant resources to decloak them. This thesis aims
to improve the security of hidden services by providing practical guidelines and a
theoretical architecture. First, vulnerabilities specific to hidden services are analyzed
by conducting an academic literature review. To model realistic real-world attackers,
court documents are analyzed to determine their procedures. Both literature reviews
classify the identified vulnerabilities into general categories.
Afterward, a risk assessment process is introduced, and existing risks for hidden
services and their operators are determined. The main contributions of this thesis
are practical guidelines for hidden service operators and a theoretical architecture.
The former provides operators with a good overview of practices to mitigate attacks.
The latter is a comprehensive infrastructure that significantly increases the security
of hidden services and alleviates problems in the Tor protocol. Afterward, limitations
and the transfer into practice are analyzed. Finally, future research possibilities are
determined.
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1 Introduction

Freedom of speech is essential for every democracy. Everyone must be allowed

to express their opinion freely and influence political decision-making processes.

Whistleblowers are a prime example: Edward Snowden uncovered illegal behavior

from the National Security Agency in America. Instead of punishing responsible

executives for breaking laws and invading human rights, the whistleblowers are

charged with espionage crimes. Meanwhile, executive powers continue to violate

laws or introduce new regulations legalizing invasive actions. [1] Societies must have

a corrective allowing people to publish illegal behavior of institutions and express

unpopular opinions. Citizens can only make responsible decisions when they have

complete information and can access the entire marketplace of ideas. The executive

branch and other institutions always have incentives to preserve their power and

reputation. Perceptions of opinions also change over time, effectively punishing

pioneers.

Due to the digitization of society, the number of networked digital systems

is growing immensely. As a result, our society’s dependency on these systems is

constantly increasing. Citizens communicate electronically with each other and

engage in political discussions online. With the new technological possibilities,

worries and uncertainties arise that politics and a part of society want to control

with totalitarian methods. Opinions and misinformation spread significantly faster,

causing increased censorship and privacy invasions. Executive powers and institutions
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exploit this situation and establish behavior restricting fundamental rights. Germany

has unlawfully practiced data retention and forced telecommunications providers

to collect and store communications data without probable cause. While it did not

comply with European laws, it took until September 2022 for the European Court of

Justice to finally forbid the practice. [2] Meanwhile, they opened the possibility to

apply this practice arguing with national security, which effectively allows executive

powers to invoke it and let courts check the legitimacy later.

Police and intelligence agencies go one step further and hack suspects’ devices.

A smartphone incorporates the most intimate thoughts and areas of personal life.

In Germany, law enforcement authorities can use malware to observe criminals.

Originally, it should target terrorism and other exceptional criminal cases, but

practically drug cases make up a large fraction. [3] Even journalists fall victim to

malware developed by professional companies for government institutions. In Greece,

the government deployed malware on a journalist’s smartphone because he reported

on corruption scandals. It shows that the executive branch can limit free speech,

and national security laws and secrecy limit the power of courts. [4]

Legal measures alone are incomplete since laws and opinions can change quickly.

Therefore, technical measures must ensure freedom of speech. Tor is open-source

software that allows anonymous communication over the internet. Volunteers provide

servers that route connections through them to disguise the origin. It protects users

from censorship and ensures privacy. Tor also allows online services to be anonymous

with hidden services so that users can share their opinions anonymously and without

censorship. Criminals abuse this technology to coordinate crimes or distribute illegal

material. At the same time, there are many hidden services dedicated to human

rights and freedom of speech, as well as providing information to people in totalitarian

regimes. Wikileaks is one of the pioneer organizations. [5] The Tor project and

community also use the term onion services for hidden services. Since Tor’s official
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protocol specifications still use the term hidden service, and academic literature

predominantly uses it, the term hidden service is used in this thesis.

However, simply installing Tor is not enough, and hidden service operators,

from now on called operators, need to consider more aspects to avoid endangering

themselves. This thesis aims to identify the risks specific to hidden services and

provide guidelines for operators to harden their hidden services and protect themselves.

For this purpose, chapter 2 provides general background information, and chapter 3

explains how Tor fundamentally works. Chapters 4 and 5 collect information about

the vulnerabilities of hidden services first. Chapter 4 deals with academic publications

since they identify Tor’s design limitations and analyze them thoroughly. Well-

equipped attackers can exploit these gaps. It includes already fixed vulnerabilities

as new techniques could build on them. To model realistic attackers, Chapter 5

examines publicly available internet documents. These provide insight for real-world

attackers. Both searches analyze the methods used and classify them into general

categories. Based on these, attack vectors for hidden services are derived. Combining

academic and practical literature identifies risks comprehensively. Chapter 6 identifies

risks for operators based on the previous chapters and provides systematic guidance

to determine risk profiles. At the same time, it analyzes existing add-ons for hidden

services that increase security. From these results, chapter 7 derives recommendations

for operators. First, general guidelines are derived, and later a theoretical technical

architecture is developed that significantly increases the security of hidden services.

The construction happens step by step to present the advantages and assumptions

transparently. It remains theoretical and is not a readymade program. Hence, the

implementation must follow later. The following chapter 8 examines the limitations

of the research and the security recommendations. In addition, it elaborates on

how to transfer the results into practice to support operators and ensure freedom of

speech.



2 Theory

2.1 Taxonomy

Multiple concepts are essential for anonymous networks and must be defined to deter-

mine security properties. Pfitzmann and Hansen [6] proposed a suitable terminology

to standardize several terms:

• Anonymity allows subjects to fit into the anonymity set, which consists of all

possible subjects. Actions cannot be traced to an individual but only to the

anonymity set, and the possibility to guess the correct one is one divided by the

number of all subjects in it. Different actions can have different anonymity sets.

For a message, all possible senders could differ from all potential recipients.

• Unlinkability allows subjects to take multiple actions without allowing observers

to relate the actions. If they could be linked and have different anonymity sets,

an attacker could reduce the anonymity set by intersecting them. For example,

an observer cannot attribute messages to one sender or recipient.

• Undetectability refers to the knowledge of existence. An attacker cannot

distinguish if the item of interest exists or not. For messages, this means that

an observer cannot distinguish them from random noise.

• Pseudonymity allows the identification of subjects via identifiers. These are

hard to connect to the real identity and must be protected. The degree of
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linkability changes with the context of the pseudonym. A person’s pseudonym

is used in various contexts by one subject. Role pseudonyms cover only a

specific role, i.e., moderating an online forum, and relationship pseudonyms

connect to only one communication partner. Role-relationship pseudonyms

combine the latter two. While the previous types allow linkability, transaction

pseudonyms link only one transaction and qualify for strong anonymity.

2.2 Privacy in Cryptocurrencies

Bitcoin is a peer-to-peer digital currency based on public key cryptography. Addresses

are public keys and the owner signs transactions with the corresponding private key.

Senders broadcast their transactions into the network, and Bitcoin nodes check their

validity. Afterward, they bundle them into a block that references the hash value

from the previous block. Finally, Bitcoin nodes need to calculate the block’s hash

value but must try different nonces to obtain a hash value in a specific format. [7]

While addresses are not directly related to natural persons but are pseudonyms,

anyone can access all transaction information and try to combine it to identify the

person. To broadcast transactions, users expose their IP addresses. Different attacks

exploit the communication protocol to track transactions from a specific node or even

replay incorrect transaction information. Some attacks work even when users utilize

anonymization techniques. [8] Reid and Harrigan [9] demonstrate transaction analysis

determining addresses that might belong to the same users. Additionally, they used

online data, for example, posts in Bitcoin forums, to draw further connections.

CoinJoin introduced the concept of mixing Bitcoin transactions to break the

clear link between sender and recipient. Multiple users bundle their payments into

one transaction to obscure from third parties which input is intended for which

output address. A central mix can execute the process, or users organize decentrally.

[10] CoinParty is a mixing protocol that shifts payments via multiple sequential
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transactions instead of bundling up one large block. Participants can plausibly deny

their involvement in the mixing operation. It is tolerant to a small percentage of

misbehaving mixing peers. [11]

Monero is a better choice for a private digital currency. It uses a ring signature

to prove a sender is part of a transaction without revealing the contribution. Each

participant has two key pairs for viewing and sending units, with the concatenated

public keys serving as the address. The former allows viewing transaction flows,

while the latter allows transferring units. Monero hides the transaction amount while

proving that incoming and outgoing sums are equal. Each new transaction includes

multiple unrelated old transactions from the blockchain to obfuscate the sender. Users

can generate subaddresses from their key pairs to avoid links between posted addresses.

Senders transfer units to one-time addresses derived from the recipients’ public keys.

Thereupon, recipients scan the Monero blockchain for addresses compatible with

their private view key and control it with the private spend key. [12]

2.3 Mixnets

Chaum describes a mix network in [13]. It allows sending messages anonymously.

A mix collects incoming messages and transfers them simultaneously to prevent

leaking information through the chronological sequence. Padding messages to the

same size and limiting the number of processed messages prevents observers from

linking incoming and outgoing messages. To protect message content and metadata

like the recipient’s address, senders use asymmetric cryptography.

A sender first encrypts the message M1 with the recipient’s public. The next

step is to create a new message M2. M2 contains the encrypted message and the

recipient’s address. Again, the sender encrypts M2 with the public key of the mix

and sends it to the mix. The mix decrypts M2 and sends M1 to the recipient’s

address, which then decrypts it to recover the original messages.
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Observers cannot link incoming and outgoing messages because they are indistin-

guishable. They can only note all senders and recipients. To prevent attackers from

encrypting common messages to compare them with the observed data, senders add

random data to all messages. Mixes remember incoming messages and senders with

hash values to prevent replay attacks.

A dishonest mix knows the identities of senders and recipients and can link them.

A mix network combines multiple mixes sequentially. Each one only knows the

predecessor and successor so that the first mix knows the sender and the last the

recipient. A sender encrypts the message M1 in layers. First, the sender encrypts it

for the recipient, then for the last mix, and its predecessors until the first mix. One

compromised mix is not sufficient to link the sender and recipient. An attacker must

compromise all involved mixes to uncover this information.

2.4 Onion Routing

Reed, Syverson, and Goldschlag [14] presented onion routing in 1998. It is an overlay

network allowing confidential communication over public networks. Connections

are bidirectional and long-lasting. During the initialization phase, a client builds

up the connection by choosing multiple onion routers from a directory with their

public keys. The client sends onions consisting of multiple layers containing the next

hop and information for encryption. Onion routers receive and send packets on the

client’s behalf. The client opens a connection to the first onion router and sends an

onion. Afterward, the router decrypts the upper layer and sends the inner onion

to the specified address. The second onion router cannot distinguish whether the

onion is just forwarded or originates from the first one. This process repeats until

the last onion router peels off the inner layer to receive the message and the recipient

address.

Dingledine, Mathewson, and Syverson presented 2004 an improved version. [15]
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Initially, the client connects to the first router and establishes a shared session key.

Afterward, the client extends the circuit by sending packets to the first router that

forwards it. The client and second router negotiate a shared session key, and this

continues until the circuit reaches the desired length. Afterward, the client sends

packets and encrypts them in layers with the shared key. Each router decrypts one

layer and forwards the data until the last one in the circuit sends the message to the

recipient. The recipient’s packages to the sender will be encrypted with each hop

and passed the reverse order to the sender.

Onion routers forward the packages and know only the predecessor and succes-

sor. After each hop, the packet data changes so that observers cannot link them.

After encrypting the initial communication with the onion router’s public key, the

encryption changes to symmetric algorithms with the shared session keys. It speeds

up the transmission significantly. Onion routing enables low-latency bidirectional

connections, unlike mix networks.



3 Tor

3.1 Overview

Dingledine, Mathewson, and Syverson [15] developed onion routing into a low-latency

anonymous network based on circuits. The Tor network consists of decentral volun-

teers who provide onion routers. Tor incrementally builds up connections, so-called

circuits, instead of using one encrypted data structure with multiple layers. Starting

from the last hop, the client extends the circuit to a new onion router and negotiates

session keys. While onion routing requires a designated application proxy, Tor uses

the SOCKS proxy interface to support TCP-based programs transparently. [16]

Previously, onion routing assumed that onion routers permanently flood information

about states. Tor uses central directory nodes, called authority nodes, as trustworthy

authorities. They vote each hour to create a consensus document describing the

state of the network. It includes, inter alia, signed descriptions about onion routers,

statistics, and recommended parameters. Major protocol revisions have been made

since inception, and the specification is still subject to change. Current protocols

still contain legacy options due to the slow adaptation of changes. The following

sections in this chapter are based on the latest Tor protocol version according to the

specifications in [17].

Onion routers can create a policy to allow only specified traffic types. For example,

an onion router can allow all connections or only those inside the Tor network. The
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latter avoids legal complaints if clients launch attacks on the internet. Onion routers

providing access to the internet can define allowed ports or exclude IP address ranges.

One circuit can multiplex multiple TCP streams instead of creating a new one for

each stream. ACK cells between client and onion routers prevent network congestion

and function as a rudimentary load-balancing function. Moreover, Tor automatically

performs integrity checks so that no onion router can change data unnoticed.

The previous mechanisms provide sender anonymity, while the hidden service

functionality enables the sender and receiver anonymity. Clients negotiate rendezvous

points with hidden services over advertised onion routers. A distributed hash table

stores information about hidden services.

Tor’s design goal is to provide a low-latency anonymity network that frustrates

attackers from linking communication. Deployability enlarges the volunteer base

and frees operators from liabilities or thorny installation and maintenance. Usability

expands the user base and, therefore, the anonymity set. Flexibility allows the

implementation of future improvements without recreating the entire protocol that

would break compatibility in a decentral network. Tor does not protect from end-to-

end attacks and does not normalize traffic. Instead, clients must ensure that their

traffic does not leak undesired information.

The threat model is an adversary who can observe a partial fraction of the traffic,

excluding global access, because no low-latency anonymous network can withstand

this attack. Active adversaries can compromise onion routers, launch Denial of Service

(DoS) attacks impacting the availability, or induce patterns to recognize the stream

at a later hop. The Tor project offers a specialized Tor browser preconfigured to

avoid browser fingerprinting. Using a standardized browser configuration minimizes

the identifying information like installed plug-ins or system language. [18]
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3.2 Cell Structure and Cryptography

Tor uses cells with a fixed size of 512 bytes for communication which mitigates

traffic correlation attacks. All cells consist of a header and payload. The header

fields contain the circuit identifier for connecting related circuits and a command

instructing the onion router. Control cells address the onion router directly, while

relay cells signal data to forward. The latter contain additional header fields: stream

ID, checksum, payload length, and relay command. Stream identifiers enable the

multiplexing of streams with one circuit. Furthermore, variable-length cells contain

a length field indicating their size. Onion routers use them to set up connections

and handle authorization and certificates. The payload performs several functions

depending on the command values. It can contain padding bytes, handshake data,

circuit closing information, or the relay header and body for the next router.

Every onion router has multiple 1024-bit RSA keys: a long-term identity 1024-bit

RSA key for signing documents and certificates, a medium-term TAP onion key for de-

crypting circuit extension attempts, and a short-term connection key for negotiating

TLS connections. Besides, onion routers hold a Curve25519 ntor onion key for ac-

cepting circuit requests and multiple Ed25519 keys. They contain a long-term master

identity key with the sole purpose of signing the medium-term signing key that signs

almost everything and, lastly, a short-term link authentication key. The RSA identity

key and Ed25519 master identity key uniquely identify an onion router. Connections

between onion routers and clients to onion routers are TLS protected. Still, the

minimum enforced cipher suite is TLS_DHE_RSA_WITH_AES_128_CBC_SHA

and suffers from several weaknesses. [19] Participants should negotiate better cipher

suites.

Tor offers three ways for TLS handshakes. In the newer two versions, the initiator

sends no certificate, and the responder sends a certificate back. Afterward, both

parties renegotiate by sending signed certificates for version 2. Both parties exchange
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a VERSIONS cell to confirm an established connection. For version 3, the responder

sends additional cells to prove the identity and a challenge in case the client also

wants to authenticate. The initiator uses popular cipher suites in the handshake, and

certificates should not leak information to cover the TLS traffic. Finally, the initiator

checks the identity key to confirm the identity of the intended onion router. [20]

3.3 Circuit Creation

Circuits are the fundament of Tor. They consist of multiple onion routers that clients

can freely choose from the consensus document provided by central authority nodes.

The Tor browser and software package use hardcoded references to the nine authority

nodes to guarantee integrity. [21] The client connects to the first onion router, called

the entry guard, and uses it to extend the connection to a middle relay. The middle

relay can only see that the entry guard established a connection. Analogous, the

client extends the connection from the middle to the exit relay that forwards traffic

to the internet. In the case of a web server, only the exit relay appears in the log

files, and the client who initiated the connection remains anonymous. By default,

the length of circuits is three hops, but clients can build circuits containing up to 8

onion routers. The current protocol is described in [20].

Initially, traffic from programs is directed to the locally running onion proxy soft-

ware. It chooses a circuit identifier that is currently unused and initiates a handshake

based on the Diffie–Hellman key exchange with the control cell CREATE/CREATE2

to the entry guard. After receiving the cell, the entry guard decrypts the payload,

generates a shared key, and sends CREATED/CREATED2 cells back. Afterward,

both parties symmetrically encrypt data with the shared key. Tor Authentication

Protocol (TAP) and ntor are the two handshake protocols. CREATE/CREATED

should be used for TAP and CREATE2/CREATED2 for ntor handshakes.

For TAP, the client generates the first half of a Diffie-hellman handshake gx and
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a symmetrical secret K. K and a part of gx are encrypted with the entry guard’s

onion key. The remaining part of gx is symmetrically encrypted with K. Now, the

onion router creates the Diffie-Hellman part gy and calculates gy·x. Then, it crafts

the CREATED/CREATED2 cell with gy and derived key data from the shared

secret gx·y to prove knowledge.

ntor uses the Curve25519 group. A client needs to know the identity key hash

value ID and public ntor onion key B for the onion router. A client generates a

Curve25519 key pair x, X. X is the public part, and the client sends it to the onion

router ORj with B and ID. ORj computes another pair y, Y . Y is the public key.

Afterward, ORj computes the value in equation 3.1.

secret_input = EXP (X, y)|EXP (X, b)|ID|B|X|Y |PROTOID

KEY _SEED = H(secret_input, t_key)

verify = H(secret_input, t_verify)

auth_input = verify|ID|B|Y |X|PROTOID|”Server”

(3.1)

PROTOID, t_key, t_mac, and t_verify are static strings. b is the pri-

vate ntor onion key, while B is the public one. H is the HMAC function with

SHA256 as the underlying hash function. The response contains Y and AUTH =

H(auth_input, t_mac). The client checks if Y is a member of the group G∗ and

computes equation 3.2.

secret_input = EXP (Y, x)|EXP (B, x)|ID|B|X|Y |PROTOID

KEY _SEED = H(secret_input, t_key)

verify = H(secret_input, t_verify)

auth_input = verify|ID|B|Y |X|PROTOID|”Server”

(3.2)

If AUTH from the response is equal to H(auth_input, t_mac), ORj has suc-

cessfully proved its identity. Both parties use the shared value KEY _SEED from
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which they derive used keys. ntor is significantly faster than TAP.

If both parties have already established an active connection, the client can use the

CREATE_FAST cell to directly share key material without using new handshakes.

The onion router responds with CREATED_FAST and additional key material that

both parties use to derive keys.

To create a circuit, the client chooses a chain of onion routers (1, .., N) and

connects sequentially with a CREATE/CREATE2 control cell to all onion routers.

After establishing a connection to an onion router ORn analogous to the entry

guard, the client extends the circuit to the next onion router ORn+1 by creating

a CREATE/CREATE2 cell and encrypting the payload with the public onion key

from ORn+1. Following, the client wraps the cell into an EXTEND/EXTEND2 cell

for the last onion router in the circuit. It instructs it to build up a connection to the

designated onion router. Again, the client packs the EXTEND/EXTEND2 into a

RELAY cell to send it through the circuit to the last hop and encrypts it sequentially

with the negotiated symmetric keys for each onion router in it. Each hop decrypts all

cells with the shared key. If it cannot identify the payload, it sends it to the next hop

until the last one can determine it. The conformation EXTENDED/EXTENDED2

cell travels the circuit back to the client, and the client can verify the identity and

calculate a shared key. While cells travel back in the circuit, each onion router

encrypts them with its shared key to shield the content from others. Finally, the TLS

connection protects the packets from third parties, and the symmetric encryption

covers the cells from participants in the tunnel. Even if an attacker manages to

compromise the keys after the connection is terminated, key negotiation provides

forward secrecy that results in session keys remaining secure.

On the circuit level, windows control the congestion. The receiver sends a

RELAY_SENDME cell after 100 cells to the initiator to add 100 to the sending

window. For the stream level, the exit relay and onion proxy can indicate their
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window also with RELAY_SENDME cells. If the cells have a zero stream identifier,

they manage the circuit level, otherwise the stream level. [20]

Tor uses a padding mechanism that the client and entry guard implement to

impede external observers. It reduces the metadata resolution. A more advanced

padding mechanism obfuscates clients connecting to hidden services by matching the

cell sequence and count to mimic default circuits for web traffic for the first ten cells.

[22]

3.4 Entry Guards

A naive onion router selection algorithm chooses new relays from the consensus for

each new circuit. Attackers can inject malicious onion routers, called Sybils, into

the Tor network since volunteers run it decentrally. If an attacker controls N out of

all k onion routers, the probability of choosing a compromised relay is N
k
, and for a

compromised entry and exit relay is N
k

2. With each new circuit, clients have this

chance of being compromised due to their selection algorithm. Attackers can confirm

if two relays participate in the same circuit with traffic analysis and by comparing

the connected IP addresses to the consensus.

Overlier and Syversion [23] described a feasible attack on hidden services. The

main idea is that attackers can force a hidden service to create new circuits and

check via timing analysis if the target uses a compromised entry guard.

According to the current protocol [24], clients choose a fixed set of onion routers

for a fixed time period and use them as entry guards. That decreases the likelihood

of Sybil attacks enormously. For the middle and exit relays, clients select randomly

from the consensus based on bandwidth and bandwidth-weight. Exit relays must

have a permissive exit policy to allow connections to the internet. The authority

nodes help clients select appropriate relays by voting about flags of onion routers in

the consensus. [25] The following flags represent the most relevant ones:



3.4 ENTRY GUARDS 16

• Valid - Onion routers run a compatible Tor version and authority nodes did

not backlist them.

• Running - Tor authority servers connected in the last 45 min to all advertised

ports.

• Stable - Onion routers must fulfill minimum requirements directed to uptime

and other faults for a few days.

• Exit - It marks a permissive exit policy to allow connections to the internet.

• Fast - Onion routers must at least offer a certain bandwidth.

• V2Dir - It shows that the onion routers implement at least the version 2

directory protocol.

• HSDir - It signals a hidden service directory server.

• Guard - Onion routers must be fast, stable, V2Dir, and around for a specified

time.

Attackers must invest and maintain more resources to deploy entry guards than

running middle or exit relays. To choose the concrete entry guards, clients first gather

all onion routers from the consensus with the guard flag. Next, clients create a subset

SAMPLED_GUARDS to limit the maximum number of entry guards a client might

connect to in a specified time period. Automatic expiration leads to slow rotations

while not accumulating unreachable onion routers. An ordering improves resistance

against recently joined Sybils. An additional filter checks for path biases and includes

only active, not excluded entry guards in the FILTERED_GUARDS subset. The

CONFIRMED_GUARDS is a subset of SAMPLED_GUARDS ordered by priority

and contains previously used entry guards. Finally, the set PRIMARY_GUARDS

stores the entry guards for circuits. It is the intersection of FILTERED_GUARDS
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and CONFIRMED_GUARDS. If this does not yield enough results, the client

additionally takes new guards from FILTERED_GUARDS according to the ordering.

For a concrete circuit creation, the algorithm chooses the first reachable onion

router in PRIMARY_GUARDS as an entry guard. If none is active, it picks a new

active one from FILTERED_GUARDS. The algorithm reorganizes subsets after

a new consensus document arrives to handle unreachable onion routers. [24] On

November 2, 2022, the authority nodes voted and recommended two primary entry

guards. Moreover, authority nodes vote on several parameters for the entry guard

selection algorithm that supersede the specification recommendations. [26] The

specification currently recommends 120 days to rotate entry guards. [24]

3.5 Hidden Services

3.5.1 Overview and Cryptographic Keys

Hidden services enable servers to stay anonymous instead of solely providing sender

anonymity for clients connecting to the internet. For example, operators can provide

websites or ssh remote access over Tor to protect the server and client anonymity. The

client and hidden service build two circuits connected to a rendezvous point which

brings them together according to the current protocol [27]. In contrast to internet

domains, hidden services use their base32 encoded master identity key coupled with

a version byte and checksum as an identifier. Hidden service addresses end with the

suffix .onion. Clients fetch the relevant connection addresses from service descriptors.

Hidden services use a variety of keys to communicate securely. The following list

mentions them and explains their principal usage:

• Master identity keys are long-term keys for generating blinded keys that

operators can store offline.
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• Blinded keys are used for signing information for hidden service directory

servers (HSDirs) and can be stored offline. Hidden services generate new ones

for each time period. They use a nonce to derive the blinded key pair from the

master identity key pair. Authority nodes repeatedly generate a new shared

random value that hidden services utilize as a nonce. The blinded public key

allows no conclusion to the master identity key because it is a one-way function.

Operators should cautiously protect the blinded private key because it enables

one to infer the private master identity key.

• Descriptor signing keys sign the hidden service descriptor to provide authenticity.

It is a Curve25519 key pair, and hidden services must keep them in memory.

A signature from the blinded signing key allows clients to authenticate them.

• Introduction point authentication keys ensure the client uses the correct intro-

duction point while the hidden service can check if the contact request came

through a specified introduction point. The public Curve25519 key is in the

service descriptor and signed with the descriptor signing key.

• Introduction point encryption keys enable clients to encrypt messages for

hidden services. They replace the hidden services’ public key during some

handshake versions. Operators sign them with the blinded private key to prove

the authenticity.

• Descriptor encryption keys encrypt hidden service descriptors. The calculation

algorithm uses a random value, fixed constants, and variable inputs. The

random value in the consensus ensures that a newly encrypted descriptor

changes even if the data remains identical.

Hidden services republish new descriptors after 60 to 120 minutes. They create

two descriptor versions for clients with an updated consensus and one for the previous

time period. [27]
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3.5.2 Service Descriptors

Initially, hidden services select between zero and 20 onion routers as introduction

points. Hidden services build a circuit to the introduction points and send an

ESTABLISH_INTRO cell with the newly generated public introduction point au-

thentication key. Also, these cells can include additional parameters to limit the

number of INTRODUCE2 cells. It mitigates DoS attacks. Introduction points report

a successful setup with an INTRO_ESTABLISHED cell.

Hidden services advertise their introduction points with service descriptors to

clients described in the rendezvous specification [27]. These include the introduction

point identifier coupled with its ntor onion key and the public introduction point

authentication and encryption keys. Afterward, hidden services apply the first layer

of encryption with the descriptor encryption key to protect it from unauthorized

client access. The algorithm to generate the descriptor encryption key uses the

blinded public key and a descriptor cookie if hidden services want to enable client

authorization. The latter is a 32-byte secret that clients must know to decrypt the

payload. All authorized clients have a common preshared Curve25519 public key and

individual credentials that change for each time period. Hidden services encrypt the

cookie first for each client with the credentials, and then everything combined with

the private Curve25519 key. Then they append this with the encrypted descriptor

to a layer1 descriptor. Only authorized clients can decrypt the descriptor cookie to

calculate the decryption key for the descriptor.

Hidden services encrypt the layer1 descriptor again with the descriptor encryption

key using their blinded public keys to generate the layer2 descriptor. It intends to

protect the descriptor from clients not knowing the unblinded onion address, for

example, HSDirs hosting it. The final descriptor contains the layer2 descriptor,

validity time, protocol version, and a certificate signed with the blinded private key.

Additionally, a revision counter specifies the newest version and helps in case multiple
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descriptors arrive. If client authorization is not activated, the blinded public key is

sufficient to decrypt both encryption layers.

HSDirs store the service descriptors in a distributed hash ring and allow clients

to fetch them. The consensus describes HSDirs with a hash value of their Ed25519

identity key, time period information, and the corresponding shared random value.

The hash ring orders HSDirs by their hash value. Hidden services can choose a

value for hsdir_n_replicas from one to 16. It controls how many descriptor replicas

hidden services upload. For each hsdir_n_replicas, a hash value determines the

descriptor position in the hash ring based on the hsdir_n_replicas number, time

period information, and the blinded public key. Hidden services upload the descriptors

to the following four HSDirs in the hash ring. The number is adjustable between

1 and 128, but clients usually rely on the preconfigured values. By default, clients

fetch the next three HSDirs for two replicas (hsdir_n_replicas = 2). Due to the

time period information and shared random value, attackers cannot precisely target

a hidden service and deploy HSDirs to block or control the descriptors. [27]

3.5.3 Connection Establishment

Clients can connect to hidden services in multiple steps following the rendezvous

specification [27]. First, they must fetch the service descriptor. All onion routers with

the HSDir flag and a compatible version (currently 3) can host service descriptors.

Every connection attempt requires the blinded public key of hidden services. Clients

can derive them from the onion address that must be shared beforehand, for example,

via message boards or internet chat messages. Analogous to hidden services, clients

choose a random number from 1 to hsdir_n_replicas, combine it with the current

time period data, and the blinded public key to determine a responsible HSDir. An

HTTP GET request to a URL downloads the service descriptor. The URL follows

an unambiguous scheme and contains the base64 encoded blinded public key. If the
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chosen HSDir is not reachable, clients iterate through the responsible HSDirs. [27]

A rendezvous point connects the hidden service and a client. The client selects

a random onion router for this purpose. It connects to it and sends an ESTAB-

LISH_RENDEZVOUS cell with a 20-byte rendezvous cookie to identify the hidden

service later. The rendezvous point answers with a RENDEZVOUS_ESTABLISHED

cell. The next step is to contact an introduction point with an INTRODUCE1

cell. Among other fields, it contains the introduction point authentication key. The

introduction point checks if it matches an active circuit to a hidden service. In

this case, it sends an INTRODUCE_ACK cell to the client. Afterward, it relays

a copy of an INTRODUCE1 cell as an INTRODUCE2 cell to the hidden service.

The hidden service checks for a possible replay and compares the introduction point

authentication key to the expected introduction point.

An encrypted payload in the INTRODUCE2 cell contains information about the

rendezvous point: the onion key and rendezvous cookie. Furthermore, the client

already computed the first part of a ntor handshake and included it in the cell. Now,

the hidden service calculates the second part. TAP is also usable but deprecated.

Section 3.3 explains a similar ntor handshake. Afterward, the hidden service builds

a circuit to the rendezvous point and sends the REDENZVOUS1 cell containing the

handshake reply and rendezvous cookie. In turn, the rendezvous point connects the

two circuits according to the rendezvous cookie and relays the handshake data to

the client in a RENDEZVOUS2 cell. The client and server share a secret key and

can communicate with each other over the rendezvous point.



4 Academic Literature Review

4.1 Methodology

A systematic literature review of Tor vulnerabilities for hidden services is imperative

to understand threat scenarios and how to defend against them. While some aca-

demically explored weaknesses might not be directly relevant for currently operating

hidden services, they often hint in directions that attackers could exploit already or

in the future. The first step is to collect a sufficient number of papers relevant to

hidden services. Instead of uncoordinated searching through academic databases

and selectively picking references in found publications, this thesis follows a more

reproducible approach by collecting all results in the first ten pages of the academic

search engine Google Scholar1. The results originate from searches on July 2, 2022,

for five different phrases that should cover the topic broadly and variate through

naming conventions:

• Tor hidden services

• Tor deanonymization

• Tor onion services

• Locating onion services

• Locating hidden services

1https://scholar.google.com/

https://scholar.google.com/
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Only papers published in journals or conferences will be considered to ensure

quality and limit the number of results. It yields 95 unique publications. They

require a manual review to assess the relevance and categorize potential threats to

hidden services. This analysis disregards surveys due to redundancy and papers

unrelated to hidden services. Finally, the 46 remaining publications from 2005 to

2022 will be classified and shortly analyzed to explain the general attack principles.

The Tor project is dynamic and reacts to results from security researchers,

attackers, and suggestions from their contributors. Therefore, some research results

will be outdated already, sometimes even before publication. Nonetheless, even

obsolete results show attack angles that could resurface, or attackers could improve

the methods. The categorization helps to abstract from concrete results to general

attack vectors that hidden services need to consider.

4.2 Classification

The publications utilize different concrete techniques threatening hidden services.

Risk assessments and possible mitigation strategies require generalizing the concrete

techniques into categories. Figure 4.1 shows them and how they relate. The boxes

with the dashed line represent general categories, while the others contain concrete

ones.

Foremost, the distinction ranges from errors in operational security over technical

attacks to weaknesses of specific hidden services applications. Insufficient operational

security exposes hidden services and operators, for example, by unintentionally

leaking metadata via published files or misconfigurations in the webserver revealing

the IP address. Applications deployed on a hidden server can unexpectedly interact

with Tor and produce undesirable results.

The remaining technical attacks can focus on side-channels like latencies, avail-

ability correlation, DoS, HSDirs, or network traffic. Attacks on availability and
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Figure 4.1: Classification of attack vectors from academic literature

HSDirs can overlap. Still, the distinction allows a clear separation of the technical

components.

The network traffic offers a plethora of attack vectors. Attackers can guess the

visited website with website fingerprinting, identify Tor traffic and circuit types,

insert watermarks into circuits or correlate connection traffic. The latter divides

into attacks relying purely on general network data or integrating Tor protocol

features. The attacker must at least monitor the circuit entry guard and exit relay

for watermarking and traffic correlations. Website fingerprinting, identification of

Tor traffic, and circuit fingerprinting presuppose weaker conditions: monitoring the

hidden service traffic to the entry guard is sufficient.

4.3 Operational Security

Matic et al. present an automized tool, Caronte [28], to extract information about

hidden services. They automatically search the website for potentially identifying
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information, for example, IP addresses or DNS names on the error page. The content

is also relevant as it can contain Bitcoin addresses, unique page titles, or AdSense IDs

linking to advertisement accounts. Caronte also examines issued HTTPS certificates

as they can reveal IP addresses, DNS names, or the public key. The latter potentially

allows attackers to connect different information if it appears elsewhere. A notable

misconfiguration is running multiple websites on one host where the hidden service

is not the default site. If the client provides a random domain during the HTTP

request, the webserver delivers the default website, which might be a standard

internet website. Out of 1 974 hidden services, Caronte only exposed 101. But they

only counted cases where they could tie an IP address reliably to the hidden service

via automatic validation. Real-world attackers have a higher validation rate with

manual methods or can even speculate.

Al Jawaheri et al. [29] crawled hidden services to collect Bitcoin addresses

combined with a manual collection. With 88 identified addresses, they could link

125 users to 20 hidden services. They identified a few users by combining public

data from Twitter and other social media platforms. Maintaining the hidden service

infrastructure incurs costs for the operators, especially anonymous journalists and

other free speech mediums relying on user donations. Hence, the attackers can try

to trace money flows which must take place safely to protect the hidden service and

donors. The authors probably underestimate the real threat as they solely assume a

passive attacker and renounce test transactions. Their analysis also excludes coin

mixing services to only produce reliable results.

PGP is a prevalent encryption suite that offers, for example, encryption and

signatures for emails. Without central authorities attributing a public key to a

pseudonym or person, actors can sign other keys to express trust. Me et al. [30]

scrape public keys from vendors on hidden service markets, extract signatures and

consult key servers to conduct a social network analysis showing actors with their
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connections. Operators and donors could potentially deanonymize themselves if their

keys overlap with information linked to their real persona.

4.4 Hidden Service Directory Server (HSDir)

Steinebach et al. [31] use modified HSDirs to harvest descriptor data and monitor

descriptor accesses. An attacker can infer the popularity of a hidden service and

opportunistically scan services, even if they did not publish their address publicly.

The new version 3 descriptor stores only blinded public keys from onion services.

HSDirs cannot link them.

But Eaton et al. [32] mention attackers can calculate the blinded keys and track

the hidden service if the onion address is known. They state that attackers can

correlate multiple blinded keys via the access and timing distributions. If a hidden

service uses a malicious middle relay for uploading the descriptor on a compromised

HSDir, the attacker determines one entry guard. If attackers compromise the entry

guard, they can deanonymize hidden services. This attack applies directly to the

current version.

Hoeller et al. [33] show that attackers can still inject malicious HSDirs in the

current Tor version and infer statistics about access rates of a hidden service if the

onion address is known. Especially hidden services that serve one specific user and

purpose can leak side information like access times that could be critical.

Tan et al. [34], [35] demonstrate an eclipse attack on the distributed hash table

that resolves onion addresses on an outdated Tor version. They place malicious

HSDirs into it by exploiting the predictable distribution algorithm. Afterward, they

will hold the hidden service descriptors and block them selectively. So, no clients

can connect to them anymore. Hidden services determine the responsible HSDir

deterministically, so attackers can guess the location and generate fitting HSDirs

that will be responsible. By blocking only a fraction of the requests, attackers can



4.5 WEBSITE FINGERPRINTING 27

significantly decrease the quality of service.

In 2013, Biryukov et al. [36] published a method to harvest directory data and

deanonymize hidden services efficiently for an outdated Tor version. Tor used a

predictable algorithm to distribute the hidden service descriptors among the HSDirs.

Attackers could exploit this by inserting malicious HSDirs with specific public keys

that will become the responsible HSDirs for a defined hidden service. It threatens

the availability as they can stop serving the correct descriptor.

Currently, Tor uses a nondeterministic way to determine responsible HSDirs

and uses blinded public keys. It prevents harvesting directory data and predicting

responsible HSDirs for hidden services. Additionally, it shields the descriptor from

HSDirs if they do not know the corresponding onion address.

4.5 Website Fingerprinting

Website fingerprinting is a specific traffic analysis applied to Tor connections. Often

it is focused on the client. Different websites exhibit unique patterns, for example,

packet size, frequency, and destination. It can leak enough information to determine

the website from the encrypted traffic. Tor encrypts and pads the traffic to make

these attacks harder. This attack also applies to hidden services, where potential

attackers spy on the connection link. A data center provider, for example, could try

to identify which servers are using Tor and host a hidden service. Attackers can sift

through logs to compare against a specific website fingerprint to validate if a server

hosts a specific hidden service website.

In [37], Pachenko et al. simulate an attacker who listens to the link between the

client and the entry guard. Their approach requires two phases: first, they check if

the connection from a client targets a web or hidden service website. In the latter

case, they compare the fingerprint against known fingerprints to expose the visited

website. While phase one delivers reliable results, the second phase is less successful.
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The recognition rate is high in small subsets but drops significantly in larger sets of

hidden services.

Yang et al. [38] present an active fingerprinting attack that delays HTTPS requests

to improve the detection rate. It targets clients browsing websites on the internet

via Tor and delays the packets for the HTTPS request. Actively compromising

the connection allows for better accuracy in contrast to the passive attacker just

eavesdropping on the client. In an open world setting with 2 000 monitored websites

in the list of 10 000 websites, attackers can distinguish the correct monitored website

with roughly 91 % true positive rate while keeping the false positive rate below 4 %.

The attacks focus on clients, but they could also try to detect servers hosting hidden

service websites.

Overdorf et al. [39] further analyze fingerprinting results of different classifiers.

The accuracy and precision improve by combining multiple classifiers. In particular,

they analyzed website features that lead to high or low-ranking results. Their datasets

consist of 482 hidden services from the year 2017. For 47 %, they archive more than

95 % accuracy, while the algorithms classify 16 % with less than 50 % accuracy. Big

and static websites seem especially vulnerable to fingerprinting.

Sun et al. [40] develop another fingerprinting approach. By applying Frequency-

Domain Analysis and neural networks, they achieve high precision and recall in

an open-world setting of 40 000 internet websites. They also considered the WTF-

PAD defense technique that delays packet arrival times and inserts dummy traffic.

Attackers can tune the proposed fingerprinting methods either for precision or recall.

The attacker reaches more than 95 % for the tuned metric, while the other degrades

to about 75 %. The attack did not target hidden services but regular web services.

With fewer hidden services in the sample and the detection of hidden service traffic,

this attack becomes even more dangerous.
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4.6 Identification of Tor Traffic and Circuits

Another attack vector is to identify the encrypted connection as Tor traffic. Mayank

and Singh [41] show that Tor varies from usual TLS connections by the certificate

fields and used ports. The traffic can reveal that a client uses Tor, and attackers

could specifically target or block this connection. Sapruta et al. [42] also exploit the

TLS certificate fields’ subject and issuer information to detect Tor communication in

the network.

Gurunarayanan et al. [43] improved existing classifiers to detect Tor traffic inside

a network. Especially their random forest classifier had a precision, recall, and

accuracy of over 99 %. It indicates a reliable detection that data centers could also

apply to detect servers hosting hidden services. Montieri et al. [44] analyze the

traffic of the anonymity networks Tor, I2P, and JonDonym from the Anon 2017

dataset that contains traffic from these three anonymity networks. The researchers

can reliably distinguish the traffic between them with over 97 % accuracy. Certain

types of application layer traffic, for example, streaming or browsing, can only be

detected with an accuracy of up to 73.99 %.

Circuit Fingerprinting uses characteristics of Tor circuits to distinguish between

different types. Kwon et al. [45] show how duration, initialization sequences, number

of cells, and direction leak information about the circuit type. Attackers need

circuit-level information visible to the entry guard or, under certain conditions,

to the internet service provider (ISP). Subsequently, they can distinguish between

normal internet activities and hidden service connections reliably. An attacker can

further infer that a user operates a hidden service. In combination with website

fingerprinting, the authors achieved notable results among a list of 1 000 collected

hidden services.

In another study, Mitseva et al. [46] successfully replicate the results and propose

a random forest classifier to make circuit fingerprinting more robust. Platzner et
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al. [47] use circuit fingerprinting to determine if the circuit between a targeted

hidden service and an introduction point uses a malicious entry guard. First, with

a circuit fingerprinting technique, they determine if their controlled onion router

is an entry guard between an introduction point and a hidden service. Then they

request connections over these circuits with controlled client requests that form

a recognizable pattern over time. Their method is outdated, but possible further

improvements make this attack vector still relevant.

4.7 Watermarking

Inflow [48] is a watermarking technique that exploits the traffic congestion mechanism

in Tor and TCP. It induces a pattern of silent communication periods that entry

guards of a hidden service can detect. The attacker needs to control the entry guard

of a hidden service and a malicious client. The client connects to the hidden services

and stops acknowledging incoming TCP packets until the TCP window fills up and

the relays across the Tor circuit to the hidden service stop sending packets. Before

the connection times out, the client starts to transmit packets again. The entry

guard of a hidden service can detect the pattern of silent periods, but distorting

the traffic to cancel the watermark is impractical. With prolonged time between

silence periods, the attack provides more stealth. The challenge is to target a specific

hidden service with this attack as it needs to connect to the malicious entry guard.

Several clients can iterate through many hidden services and build connections with

the watermark to decloak unspecified hidden services. Wang et al. [49] show how

the Tor padding mechanism allows inserting unique patterns into the traffic to signal

to the client entry guard. Principally, it applies to hidden services as well.

Ho et al. [50] exploit the congestion control mechanism in Tor with SENDME

control cells. The client downloads resources from a hidden service, starts buffering

packets after some initialization time and sends a batch of SENDME acknowledgment
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cells to signal successful reception. Attackers place malicious entry guards and detect

if a circuit contains the watermark to link the connected IP address to the hidden

service. The detector can recognize the watermark if it is present and the hidden

service uses the malicious entry guard.

Chen et al. [51] combine existing strategies to develop an efficient attack called

SignalCookie on all hidden services. Instead of targeting just one hidden service, their

model allows parallel attacks. Controlled clients connect to different hidden services

and pick colluding rendezvous points. The client sends a cookie to the rendezvous

point to build up the connection to the hidden service, and the rendezvous point, by

default, cannot distinguish which hidden service is involved. But the clients embed

information in the cookie used by the rendezvous point to insert a watermark into

the circuit stream towards the hidden service. Different malicious onion routers can

determine this pattern if they participate in the circuit. If it is an entry guard of a

hidden service, then it deanonymizes the hidden service. They can also detect if they

are in the middle position and then uncover the entry guard of the hidden service that

can be attacked or forced to cooperate. They collected data about entry guards of

hidden services in live experiments: more than 83 % of the observed hidden services

use 20 % of all entry guards in four months. Worse, the geographic distribution is

mainly limited to a few countries. Germany hosts over 26 % of all entry guards and

France almost 23 %. Together both provide entry guards for around 50 % of the

observed hidden services.

In another publication, Chen et al. [52] used the data to classify hidden services

that probably belong to the same operators. Most hidden services rely on the default

Tor configuration. Using specific onion routers as entry guards for an exceptionally

long time for multiple hidden services can hint at a unique administrator. If multiple

hidden services run over one onion proxy, the guard selection is identical, and over a

prolonged time, this delivers a precise correlation to relate them. Or using private
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bridges is also a strong indicator and even ties the hidden service operator to the

bridge operator. The content and address prefixes for onion addresses also reveal

clues. It is problematic for hidden services as an attacker only needs to deanonymize

one hidden service to endanger all connected hidden services. It can happen if the

hidden services leak information about the operator or an attacker poisons all entry

guards.

4.8 Side-Channel Attacks

Murdoch [53] discovered a side-channel attack on hidden services. The idea is to

generate traffic on hidden services that leads to different CPU temperatures resulting

in slightly different clock skews. If attackers know a candidate set of potential

servers, they can probe timestamps via TCP and link the physical device to the

hidden service. Zander and Murdoch [54] improve the method by utilizing HTTP

timestamps and synchronizing the probes with the traffic load. Attackers can even

possibly estimate the hosting location of servers by comparing daily temperature

changes to the clock skew.

In case a hidden service resides on an onion router, attackers can use the attack

described by Murdoch and Danezis [55]. The idea is to insert traffic patterns and

measure the latencies of all onion routers to discover the circuit relays. Subsequently,

the latencies on the hidden service circuit relays will also measurably change. Hopper

et al. [56] show that an attacker can infer information in the Tor network traffic by

using the same method to measure the latencies of onion routers to correlate circuit

relays. The authors aim to deanonymize clients by generating many HTTP requests

to a malicious hidden service. This method also applies to hidden services if enough

traffic flows from client to server (for example, file uploads).

Simioni et al. [57] correlate the uptime of a server with public availability

information. They deployed a server in the I2P network and artificially took the
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server offline. I2P is a different anonymization network, but general results can

also be transferred to Tor. They measured the availability of nodes in intervals and

compared the hamming distance. After four days, they could reliably identify their

server. A similar approach is viable for the Tor network: Attackers could potentially

influence the availability of several suspected servers and try to access targeted onion

addresses. If the target hidden service is among the candidate servers, then the

deanonymization is successful.

Another attack, shown by Shebaro et al. [58], in this category is to send a fixed

number of requests in intervals to leave fingerprints in the log files. If an attacker

gains access to a machine, the log entries can reliably identify that a specific server

hosted the hidden service.

Cangialosi et al. present a framework called Ting [59] that builds circuits to

measure the latencies of individual onion routers. This information allows attackers

to infer additional information. For example, if an attacker connects via a colluding

rendezvous point to a hidden service, the exit relay from the hidden service circuit

to the rendezvous point is known. The attacker also measures the overall circuit

latency from the rendezvous point to the hidden service. Therefore, the combined

entry and middle relay latency must be less than the total circuit latency minus the

known exit relay latency. It decreases the set of possible onion routers involved in

the circuit. If the attacker determines a second involved onion router in the circuit,

the remaining candidate set is small due to the Ting latency measurement precision.

4.9 Specific Hidden Service Applications

Gao et al. [60] carry out a more specific attack against Bitcoin nodes that conceal

their identity as a hidden service. Bitcoin is a decentralized system connecting

different Bitcoin nodes to spread transaction information, and administrators can

protect their identity by running a Bitcoin node as a hidden service. The attack



4.10 DENIAL OF SERVICE (DOS) 34

proceeds in two stages: first, an attacker determines the IP address of the hidden

service, and in the second step, connects the transaction to it. In the first step,

the hidden service needs to use a malicious entry guard, and a client will insert a

watermark in the connection. The entry guard detects the watermark and then

knows the IP address if the hidden service uses this entry guard. The entry guard

delays packets from the hidden service to tie the corresponding transaction. If the

malicious Bitcoin node receives the transaction information from the target node

first, it must come from the exposed hidden service since other nodes insert a random

delay that is less than the induced delay.

Hellebrandt et al. [61] mention a possible attack on the Tor authority nodes to

manipulate a majority vote. Following this, an attacker can create a forged list of

compromised onion routers. These could lead to mass deanonymization, but this

attack is noisy when large parts of the consensus document change.

4.10 Denial of Service (DoS)

Janes et al. [62] discovered a protocol flaw in Tor enabling DoS attack on arbitrary

onion routers. The attacker must control a client that builds circuits in the basic

version. Furthermore, the attacker must manage the circuit exit relay or an external

server. The idea is to send packets into the victim’s packet queue by continuously

sending packets that violate the signaled TCP window boundaries while the client

(or malicious server) stops reading from the connection. An advanced setup requires

only a single client that downloads large files, stops reading from the TCP connection

to the entry guard (except keep-alive signals to maintain the connection), and signals

the exit relay to continue sending packages by crafted flow control packets. The entry

guard’s packet queue overflows and consumes memory until the process terminates.

It becomes delicate in combination with the entry guards: the attack may crash the

hidden service’s entry guards, forcing the hidden service to select new entry guards.



4.10 DENIAL OF SERVICE (DOS) 35

It increases the chance that the hidden service chooses malicious ones. While Tor

fixed this concrete vulnerability, DoS attacks remain relevant and offer novel attack

surfaces, for example iterating through different entry guards for hidden services.

Döpmann et al. [63] mention the computational asymmetry during the connection

initialization between the client and hidden service. It is costly for a hidden service

to build circuits and calculate the initial handshake. An attacker could use bogus

data and directly connect to the introduction point to send a connection request to

the targeted hidden service. Subsequently, it needs to conduct expensive calculations

that attackers can exploit to launch DoS attacks. Barbera et al. [64] describe the

computational asymmetry initially by just calculating costs for creating connection

requests for clients and hidden services. A client needs a fraction of the computational

power incurring a tremendous resource consumption on targeted onion routers.

Jansen et al. [65] explore other DoS attacks combined with cost estimation. The

naïve approach overloads an onion router with traditional packet flooding, which

is comparatively expensive at more than 7 200 000 U.S. Dollars for the entire Tor

network needed during their 2019 analysis. The other attack utilizes Tor protocol

features. By building up longer circuits with eight hops, they included targeted

relays multiple times in a circuit to amplify attacks. An attacker can severely limit

the connection quality of targeted relays even with limited resources. In particular,

if the entry guards of a hidden service are known, they can be accurately attacked

so that the hidden service selects new entry guards. Another compelling approach

they presented is to attack the Tor bandwidth measurement system. For around

2 800 U.S. Dollars, they can severely impact the Tor measurement system for a whole

month. Meanwhile, attackers can insert malicious onion routers and inflate their

offered bandwidth by claiming false information. It increases the chances that clients

will choose them.
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4.11 General Network Traffic Correlation

In 2007, Bauer et al. [66] demonstrated how onion routers can lie about their

bandwidth to increase their chances of getting selected. When they compromise

the entry guard of Tor clients or hidden services, they correlate traffic and check if

a malicious exit relay is involved. If this is not the case, the entry guard destroys

the circuit, and the client selects new onion routers until the attacker pushes the

selection of the compromised exit relays.

2011, Zhang et al. [67] used clients to connect to hidden services with the HTTP

1.0 protocol that builds a new TCP connection for every object to load. A malicious

entry guard of a hidden service can try to correlate the requests from the attackers’

clients with the connected relays to see if the pattern matches. If the hidden service

directly connects to the malicious entry guard, then it is deanonymized.

Li et al. [68] exploit the selection process. During the time of the publication,

Tor maintained a list of entry guards for 30 to 60 days to make attacks on the entry

guard selection process harder. It contained three entry guards by default. If an

entry guard becomes unavailable, the hidden service chooses a new one to ensure

availability. An active attacker observing the network connections of Tor clients and

hidden services can learn the entry guard list from the connection logs and selectively

block connections. The attacker will wait for the reselection of entry guards, and if

the client or hidden service does not choose a colluding entry guard, the attacker

repeats the process until it selects a controlled entry guard. The attacker can increase

stealth by blocking connections when there are no ongoing connections and only

blocking two of the three guards to allow the Tor proxy to work undisturbed.

The internet consists of Autonomous Systems (ASs) that internally route packets

individually but advertise standardized interfaces to other ASs to ensure smooth

routing. An AS can capture packets from clients. If an AS can observe the commu-

nication between a client and entry guard and exit relay and destination, the AS
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could correlate traffic to determine the destination and source. Internet Exchange

Points (IXPs) are locations to connect different ASs and could potentially wiretap the

connections. Johnson et al. [69] modeled typical user behavior and attackers running

relays, ASs, or IXPs to measure Tor’s security. Using data monitored between 2012

and 2013, they simulated Tor’s path selection for users with different behaviors. The

users’ locations also influence how fast an attacker can successfully deanonymize

at least one circuit. Assuming the worst-case user location: after 90 days, almost

100 % were connected to a compromised circuit by an AS attacker. In the best

user location, between 38 % and 67 % after 90 days by an AS attacker. For IXP

organizations (controlling multiple IXPs), around 95 % in the worst case after 90

days and between 15 % to 17 % for the best user location after 90 days. Juen et al.

[70] measure with traceroute in which ASs onion routers reside and how vulnerable

the path selection is. Even with their improved path selection algorithm, the average

client would have a mean probability of between 5.3 % and 11 % for a vulnerable

path in one week. While they used the browser behavior of an average internet user

and ran simulations, the results also concern hidden services.

Sun et al. [71] systematically analyze how ASs can deanonymize Tor circuits with

traffic correlation attacks. ASs need to wiretap the traffic between the client and

entry guard and the exit relay and destination. Interestingly, the internet path can

differ for incoming and outgoing packets. It increases the ASs’ chances of a successful

attack as they could wiretap the connection between the client and entry guard on

the forward route and exit relay and destination on the reverse. They correlate the

cleartext TCP sequence number and TCP acknowledgment number to determine

the client and destination. They achieved a 95 % accuracy without false positives

in a limited real-world study. 21.3 % of all Tor circuits during their experiment in

2015 were vulnerable as a single AS could deanonymize clients, considering churn

in the routes over time, even 31.8 %. ASs use the Border Gateway Protocol (BGP)
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to distribute routing information across different ASs. Attackers can hijack IP

prefixes by issuing unauthorized routing updates, and neighboring ASs will update

their routing tables accordingly. With more specific prefixes than the target range,

the malicious routing information gains more relevance than the authentic route

information. The authors successfully demonstrated an attack and showed that

previous BGP attacks affected Tor.

4.12 Protocol-Level Traffic Correlation

Ling et al. [72] present a protocol-level attack on hidden services. They need to

control the entry guard of a hidden service, a rendezvous point, and a client. The

client chooses the malicious rendezvous point to connect to the hidden service. If

their entry guard receives packets to build up a circuit to a rendezvous point, the

attacker’s rendezvous point inserts a corrupt package that leads the hidden service

to close the connection. A central server logs times and packet information about

network packets. Furthermore, the server logs packets signaling the closing of the

circuit at the entry guard, rendezvous point, and client. The hidden server can detect

the corrupt packets and notify the operator about the ongoing attack.

Ma and Xu [73] present a scheme for deanonymizing clients connecting to a

malicious hidden service via a colluding entry guard. The hidden service injects

specially crafted cells into the circuit that a compromised entry guard will detect.

This attack utilizes protocol features. Similarly, another attack variation inserts

conspicuous cells at the entry guard of a hidden service and detects these at the

exit relay or client. Problematic is that according to Tor’s specification, protocol

modifications lead to the termination of streams, but bugs or vulnerable protocol

designs can lead to different behavior. Moreover, even the termination reveals

information. Still, protocol feature flaws often remain temporary.

Yoshiura and Koizumi [74] show that the number of network packets varies
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for an entry guard depending if a client or hidden service connects. Therefore,

a malicious entry guard can collect the IP addresses of potential hidden services

without associating them with their hosted content. They also mention that there

are only two entry guards in Japan at the time of publication, indicating a skewed

geographical distribution. Hidden services connected to these might stand out.

Tan et al. [75] combine different attack vectors to deanonymize Tor clients

even faster. Initially, the attacker needs to monitor the entry guards of a client

by wiretapping the network connection. ISPs, ASs, or data center providers have

this capability. Then they push the client to select a compromised entry guard by

selectively blocking connections. Afterward, the attacker must ensure that the client

selects a compromised exit relay. Then the entry guards collect a fingerprint of the

initiated circuit and compare it with colluding exit relays. If the client chooses a

benign exit relay, the compromised entry guard breaks the circuit. Afterward, the

client initiates a new one with a new exit relay. The attacker repeats until the user

selects a compromised exit relay. Following, a traffic correlation attack on the entry

and exit relay will reveal the source and destination of Tor clients. Hidden services

also initiate circuits to the rendezvous points, and an attacker can apply this attack

to deanonymize them.

Greubel et al. [76] measure the load distribution in the Tor network. The Tor

proxy chooses onion routers randomly, but the chances increase with higher offered

bandwidth that onion routers can self-report. The mechanism that checks actual

bandwidth does not work reliably for onion routers with fast bandwidth. An attacker

can insert malicious ones and inflate their bandwidth to increase the likelihood of

clients connecting. They also mention a strong recentralization of Tor to a few

onion routers in the study. Attackers can focus resources on high-priority targets to

deanonymize mass Tor traffic and hidden services.



5 Internet Literature Review

5.1 Methodology

Next to the theoretical attack vectors determined by an academic literature review,

strategies from the real-world attacker are also relevant. An internet search supplies

information about previous attacks on hidden services. Each source must be critically

examined since anyone can freely publish information online. Initial search attempts

yielded poor results, like multiple newspaper articles rephrasing press releases from

law enforcement. Blog posts, newspaper articles, and YouTube videos often neglect

technical investigative details, and the variety of authors coupled with little back-

ground information makes it difficult to assess the reliability of this information.

Naturally, hackers will usually not publicize their attacking techniques, and interview

answers cannot be verified. Therefore, this analysis concentrates on court documents

because they partially describe how investigators located criminals and involved

law enforcement agents face punishment if they intentionally make false statements.

While law enforcement must respect legal barriers, their budget and persistence

should make them more dangerous than hackers and make them comprehensible

model attackers.

Many countries restrict access to court documents, and law enforcement has

no intention to reveal their methods. Otherwise, criminals can adapt their cover
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strategies. The United States Department of Justice provides a website1 with a

search function for court documents and press releases. The number of records is

comparably low and resembles more highlighted cases with public interest than a

representative collection. The analysis includes all results from the first ten pages on

July 10, 2022, for the following three key phrases:

• Darknet

• Hidden Service

• Tor

An initial search showed that these three keywords were commonly used in criminal

cases that involved the Tor network. The overview does not include incidents with

coincidental Tor involvement, but only cases with strong Tor technology involvement.

Investigators leverage different techniques depending on the offenses. All described

incidents fall under 3 major categories that later help to determine the various

investigative angles: drug offenses, hidden service platforms, and others. During the

research, three court cases emerged as particularly relevant to operators of hidden

services, each of which a separate section analyzes.

5.2 Drug Offenses

Operation Dark Gold targeted drug vendors on marketplaces by undercover agents

posing as money launderers. In one case, they offered to exchange cryptocurrencies

for banknotes mailed via Post. Agents then obtained a warrant to surveil the address

and exposed the drug dealer. [77]

A pharmacist sold drugs over a hidden service marketplace. Through multiple

undercover purchases, undercover agents posed as active users and got placed on

1https://www.justice.gov/

https://www.justice.gov/
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a mailing list. They received regular updates directed to all customers via email.

The PGP key tied the vendor and email address. Investigators determined that

the pharmacist used an online marketing service to manage email communication

with customers. Subsequently, the requested record from the service showed logins

from an unprotected IP address, billing address, and telephone number. Surveillance

teams captured the pharmacist sending drug packages, and the Bitcoin payments

were tied to his accounts on a cryptocurrency exchange platform via transaction

analyses and access times. [78]

A comprehensive blockchain analysis provides hints for another drug case. While

investigators tracked the stamps of intercepted drug packages to identify the responsi-

ble person, a blockchain analysis showed a connection between undercover purchases

and cryptocurrency exchange accounts registered in the suspect’s name for more

than 100 transactions. The defendant likely used a cryptocurrency mixer, but some

clues incriminate him in court. [79]

US law enforcement apprehended a drug vendor in 2021 operating under multiple

pseudonyms. Initially, investigators became attentive after a man received a drug

package at a post office in 2018. He denied wrongdoing, but prior relevant convictions

led to a search of his home. His computer was powered on and indicated "darknet

vendor activity". They tracked various drug packets and confirmed with surveillance

camera footage that the man had committed crimes. [80]

A notable organized action called HunTor to fight online drug trafficking resulted

in 150 arrests worldwide. Again, the press release does not mention any explicit

investigation methods but links to the relevant court documents. [81] An indictment

for an alleged drug dealer reveals that an undercover agent used the given Bitcoin

address to link transactions. The monitored Bitcoin wallet sent Bitcoins to a

cryptocurrency exchange account and was used to book a hotel. It linked the

person to the Bitcoin address and thus the pseudonym. From another involved
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cryptocurrency exchange, the investigator analyzed records showing even the number

of accesses and IP addresses. [82] Another interesting affiliated case shows how the

FBI linked a drug vendor to different profiles by comparing pseudonyms, PGP keys,

and messages from seized servers. Several hidden purchases determined common

characteristics to connect the various profiles. Afterward, investigators traced the

Bitcoins and discovered a transaction to a Bitcoin exchange involving a personal

email address. Provided records showed access times and the IP addresses, which

linked the defendant. The FBI determined that the defendant used the Tor network

by wiretapping his internet connection. [83]

5.3 Hidden Service Platforms

The Hydra market appeared in 2015 and was shut down in 2022 by the combined

effort of U.S. and German law enforcement. The platform laundered cryptocurrencies

and enabled criminals to sell illicit items and services. According to the press release

and indictment, undercover agents used the money laundering service to follow the

money flow. Moreover, they used ordered drugs from vendors. The administrator

ran a hosting company to cover the servers for the Hydra market. The indictment

lists some of his invoices and how often he logged into an affiliated email account.

[84]

A Canadian citizen in Thailand hosted AlphaBay, the most popular marketplace at

the time, which authorities seized in 2017. In 2014, new users received an introductory

email that included a standard internet email address in the header. The password

recovery process included the same email address. The records from the email provider

led to the administrator’s identification, who posed as a successful entrepreneur with

technical background on LinkedIn. Before the marketplace launched in 2014, a user

post under the same pseudonym appeared in a French forum in 2008. The pseudonym

is unique and was also the administrator’s alias on AlphaBay. The forum post also
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included his real name, and the email later appeared in the email header. Law

enforcement artificially influenced the servers’ availability to lure him into restarting

it from his laptop to catch him red-handed. The police confiscated the laptop quickly

to get an unencrypted view of the marketplace’s infrastructure and assets. At least

five different servers handled the cryptocurrency wallets in encrypted containers. [85]

Freedom Hosting was a Tor-based hosting provider allowing users for free to

set up their hidden services. Without further explanation, U.S. law enforcement

surveilled two websites containing illegal pornography that leaked an IP address

connected to a hosting company in France. After receiving a search warrant, the

servers forcibly shut down to copy the disks, but the containers were inaccessible

due to encryption. The billing address led to a mailbox in the U.S. that redirected

the post to an Irish address. The administrator paid the server with his debit card

registered in his real name. The access logs from the hosting provider showed a single

IP linking to a virtual private server (VPS) that, in turn, revealed the administrator’s

residence. The server kept log files for remote connections that referenced his VPN

account and previous Irish IP addresses. Authorities cracked the password and

gained access to the encrypted containers giving insights into the infrastructure. In

chat logs, administrators of the hosted websites incriminated the Freedom Hosting

administrator for knowingly tolerating their actions. [86]

Helix was a cryptocurrency mixer laundering Bitcoins from 2014 to 2017. The

administrator cooperated with drug dealers and other marketplaces to conceal the

money flow. Simultaneously, the administrator ran a search engine called Grams.

Undercover agents used the Bitcoin laundering service. The document gives no

further information. [87]

A notorious child exploitation hidden service leaked its IP address due to mis-

configurations in the page source code. Investigators also traced Bitcoin payments

from undercover agents to cryptocurrency exchange accounts from the administrator.
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They stored identifying information about him. He set the server up in his private

house, and during the police search in 2018, they confiscated further incriminating

evidence on his computer. [88]

Law enforcement seized a platform offering illicit pornographic material operating

on the Tor network. Previously, the website had a standard internet version, and

investigators tracked the payments for the hosting server to an account registered in

the administrator’s name. The given email address also showed frequent access from

a dutch IP address and content about administrating the website. [89]

A case that attracted a great deal of attention was the child pornography web-

site PlayPen. Undercover agents surveilled activity on the website and gathered

intelligence about users and hierarchical structures. Police forces from another

country seized a similar hidden service promoting child pornography, and during the

investigation, they identified a moderator account linking to PlayPen. Private and

public text messages established this connection. Law enforcement sent a link to

a streaming site to the moderator on the seized website. After the administrator

opened this link and the video file, the file transmitted the IP address and other

identifiers over the internet to law enforcement. After receiving information from

the ISP, police searched the administrator’s house and arrested him. [90]

Rather than shutting down PlayPen immediately, the FBI moved the server image

to their servers and continued hosting the hidden service for about two weeks. They

exploited a security vulnerability and included malware to expose users down- and

uploading content. The exploit generated a unique identifier for each computer and

collected the hostname, operating system username, MAC address, IP address, time,

software versions, and whether it was already running on the target system. [91]
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5.4 Other Offenses

A user sold insider stock trading tips on a marketplace and later on his hidden

service. Undercover agents subscribed to his service and gained trust over multiple

conversations. By referring to a new wealthy potential customer, the FBI lured the

criminal into encrypted voice calls that later helped to confirm the suspicion. They

identified him by tracing the Bitcoin payments, some of which he directly transferred

to exchange platforms and cashed out. He tried to conceal other transactions through

dummy transactions ending at other exchange platforms. There he needed to identify

himself. Law enforcement used these records that directly led to the insider trader.

[92]

A woman paid a hidden service to have her husband killed by a hitman. A hacker

gained access to chatlogs and transaction data from the website and provided this

information to law enforcement. They, in turn, traced the Bitcoin payments to

an exchange platform account that revealed information about the client ordering

the hit. Investigators tied her pseudonyms to her kids’ names and car registration

numbers. Private emails from her account aligned with the messages to the hitman.

[93]

A U.S. government employee tried to sell confidential data to a foreign government

by initiating contact via post. The package contained a sample and instructions for

electronic communications with keys. The intended receiver turned it over to the FBI,

which, in turn, set up an undercover operation attempting to lure the criminal into

serving a surveilled dead drop. At first, he insisted on using electronic communication

and the anonymous Monero currency but later agreed to deliver an SD card physically.

The FBI monitored and successfully identified the perpetrator and continued the

encrypted conversations and payments for a while before apprehending the criminal.

[94]

In 2021, a U.S. court sentenced a resident to prison for charges including admin-
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istering a child pornography forum. The press release mentions that he came to

the attention of law enforcement due to incriminating material during a search for

unrelated online offenses. [95]

Law enforcement exposed a marketplace moderator by meticulously connecting

information. In the first step, they linked accounts on the marketplace and the

discussion forum. Secondly, they compared similar slang, posting times, content,

and written languages to establish a link. During a covert operation where police

ran a darknet marketplace, a user with the same username registered and asked for

employment. The police carefully extracted background information and lured him

into providing a postal address. The given recipient name refers to a person in Brazil

and a registered company. The company’s contact email address links to an online

hacking forum and social media accounts. The uploaded profile photos matched,

and one shows a book in the background. The moderator mentioned this book in a

discussion in the marketplace forum. Furthermore, investigators discovered his eBay

account buying credit card skimming equipment. [96]

5.5 Extensive Court Cases

5.5.1 Silk Road

The notorious Silk Road hidden service operated from 2011 to 2013 and was the first

major marketplace. In the official version of events, the FBI identified the Silk Road

servers in Iceland because a captcha leaked the IP address unassociated with any onion

router. After connecting directly to it, a part of the Silk Road login page appeared

that incriminated this IP address. The responsible agent claims it is a configuration

error bypassing the Tor proxy. Afterward, the hosting provider monitored the servers’

network connection which indicated a high volume of Tor traffic. Furthermore, they

imaged the server, and the FBI analyzed the content. Investigators discovered forum
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messages, records of sales, and the source code. Configuration files lead to the IP

addresses of two backup servers. The FBI decided to surveil their suspect, Ulbricht,

by wiretapping routing data from the ISP, including IP addresses, ports, and MAC.

The suspicion was corroborated by correlating the monitored ISP information with

the online times of the operator. [97]

In an interview with a news agency, investigators stated that after locating the

Silk Road servers, they tracked a person logging into administrative areas with the

username frosty in an internet café. Another investigative breakthrough was the

cooperation of a Silk Road staff member. Undercover agents took over his account

and gathered intelligence. Another agent searched online for clues about the Silk

Road operators. Subsequently, he connected an early post advertising Silk Road and

a hiring request on another forum by the same username. The latter contained an

email address with Ulbricht’s full name. They could also tie another post offering

coding contracts for hidden services to that username, but the name changed later to

frosty. The U.S. Customs and Border Protection intercepted fake passports ordered

by Ulbricht. After being confronted, Ulbricht mentioned Silk Road and abruptly

moved to another state afterward.

The undercover agent posing as staff could connect the phrase “yea” frequently

used by the Silk Road administrator with Ulbricht’s YouTube account. Furthermore,

the access times of his private email and the operator’s online times correlated

strongly. To gain unencrypted access to his laptop, agents surveilled him waiting for

him to contact the undercover agent on Silk Road. During the chat, agents staged a

fight while others grabbed his laptop. Cybersecurity experts immediately took care

of it. Ulbricht’s girlfriend also knew partially about his involvement in Silk Road [98]

Ulbricht’s version differs significantly from the official version. In his motion

submitted to the court [99], he included documents showing that law enforcement

initially suspects other individuals as the responsible operators by applying linguistic
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profiles. Specific words like “lemme”, “intellectual laziness” or “agorist” combined with

general spelling contribute to a linguistic profile. Ulbricht also includes chats with a

claimed law enforcement employee offering him information about the investigation.

The proclaimed source said investigators tried to target vendors and staff members.

Also, the investigation used a psychological profile based on login times, speech,

ideologies, and linguistics. Analysts permanently crawled Silk Road, and undercover

agents tried to impersonate the operator’s account by similar names or claimed

false identities when contacting potential contacts to resume an old conversation.

Furthermore, the source speculated that law enforcement started a DoS to incite a

response from the Silk Road operator that could lead to mistakes. The motion also

includes allegations that U.S. law enforcement wiretapped Tor exit relays.

Ulbricht’s lawyers released documents showing how investigators captured the IP

addresses of the Silk Road servers. According to security specialists, the publicized

logs are inconsistent with the official version of events. Silk Road used two servers

as a front and back end. The back end could only communicate with the front end,

which, in turn, acted as the hidden service for clients. Direct contact with the IP

address could not lead to the mentioned login page but to an authorization error.

The recorded log files also hint at a phpMyAdmin page rather than a captcha or Silk

Road login page. [100]

Another internet blog concludes from the files that the back-end server denied

requests from the internet but established a TCP connection to deliver the unautho-

rized access page. A systematic internet scan could reveal information from the SSL

Certificate. Even worse, the PHP configuration section overrides the general rules

for .php files, which means that the phpMyAdmin was accessible straight from the

internet, and the phpMyAdmin page used HTTP. An adversary could snoop on the

transmitted password and log into the page. The log file showed successful access

to the phpMyAdmin page, which, according to the blogger, was either falsified or
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the FBI knew the correct password. [101] This fuels suspicions that law enforcement

used a “parallel construction” that builds up a separate investigation line to present

at court to conceal initial evidence.

Ulbricht required users working for him to scan and send their identification

documents to him. Law enforcement retrieved them and subsequently arrested

participating persons. An advisor helped Ulbricht to develop a cover story for people

he talked about Silk Road. By changing the username, the consultant also suggested

creating the illusion of multiple operators under a single account and that he possibly

sold the marketplace to someone else. Additionally, he advised Ulbricht to enforce

encrypted messages between vendors and buyers. [102] A rouge agent misused the

account of an arrested user to divert Bitcoin into his possession during the Silk Road

investigation. [103]

5.5.2 Silk Road 2.0

Five weeks after the Silk Road shut down, Silk Road 2.0 launched as a successor.

Again, before the investigation experienced a breakthrough, undercover agents

crawled through the website and gathered intelligence. The founder invited several

people to a Tor discussion forum to work on Silk Road 2.0. Law enforcement placed

an informant in this inner circle that continuously forwarded the information to staff

members.

The breakthrough came when investigators revealed the IP address of the server.

The affidavit used in court does not mention how they discovered it. In a separate

case against a Silk Road 2.0 drug vendor, Brian Farrell, the affidavit refers to the “FBI

NY Source of Information” that provided IP addresses for the Silk Road 2.0 servers,

17 other hidden service marketplaces, and 78 IP addresses that accessed the Silk

Road 2.0 vendor portal. Silk Road 2.0 maintained different hidden services for the

marketplace, vendors, forum, and support interfaces. It reflects a compartmentalized
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server architecture. [104]

The documents do not directly state that law enforcement agencies broke Tor

anonymization. The fact that the various hidden service pages and even Tor users

were deanonymized indicates this. The IP identification took place from January

2014 to July 2014, which perfectly aligns with the security notification from the

Tor project. The Tor project identified malicious relays operating from January

2014 to July 2014 engaging in traffic confirmation attacks. [105] In 2016 after the

administrator was identified and charged, additional documents proved that Carnegie

Mellon University uncovered his IP address. [106]

After identifying the Silk Road 2.0 servers, the authorities imaged the server and

analyzed the content. During the process, the provider took the server temporarily

offline. Simultaneously, Silk Road 2.0 was not reachable anymore. It further confirmed

to investigators that they imaged the correct server. Configuration files and in-depth

messages between users and operators revealed the inner working to investigators.

The operator used a personal email address linking to his IP address to register the

servers. Also, support tickets in the hosting company logged the same IP address.

The hosting provider kept logs of a second IP address for issuing tickets leading to a

hotel where Blake Benthall resided at that time. Similarly, a third IP address was

linked to him again during another hotel stay.

Emails in his account incriminated him further, for example containing staff-only

messages. Investigator found his tweets mentioning the Silk Road returning and

noted his steady financial income from Bitcoins. At the same time when Silk Road

2.0 appeared, his account at the cryptocurrency exchange started to receive large

Bitcoin transfers. Investigators showed that Blake Benthall used the same software in

the same version to access the Silk Road 2.0 support interface and the cryptocurrency

exchanger. His browser and operating system version hint at him. At the last stage,

law enforcement surveilled him physically and correlated his account being online on
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Silk Road 2.0 with his physical activities. Months before law enforcement arrested

Blake Benthall and shut Silk Road 2.0 down, he wrote to his staff members that an

attacker hacked the servers and stole all Bitcoin funds. He used his personal financial

resources to cover the loss and aimed to recoup the losses with new commission

profits. [107]

5.5.3 Wall Street Market

Comprehensive court documents from a recent criminal case reveal with what methods

attackers can deanonymize hidden services. Wall Street Market (WSM) offered a

marketplace for drugs, malware, stolen data, and other illicit goods. The FBI

purchased drugs from vendors covertly to target drug dealers and gain insights

about WSM. In 2019, a joint force of U.S., Dutch, and German law enforcement

agencies managed to apprehend the operators and shut the market down. Initially,

Dutch investigators imaged a server that hinted to WSM with code variable names,

SQL queries, and comments. The document does not mention how investigators

identified the servers. The description suggests that this server was only responsible

for processing cryptocurrency transactions. WSM divided the infrastructure into

multiple servers fulfilling only part of the complete functionality. The configuration

files hinted at various IP addresses in Germany.

The German authorities copied a WSM database referencing the names of the

previously imaged server. They redacted concrete details from the public document

of how they identified the servers initially. An infrastructure analysis yielded a link

to the development server in the Netherlands and a database containing communica-

tion between the operators. Subsequently, Dutch investigators obtained an image

and linked it to WSM because it contained the source code. All three configured

administrator accounts have similar names to the operators’ names on WSM. The

operators used VPN providers to access the development server.
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The first operator made a fatal mistake when the connection to the VPN provider

ceased, but his connection to the development server continued, thus exposing his

IP address. The IP address led to a mobile UMTS Stick registered under a false

name. Investigators tracked the locations and identified a person based on the login

location at the residence and employment place. A similar GitHub name, information

about cryptocurrencies, and personal preferences related to the username led to the

sentencing of this person.

German investigators correlated connection timings between the second operator

to the VPN provider and the VPN provider to the WSM server infrastructure that

led to a person. Later the person in question confessed his role in WSM. The third

operator reused a PGP key on another marketplace for an account. This account

used a Bitcoin wallet that paid for services from a media marketing agency registered

with personal details. Also, he bought a video game for an account registered in

his name. The administrator also bought video games from an unrelated Bitcoin

wallet and refilled it later from WSM wallets. All three operators could be linked by

tracing Bitcoin transactions to a previous marketplace German Plaza Market that

shut down in 2016. [108]

5.6 Classification

The mind map in figure 5.1 depicts the seven fundamental categories for investigative

approaches. All these present attack vectors that hidden service operators must bear

in mind and actively anticipate. The overview below presents concrete methods for

the seven attack vectors:

• Vulnerable Tor Specifications

– Malicious entry guards continuously try to correlate hidden services to

connected IP addresses
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Figure 5.1: Classification of attack vectors from internet literature

– Network traffic correlations indicate Tor usage in local networks

• Technical Misconfigurations

– Weak passwords allow attackers to take over accounts or access adminis-

trative areas

– An IP scan of the server can expose a hidden service

– Configuration files and the source code provide insight into the remaining

hidden service infrastructure

– Embedded resources or the hidden service itself can leak IP addresses or

other metadata

• Vulnerable Software
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– Program libraries used and self-programmed software may have vulnera-

bilities

– Attackers utilize exploits against the Tor Proxy or Tor browser

• Follow the Money

– Some cryptocurrencies have a blockchain that publicly stores all transac-

tions that eventually lead to a wallet associated with a person

– Payments of involved wallets give further hints about involved persons

• Linking Information

– Electronic signatures uniquely identify persons across pseudonyms

– The username, date, and content of posts can indicate that a person might

be involved in a hidden service

– Linguistics, login times, and expressed ideology facilitates the creation of

a personal profile

– Public information, for example, from social media, allows attackers to

compare data against an operator to reduce the number of suspects

– The hosting provider or other affiliated services (i.e., email address) deliver

additional angles

• Physical Evidence

– Searched devices reveal files referring to the usage of hidden services

– Local network eavesdropping makes it possible to correlate Tor traffic

usage with activity patterns of operators

– Physical surveillance can catch suspects red-handed or at least build

strong correlations



5.6 CLASSIFICATION 56

• Social Engineering

– Impersonating accounts can trick the victim into divulging additional

information

– Phishing attacks can grab relevant information or even passwords

– Inciting stress on hidden services via availability attacks or server restarts

can push the operators to make errors

– Undercover agents, arrested users, and infiltrated hidden services persis-

tently gather intelligence and can manipulate operators

The number of attack vectors is significantly higher than the list. It only high-

lights methods used by investigators to catch operators and decloak hidden services.

Therefore, this list focuses more on attack vectors specific to hidden services. Chapter

4 details the vulnerable Tor specifications, and many technical vulnerabilities of

hidden services also apply to default web services. Generally, the documents give the

impression that non-technical methods or simple misconfigurations usually expose a

hidden service. Economically, an attacker initially tries to exhaust cheaper and faster

methods before dedicating tremendous resources to crawl the internet to compare

linguistics or slowly infiltrate the organization.



6 Risk Assessment and Security

Add-Ons for Hidden Services

6.1 Risk Assessment Process

Every hidden service and operator faces multiple risks that damage assets. For

hidden services, the most relevant assets are anonymity and data because this is a

core function of the Tor network. Hidden services differ from companies because they

often act in sensitive fields like whistleblowing. Deanonymization is the dominant

risk, and faults entail severe consequences for real people. Therefore, it is imperative

to deal with risks methodically in order to implement sufficient protective measures

and emergency plans.

Every hidden service is also a web service that utilizes the Tor software as an

additional layer. Therefore, by default, all properties of web services also apply

to hidden services. Like companies, operators should use a structured process to

identify and counter potential risks. It helps to cover them comprehensively and

adopt appropriate measures. The National Institute of Standards and Technology

from the U.S. offers a detailed guide. [109]

A risk describes potential harmful effects on an entity and consists of the impact

and likelihood of occurrence. Subsequently, a risk model incorporates threats,

vulnerabilities, predisposing conditions, likelihood, and impact. Threats can be
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human errors, natural disasters, or vulnerabilities. Adversaries differ highly in their

financial, personal, and technical resources. Vulnerabilities describe weaknesses

in information systems and organizational structures and, in a broader view, also

include human errors or vulnerable hardware. Predisposing conditions describe

existing factors that affect the impact of risks. Likelihood states the probability that

a threat realizes and impacts the assets in a defined timeframe. The likelihood of

threat realization is adapted depending on the adversary’s motivation, resources,

and targeting. Impact predicts the damage to assets.

Operators should assess their adversaries carefully. Hobbyists and petty criminals

usually pose a low risk. Organized criminal networks and hacktivists have significantly

more resources at their disposal. Security researchers and governmental institutions

can spend enormous resources over a prolonged period on attacking hidden services.

While known vulnerabilities with readymade exploit scripts are usually easy to

mitigate, advanced attacks on the Tor specification require special attention and are

not entirely preventable. [110]

6.2 Risks for Hidden Services

Common threats apply to all servers. Next to software security, physical security

also plays a role. An attacker can try to access the machine, install malware via the

console and extract data. Hardware faults or infrastructure failures impact integrity

and availability. This thesis focuses mainly on risks that particularly affect hidden

services. The sensitive nature of hidden services increases the threat level.

The main objective is to keep the server location hidden. Secondly, when attackers

discover a server, operators should not be directly affiliated with servers. Only an

outline is given for the second part because it involves endless possibilities that

potentially can be illegal. Trying to conceal post addresses is an example that falls

under this category. The protection measures emphasize server location obfuscation.
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Figure 4.1 in chapter 4 shows Tor’s vulnerabilities in academic literature. The Tor

project continuously develops the Tor software and protocol. The Tor community, as

well as attackers, react quickly to publications. Many concrete approaches mentioned

in papers have already been thwarted, while the general ideas provide starting points

for discovering new attack vectors. Other methods, such as amplified DoS attacks

with long circuits, are still highly relevant.

Operational security focuses on humans instead of technical components or

software. Therefore, all approaches are still highly relevant. The four coarse categories

capture various methods in this area: Follow the money, linking information, physical

evidence, and social engineering. Technical aspects require a manual examination of

the attack vector to compare it with the current Tor version. All categories shown

in figure 5.1 remain relevant. Only specific methods became obsolete, especially

those utilizing previous implementation errors. Also, the hidden service directory

protocol got a major change in version 3 deprecating the predecessor in October 2021.

[111] Chapter 7 examines concrete strategies to reduce or mitigate the classified

vulnerabilities from chapters 4 and 5. Before, the following three sections examine

security add-ons for hidden services.

6.3 Vanguards

Vanguards [112] is an add-on for hidden services and consists of three components:

Vanguards, Rendguard and Bandguards. The Vanguards main subsystem uses the

Tor control port to communicate with the local Tor process. The idea is to fix the

middle and exit relay to subsets of possible onion routers instead of rotating randomly

through all possibilities. Limiting the number of available middle and exit relays

slows down guard discovery attacks. Without any security measures, attackers can

initiate many connections over a malicious rendezvous point until the hidden service

chooses a malicious middle relay, resulting in the guard discovery. Subsequently, the



6.3 VANGUARDS 60

attacker either compromises the guards or disrupts the availability.

The exit relay subset contains eight onion routers, the middle relay four and

the entry guards remain two. Automatically rotating through the subsets requires

attackers to start Sybil and compromisation attacks. The outer layer changes after

one up to 48 hours with an average value of 31.5 hours. Effectively, compromising

these relays is not valuable for an attacker because they change too fast. Instead,

attackers have to launch a Sybil attack. Middle relays rotate after one day up to

45 days with an average value of 29.5 days. Rotation durations follow the idea to

require a Sybil attack for exit relays and a compromisation attack on the guard and

middle relay. In some situations, clients and hidden services use an additional fourth

relay. Hidden services use the fourth relay when connecting to a rendezvous point,

making attacks more difficult. Clients choose an onion router as a rendezvous point.

By default, attackers can discover the exit relay instantly. If the hidden service uses

Vanguards, they can only observe a relay that differs with each new connection.

Vanguards eases circuit requirements. By default, Tor cannot establish paths if

multiple relays are from the same /16 subnet or relay family, a tag provided voluntarily

by the administrators. Depending on the HSDir, introduction, or rendezvous point,

the default configuration forbids the circuit’s construction or the entry guard changes.

In the Tor circuit with Vanguards enabled, entry guards can also appear as the HSDir,

exit relay, introduction, or rendezvous point. Otherwise, attackers can enumerate

through different rendezvous points to observe which onion routers are not chosen as

a hop before or to force connections to the second entry guard.

Software programs simulate the deanonymization success of customized attackers.

The recommended parameters are two entry guards, three middle, and eight exit

relays. They are based on an attacker with a 5 % probability of a client choosing a

controlled onion router combined with an attacker that compromises an onion router

with a 50 % success rate after 2 to 14 days. [113] It is a decent estimation, but
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the linearly increasing success probability for compromising onion routers and the

undifferentiated probability of placing a Sybil for the guard, middle, and exit relays

are unrealistic. Subsection 7.5.6 will deal with this issue.

Rendguard counts how often clients use various rendezvous points. The variation

should be high for legitimate requests, while malicious clients can choose colluding

onion routers as a rendezvous point. A prime example is the SignalCookie [51]

attack aiming at discovering the entry guards explained in section 4.7. Rendguards

determines the overuse of onion routers acting as a rendezvous point compared

to their consensus weight because not all onion routers have the same selection

probability. The authors recommend setting the value to 5. It blocks rendezvous

points used five times more than expected. Onion routers not contained in the

current consensus document of the hidden service receive an adjustable value of 1 %

consensus weight. It allows unknown ones to act as a rendezvous point. The reason

is that the local consensus might be outdated and natural churn appeared. Attackers

can abuse this system to artificially initiate numerous connections over popular onion

routers as a rendezvous point that effectively impacts legitimate users if the hidden

services block their requested rendezvous point. In these cases throwing warnings

might be more reasonable than entirely blocking connections.

Bandguards monitors the Tor circuits to detect side-channel attacks. The attack

from Ling et al. [72], see section 4.12, aims at recognizing that a colluding onion

router is involved in a Tor circuit. It works by choosing a malicious rendezvous point

and injecting cells to signal the relay if they are using the same Tor circuit. While an

update addressed this concrete problem, attackers can still access packet volume and

timing information for traffic correlations. Active attackers can insert watermarks as

described in section 4.7. Unexpected cells will be dropped in the circuit but might

leak information if attackers intentionally insert them. If the hidden service detects

a dropped cell, it sends the DESTROY cell to the entry guard to immediately close
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the circuit and emits a warning message for the hidden service operator. A malicious

entry guard might ignore the DESTROY cell and continue delivering packets. [114]

Malicious onion routers can append additional data to hidden service descriptor

submissions and the corresponding responses that parsers potentially ignore. A

non-standard option enables hidden services to close circuits to introduction points

after a fixed traffic volume. It helps to mitigate DoS and traffic confirmation attacks

preventing potential spikes in traffic volume. As it impacts legitimate users, operators

must individually adjust the option to become active. Limiting the total traffic

volume for a Tor circuit is also possible to prevent detectable traffic patterns. With

larger volumes, the available packet number and timing increase to significantly

improve traffic correlation attacks. This option also needs to be actively activated

to come into effect. Using circuits too long negatively affects privacy as the old

TLS connection stays open while new Tor circuits will use a new TLS connection

after a while. Missing traffic multiplexing makes traffic correlations easier and leaks

information about the entry guard via uptime correlations. It defaults to 24 hours.

Generally, uptime is an attack vector. Attackers can passively monitor the

availability of a hidden service and try to correlate other parallel events to infer

information about the location. An active attacker can even disrupt network parts to

determine if the availability changes. Bandguards cannot prevent uptime correlation

but emits a warning if the hidden service cannot establish new circuits or the entry

guard connection fails.

6.4 Onionbalance

Availability is crucial for hidden services. Attackers could try to suppress inconvenient

information by launching DoS attacks. The default setup does not provide any load

balancing, and one machine answers all client requests. Congesting it with numerous

circuits is comparatively easy with medium-sized resources. Therefore, hidden
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services require load-balancing mechanisms. Currently, Onionbalance [115] offers

load balancing for hidden services with a round-robin approach.

The central idea is to use a front-end server and multiple back-end servers called

instances. Each instance runs as an independent hidden service with a unique

address. The front end regularly fetches the descriptor of all instances and assembles

a superdescriptor. It contains introduction points from multiple hidden services.

Clients only know the front-end address and fetch the corresponding descriptor.

It includes a list of introduction points and the necessary information to contact

the corresponding instance. Operators need to configure these to accept requests

destined for the front end.

While everyone can access the Onionbalance repository with source code, there

is a conspicuous lack of documentation. The repository description provides only a

basic overview and, for example, does not mention the maximum instance number.

A manual source code analysis shows that Onionbalance allows up to 8 instances.

Responsible is the get_num_instances function in the config_generator.py file.

The parameter file params.py defines that the superdescriptor contains at least

two introduction points for each instance (N_INTROS_PER_INSTANCE = 2 ).

The front end uploads the superdescriptor with the parameters for two replicas

(HSDIR_N_REPLICAS = 2 ) and spreads it to the following four HSDirs (HS-

DIR_SPREAD_STORE = 4 ), see section 3.5.2 for more details.

6.5 Bridges and Pluggable Transports

Bridges are onion routers that the central consensus document does not include.

They provide access to the Tor network for users in censored regions. Users request

them manually to prevent censors from simply iterating over all bridges and their

IP addresses. Writing an email or solving a captcha is sufficient, and users will

obtain information to connect to a bridge. Analogous to the authority nodes, bridge
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authority nodes maintain a list of all bridges. Instead of broadcasting it publicly,

users have to request information with an identifier. [116]

Pluggable transports obfuscate traffic between clients and their bridges. The goal

is to prevent adversaries from detecting Tor traffic. By default, the TLS handshake

indicates Tor traffic with the chosen ciphers. Tor offers an interface to flexibly

switch between different protocols. One approach is to randomize traffic to deter

blacklisting classifiers. ScrambleSuit [117] uses a pseudo-random payload to make

traffic indistinguishable from random noise. Additionally, it obfuscates traffic flow

patterns like the packet length distribution and uses a preshared secret. The latter

prevents censors from scanning through suspected IP addresses and checking if they

respond according to a bridge protocol. Clients only receive the expected answer

if they provide the secret. Protozoa [118] relies on a different approach: adding

covert data into a WebRTC stream while users engage in video calls. It mimics

the underlying protocol and embeds data into the video and audio feed. Rebound

[119] implements decoy routing. Clients in censored regions connect to uncensored,

cooperating hosts and include a signal in the connection request. The host recognizes

the signal and acts as a proxy for a censored service. To prevent time delays, Rebound

requires users to constantly send requests that the host answers with answers to

previous requests.

Format-Transforming encryption uses characteristics from known protocols to

imitate them. Simple pattern-matching algorithms can be confused by simply

wrapping traffic into HTTP requests. Simply inserting strings from known protocols

in between also irritates basic algorithms. [120] Flash proxies are short-term proxies.

Volunteers host scripts on a website so that every browser visit will start a new

proxy. Simultaneously, the host distributes the information to censored users about

temporary proxies via a rendezvous protocol. Following this, they can use short-term

proxies to access censored content. Similar to Rebound, a popular website can react
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to specially crafted strings in HTTP requests to deliver secret messages. A prime

example is an encrypted IP address returned as a session cookie. An adversary cannot

distinguish it from random data. [121] According to the Tor metrics, obfs4 is the

most common pluggable transport for connected bridge users. [122] obfs4 disguises

the traffic to prevent adversaries from identifying the obfs4 protocol. It is based

on ScrambleSuit and has two phases to exchange keys and encrypted traffic. The

key exchange uses Curve25519 keys and works similarly to the ntor handshake, see

section 3.3. Clients must know the Node ID and public key to initiate communication.

Padding and time obfuscation contribute to resembling random noise. [123]



7 Hardening of Hidden Services

7.1 Operator Security Practices

Several information pieces combined can expose operators. Therefore, every operator

should implement strict operational security measures. It is imperative to avoid

links to the real identity. Moreover, an additional computer helps to separate the

identities instead of mixing files with work or leisure activities. Operators should

generate a new identity for each hidden service. Among other things, the identity

includes passwords, keys, cryptocurrency wallets, and usernames. It decreases the

chances of accidentally leaking information. Creating a cover story can help to

confuse attackers. Operators should intentionally use the cover story and document

any personal information they disclose through messages, content, or other text.

Otherwise, they might be inconsistent and remain consistent only if the information

is accurate.

Operators should encrypt their devices as random controls can occur, or they

could lose devices. Audited software with secure algorithms is well suited for this. In

addition to full disk encryption, operators should encrypt sensitive files with separate

passwords. In the case of targeted attacks, operators might lose access to the device

while it is active. Also, simply powering the device off is insufficient because the

memory retains data for a while. Experts can read the content and even prolong

the time window by freezing the memory chips. [124] By solely decrypting extra
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sensitive files in safe physical environments, operators can minimize their risk. It is

a trade-off between usability and security. Attacks become more complicated with

higher degrees of compartmentalization, but operators might make mistakes.

Passwords remain dominant for authentication, and operators should choose

strong passwords. Attackers can use dictionaries adopted to cultural backgrounds

and apply simple substitutions. Markov models [125], and probabilistic context-free

grammars [126] exploit common password structures and allow attackers to guess

passwords efficiently. A strong password contains unpredictable patterns and a

sufficient length. The entropy should be similar to cryptographic standards, typically

120 bits. The zxcvbn library [127] can help to assess password strength, but caution is

needed. The password should take the attacker’s perspective into account. Password

reuse is dangerous, and a cracked password can help the attacker make assumptions

about the other passwords used.

Password managers help operators to sort credentials and store encrypted notes.

Different password databases reflect compartmentalization. Offline, open-source, and

well-known software reduces the risk of implementation errors and information leakage.

Secure encryption and hashing algorithms fend off attackers. Passwords require

designated hashing algorithms that intentionally slow down legitimate users and

attackers. The penalty is not equal but affects attackers with specialized hardware

significantly more. Memory-hard functions artificially utilize a lot of memory that is

equally expensive for attackers and legitimate users. Argon2 [128] is a standardized

memory-hard hashing function designed for passwords. Operators should choose

Argon2 in combination with suitable parameter values adapted to their computational

resources.
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7.2 Hidden Service Security Practices

The first approach for attackers is information provided directly by hidden services.

Even open ports with limited functionality can reveal sensitive details in the header.

SMTP services might respond with a header containing the time zone, hostname,

and software version. Operators should minimize connection information. Another

alternative is to wrap vulnerable protocols by utilizing protocols that stay silent

when clients do not know preshared information. Protocols like HTTP or SMTP

transmit documents that can include personal identifiers. Hidden services should

avoid all references to the operators, software configuration, or server location.

Noticeable linguistic features in documents can form a unique profile that leads

to concrete suspects. Operators should alter used expressions but also vary word

and sentence lengths. Forensic approaches reliably detect authors but struggle with

obfuscated language. [129] Generally, operators should also keep a small footprint

with their real identity on the internet to minimize available material for comparisons.

Frequently emptying log files and deleting unused files delivers attackers less material.

Social engineering is a widespread issue that also affects hidden services. First,

they should verify the identities of users. Otherwise, attackers can easily impersonate

them. Second, operators should distrust anonymous people and consider that

attackers might hijack established accounts. Different circumstances require different

levels of trust, but operators should keep it to a minimum.

Especially if a hidden service is load-balanced over multiple servers with Onion-

balance, attackers can identify and compromise one out of all hosting instances.

Stored billing addresses, payment information, or other personal details expose the

hidden service operator. Also, archived support tickets and connection logs pose

a threat. Depending on the anticipated adversary, the server location should vary.

Different jurisdictions protect against various legal requests and require stricter data

protection. Whistleblowers from developing countries might find suitable server
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locations in the U.S., while European whistleblowers can seek refuge in countries

with different political goals. A physical server is preferable to shared hosting, as

the latter makes it easier for attackers to eavesdrop. For example, a VPS usually

runs inside a virtual machine, and the host system has full access to all resources,

while the VPS cannot even reliably detect that the host accessed files. Full disk

encryption protects server data if someone shuts it down to copy files. Sensitive files

like passwords should exclusively reside in the memory. Operators should prefer a

hosting provider that does not offer direct access to memory areas or indicates this

to the customer. The hosting provider should manage the server professionally and

ensure physical security.

Operators should always provide data warily, choose hosting services with anony-

mous payment methods and use Tor for buying and administrating the servers.

Operators should only connect to the servers using Tor to protect themselves in

case attackers have already compromised the servers. Trimming or pseudonymizing

log files minimizes data that can prove ownership in case of a seizure or threatens

users. Alternatively, hidden services can transfer log files to separate hidden services

immediately to increase the burden for attackers to acquire them.

Donations or other payment forms enable attackers to investigate money flows.

At least, hidden services should rotate payment addresses. Providing one address per

user and transaction is preferable. Otherwise, attackers can determine the overall

amount quickly and even examine the users who donated. [9] Section 7.6 investigates

the money aspect thoroughly.

7.3 Hidden Service Software Configuration

Tor provides strong anonymity for hidden services. Still, software configurations

can decrease anonymity by not using Tor properly, leaking information, or creating

vulnerabilities. Therefore, next to choosing and updating software carefully, operators
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should manually configure deployed software to protect sensitive data.

Foremost, hidden services should only allow connections from Tor and not directly

from the internet. Else, attackers can scan IP address ranges and discover the hidden

service. Especially in the case of a website or other delivered documents, the attacker

can easily relate it to the scanned IP address. If the Tor proxy redirects all requests

locally to the software, then operators should ensure that programs do not assign

supplementary trust due to the local origin. Besides software configurations allowing

only access over Tor, a strict firewall should prevent unexpected connections. Section

7.5 details a suitable architecture.

Operators should remove or relocate preconfigured administrative interfaces,

default ports, and status pages. Error messages can leak information, and operators

should only activate them in separate development environments. By deploying a

separate content filter software or firewall, it can filter out suspicious requests and

answers. Exploits in Tor could potentially deanonymize circuits, overload resources,

or execute commands on the server. The content filter can use whitelisting techniques

to minimize the attack surface for exploits, but it could also negatively affect usability

if the filter is too strict.

Programmers exhibit distinct coding and variable naming styles. Attackers can

infer the author by evaluating the page source code or examining configuration

files. Machine learning algorithms automatically identify code authors by comparing

fragments to public repositories. Operators should alter the code. It includes, for

example, indentations, variable and function names, type declarations, and control

structures. Type declaration might show preferences towards certain data types,

and control structures also indicate preferences. Simple lexical changes and altering

control structures render current attribution algorithms useless. These changes

include turning a for loop into a while loop or calling different APIs. [130]

Hidden services should not respond to connection probing and remove or alter
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timestamps to limit side-channel attacks. If possible, TCP timestamps should be

deactivated. Additional measures are necessary depending on the specific application,

for example, Bitcoin nodes.

Databases are particularly at risk from SQL injection attacks. Every software must

check user input extensively and notably special characters. For SQL, parametrized

SQL queries fix the semantics and interpret special characters as strings. [131]

Likewise, the software should check all text inputs for scripting attempts and scan

uploaded files for file types. An advanced approach is to add honey passwords to

databases. If an attacker uses these passwords, they trigger an alarm because it

indicates that attackers accessed internal data. [132]

7.4 Tor Configuration

Tor has vulnerabilities that attackers can cleverly use to deanonymize hidden services.

Operators should avoid misconfigurations, use additional security plugins and harden

the default configuration. Some misconfigurations allow attackers to decloak hidden

services quickly, while many vulnerabilities require time and coincidences. Due

to Tor’s decentralized nature and code complexity, attackers will discover new

deficiencies. A secure configuration can reduce the chances and increase the required

resources to launch a successful attack.

It is possible to host multiple hidden services on one server. But as all of them

share the same entry guard rotation, latency, and downtime, attackers can link them.

Also, in case of successful deanonymization or compromise, all files are simultaneously

exposed. The same applies to relays and hidden services on the same host. If the

service targets a limited number of clients and sharing out-of-band data is possible,

the authorization feature allows control of connecting clients. Attackers would first

need to acquire the preshared data to attack the service.

Operators should use the Vanguards add-on. Services with high-security require-
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ments can manually specify middle and exit relays in Vanguard. Onion routers with

a long history without providing connection data and known administrators are ideal

candidates. The selection should blend in and not use exotic onion routers. Other-

wise, attackers can target these, and they might react differently from established,

experienced non-profit organizations providing onion routers. Optimally, the selected

routes should lead through different ASs and IXPs.

Vanguards also mentions the scenario for operators to host a bridge that their

hidden services use. [112] It enables pluggable transports that impede local eavesdrop-

ping. The hosting company, local ISP, or other local network devices cannot easily

recognize that the server uses Tor. Moreover, website fingerprinting is hampered

and protects the server from this attack category. Still, hidden services should not

include too large files and serve dynamic content. Obfs4 is currently the most popular

pluggable transport. [122] Local eavesdroppers can still confirm with induced traffic

spikes or connection resets that a machine is running a specific hidden service. Just

by rejecting traffic above a threshold, induced traffic is not a problem. Intended

connection resets are harder to mitigate as they directly affect entry guard selection

and uptime. Entry guards and middle relays should not rotate too quickly, and

operators with high-security requirements and expertise should preferably select the

onion routers for the middle and exit relay subsets manually. It still affects the

uptime, and attackers can correlate this. Operators should set warnings in case of

disconnects and frequently evaluate log files for possible attacks.

Hosting a bridge can increase security but requires careful configurations. Other

Tor clients should also use it to blend into the overall traffic. Otherwise, attackers can

directly infer that bridge and hidden service operators are the same entities. Sufficient

flags and traffic bandwidth attract enough Tor clients. Also, the location and other

properties should not be exotic. Due to the high number of relays in Germany and

France, these are attractive locations. Operators can distance themselves from the
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bridges, which, in turn, raises suspicions, and attackers can leverage this angle. On

the contrary, operators can also openly present them and use plausible deniability,

even though attackers can still use illegal observations, torture, and other methods

to punish suspected operators without evidence.

Rendguards can detect rendezvous point overuse and hinder quick discoveries by

malicious entry guards. Likewise essential is Bandguards to limit circuit bandwidths.

It mitigates induced high traffic volume on single circuits. Introduction points should

rotate, and circuits should expire after a limited time. Even though the default values

are reasonable, operators should customize them according to live usage. Dropped or

unexpected cells, closed circuits, and general downtime hint at side-channel attacks

and should alert operators.

7.5 Security Architecture for Hidden Services

7.5.1 Improving Availability

Large traffic volumes and targeted DoS attacks require operators to perform additional

efforts and implement an extensive infrastructure. Onionbalance can manage up to 8

instances. It also protects the instances when they connect to malicious HSDirs. If

the circuit to the HSDir contains a colluding middle relay, the attacker can correlate

connection data to discover the entry guard of a hidden service. If the entry guard is

under the attacker’s control, then the hidden service’s IP address is exposed. But as

the front-end server assembles a superdescriptor for all instances, HSDirs cannot draw

conclusions to instances as long as operators do not leak their onion addresses. Each

instance has its unique onion address, and the front-end server downloads them over

Tor from the HSDirs. Afterward, it publishes the superdescriptor for all instances

under a separate onion address. Therefore, malicious HSDirs primarily affect the

front-end server running Onionbalance. Operators should keep all onion addresses
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secret and only share the onion address from the front-end server. Operators should

use multiple synchronized servers for the front end to handle server failures.

The front-end servers should regularly check if the descriptors are still available.

If not, then the HSDirs block the descriptor selectively. Even though it is unlikely

due to the rotating number of responsible HSDirs, operators can use multiple front-

end servers with different onion addresses that will have other responsible HSDirs.

Subsequently, users should know about the various onion addresses for the hidden

service and can manually connect to addresses. The current implementation does

not enable instances to accept connections from front-end server descriptors with

different onion addresses. Therefore, operators must split the instances into distinct

groups and assign the responsible front-end onion address separately.

The current Onionbalance implementation is not well documented and lacks

some features. Besides using multiple onion addresses for the front end, the Tor

specifications allow the integration of more instances. Each descriptor can contain up

to 20 introduction points: consequently, it can include up to 20 instances with one

introduction point for each. In this case, introduction points could become targets of

DoS attacks. Moreover, hidden services can generate multiple valid descriptors with

different introduction points. Instead of uploading one descriptor as described in

section 6.4, hidden services can upload distinct descriptors for each responsible HSDir.

Currently, clients use the value 2 for hsdir_n_replicas and 3 for hsdir_spread_fetch.

Therefore, they choose one out of six HSDirs, and hidden services can exploit this to

distribute six distinct descriptors. It allows the publication of up to 120 introduction

points. With each instance occupying two, clients can reach 60 instances. Operators

should adjust the number of introduction points per instance depending on live traffic

data and must consider that the descriptor size limitation of 50 000 bytes might limit

the numbers.

Hidden services can use parameters like DOS_INTRODUCE2_RATE_PER_SEC
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and DOS_INTRODUCE2_BURST_PER_SEC when they connect to their intro-

duction points to mitigate DoS attacks. Both parameters instruct the introduction

points to limit the number of relayed INTRODUCE2 cells and help to improve

availability. HiddenServiceMaxStreams limits the number of simultaneous connection

streams to a rendezvous point. Hidden services can also try to detect patterns in ma-

licious clients like user agents, but the Tor browser does not allow them to distinguish

between well-adapted bots and real users. Operators can deploy separate servers

responsible for captchas before forwarding requests to the main servers. Section 7.5.4

details this concept.

7.5.2 Transferring and Storing Sensitive Files

Operators can transfer and distribute sensitive data between servers to minimize traces

and improve anonymity. Figure 7.1 shows an architecture with several advantages.

It includes three different control servers that separate files from hidden services:

management, log, and key servers.

Section 7.5.1 mentions load balancing with front-end servers publishing superde-

scriptors and instances for client connection processing. All instances choose their

entry guards independently by default. Hence, the probability of malicious relays

in circuits increases which accelerates deanonymization attacks. The management

server centrally distributes configuration files containing entry guards, relays, and

other parameters. It connects to the attached servers over Tor with their distinct

onion address and uses simple copy commands over SSH. Preshared keys and strong

ciphers ensure security. Attackers need to deanonymize instances or front-end servers

before discovering a connection to the management server. Management servers

should use different entry guards and relays to force attackers to launch separate

attacks on the new relays. If the front-end servers use different entry guards and

relays than the instances, attackers do not automatically discover the circuit relays
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Figure 7.1: Security architecture for hidden services

for them in case they decloak front-end servers during descriptor uploads.

It is possible to use separate management servers for the front-end servers and

the instances to increase compartmentalization. If attackers managed to breach a

front-end server and then the connected management servers, the instances and their

management servers remain secure. Otherwise, attackers could use the compromised
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management servers from the front end to induce poisoned configurations into

instances. Still, this solution increases the complexity, and attackers need to break

Tor two times for this threat scenario instead of directly targeting the instances.

Log files include sensitive information, and attackers can place hints that prove

ownership analogous to section 4.8. Generally, log files should only protocol relevant

events instead of collecting everything. Operators should determine their use case

and use plugins to reduce the accuracy of log information. Exact timestamps or IP

addresses are seldom relevant but equip attackers with new angles after a compromise.

A central logging server offers a better overview for the operator and shifts sensitive

log files away to a secured location. Instances periodically connect over Tor via a

stored onion address to the logging server, send their log files, and cleanse present ones.

Before attacking the logging server, attackers initially need to compromise attached

servers to retrieve the log server’s onion address. If attackers get in control of the log

server, they only gather the onion addresses of all connected servers and the log files.

To not endanger the remaining infrastructure, log files should not include sensitive

information about it, or at least all attached servers should pseudonymize sensitive

information before sending it. Operators further minimize risks by encrypting all log

files with a rotating key. Operators can fetch encrypted log files, delete them from

the logging server and rotate the encryption key. Afterward, they can evaluate them

locally. It minimizes files that attackers can access by comprising the logging server.

Additional key servers safeguard the master identity and blinded signing keys.

Key servers deliver prepared keys, so hidden services do not need to store these

but rely on temporary ones, as described in section 3.5.1. If the latter ones become

known, attackers can only take over the identity for a limited time. With those keys,

they can conduct man-in-the-middle attacks, DoS, or impersonate the target entirely.

If the master identity keys get exposed or lost, only generating new keys with a

different onion address helps. It erodes the reputation, and attackers can trick users
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until someone notifies them about the breach.

Key servers can distribute descriptor signing keys to the front-end servers and

instances for each time period. Immediately when operators detect a breach, they

should stop key distribution to affected parts and set up new servers to continue

operation. Concurrently, they can investigate the cause and consequences. Opera-

tors should consider all communication to affected onion addresses as potentially

contaminated and avoid them for the validity period. Management servers can

modify configuration files to exclude this onion address if the software is programmed

accordingly.

Key servers are an attractive target. To spread the risk, operators can deploy

different key servers analogous to the management servers. Two key servers could

separately provide temporary keys for the front-end servers and instances. In case

of a successful compromise, attackers can only impersonate front-end servers or

instances. Because the descriptor signing keys derive from the blinded keys and a

randomly generated value in the consensus: either the operators have to regenerate

them manually for each time interval, or key servers store the blinded keys. The

former approach makes the key servers redundant as the operator could directly

distribute them to the front-end servers and instances.

The architecture enhances security enormously if used correctly. In practice, this

leads to many potential errors for operators who make mistakes or misconfigure

programs while managing diverse servers. Higher complexity can compensate for

systematic weaknesses but requires impeccable calibration and operation. Depending

on the operators’ security requirements and budget, the control servers can also run

on one server that handles all three control functionalities. Front-end servers and

instances can also use the same control servers. However, the configuration is more

complex if the functionalities are not clearly separated.
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7.5.3 Mitigating Side-Channel Attacks

Operating systems and programs usually depend on various underlying libraries,

each containing even more lines of code. Consequently, operators must anticipate

software vulnerabilities and deploy multiple security layers to reduce the likelihood

of attackers exploiting stacked vulnerabilities. Bypassing the Tor connection is one

of the primary attack vectors. Attackers can utilize numerous possibilities to trick

hidden services into leaking information. DNS requests, injected scripts, or even

zero-day exploits endanger them.

Apart from hardening configurations and using up-to-date software versions,

operators should use hardened operating systems. With fewer libraries installed,

the attack surface generally decreases. Whonix [133] is a free and open-source

operating system and offers several advantages out of the box. The central idea is

to use two virtual machines: a workstation and a gateway. The workstation runs

all programs while only communicating with the gateway. In turn, the gateway

tunnels all traffic from the workstation over Tor and hides Tor from the workstation.

It allows configuring the hidden service software and Tor proxy separately, which

improves the overview. To launch side-channel attacks, attackers must initially

deceive the workstation and, afterward, the gateway. Because the latter only focuses

on tunneling traffic through Tor, the attack surface is significantly lower. Whonix

requires a hypervisor that can be a complete operating system like Windows or, in

the case of KVM, a lightweight hypervisor. Whonix is based on a modified Debian

operating system with hardened security features. Using a different host system can

increase the security against malware that would need to contaminate the Debian

and host system.

Qubes OS [134] is a privacy-friendly operating system that integrates well with

Whonix. Users operate in multiple environments isolated by the Xen hypervisor

preventing single compromised areas from contaminating the entire system. The
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combination of Whonix with Qubes OS as the host deactivates TCP and ICMP

timestamps and provides a strict security configuration by default. Qubes OS supports

full disk encryption and allows backups of single environments. [135] Operators can

easily migrate the Whonix environment to different physical servers to leave as few

traces as possible for attackers. Generally, rotating to new physical servers fends off

attackers that decloaked or compromised servers. Also, if the guard configuration

changes simultaneously, attackers lose all their enumeration information about the

Tor configuration. Therefore, operators should regularly rotate their servers and Tor

guard configurations.

All front-end servers and instances in the architecture depicted in figure 7.1

should use Qubes OS as the operating system and run Whonix. The gateway virtual

machine needs a program that interacts with the management and key server and

tunnels the communication over Tor. The workstation virtual machine requires no

extensive configuration to communicate with the log server as the gateway tunnels

the traffic. If the log server contacts the workstation and not the other way, then

the workstation needs to transfer the log files to the gateway that, in turn, responds

to the log server.

7.5.4 Extensions

The architecture from the previous sections uses several instances that constitute

the entire web application. Synchronization problems might occur between them in

the case of shared data. Additionally, when operators divide the architecture further,

they are more flexible and simplify configuration because each server only takes care

of a part. Figure 7.2 shows the improved architecture for hidden services.

EndGame [136] is an open-source software composition protecting hidden services

from DoS attacks by deploying captcha servers. Silk road used a similar captcha

system as subsection 5.5.1 outlines. The idea is to mitigate DoS attacks by requiring
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Figure 7.2: Extended security architecture for hidden services
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human interaction. Moreover, captcha servers allow the separation of DoS protection

from the remaining infrastructure and assess all client requests. The new architecture

splits the instances into the captcha and request servers. The former ones receive

client requests and redirect legitimate requests to the latter. After clients solve

the captcha, the captcha server places a cookie to remember clients and directly

forwards session traffic. Bots cannot circumvent the captcha servers, so they can only

try to exhaust their resources. Simultaneously, operators can deploy more captcha

servers to handle increased traffic load while the remaining infrastructure remains

unaffected. In contrast, the previous architecture in figure 7.1 only allows rescaling

instances with complete functionality. Besides the increased flexibility, the separation

enables filtering all client requests to the request servers. Captcha servers can discard

suspicious characters or unexpected API calls before they reach the request servers.

Many applications need to store and read synchronized files. If multiple request

servers operate, they must use a shared database. Therefore, operators should further

split the functionality into several servers. For example, one server can be responsible

for processing client requests or operating as a database server. Various other tasks

are separable into additional servers, like CPU-intensive calculations or payment

handling. If a single server performs a function, a secondary one should mirror all

files. If the primary one is not reachable, the secondary continues the functionality.

Other servers must know the onion address from the primary and secondary server to

redirect requests in case of unavailability. When multiple servers perform a function

collaboratively, they must synchronize data. In the case of databases, a cluster

system that automatically distributes data among several nodes is favorable. For

simplicity, the architecture in figure 7.2 assumes that there is only one database

cluster, but operators can add additional functions analogously.

Again, all connections between the servers should be encrypted and anonymized.

Tor can perform the latter very well but increases the overall delay for requests. First,



7.5 SECURITY ARCHITECTURE FOR HIDDEN SERVICES 83

user requests to the captcha server have an inevitable delay, then the connection

between the captcha and the request server introduces additional delay. If the

request server connects to a database cluster, then the overall response time includes

connection delays from three individual Tor circuits. While this offers suitable

protection, it might deteriorate usability significantly. Operators can use different

anonymization techniques between servers to balance security, performance, and

usability.

Request and other servers deep inside the architecture require attackers to

compromise multiple other servers before attackers can reach them. It only holds

if the attacker cannot exploit vulnerabilities to compromise them immediately.

Operators need to assess the application security and make decisions for the control

servers. Using different control servers for the front end and captcha servers is

reasonable, while separate control servers for the database cluster might cause too

much overhead compared to the security gain.

Figure 7.2 mentions that operators can deploy a VPS between the server con-

nections. The VPS can analyze the traffic to detect and block conspicuous activity.

Furthermore, the VPS can increase the security of the servers in the background

because attackers need to compromise the VPS before reaching them. Operators

can secure both connections with Tor, but it increases the delay. Additional delay

is not problematic for non-time-critical operations like connections to the control

servers. Contradictorily, users will not tolerate prolonged response times. The VPS

could send alarms to the management server but should use different guards than

the attached servers. Otherwise, the anonymity remains unchanged as both sides

share the same guards. Operators should carefully consider for which connections

the VPS is beneficial.
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7.5.5 Security Enhancements

Operators should expect that attackers will expose hidden services over time, even

if all security measures have been taken. Dividing the functionalities into different

servers forces the attacker to conduct multiple attacks in a row successfully. A critical

weakness in Tor could enable attackers to compromise multiple circuits fast, allowing

them to penetrate the entire infrastructure as the servers communicate. Consequently,

operators can use other anonymization techniques internally to diversify the software.

For example, I2P [137] is a peer-to-peer anonymization network that offers a similar

hidden service function. The principle differs from Tor and should be immune to

Tor-specific zero-day exploits. Regardless, all servers should encrypt the traffic with

preshared keys or certificates that operators can distribute with the management

server or install manually for all servers. Even if an eavesdropper listens in, the

encryption protects the content. SSH or similar protocols with low overhead fit for

this purpose.

Rotating servers regularly frustrates attackers further. Long-planned Sybil attacks

and continuing investigations will decloak server locations. The layering approach

shields the inner infrastructure even from compromised border components like the

captcha servers in the proposed architecture from subsection 7.5.4. Switching to new

servers cleans potentially contaminated parts, altogether with the attacker’s foothold

in the architecture. The servers should change simultaneously with the entry guards

and relays. Otherwise, a successful Sybil attack on previous servers deanonymizes

the new ones. Components closer to the user, like captcha servers, should rotate

faster than inner components like the database cluster. It is essential to variate this

process, or else sophisticated attackers could monitor where a predefined number

of newly set up servers exhibit a comparable amount of Tor traffic. Payment and

customer information should also vary over time to avoid observable patterns.

If operators let the infrastructure communicate internally via Tor, they should
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use client authorization whenever possible. Even if attackers know the onion address

of the inner infrastructure, they cannot build up circuits as they cannot decrypt the

necessary information from the descriptor. An attack requires the onion address and

preshared keys. Without client authorization, attackers can continue to build up

circuits to the inner infrastructure to launch further attacks even after compromised

servers rotate. With each server rotation, the client authorization secrets from

adjacent logical components should change too. Only then do attackers have to start

from scratch again. Either management or key servers could automatically distribute

client authorization secrets to all infrastructure servers. Because it can take some

time to propagate the new information in the distributed hash table, old secrets

should be valid for a few more hours before new ones render them invalid.

Operators should automatize the server setup to prevent mistakes during the

process. For example, Ansible [138] is an easy administration tool that uses SSH

and python to bring servers into a reproducible state. Operators should cautiously

define the setup commands for the different logical components, while servers from

the same logical component should have an equivalent configuration. Preshared

keys and certificates require special attention, while operators only need to replace

IP addresses in the Ansible configuration for the remaining configuration to set up

running servers. Before, these must allow SSH connections and have python libraries

installed. Automatizing the setup of a hardened system mentioned in section 7.5.3

can prove difficult with complex software configurations. Sensitive information in

configuration files, like private keys, should be encrypted with built-in tools, then

operators can decrypt them on the fly during the setup execution.

If attackers control a substantial number of HSDirs and know an onion address,

they can track access times as outlined in the section 4.4. It leaks potentially sensitive

information as operators operate alone on the control servers or VPS. Because only

the operator accesses the control servers, attackers cannot know about the addresses
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from the infrastructure configuration. The log server is an exception as other servers

push their log files, but the log server could contact them instead to avoid storing an

onion address in their configuration files. Operators could use a script to rotate onion

addresses regularly and then the management servers distribute the new addresses

accordingly. Consequentially, this renders information about addresses invalid after

the rotation period, and attackers must acquire it again to repeat the tracking attack.

As this change requires extensive administrative effort and mitigates a side-channel

leak, operators should thoroughly consider the trade-off.

User requests ripple through the infrastructure and induce traffic throughout the

infrastructure. If attackers know about the multilayered structure, they can send

requests and listen to colluding Tor relays or observed networks for traffic patterns.

If a logical component uses servers from different networks, a local eavesdropper

only sees a part of the traffic as it should uniformly distribute among all servers.

Malicious Tor relays involved in circuits can still observe traffic spikes. Operators can

artificially create independent traffic between servers to obfuscate traffic fluctuations.

Potentially, management servers can distribute scripts that connect to attached

servers at random intervals via Tor to produce additional traffic. Also, servers could

contact external hidden services outside of the infrastructure, but it introduces

the possibility for further deanonymization attacks if the contacted hidden service

cooperates with attackers.

7.5.6 Determining Rotation Times

Operators should regularly rotate the guards and relays for the hidden service

components and relocate the servers. Each rotation resets ongoing guard discovery

and compromisations attacks. At the same time, they increase the possibility of

picking a malicious Sybil relay. If the entry guard is conspiring with rendezvous

points chosen by an attacker, protocol features could reliably detect the correlation.
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Principally, the approaches from section 6.3 apply. Vanguards picks two entry, four

middle, and eight exit relays. As section 6.3 describes, the outer relays change on

average after 31.5 hours, while middle relays change after 29.5 days on average. The

rationale is that attackers should not actively attack the outer guards but wait until

a rotation includes their Sybil. Contrary, middle relays rotate slower to mitigate

Sybil attacks and force attackers to attack them.

The Vanguards developer calculated optimal relay numbers and rotation times in

simulations. They assumed an attacker with a 5 % chance to place a Sybil into any

relay chosen by a target. Moreover, the attacker can successfully attack any relay

with a 50 % chance after 2 to 14 days with a linear increase. If the entry guards

rotate after 90 to 120 days, then it takes an attacker 146 hours on average to discover

an entry guard and 900 hours to deanonymize the server. [113] The attacker model

determines the whole setup, and each operator should create an individual threat

model. Activists from developing countries with low technical resources will face

attackers with a significantly lower success probability. Contrary, whistleblowers in

Europe or the United States of America face well-equipped attackers. An illegal

expression of opinion or leaking secret documents that do not threaten national

security will not attract significant attention. For comparison, section 5.5 describes

several notorious criminal enterprises that continued to run for years: the infamous

Silk Road for more than 2.5 years, the successor Silk Road 2.0 for more than one year,

and Wall Street Market for almost two years. Not every whistleblower or political

activist will face extensive attacks.

Without a concrete threat model, operators should use the proposed default

parameters from Vanguards. In the case of customized parameters, the process

should start with the exit relay rotation time. The value should disincentivize

attackers from launching active attacks but rather deploy Sybils. For an attacker

with a Sybil probability of 2 % and a hidden service with eight exit relays, the
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likelihood of picking at least one Sybil is 1− (1− 0 02)8. One Sybil is sufficient to

learn about the middle relays. If the attacker has a 100 % probability of compromising

a target relay after 1 - 14 days with a linear increase, then operators can calculate

the rotation time X in hours after the first day with inequation 7.1:

1− (1− 0 02)8 >
1

13 · 24
·X (7.1)

In this exemplary case, attackers cannot compromise relays during the first 24

hours, so the rotation time includes these. 46 hours after the first day, the compromise

probability starts to exceed the Sybil one. Therefore, the exit relays should rotate

at the latest after 24 + 46 = 70 hours to make Sybil attacks more attractive. From

there, calculating the cumulative probability of a successful attack targeting the

second layer is necessary. It also depends on the likelihood of a successful attack on

the exit relays. The compromise probability for the second layer should be higher

than the Sybil one to avoid unnecessary rotations increasing the attack surface. The

trade-off between Sybil and compromising attacks demarcates the rotation times.

The advanced architecture from subsection 7.5.4 describes that all logical com-

ponents should rotate their server regularly. Determining rotation times depends

on various factors. Attackers first need to pass the captcha servers to learn about

the onion addresses of the request servers. If they also rotate regularly but not

simultaneously, attackers have a short window to attack them before operators

completely replace the compromised servers and alter the client authorization secret.

Without the latter, attackers cannot build up circuits to continue the attack. Logical

components should rotate with a grace period for the previous servers. Instead of

instantly shutting them down, they should continue to run for a few extra hours to

ensure a smooth transition to the new ones. Otherwise, outdated descriptors and

consensus files might still point to the previous ones and make the server unavailable.

Also, ongoing connections should slowly time out to not interrupt users during their
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interaction with the hidden service.

Client authorization codes and onion addresses from internal servers could change

periodically too. The former should rotate when adjacent components rotate be-

cause they allow attackers to continue attacks on an onion address as long as the

shared secret remains unchanged. It is also advisable to change the onion addresses

simultaneously. Thus, it prevents malicious HSDirs from correlating access times.

7.6 Handling Cryptocurrencies

Operators should use privacy-preserving cryptocurrencies like Monero and trade

them in decentral and anonymous exchanges into fiat currency. They often require

authentication, and report, together with banks, suspicious money flows to authorities.

It can cause government institutions to target specific persons and surveil them.

Many expenses, for example, leasing servers, can be paid directly in cryptocurrencies.

Since Bitcoin is still the dominant cryptocurrency with a market cap of over 315

billion U.S. Dollars, it is more accessible to users than Monero, with a market cap

of just over 2 billion U.S. Dollars. [139] Swapping the Bitcoin into Monero at a

decentral exchange or applying mixing protocols first helps to preserve anonymity.

Operators should use exchange marketplaces for cashing out cryptocurrencies that

do not cooperate with the adversary. For example, whistleblowers should prefer

marketplaces with jurisdiction in countries that support them. Otherwise, an online

business can serve as a legitimate front to justify profits, or operators can exchange

cryptocurrencies locally in foreign countries with other users. Optionally, operators

can provide trustworthy entities viewing keys for specified addresses or transaction

histories to receive further support and strengthen the reputation for their political

engagement.

Trusted mixing servers and exchanges are imperative. Otherwise, operators might

expose themselves or lose all transferred funds. Technically, operators should very
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carefully protect payment servers because they are a profitable target. Splitting

payment operations among multiple servers and various wallets reduces traceability.

Still, attackers can conduct payments to observe the transaction flows. If operators

support transparent cryptocurrencies, they should not merge incoming donations

but directly process them to gain anonymity. Otherwise, operators endanger users

by linking all donations. Payment servers should minimize the number of incoming

connections to limit deanonymization attacks in Tor. Using a VPS as an additional

proxy, as described in section 7.5.4, increases network anonymity and makes the

server harder to locate.

Depending on the size of incoming and outgoing transactions, operators should

transfer as much as possible to separate inactive addresses. The servers do not access

these permanently but only the necessary assets. Operators can manage inactive

addresses independently from the servers without haste. In case of a breach, they

only lose the assets managed by the servers and can use the offline addresses to

restore the hidden service. Sometimes it is enough to provide servers with the private

viewing key for billing purposes instead of giving full access. From time to time,

the management servers may generate new addresses to replace those currently in

use. Initially, operators should fill these with anonymous cryptocurrency units or, at

least, mixed ones from inactive resources. The servers should delete the private keys

from inactive wallets after transferring them to operators to mitigate the effects of a

compromise.



8 Discussion

8.1 Determining Risks for Hidden Services

The systematic academic literature review and analysis of court documents provide

an extensive overview of vulnerabilities for hidden services. Both help hidden service

providers to assess the risks of using Tor.

Academic literature primarily focuses on vulnerabilities in Tor, and only three

out of 46 publications from chapter 4 explicitly deal with operational security. The

impact of many vulnerabilities is strenuous to quantify as the authors research them

without practical experiments. These are not carried out for ethical reasons limiting

the analysis to theoretical ideas, small-scale field tests, or simulations. Side-channel

attacks and website fingerprinting pose a real threat but require additional conditions.

For example, the former can compare hidden service availability to correlated events

to determine an approximate location, while the latter requires a local eavesdropper.

Quantifying risks requires a reliable estimate if involved hosting providers, local

ISPs, or ASs track and link traffic information. On the other hand, Sybil, protocol-

level traffic correlation, and watermarking attacks are an immediate danger that all

hidden services operators should extensively consider before launching their projects.

However, many publications do not mention how to defend against these attacks

effectively, only general ideas to improve a specific vulnerability.

The internet literature review analyzes court documents on relevant cases that
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provide insight into how law enforcement works. Due to limited availability, this

thesis only examined U.S. court cases. Because U.S. law enforcement cooperates

internationally, as the case in section 5.5.3 shows, and has extensive resources, they

represent this specific attacker type well. The Justice Department’s website mainly

provides extraordinary investigations that attract the public interest. How much

resources law enforcement can spend on less relevant cases remains unclear, therefore

the methods in chapter 5 represent a higher bound. Court documents will not include

all investigative approaches from law enforcement to protect them. Otherwise,

criminals can specifically avoid them. The Silk Road case from subsection 5.5.1 and

especially the recorded log files cast some doubt that law enforcement might have

resorted to other technical methods to identify the servers and later brought up an

alternative explanation in court. This method enables law enforcement to exceed

their authority and still use collected evidence in court as a cover story.

The methods mentioned in court documents deviate significantly from vulnerabil-

ities in academic publications. Practically, any rational attacker will iterate through

methods costing less time and resources. It suggests that many operators make

mistakes that are not necessarily directly related to Tor, such as exposing them via

cryptocurrency transactions. Also, the academically proposed attacks might not

work as intended, alert hidden service operators, and will be more problematic to use

in court instead of well-known methods. Many methods also apply to other fields

besides Tor and hidden services. Because hidden services share many risks with

traditional web services, operators must mitigate these too. The academic literature

review does not cover risks to general web services, and the court documents only

partially cover them as a side effect. This thesis mainly analyzes and mitigates risks

that apply specifically to hidden services. Therefore, operators must also consider

the risks for web services to get a complete overview.

Other attackers, such as hackers, act secretly, and their methods are not directly
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assessable. They will utilize entirely different approaches as they cannot use legal

instruments to gather information from involved third parties and will preferably

exploit software or human weaknesses. Hackers can more easily execute DoS attacks

on hidden services because Tor makes the clients indistinguishable and requires

extensive calculations from hidden services during the circuit initialization. Otherwise,

the attack surface for hackers does not differ significantly from web services. The

possibilities of secret agencies are even harder to assess but are likely to be remarkably

more potent than those of law enforcement.

The Tor community reacts to discovered weaknesses, and some researchers inform

them before publishing their papers. Additionally, Tor had considerable developments.

Therefore, many previously discovered vulnerabilities became obsolete, but these

can still provide valuable hints for undiscovered weaknesses. Often, similar attack

vectors are reusable if applied differently.

8.2 Limitations of Hardened Hidden Services

Section 7.5 provides a comprehensive architecture to enhance the security of hidden

services. Redundant captcha servers ensure availability, while the layered structure

mitigates the impact of attacks. Even if attackers compromise the captcha and

request servers, the hidden service recovers after rotating to new servers. Attackers

must decloak several Tor connections with different entry guards and relays to take

over the entire infrastructure. Attacks become less likely, and operators can even

diversify their defenses by deploying various additional anonymization techniques

for communication between their servers. Attackers must chain multiple attacks to

succeed in infiltrating the infrastructure. The analyzed court documents from section

5.5 show that investigated hidden services use less effective architectures, and the

proposed one would have impeded the technical investigations.

In addition to the improvements, the underlying programs must also be secure.
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Otherwise, attackers can infiltrate infrastructure directly through user input or other

security gaps. Because this applies to all web services, operators must consider them

even without using Tor. The guidelines also contain a contingency plan for operators:

even if attackers get to their servers, the hosting provider should not be able to

provide information linking to the operator.

The general practices for hidden services and their operators are not fully detailed

but rather general. On the one hand, operators have to actively think about how to

deal with it and can only use them as a rough guide. On the other hand, this covers

a larger spectrum since not every small new attack technique leads to modifications.

Furthermore, operational security is a broad field that does not exclusively affect

hidden services but also web services. Every activity that generates data visible

to attackers can give them new angles. Since the number of potential actions is

enormous and attackers derive knowledge creatively, this thesis cannot provide a

systematic way to mitigate all possible attacks.

The proposed practices and architecture do not entirely cover all Tor-related

issues. The proposals focus on the specified attack vectors from the prior academic

and internet literature review. Distinct vulnerabilities might appear in other criminal

cases or academic publications but not in the reviewed sources. For example, it

remains open how operators determine trustworthy guards or publish their onion

addresses. In both cases, the operators must reckon with severe consequences if they

make mistakes. If they share onion addresses in unprotected environments, attackers

can skip all attacks on the hidden service and target the person instead.

The proposed architecture offers additional protection also by adding extra

components. Each component increases the overall complexity of a hidden service,

and more involved programs need monitoring and regular updates. Operators must

manage a large number of servers and corresponding configurations. Mistakes can

lead to deanonymization, take the service offline or introduce other risks. While the
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log servers collect log files, operators should evaluate them accordingly. Moreover, the

log files are not linked by default because multiple servers from different components

create them separately. Without rigorous management, operators will lose the

overview, and attacks might go unnoticed.

The scope of the architecture can be off-putting to inexperienced operators, as

many components are intertwined, and numerous servers are required. The latter

ones also increase the organizational effort with associated risks such as payment

information that can be traced back to the operators and burden the financial budget.

As Tor constantly evolves, the architecture needs constant improvements to keep up

with changes. Operators should follow the Tor mailing list to anticipate the latest

developments and emerging vulnerabilities. Hidden services need to install updates

fast and shut down their service in case of vulnerabilities until a hotfix is published.

8.3 Transfer into Practice

While some parts of the proposed architecture already exist, many are only theoretical.

Vanguards, Onionbalance, and EndGame for the captcha servers already exist. The

software for the control servers does not exist. Ideally, it should not only be a script

but also use graphical user interfaces to simplify the handling for operators. Existing

software can fulfill some functions. For example, squid [140] is suitable software

for the proxy functionality of the VPS and HAProxy [141] for the web application

firewall to filter potentially dangerous user input before the application parses it.

Initially, a community should determine suitable programs to implement the

architecture. These should be open source, have a track record with few vulnerabilities,

and maintain continuous development. It simplifies integration, avoids license

problems, and increases security. In the next step, all programs require a pondered

configuration to ensure compatibility between components. Each operator must

execute some operations manually, for example, providing an onion key or files for
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the hidden service content. All other tasks, for example, installing and configuring

software on the servers, should happen automatically and take settings from the user

input. Consequently, less experienced operators can also run a secure hidden service,

and mistakes occur less often during setups. For manual steps like buying servers or

storing keys safely, multiple short guidelines could aid operators and serve as cheat

sheets.

Ansible or similar programs install and configure servers automatically. With

existing readymade scripts, operators only need to modify input variables and can

abstract from manual configurations. The number of components carries the risk

that parts no longer behave as intended due to errors and paralyze the hidden service.

Several developers should work on this project, while others should test the programs

under diverse scenarios to find bugs. A stable version requires extensive tests and

experience from practical use. The organization as an open source project and some

known hidden services as initial partners can give the project the necessary publicity

to gain adequate support.

The developers should not implement the entire architecture entirely at once, but

step by step analogously to the structure of section 7.5. It has the advantage that

the development becomes visible and functional faster. The gained experience for the

first components from live usage improves the ongoing process. Empirical values can

also flow directly into the development. The architecture contains some general parts

without an optimal solution. One example is communication between servers, as

servers can communicate with each other via Tor or other anonymization solutions.

Operators should make their own choices, and a modular structure allows this. A

modular composition enables developers to modify and integrate functionalities easier.

External auditors can analyze single components and their connectivity without

understanding the entire code base. Newly discovered vulnerabilities and updates to

Tor will require the architecture to adapt. Modules can change without altering the
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whole architecture as long as the interfaces remain identical.

Depending on the content, hidden services protect themselves against different

attackers. Some require very high security that justifies the proposed architecture.

Others operate under lower security requirements and only need a few components.

A systematic risk assessment guideline can help operators to analyze their risks and

determine appropriate measures. Instead of implementing all measures, operators

can also realize parts and thereby already significantly improve security. The project

could create three different security levels for operators. Lower security levels require

fewer resources and manual configuration, while the highest implements the entire

architecture. Project ambassadors and comprehensive documentation intended for

less tech-savvy people can help operators without deep knowledge to exercise their

freedom of speech securely. In general, graphical user interfaces support operators to

configure hidden services, and visualized data can produce a transparent overview.

With a good overview and usability, operators will save time and make fewer mistakes.

Despite all measures, operators should create contingency plans in case of security

vulnerabilities in Tor or other deployed software. Safety should always have priority.

Over time, the community can gather experience to establish robust default values,

for example, rotation times in Vanguards or the number of introduction points in

descriptors.



9 Conclusion

When reviewing the academic literature, no publication explicitly examined hardening

individual hidden services but generally improving the Tor protocol. While these

are positive steps, many vulnerabilities have no apparent solution or require lengthy

changes. This thesis contributes to improving the current situation for operators and

shows long-term improvement possibilities for the Tor protocol.

The vulnerability specifications and classification provide a comprehensive overview

of risks for hidden serves. These are the foundation for operators to make informed

decisions and assess the risks they face. Furthermore, future research can build upon

the classification and extend the categories to cover risks even broader. Additionally,

the common classification supports the research community in standardizing terms

and avoiding misunderstandings. Possible attack methods could utilize several tech-

niques, which may question the current categories or create new super categories.

The classifications in the figures 4.1 and 5.1 from the academic and internet literature

review can be combined to include other approaches from real attackers in the

academic research that have been neglected so far.

Combining academic publications and investigative methods from law enforcement

is a novel approach in this field and enables a differentiated risk assessment for hidden

services. Practically, attackers will use less sophisticated methods to decloak hidden

services, while in the case of failure, potent attackers can resort to more complex

and less tested techniques. Many journalists, political activists, and activists do not
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necessarily require the highest security standards. Still, simple attacks endanger

their freedom and restrict freedom of speech, especially in totalitarian regimes, even

if these are not academically relevant.

Although the reviews do not include the entire literature, the systematic approach

covers a significant portion and can serve as a starting point for further additions.

At the same time, the overview also includes already fixed vulnerabilities, as these

can serve as a starting point for new vulnerabilities. However, future audits of the

Tor software and practical experiments should analyze the underlying mechanism

to explore unknown attack vectors or determine if the updates fundamentally solve

the issues. Due to the time constraint and limited accessibility, this thesis does not

include techniques from hackers or intelligence services. Interviews with operators

from popular hidden services or hackers could provide further information in the

future. Although, they are likely to keep a low profile to protect their anonymity.

In this case, law enforcement reports about hacker groups and security companies

dealing with them can provide information about techniques hackers use. However,

this information is inherently more difficult to verify than court documents and

academic papers.

While there are a few projects or shorter guides on the internet for securing

hidden services, these do not build on each other and refer to specific issues. They

do not meet academic standards, nor do they support operators extensively. In

contrast, this thesis systematically derives practices from the classified risks and covers

them comprehensively. Operators can use them as a central source of information,

and they can guide future projects and modifications. The devised practices and

configuration recommendations protect hidden services and their operators, as these

are particularly easy for attackers to exploit. The academic literature on hidden

services deals primarily with technical problems, while attackers first use more

straightforward methods. At the same time, however, this thesis focuses specifically
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on hidden services. Therefore, the reviews, derived practices, and the proposed

architecture only partially cover risks that also apply to web services. Another

possible research direction is to investigate how often attackers utilize classified

methods. Simultaneously, it is clear that sophisticated attackers, like U.S. law

enforcement, already apply them, as the Silk Road 2.0 case in subsection 5.5.2 shows.

It is imperative to communicate this limitation to operators. Future works can

integrate existing research for web services to provide operators with a single starting

reference for hardening hidden services in all aspects.

This thesis also develops a theoretical architecture reducing technical vulnerabili-

ties specific to hidden services and massively hampering attacks. It focuses more

on academic and technical attacks and effectively mitigates methods presented in

academic publications and court documents. However, it remains a future task to

implement this architecture. Some design decisions have been intentionally left open

for operators and future developers to determine, as no optimal solution is apparent.

Further research and empirical experiences are required to expand the architecture

and address the gaps.

A modular design for the architecture supports future modifications and changes

if new vulnerabilities arise or better ideas emerge. The added complexity also

introduces additional risks, as the code can contain vulnerabilities. At the same time,

the clear separation of functionalities into multiple servers also leads to a simplified

configuration of each server. Furthermore, this thesis describes in section 8.3 how the

architecture can be transferred into practice. An active community, widespread use,

and appropriate communication with operators are crucial points. In the future, risk

profiles can be created to assist operators in selecting suitable measures. Depending

on the security level, a subset of the proposed hardening measures is already sufficient,

while the entire set comprehensively increases security even for hidden services with

extraordinarily high-security requirements.
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Further research can focus on isolated attack methods or combine and adapt

results in a larger context. New watermarking methods and countermeasures can be

developed for the former. Tor currently uses no circuit-wide padding procedure that

would hinder traffic correlations. New padding mechanisms could provide better

protection by default instead of artificially creating cover traffic with scripts, as

subsection 7.5.5 mentions. Website fingerprinting attacks have so far focused on

clients browsing the internet or contacting hidden services. Additional research

can show whether ISPs or data centers also can carry out the attack and whether

it is even more powerful. Because hidden services usually have more traffic than

Tor clients, and malicious clients can send specific requests with unique patterns,

website fingerprinting could be significantly more effective for hidden services. As the

academic research focuses on Tor, comparisons with other anonymization networks

can yield new improvements for Tor, and extensive infrastructures like the proposed

architecture could benefit from using several different ones. Privacy in cryptocurren-

cies, secure software, and social engineering do not relate directly to Tor, but the

far-reaching significance makes attacks particularly severe, and hidden services rely

on them.
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