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Abstract

In digital data transmission, single mode optical fibers are commonly used since they can carry

very short optical pulses without any significant distortions. In contrast, multimode fibers support

many propagation modes that travel with different speeds, thus they cannot maintain the shape

of a light pulse. This feature of multiple propagation modes can be a benefit since it makes

possible the transmission of data through several channels simultaneously. We demonstrate how

multimode fibers can be used to transmit images. Because of the different propagation constants

of the modes, the transmitted image is scrambled to apparently random speckle patterns. A simple

neural network can be used to model the transmission through the multimode fiber. We show how

the neural network can be trained to recognize a set of patterns with high accuracy.
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I. INTRODUCTION

Optical fibers are widely used in data transmission since they are able to carry infor-

mation at higher rates and to longer distances than copper wires. In telecommunications,

optical fibers are commonly single mode fibers (SMF) because of their capability to trans-

mit very short optical pulses without any distortions. However, single mode fibers can carry

information only in serial form since they consist of a single channel. Ever increasing needs

to expand telecommunication networks and data handling capacities have encouraged the

consideration of data transmission through parallel channels in multimode fibers (MMF).

These fibers can support up to thousands optical modes, each of which (at least in theory)

can be independently used to carry information.

In MMF endoscopy and other image transfer applications, the fiber modes can be used to

transmit the pixel data of the image. Unfortunately, this is not straightforward: an image

projected onto the proximal face of the fiber is distorted at the distal face, where the different

propagation constants of the fiber modes have produce a distorted image that appears to be

a random speckle pattern.

There are several methods of modeling the image transmission through MMFs. For exam-

ple, the distortion due to modal dispersion can be undone by phase conjugation methods.1–3

Alternately, in the matrix method, the map between the inputs and output amplitude and

phase is experimentally measured for each input pattern.4–6 These methods are not very

practical since they require an external reference beam at the output in order to extract the

complex field.

In the simplest system, only the intensity of the fiber output is measured by a camera.

Although there are some attempts to construct the complete transmission matrix of the fiber

from the intensity data only using convex optimization,7 the most promising approach is to

apply neural networks, which are taught to recognize a set of images. In the first works on

this field, the neural networks were simple three-layer perceptron with one hidden layer.8,9

Later, convolutional neural networks with tens of various layers and deep learning strategies

have been used.10,11

In this paper, we show how a simple two-layer perceptron can be implemented to recognize

letter images transmitted through a short multimode fiber. In Sec. II, we introduce the basic

concepts of optical fibers and show how the different modes can be solved. The fundamentals

2

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

1
1
9
/5

.0
1
0
2
3
6
9



of the simplest neural networks are briefly presented in Sec. III. In Sec. IV, two different

sets of experiments are explained and their properties explored. Concluding remarks are

given in Sec. V.

II. MULTIMODE FIBERS

In any homogeneous transparent medium, an optical wave is described by the wave func-

tion of position r and time t, denoted U = U(r, t), which satisfies the wave equation

∇2U −
1

c2
∂2U

∂t2
= 0, (1)

where c = c0/n, c0 is the speed of light in vacuum, and n is the index of refraction of the

medium. The function U represents any component (x, y, z) of the optical wave’s electric or

magnetic field. Substituting U(r,t) = U(r)eiωt, where U(r) is the complex amplitude of the

wave and ω is its angular frequency, into Eq. (1) leads to the Helmholtz equation

∇2U(r) + n2k2
0U(r) = 0, (2)

where the vacuum wavenumber k0 = ω/c0 = 2π/λ0 and λ0 is the vacuum wavelength.

An optical fiber is a cylindrical dielectric waveguide made of silica glass.12,13 The fiber

has a central core where the light is guided, embedded in an outer cladding. In general, the

refractive index of the fiber is a function n(r) of the radial position r. In the step-index fiber,

n(r) = n1 in the core (r < a) and n(r) = n2 in the cladding (r > a), where n1 and n2 are

constants. In the following, we assume that the radius of the cladding is so large that it can

be taken to be infinite.

Each component of the monochromatic electric field obeys Eq. (2). In a cylindrical

coordinate system (r,φ,z), this equation is written as

∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2
∂2U

∂φ2
+

∂2U

∂z2
+ n2k2

0U = 0, (3)

where U = U(r, φ, z). Light waves in the fiber are traveling in the z-direction with the

propagation constant β, where the z-dependence of U is of the form e−iβz. In addition,

because of the circular symmetry of the waveguide, each field component must not change

when the coordinate φ is increased by 2π. We thus assume that the angular solution takes
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the harmonic form e−ilφ, where l is an integer. By substituting U(r, φ, z) = u(r)e−ilφe−iβz

into Eq. (3) we obtain

∂2u

∂r2
+

1

r

∂u

∂r
+

(

n2(r)k2
0 − β2 −

l2

r2

)

u = 0, l = 0,±1,±2, ... (4)

In the case of the step-index fiber, Eq. (4) should be solved separately in the regions r < a

and r > a. Excluding solutions that go to infinity at r = 0 in the core or at r → ∞ in

the cladding, we obtain Bessel functions of the first kind and order l in the core (oscillating

functions with decaying amplitude), and modified Bessel functions of the second kind and

order l in the cladding (decaying exponentially at large x).

In order to solve for the unknown propagation constant β, the boundary conditions

should be considered. Most practical fibers are weakly guided (n1 ≈ n2) and all rays are

paraxial, i.e., approximately parallel to the fiber axis.12 The longitudinal components of

the electric and magnetic fields are then much weaker than the transverse components and

we can obtain only transverse electromagnetic (TEM) waves. In this approximation, the

propagation constant (and corresponding solutions) can be found by demanding that the

scalar function u(r) and its derivative are continuous at the boundary r = a. It turns

out that, for each index value l, there are only certain possible values of β. We can thus

index these solutions, which are called modes, as ulm(r). Each of these modes has a distinct

propagation constant βlm and a characteristic field distribution in the transverse plane. It

should be noted that βlm depends on the n1, n2, and λ0. Further, it can be shown that the

number of modes M is

M ≈
4

π2
V 2, (5)

where V ≡ 2π
a

λ0

NA is the so-called fiber parameter and NA=
√

n2
1 − n2

2 the numerical

aperture of the fiber. For typical step-index fibers, the number of modes can be several

thousands.

The complete solutions of the transverse electric field are now

ET
lm(r, φ, z) = ulm(r)e

−i(lφ+βlmz). (6)

Since all modes of a fiber are known, the propagation of a monochromatic beam with an

arbitrary field distribution along the fiber can be calculated. Any initial field satisfying

the boundary conditions at the input of the fiber can be decomposed into fiber modes and
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FIG. 1. Speckle pattern measured at the end of the step-index fiber.

presented as a linear combination

E0(r, φ, 0) =
∑

l,m

αlmE
T
lm(r, φ, 0), (7)

where αlm are complex coefficients. The mode solutions [Eq. (6)] give the field at the

distal face of the fiber. In practical situations, many modes with various initial phases are

launched into the fiber. Further, each mode propagates with a different velocity. As a

result, light emerging from the far end of the fiber will be a combination of a number waves

that differ from each other in phase and field distribution. At any point on the fiber end,

these waves may add or cancel due to interference and produce complex speckle patterns.

An example of the intensity I = |E|2 pattern measured at the end of the fiber is shown

in Fig. 1. Although the output intensity distribution can seem quite random, it should

be noted that this intensity pattern is solely determined by the input field. However, in

practice, it is quite difficult to calculate the output field because typically the input field is

not well known. Hence, instead of an analytical model, in our application we use a neural

network that is taught to model the transmission properties of the fiber.

III. NEURAL NETWORKS

Artificial neural networks, often simply called neural networks, are computing systems

that mimic the functions of biological neural systems.14 A neural network consists of artificial

neurons that model, in a very simple form, the neurons of biological brains. An artificial

neuron is a mathematical function having one or more inputs and one output. The output
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is a linear or nonlinear sum of the inputs. Usually the inputs are separately weighted before

summing and, during the teaching process of the neural network, optimal values of the

weights are searched. By connecting the outputs of the artificial neurons to inputs of other

neurons, complex neural networks can be built. In the machine learning, neural networks

are used in various pattern recognition, data classification, and regression tasks.15–17

The perceptron is the simplest form of neural networks.18 It has many inputs and one

output, which is a weighted sum of the inputs. In many practical cases, perceptrons are

used in parallel (see Fig. 2). It has inputs xj, j = 1, ..., d and outputs yi, i = 1, ..., K. The

K outputs are

yi =
N
∑

j=1

wijxj + wi0, (8)

where wij is the K × (d + 1) weight matrix. The terms wi0 are intercept values to make

the model more general. They can be interpreted as an extra bias unit x0, which is always

set to +1. In our applications, inputs xj are the pixel values of the speckle pattern and the

outputs are used to recognize or classify these patterns.

The training of the perceptron (or, in general, any neural network) means that we try to

find the optimal values of the weights wij that minimize a given error or cost function. An

error function measures how far the outputs differ from specified target values. A commonly

used error function is the sum of squared errors

E(w) =
1

2

∑

t

(r(t) − y(t)(w))2, (9)

where r(t) are the target values indexed by t. The target values with the corresponding

input values makes our training set of the perceptrons. Next we should select the method

to update the weights. The gradient descent method is a simple yet useful optimization

algorithm that is often used in machine learning to find the local minimum of linear systems.

In this approach, we climb down the slope of the local or global minimum of E.19 During

the iteration process, the step is taken in the direction of the negative gradient of E. This

guarantees that each change in weighting factor drives the error closer to the minimum.

The step size is determined by the value of the learning factor η as well as the slope of the

gradient. At the minimum, the derivative is zero and the procedure terminates.20 Thus, we

6

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

1
1
9
/5

.0
1
0
2
3
6
9



xd

wij

y1

x0

yi yK

x1 xj

FIG. 2. K parallel perceptrons where xj , j = 0, ..., d are the inputs and yi, i = 1, ...,K are the

outputs. The bias unit x0 = 1.

obtain the change of the weight wij

∆wij = −η
∂E

∂wij

= −
1

2
η

∂

∂wij

∑

t

(r
(t)
i − y

(t)
i )2

= −
1

2
η
∑

t

∂

∂wij

(r
(t)
i − y

(t)
i )2

= −η
∑

t

(r
(t)
i − y

(t)
i )

∂

∂wij

(r
(t)
i − y

(t)
i )

= −η
∑

t

(r
(t)
i − y

(t)
i )

∂

∂wij

(

r
(t)
i −

N
∑

j=1

wijx
(t)
j + wi0

)

= η
∑

t

(r
(t)
i − y

(t)
i )x

(t)
j .

(10)

The error term (r
(t)
i − y

(t)
i ) measures how far we are from the target value. For example, if

the output is less than the desired output, the update ∆wij is positive if the input x
(t)
j is

positive and negative if the input is negative, thus after update the error is decreased. The

magnitude of the update depends also on the input: if x
(t)
j is very small its contribution on

the weighted sum (8) is also very small, therefore it is not wise to allow large changes in

this direction. After each step, we set wij = wij + ∆wij and repeat the process until the

error function E is small enough (see Sec. IV). The learning factor η is somewhat critical: if

too large, the process may never converge, while if very small, extremely many updates are

needed and the convergence process is very slow. Before the training procedure, the weights

are set to small random values.

A perceptron can only approximate the linear functions of the inputs. By adding a nonlin-

ear intermediate or hidden layer, this multilayer perceptron can model nonlinear functions.18

The input xi is fed to the input layer which act as an input of the second hidden layers (see
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xd

whj

z1

x0

zh zH

x1 xj

y1 yi yK

z0

vih

FIG. 3. Neural network with one hidden layer.

Fig. 3). Each hidden unit is a perceptron by itself, and their output is the nonlinear weighted

sum

zh =
1

1 + exp
[

−
(

∑d

j=1 whjxj + wh0

)] , h = 1, ..., H. (11)

The output function f(x) = 1/(1+e−x) is just one possible choice for the sigmoid (S-shaped)

function acting as a continuous, differentiable version of thresholding function that ranges

from 0 to +1 (or from −1 to +1 as tanh(x)). The outputs yi are again normal perceptrons

taking the hidden units as inputs

yi =
H
∑

h=1

vihzh + vi0, (12)

where vih are the weights of the hidden layer. Again we can use the same error function as

used previously. Because of the hidden layer, the updating of weights whj and vih is more

complicated (see Appendix A).

IV. EXPERIMENTS

A. Experimental setup

The experimental setup is shown in Fig. 4. As a light source, we use a He-Ne laser

(Uniphase 1507P, the power 0.5 mW). The output power of the laser is reduced by the

neutral density filter because the intensity is far too high for the camera, even if very short
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He-Ne laser

Neutral

density

filter

Concave

lens

f = -15 mm

Convex

lenses

f = 200 mm

Mask

Optical

fiber

L = 2 m

Fiber

collimator

Digital

camera185 mm 185 mm

12 mmConcave

lens

f = -15 mm

FIG. 4. Experimental setup.

shutter times are used. Since the beam diameter of the laser is quite small, about 1 mm,

we use the combination of the concave and convex lens to increase the collimated beam

diameter to 8 mm. A larger beam diameter makes it easier to implement masks, which are

used to produce various input fields for the optical fiber. In the first experiments, we use

thin microscopy cover glasses, where the letters (height about 4 mm) are handwritten in

permanent ink. In the second experiments, the mask is an opaque plastic sheet with four

small holes in a rectangular arrangement. After the mask, the light beam is converted back

to the collimated beam with the diameter of 1 mm. This beam is coupled to the optical

fiber with a fiber collimator (Thorlabs F220FC-B). As a multimode fiber, we use a step-index

fiber (Thorlabs M43LO2, core diameter 105µm, NA 0.22) of the length of 2 m. According to

Eq. (5), we can estimate that, at the laser wavelength of 632 nm, this fiber supports about

5300 different modes.

At the output of the fiber, we did not use any lenses, but projected the speckle pattern

directly on the surface of the camera chip. The distance from the end of the fiber is adjusted

in such a manner that the speckle pattern covers as large area as possible. The digital

monochrome camera (IDS UI-1242L) has a CMOS sensor of 1280 × 1024 pixels (with area

6.784 mm × 5.427 mm). Before any data analysis, we crop the pictures to the size of

1024 × 1024 pixels. The shutter time should be optimized in order to fully utilize the

dynamical range of the camera chip. The laser should be allowed to warm up long enough

to obtain stability (1-2 hours), since even minor changes in the laser wavelength (or in the

wavelength distribution) can significantly affect the speckle pattern. Likewise, even modest

strain on the fiber or temperature variation will change the refractive index of the fiber and
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FIG. 5. Autocorrelation of the pixel data as a function of the distance.

alter mutual phases of the modes producing dramatic changes in speckles.

B. Training of the neural network with the letter masks

Before we can use our neural network to model the fiber transmission, it is necessary to

reduce the amount of data. In principle, it would be possible to use the data from every one

of the more than one million camera pixels but this approach would not be very practical.

Visual inspection of the speckle patterns reveals that the speckles have a certain average

size. To study this in more detail, we calculate the autocorrelation function of the pixel

data:

C(δ) =
〈XijXi+δ,j+δ〉

〈Xij〉2
, (13)

where Xij is the pixel data, δ the pixel distance and 〈. . .〉 means the average over all pixels.

The autocorrelation as a function of the distance is shown in Fig. 5, where we observe that

the autocorrelation drops rapidly up to the distance of about 10 pixels and at longer distances

the autocorrelation does not change much. We interpret that the average size of speckles

corresponds to the quick drop in the autocorrelation. Therefore, we first averaged all images

over 8 × 8 pixel rectangles, producing images of the size 128 × 128 pixels. Visually this

averaged image looks very similar as the original one, so obviously no essential information

is lost. This averaged image is further reduced by cropping the central area of 32 × 32

pixels. Visual inspection of the images revealed that most significant changes are in this

region. Finally, we have image data of 1024 pixels, which are formed as an input vector xj

of the neural network.
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FIG. 6. Normalized error as a function of iterations of the perceptron type of neural network (thin

line) and nonlinear neural network (thick line). The significant spike in the thick line means that

the error has temporarily increased but the adaptive learning factor has decreased and in further

iterations the error continues decreasing.

The pixels intensity values are in the range of 0 . . . 255. Usually, it is a good idea to

normalize the input values so that they are all centered around 0 and have the same scale.

We use the fixed (not individual) scale by first subtracting the value of 128 from the pixel

value and then dividing it with 128. The initial value of all weights is set on a random

value between −0.01 and +0.01. The learning factor η is either fixed or adaptive. In the

latter case, the error function is calculated after each iteration step, and if error increases

the learning factor is decreased by the factor of 0.75.

In the first set of experiments, we use 15 masks with hand-written letters from A to

O and one blank frame, totally 16 frames. We code each letter by a binary number

0000, 0001, . . . , 1111 (named as DCBA), so we have 4 outputs yi. The error function nor-

malized by the initial error (the error without any iterations) summed over all outputs is

shown in Fig. 6 using two different structures: the simple perceptrons with the fixed learning

factor of 0.0002 and the nonlinear one with 20 hidden units and adaptive learning factor.

At first, we find that with the linear model the error decreases more rapidly than with the

nonlinear model, but later the difference is not significant. However, if very small final error

is needed, the nonlinear model reaches the level with fewer iterations than the linear one.

The normalized error of 0.001 is reached at about 6000 iterations (linear model) and 3500

(nonlinear model). At this error level the maximum deviation from the target values ( 0 or

1) is ±0.05 with some letter masks, but in most cases it is much smaller. We conclude that
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FIG. 7. The binary outputs of the letter E (the target 0101) as a function of the frame shift.

both the linear and nonlinear neural network can be easily trained to recognize 16 letter

figures with high accuracy. This is a remarkable result since visible differences in the speckle

patterns of different letter masks are surprisingly small.

In practical applications, it is important to check how sensitive the neural network is to

various disturbances. First, we digitally displaced the original camera image (before any

averaging and cropping) in the example of the letter E (the corresponding target 0101) in

the horizontal direction (orthogonal to the laser beam axis) and results are shown in Fig. 7.

Clearly we can no longer recognize this letter correctly (for example, by setting the threshold

value of 0.5 for each bit) if the displacement is larger than 4 pixels, about 20 µm. This is half

of the average size of the speckle pattern based on the spatial correlation analysis. We can

see that the neural network modeling is highly sensitive to this kind of pattern displacement

at the camera end.

In the next experiment, we moved the mask horizontally (orthogonal to the laser beam

axis), by use of the translation stage upon which the mask is installed. Again, we use the

letter E as an example. The mask is moved a total of ±1.75 mm, but in the training phase

of all letters, the mask at the position of 0 mm (i.e., the letter is approximately in the center

of the expanded laser beam) is used. Surprisingly, this letter can be recognized correctly

when the shift is in the range −1 to +0.5 mm, 50 times more than the allowed displacement

in the camera position. Obviously moving the mask inside the collimating beam does not

dramatically change the input field or rather the composition of the field modes launched

into the fiber. The actual mode composition of the real mask is very difficult to calculate.

In general, the modes form a spatial function base: with low values of indexes l and m the
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FIG. 8. The binary outputs of the letter E (the target 0101) as a function of the mask shift. The

bit A - solid circle, B - open circle, C - solid rectangle, D - open rectangle. (a) Only one mask used

in training of this letter positioned at the shift of 0 mm (b) Three masks used in the training of

this letter positioned at the shifts −1.75, 0 and +1.75 mm.
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FIG. 9. The binary outputs of the letter E (the target 0101) as a function of the noise level.

oscillations are slow, with high index values oscillations are rapid. Since speckle patterns in

our application are very complex images, mainly fast components dominates. We assume

that slow components are mostly responsible on the mask position and the fast components

on the details of the mask shape.

We can even increase the allowed range of the mask displacement by using the additional

mask positions of −1.75 and +1.75 mm in the training phase of the letter E. In this case, as

seen in Fig. 8(b), this letter can be recognized correctly over the whole range. In principle,

it would be possible to train our model with shifts in other directions and for all letters,

but final performance could be difficult to predict since some interaction between different

patterns could arise.
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Another important feature of our neural network modeling is the tolerance against noisy

inputs. We added white noise to each pixel of the averaged and cropped picture and tested

how well the letters can be recognized. The results of the example letter E are shown in

Fig. 9. The noise level is the percentage of the maximum value 255 of the pixel. We can see

that even 50–60% additional noise can not prevent correct recognition of the letter. This

insensitivity against the noise can be explained by the fact that each output depends on

very many inputs and typically all weights are small. Therefore, even large changes in few

inputs due to the noise do not affect much on the output value.

C. Training binary masks

In the second set of experiments, we used the mask with four holes in a rectangular

arrangement. We named the holes as A, B, C and D. First, we took four images when only

one of these holes was open and all the rest were blocked with a small piece of an opaque

tape. Next, we taught our neural network with only the blank frame and these four images

with corresponding binary targets 0000, 0001, 0010, 0100 and 1000 using both the simple

perceptron and nonlinear neural network with 20 hidden units. With this trained neural

network, we tested how well all other 11 combinations of the open hole patterns can be

recognized. The results are shown in Fig. 10. With the patterns used in the teaching phase,

the recognition is, of course, perfect. We obtain perfect recognition also with all the rest of

the patterns if we put the threshold value of 0.5 for each bit. The most critical case is the

pattern 1111. There were no significant differences in results between the perceptron and

nonlinear model.

At first, the results of Fig. 10 seem to be quite surprising since for example the output

intensity distribution with two open mask holes is not the sum of output intensity distri-

butions of the single open mask holes: we cannot sum intensities but we can sum electric

fields. Let us have two input fields E
(1)
0 (r, φ, 0) and E

(2)
0 (r, φ, 0) corresponding to these two

mask holes. At the distal face of the fiber we have E = E(1)(r, φ, L) + E(2)(r, φ, L), L is

the length of the fiber. Now the corresponding intensity is I = |E|2 = |E(1) + E(2)|2 =

|E(1)|2 + |E(2)|2 + E(1)E(2)∗ + E(1)∗E(2) = I1 + I2 + I12. The neural network can, of course,

recognize the intensity patterns I1 and I2 very well but clearly it efficiently ignores the in-

terference term I12. Both E(1) and E(2) consist of many modes but with mutually different
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FIG. 10. The binary outputs of the perceptron when the input mask consists of the different

combinations of open holes. The cases 0000, 0001, 0010, 0100 and 1000 were used in the training.

(and almost random) phases, thus their interference produces such an intensity distribution

which appears as a noise in I1 and I2. As we know about previous experiments, the pattern

recognition is rather tolerant against noise. As we can see in Fig. 10, this “noise” increases

when several holes are open and the accurate pattern recognition is more difficult.

V. CONCLUDING REMARKS

We have shown how a neural network can be trained to recognize letter patterns transmit-

ted through a multimode fiber. It should be noted that the neural network actually models

the whole optical path including the light source, all lenses, the masks, the fiber and even

the camera. The neural network greatly simplifies the system since there is no need to know

any details or physical properties of the optical components. On the other hand, usually the

pattern recognition works only with those patterns that have been used in the training set.

The more advanced deeply hierarchical neural network structures can recognize the basic

graphical elements of the images, such as lines, circles, arcs, and their combinations, and
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therefore they are more capable of “understanding” images that are not in the training set.

On the other hand, while neural networks work nicely here, it may be difficult to understand

why they are so good in this kind of task, since all important information produced in the

training phase is spread in the numerous weights. Even in our simple experiments, there

are features that are not so obvious. The reconstruction of the background rules from the

neural network weights is still a mostly unsolved problem.

Finally, our basic setup can also be used for other purposes than pattern recognition,

classification, or image reconstruction. As speckle patterns are highly sensitive to fiber

movements, the fiber acts like a microphone or vibration sensor. Since the refractive indices

of the fiber depend on temperature, the fiber can be used as a thermometer. As the speckles

are produced by interference of the different modes, these patterns are sensitive to the source

wavelength, leading to fiber-based spectrometer, which can achieve picometer resolution.21,22

Appendix A: Neural network with a hidden layer.

Since the second layer is a perceptron with the inputs zh we already know how to update

the weights vih as

∆vih = η
∑

t

(r
(t)
i − y

(t)
i )z

(t)
h . (A1)

The first layer also consists of perceptrons but the problem is that we do not know the

desired values of the outputs of the hidden units. Therefore, we use the derivative chain rule

in order to calculate the gradient

∂E

∂whj

=
∂E

∂yj

∂yj
∂zh

∂zh
∂whj

. (A2)

Now we can write

∆whj = −η
∂E

∂whj

= −η
1

2

∂

∂whj

∑

t

∑

i

(r
(t)
i − y

(t)
i )2

= η
∑

t

[

∑

i

(r
(t)
i − y

(t)
i )vih

]

z
(t)
h (1− z

(t)
h )x

(t)
j

. (A3)

The error term
∑

i(r
(t)
i − y

(t)
i )vih is the backpropagated error of the hidden unit h produced

by all output units. As with the simple perceptron, each error term is weighted by the

responsibility vih of the hidden unit. The term z
(t)
h (1−z

(t)
h ) is the derivative of the nonlinear

function (11). After each step we update the weights vih = vih+∆vih and whj = whj+∆whj.
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Its is important that vih is updated after the update of whj, i.e., we use the old values of

vih in Eq. (A3).
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