
M
atthieu Bourgery

D
 1711

A
N

N
A

LES U
N

IV
ERSITATIS TU

RK
U

EN
SIS

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS

SARJA – SER. D OSA – TOM. 1711 | MEDICA – ODONTOLOGICA | TURKU 2023

SMALL RNAs IN SKELETAL 
TISSUE HOMEOSTASIS AND 

FRACTURE HEALING
Matthieu Bourgery





 
 
 
 

Matthieu Bourgery 

SMALL RNAs IN SKELETAL 
TISSUE HOMEOSTASIS AND 

FRACTURE HEALING 

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS 
SARJA – SER. D OSA – TOM. 1711 | MEDICA – ODONTOLOGICA | TURKU 2023 



University of Turku 

Faculty of Medicine 
Institute of Biomedicine 
Cell Biology and Anatomy 
Turku Doctoral Programme of Molecular Medicine 

Supervised by 

Adjunct professor, Anna-Marja Säämänen Adjunct professor, Tiina Laitala 
Institute of Biomedicine Institute of Biomedicine 
University of Turku University of Turku 
Turku, Finland Turku, Finland 

Reviewed by 

Professor, Mikko Lammi Associate professor, Eija Laakkonen 
Department of Integrative  Gerontology Research Centre and 
Medical Biology (IMB) Faculty of Sport and Health Sciences 
Umeå University University of Jyväskylä 
Umeå, Sweden Jyväskylä, Finland 

Opponent 

Professor, Hanna Taipaleenmäki 
Institute of Musculoskeletal Medicine (IMM) 
Ludwig Maximilian University of Munich 
Faculty of Medicine 
Munich, Germany 
 
 
 
The originality of this publication has been checked in accordance with the University 
of Turku quality assurance system using the Turnitin OriginalityCheck service. 
 
 
ISBN 978-951-29-9265-2 (PRINT) 
ISBN 978-951-29-9266-9 (PDF) 
ISSN 0355-9483 (Print) 
ISSN 2343-3213 (Online) 
Painosalama, Turku, Finland 2023

http://www.umu.se/imb/


 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicated to my family 



 4 

UNIVERSITY OF TURKU 
Faculty of Medicine 
Institute of Biomedicine 
Cell Biology and Anatomy 
MATTHIEU BOURGERY: Small RNAs in Skeletal Tissue Homeostasis and 
Fracture Healing. 
Doctoral dissertation, 135 pp. 
Turku Doctoral Programme of Molecular Medicine (TuDMM) 
May 2023 

ABSTRACT 

Long bone fracture is a common injury which could result from a fall, shock, sports 
injury or a disease such as osteoporosis. Fracture healing involves multiple partly 
overlapping steps including inflammation, endochondral ossification, angiogenesis 
and remodelling. The high burden of bone fractures on public health as well as 
economy highlights the importance of understanding the healing process and 
identifying biomarkers for better management of bone health. This thesis study 
focused on the expression of small non-coding RNAs (sncRNAs) in bone fracture 
and fracture healing. SncRNAs are important regulators of gene expression, and they 
also serve as biomarkers for many diseases. MicroRNAs (miRNAs) have well-
characterized functions in the regulation of protein-coding mRNAs. Transfer RNA-
derived small RNAs (tsRNAs) are a less well-studied class of sncRNAs, but they are 
also involved in the regulation of gene expression at various levels. In bone and 
fracture healing callus tissue the role of tsRNAs have not been studied before. 

The main aim of the study was to determine the effects of bone fracture on the 
genome-wide expression profiles of miRNAs and tsRNAs in the callus tissue which 
forms at the fracture site, as well as in circulation during the healing process in mice. 
For these purposes, basal (callus tissue) and circulating (serum exosome fraction) 
RNAs were extracted at different time points after tibial shaft fracture, and tsRNAs 
and miRNAs were analysed by high-throughput sequencing. Also, mRNA and 
retrotransposon (LTRs) expression profiles were investigated in fracture callus by 
high-throughput sequencing. 

The study revealed differential expression of 54 miRNAs, 7 tsRNA, and 15 
LTRs in callus tissue in comparison to intact bone while in circulation 8 miRNAs 
and 3 tsRNAs were differentially expressed after fracture. Literature searches were 
performed to identify the target genes for those 54 differentially expressed miRNAs. 
A significant negative correlation was observed between the expressions of 164 
miRNA-target mRNA pairs in the callus, suggesting a potential role of these 
miRNAs as fine-tuners of fracture healing by regulation of the expression of their 
target mRNAs. These results indicate a role for tsRNAs and miRNAs as regulators 
of fracture healing in vivo and possibly have potential as systemic biomarkers of the 
fracture healing-related processes in circulation for cell-cell communication. 

KEYWORDS: Long bone, fracture, microRNA, tsRNA, callus, serum 
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TIIVISTELMÄ 

Pitkän luun murtuma on yleinen vamma, joka voi johtua kaatumisesta, shokista, 
urheiluvammoista tai sairaudesta, kuten osteoporoosista. Murtumien paranemisessa 
erotetaan useita osin päällekkäisiä vaiheita, joihin kuuluvat tulehdus, endo-
kondraalinen luutuminen, angiogeneesi ja uudelleenmuotoilu. Murtuman paranemis-
prosessin parempi tunteminen ja sen edistäminen ovat keskeisiä tavoitteita sekä 
kansanterveydellisesti että kansantalouden kannalta katsottuna. Tässä väitöskirja-
työssä tutkittiin pienten ei-koodaavien RNA:iden (sncRNA:iden) ilmentymistä luun-
murtumissa ja murtumien paranemisessa. SncRNA:t ovat tärkeitä geeniekspression 
säätelijöitä, ja niitä hyödynnetään myös monien sairauksien biomarkkereina. 
MikroRNA:iden (miRNA:den) toiminta ja merkitys geeniekspression ja proteiinien 
ilmentymisessä tunnetaan jo melko hyvin. Siirtäjä-RNA:sta (tRNA:sta) peräisin olevat 
pienet RNA-fragmentit (tsRNA:t) ovat uusi sncRNA-luokka, joiden tiedetään 
osallistuvan geeniekspression säätelyyn sen eri tasoilla, mutta niiden merkitys on 
vähemmin tunnettu ja erityisesti luukudoksessa ja murtuman paranemisessa niitä ei ole 
aiemmin tutkittu lainkaan. 

Tutkimuksessa selvitettiin luunmurtuman vaikutuksia miRNA:iden ja 
tsRNA:iden genominlaajuisiin ilmentymisprofiileihin murtuman ympärille 
muodostuvassa korjauskudoksen sekä verenkierrossa paranemisprosessin aikana 
hiirillä. Kalluskudoksessa ja seerumin eksosomifraktion RNA:t uutettiin eri 
ajankohtina kokeellisen sääriluun murtuman jälkeen, ja tsRNA:t ja miRNA:t 
analysoitiin suurtehosekvensoinnilla. Myös mRNA:n ja retrotransposonien (LTR:t) 
ilmentymisprofiileja tutkittiin kalluskudoksessa. 

Korjauskudoksessa havaittiin 54 miRNA:n, 7 tsRNA:n ja 15 LTR:n poikkeava 
ilmentyminen ehjään sääriluuhun verrattuna. Verenkierrossa kahdeksan miRNA:ta ja 
kolme tsRNA:ta ilmentyivät kontrollieläimiin nähden poikkeavasti murtuman jälkeen. 
Kirjallisuushakuun perustuen tunnistettiin kohdegeenit e.m. 54:lle poikkeavasti 
ilmentyvälle miRNA:lle. Näistä yhteensä 164 miRNA-kohdegeeni/mRNA ‑parin 
ilmentymistasot korreloivat negatiivisesti keskenään, osoittaen niiden mahdollisen 
roolin murtuman paranemisen hienosäätäjinä. Tulosten perusteella tsRNA:t ja 
miRNA:t osallistuvat murtuman paranemisen säätelyyn in vivo. Verenkierrossa niillä 
voi olla merkitystä solujen välisessä systeemisessä viestinnässä sekä murtuman 
paranemiseen liittyvinä biomarkkereina. 

AVAINSANAT: Pitkä luu, murtuma, mikroRNA, tsRNA, kallus, seerumi 
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Dnmt2 DNA methyl transferase 2 
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FGF Fibroblast growth factor 
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Kdm6b Lysine demethylase 6B 
Klf4  Kruppel like factor 4 
LATS2 Large tumor suppressor kinase 2 
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lncRNA Long non-coding RNA 
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LTR Long terminal repeat 
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m7G: 7-methyl guanosine 
Map3k8 Mitogen-activated protein kinase kinase kinase 8 
M-CSF Macrophage colony-stimulating factor 
MERVL Mouse endogenous retrovirus type-L 
miRISC MicroRNA-induced silencing complex 
miR/miRNA Micro ribonucleic acid 
miRNA* Passenger miRNA 
Mitf Microphthalmia-associated transcription factor 
Mmp Matrix metalloproteinase 
mRNA messenger ribonucleic acid 
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MSC Mesenchymal stem cell 
MTPAP Mitochondrial poly(A) polymerase 
ncRNA non-coding RNA 
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1 Introduction 

Long bone fracture is a recurrent trauma which may occur due to an accident, sports-
related injury, or various bone diseases. Osteoporosis is a major factor of bone 
fractures, especially in elderly people. The prevalence of osteoporosis in Europe was 
reported to be around 16.7% in elderly people between 50-85 years of age (Salari et 
al., 2021). Although fractures take place in all long bones, tibial bone is the most 
prone to fracture. 

Fracture healing of long bones involves a succession of six intricate metabolic 
phases which are closely connected and partly overlapping with each other. The main 
steps are inflammation, mesenchymal stem cell (MSC) recruitment and migration to 
the fracture site, endochondral ossification, intramembranous ossification, 
vascularization, and finally bone remodelling. The healing process requires the 
intervention of numerous molecules and pathways tightly regulated by multiple 
molecules. The main steps cited above are roughly present in mice at day 0 - day 5 
(D0-D5) (hematoma and inflammation), D3-D5 (MSCs recruitment and migration 
to the fracture site, D7-D21 (endochondral ossification), D3-D21 (intramembranous 
ossification and angiogenesis), and D21-D35 (bone remodelling) post-fracture 
(Einhorn & Gerstenfeld, 2015). The analysis of regulatory molecules affecting the 
tibial fracture healing process in mice is crucial to understand the complex molecular 
mechanism behind fracture healing steps. 

It is critical to understand and identify the circulating indicators of fracture 
healing status as well as be the factors that systematically affect the healing process 
to further potentially identify undetected or non-union fractures. Circulating 
molecules are found in three main types of extracellular vesicles, which are 
exosomes, microvesicles, and apoptotic bodies. The ribonucleic acid (RNA) content 
of exosomes is mainly composed of non-coding RNAs (ncRNAs). Non-coding 
RNAs were also found freely in circulation associated with lipid particles and RNA-
binding proteins (Etheridge et al., 2013). Circulating non-coding RNA biomarkers 
are already under intensive investigation for a wide range of diseases, viral and 
bacterial infections and various types of cancers. These molecules may also have 
applications in skeletal biology and function as biomarkers to indicate, e.g., a micro-
fracture or even a long bone non-union fracture which is the result of a fracture 
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healing failure or a delayed union. Earlier studies have clearly indicated the vital role 
of microRNAs (miRNAs) in the post-transcriptional regulation of messenger RNA 
(mRNA) expression. Recent studies have also pointed out the non-canonical role of 
tRNA-derived small RNAs (tsRNAs), which are newcomers among the factors 
regulating mRNA transcription and protein translation (Avcilar-Kucukgoze & 
Kashina, 2020; S. Li et al., 2018; Oberbauer & Schaefer, 2018; J. Park et al., 2020). 

Understanding the mechanisms and molecules involved in fracture healing will 
facilitate the development of regenerative medicines. Differential expression of 
miRNA and tsRNAs in callus and serum tissues as shown by the studies in this thesis 
project suggests their putative role during fracture healing with possible applications 
as novel tools in the development of various therapeutic approaches. 
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2 Review of the Literature 

Bone tissue is part of the skeleton providing mechanical support to the body and 
protecting internal vital organs. Bone is a highly vascularized and dynamic tissue 
undergoing permanent changes through modelling and remodelling. The cellular 
composition of the bone is mainly osteoblasts (bone-forming cells), osteocytes 
(mature osteoblastic cells), and osteoclasts (bone-resorbing cells). Also, 
chondrocytes (cartilage cells), are closely associated with bone tissue via 
endochondral ossification during bone development and fracture healing (Blumer, 
2021). The long bones are mainly divided into four regions: the diaphysis (1) which 
is the middle region, the epiphysis (2) at the distal parts of the bone in between the 
metaphysis (3) and the growth plate (4), located at the border between epiphysis and 
metaphysis, which is a thin layer of cartilage crucial for bone development. In 
humans, the growth plate slowly disappears (closes) in adulthood but in mice, it 
never totally closes. Macroscopically, two main parts can be conserved in long 
bones. Cortical bone contains osteons with a central Haversian canal system for 
blood supply. The trabecular bone is found in the inner part of the bone and at the 
bone ends, which are devoided of osteons (Figure 1) (Blumer, 2021). Osteocytes are 
embedded in the mineralized matrix. The medullary cavity contains the bone marrow 
stroma with MSCs, progenitor cells, immune cells, osteoblasts, osteoclasts, 
adipocytes, red blood cells, and haematopoietic stem cells (HSCs). The periosteum, 
covering the outer surface of the cortical bone, contains osteoblastic cells, MSCs, 
nerves and blood vessels. The endosteum, covering the inner surface of the cortical 
bone, contains osteoblasts, osteoclasts, and MSCs. Osteoblasts and chondrocytes 
both originate from MSCs whereas osteoclasts originate from HSCs (Blumer, 2021; 
Colnot, 2009; Murao et al., 2013). 
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Figure 1. Schematic diagram of long bone structure. 

Hyaline cartilage, called articular cartilage, covers the bone epiphyses at the ends 
of the long bone and provides gliding surfaces with minimal friction to the joints. 
Hyaline cartilage is also crucial during limb development or after fracture injury 
where it functions as a platform for the future bone via a process of endochondral 
ossification. Cartilage tissue is unique as it lacks blood vessels and nerves. Essential 
nutrient supply occurs by diffusion while most metabolism is anaerobic. Three main 
types of cartilage are defined: fibrocartilage, elastic cartilage, and hyaline cartilage. 
Fibrocartilage provides better support than hyaline cartilage and is mostly found 
between intervertebral disks and in menisci (Benjamin & Evans, 1990). Elastic 
cartilage found e.g. in ears has a morphology comparable to hyaline cartilage 
including the presence of elastic fibres (Cox & Peacock, 1977). Finally, the hyaline 
cartilage has a crucial role in the mechanical support, movement, and growth of the 
skeleton (Archer & Francis-West, 2003). Furthermore, hyaline cartilage accounts for 
only 2% of the MSCs population. It is a highly specialized connective tissue, mainly 
composed of water (65-80%), collagens (mainly type II collagen), and proteoglycans 
such as aggrecan, decorin, biglycan, and fibromodulin (Sophia Fox et al., 2009). 
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Limb development in mice is initiated at embryonic day E9.5, starting with the 
condensation of MSCs in limb buds (Figure 2). Bone morphogenetic proteins 
(BMPs) are important growth factors in the regulation of MSCs condensation 
(Harkness et al., 2009; K. Hata et al., 2017; Heinonen et al., 2011). Several bones 
such as long bones, ribs, vertebrae, a part of the clavicle, and some craniofacial bones 
in mammals develop during embryogenesis via endochondral ossification from the 
cartilage anlage surrounded by the perichondrium. The skull, some craniofacial 
bones, and some parts of the clavicle develop via intramembranous ossification. 
During limb development, condensed MSCs differentiate into chondrocytes which 
proliferate and eventually undergo terminal differentiation to hypertrophic 
chondrocytes starting from the central diaphyseal part of the bone. Subsequently, 
hypertrophic chondrocytes either undergo apoptosis or transdifferentiate into 
osteoblasts. Osteoclasts resorb the mineralized cartilage which allows the invasion 
of blood vessels and the formation of bone marrow. In the meantime, perichondrial 
ossification takes place at the perichondrium. This process is similar to 
intramembranous ossification with direct differentiation of MSCs into osteoblasts. 
Collar forms around the hyaline cartilage anlage by perichondrial ossification, 
followed by endochondral ossification inside the cartilage. The cartilage is slowly 
resorbed and the bone marrow cavity appears. Finally, osteoblasts invade from the 
perichondrium to the bone marrow and deposit hydroxyapatite crystals on type I 
collagen fibres to form a trabecular bone matrix (Blumer, 2021; Cervantes-Diaz et 
al., 2017). Fracture healing phases of long bones are similar and comparable to limb 
development except for the hematoma and inflammation phases which are absent 
during limb development. 

 
Figure 2. Schematic diagram of endochondral ossification during limb development. MSC: 

mesenchymal stem cell, C: chondrocyte, HC: hypertrophic chondrocyte, BV: blood 
vessel, Ob: osteoblast, POC: primary ossification centre, SOC: secondary ossification 
centre, BM: Bone marrow, Oc: osteoclast, P: periosteum, Pc: perichondrium. 
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2.1 Healing of long bone fracture 
Two different mechanisms contribute to fracture healing which are called primary 
and secondary bone healing. Primary bone healing occurs after a partial crack in the 
bone when the remaining bone is still holding the main structure together. Primary 
ossification is a straightforward mechanism which does not require the formation of 
hematoma and/or soft callus tissue. This type of ossification happens only in specific 
circumstances if the fracture is stabilized and if the fracture gap is reduced by 
surgery. 

During the primary bone healing process, the fractured bone will be remodelled 
and filled with osteoblasts differentiated from osteoprogenitor cells with the 
assistance of vascular endothelial cells and perivascular mesenchymal cells, 
originating from blood vessels of the Haversian system, expressing BMPs and 
therefore stimulating osteogenesis (Bahney et al., 2019; Dimitriou et al., 2005). 
Secondary bone healing occurs when a gap is created in the bone with the instability 
of the fracture site. 

Secondary fracture healing involves the formation of a callus and requires the 
intervention of several healing phases including hematoma (D0-D3), inflammation 
(D0-D5), migration and proliferation of MSCs (D3-D5), endochondral (D7-D21) 
and intramembranous ossification (D3-D21), angiogenesis (D3-D21), and bone 
remodelling (D21-D35) (Figure 3). These steps are interconnected and partly overlap 
with each other and are similar to the limb development steps observed during 
embryogenesis (Figure 2) (Dimitriou et al., 2005; Gerstenfeld et al., 2003; Marsell 
& Einhorn, 2011). The gap generated by the fracture will create an unstable and weak 
structure for the bone. Callus formation is a response of the body toward this unstable 
environment. The callus evolves in time via cell differentiation and matrix formation 
giving a gradually more stable callus to ensure the stability of the fracture. Due to 
the fragility of the callus, especially at the early stages of callus development, it is 
really important to keep the fracture site motionless or at least to a minimum to avoid 
a non-union of the fracture (Keramaris et al., 2008; Komatsu et al., 2021; S. H. Park 
et al., 1998). 
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Figure 3. Stages of long-bone fracture healing in mice. D: Day, MC: medullary cavity, P: 

periosteum, E: endosteum, MSC: mesenchymal stem cell, RBC: red blood cell, M: 
macrophage, Mo: monocyte, C: chondrocyte, HC: hypertrophic chondrocyte, Ob: 
osteoblast, Oc: osteoclast, BV: blood vessel. The grey beams depict the temporal 
expression patterns for haematoma, inflammation, MSCs invasion, endochondral and 
intramembranous ossifications, angiogenesis, and bone remodelling phases in relation 
to time frames (D0-3, D3-5, D5-10, D10-16, and D16-35) and their associated cellular 
composition. 

2.1.1 Inflammatory phase 
Immediately after fracture, a hematoma forms at the fracture site due to blood vessel 
disruption, resulting in a fibrin-rich granulation tissue for initial stability to the 
fracture. Hematoma represents the first phase of inflammation (Kolar et al., 2010; 
Schell et al., 2017). Inflammation takes place strictly after fracture involving the 
upregulated expression of different molecules such as interleukin-1β and 6 (IL-1β, 
IL-6), and tumour necrosis factor α (TNF-α) through MSCs, macrophages, and other 
immune cells infiltrating the hematoma (Dimitriou et al., 2005; Einhorn et al., 1995; 
Kon et al., 2001). These inflammatory molecules are necessary to initiate of fracture 
repair and angiogenesis (Einhorn & Gerstenfeld, 2015), and anti-inflammatory drugs 
have been demonstrated to have a negative impact on fracture healing with a delay 
in ossification and vascularization (Bissinger et al., 2016; Holstein et al., 2008; Satoh 
et al., 2011). 
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Macrophages originating from bone lining tissues (osteomacs) and from 
inflammatory tissue have been shown to have an important role during endochondral 
ossification. Depletion of macrophages delays intramembranous ossification as well 
as cartilage mineralization during endochondral ossification (Alexander et al., 2011; 
Schlundt et al., 2018). Also, T-cells and B-cells have a major role in fracture healing, 
and depletion of these cell types can lead to either a delay or acceleration in the 
fracture healing process depending on the cell subsets (Ono & Takayanagi, 2017). 
IL-1β promotes osteogenesis and inhibits chondrogenesis as well as proliferation and 
differentiation of MSCs in-vitro although its impact on fracture healing in-vivo is 
limited (Lange et al., 2010). Furthermore, IL-1β facilitates the formation of fibrin 
clots formation important for fracture healing initiation (X. Wang, Friis, et al., 2016; 
X. Wang, Luo, et al., 2016). IL-6 modulates the activity of osteoblasts and 
osteoclasts by having both positive and negative effects on osteoblast and osteoclast 
differentiation (Blanchard et al., 2009). TNF-α is an important cytokine in the 
recruitment and chondrocyte differentiation of MSCs, apoptosis of hypertrophic 
chondrocytes as well as in cartilage resorption. A loss of TNF-α results in a delay in 
these steps (Gerstenfeld et al., 2003). Degranulating platelets present in the 
hematoma release transforming growth factor β1 (TGFβ1) and platelet-derived 
growth factor (PDGF) necessary to initiate the fracture healing process (Bolander, 
1992; Dimitriou et al., 2005). Furthermore, TGF-β released from degranulating 
platelets, bone, and extracellular matrix (ECM) enhances osteo-chondrogenic 
differentiation by stimulating MSCs (Patil et al., 2011; Tsiridis et al., 2007). 
Altogether, these signalling molecules are very important to ensure complete fracture 
repair. Most of them remain expressed throughout all stages of fracture healing 
(Dimitriou et al., 2005). 

2.1.2 Recruitment and invasion of MSCs 
Stem cells are divided into four types depending on their differentiation potency. 
Unipotent stem cells can differentiate into only one cell type, oligopotent cells can 
differentiate into a restricted niche of cells, multipotent stem cells differentiate into 
a broader range of cells than oligopotent, pluripotent stem cells also called 
embryonic stem cells will give rise to all cell types of the embryo proper whereas 
totipotent stem cells give rise to all type of cells including embryonic cells. In 
addition to these cell types found in animals, there is another artficial cell type called 
induced pluripotent stem cells (iPSCs), which are somatic cells reprogrammed to 
become pluripotent. In 2006, Takahashi and Yamanaka reprogrammed fibroblasts to 
become iPSCs, by overexpressing Octamer-binding protein 4 (Oct4), The Sex-
Determining Region Y-type high motility group Box 2 (Sox2), Kruppel like factor 4 
(Klf4), and c-Myc transcription factors (K. Takahashi & Yamanaka, 2006). MSCs 
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are multipotent cells which can differentiate into osteoblasts, chondrocytes, 
myocytes, stromal cells, fibroblasts, and adipocytes (Shariatzadeh et al., 2019). They 
are important in the initiation of fracture healing and are recruited to the fracture site 
to initiate the formation of the soft callus via differentiation into chondrocytes. MSCs 
are also crucial to form the hard callus, by differentiating into osteoblasts in the 
process of endochondral and intramembranous ossifications. MSCs are adherent 
cells and express specific surface antigens such as CD73, CD90, and CD105 
(Bragdon & Bahney, 2018). MSCs originate from the periosteum (membrane present 
on the outer layer of bone), endosteum (membrane lining the medullary cavity of 
long bones), and bone marrow. Osteoblasts derived from MSCs originated from all 
three locations whereas chondrocytes are derived from MSCs mainly originating 
from the periosteum (Colnot, 2009; Murao et al., 2013). MSCs recruitment and 
migration are proven to be crucial steps for bone regeneration, angiogenesis, and 
bone remodelling. The recruitment of MSCs has been shown to be mediated by 
stromal cell-derived factor-1 (SDF-1) and its receptor chemokine receptor 4 
signalling axis (CXCR-4) (Kitaori et al., 2009; J. Ma et al., 2005). These studies 
indicated increased SDF-1 expression at the periosteum during the inflammatory 
phase of fracture healing. The complex SDF-1/CXCR-4 induces MSCs recruitment 
and migration, and thereby, enhances the endochondral ossification. SDF-1 also 
enhances neo-angiogenesis during endochondral ossification (Kawakami et al., 
2015). Migration of MSCs has been found to be induced by TGF-β1 (Y. Tang et al., 
2009) having an important role in osteogenesis and osteoclastogenesis (Janssens et 
al., 2005). 

2.1.3 Endochondral ossification 

2.1.3.1 Chondrogenesis 

Endochondral ossification necessitates the migration of the MSCs from the 
periosteum to gather, proliferate, and condensate between both fracture ends. BMPs, 
expressed by osteoprogenitors, MSCs, osteoblasts, and chondrocytes, are important 
in chondrocyte and osteoblast differentiation, and angiogenesis (Deckers et al., 2002; 
Dimitriou et al., 2005; Shu et al., 2011). BMP2 in particular is an important growth 
factor in the initiation of the fracture healing (Dimitriou et al., 2005; Shu et al., 2011; 
Tsuji et al., 2006). Undifferentiated MSCs will subsequently differentiate into 
chondrocytes and secrete type II collagen and proteoglycans to create the cartilage 
matrix (Phillips, 2005). Chondrocyte differentiation is triggered by the expression of 
different transcription factors (TFs). Sox9, Sox6, and Sox5 are crucial TFs in the 
differentiation process of chondrocytes; together, they form the so-called Sox trio 
that is important in the regulation and maintenance of chondrocyte phenotype 
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(Akiyama et al., 2002; de Crombrugghe et al., 2001; Han & Lefebvre, 2008; Wegner, 
1999). Sox9 is a major TF and has a key role in the chondrogenic differentiation of 
MSCs. Sox9-deficient embryonic stem cells fail to form cartilage (Bi et al., 1999). 
Sox9 regulates the expression of a wide number of key molecules associated with 
chondrocyte phenotype, including aggrecan (Acan), hyaluronan, proteoglycan link 
protein 1 (Hapln1), cartilage oligomeric matrix protein (Comp), type II collagen 
(Col2a1), type IX collagen (Col9a1), type XI collagen (Col11a2), and secondary 
ossification centre associated regulator of chondrocyte maturation (Snorc) among 
many other molecules (Bridgewater et al., 1998, 2003; Genzer & Bridgewater, 2007; 
Han & Lefebvre, 2008; Heinonen et al., 2011; Jaiswal et al., 2020; Kou & Ikegawa, 
2004; Lefebvre et al., 2007; C. Liu et al., 2007). Proliferative chondrocytes 
synthesize type II collagen and aggrecan which together form the basic structural 
components of the cartilage primordia and future cartilage (K. Hata et al., 2017). 

During endochondral ossification, chondrocytes cease proliferating and become 
pre-hypertrophic. Pre-hypertrophic chondrocytes express Pth-related protein 
receptor (PTHrP) as well as Indian hedgehog protein (Ihh). Pre-hypertrophic 
chondrocytes ultimately differentiate into hypertrophic chondrocytes and start 
expressing the matrix metalloproteinase 13 (Mmp13) and type X collagen (Sandberg 
et al., 1989). The formation of a perichondrium starts in the outer layer of aggregated 
MSCs, and at the centre of the callus, chondrocytes become hypertrophic 
(Kronenberg, 2003). Formation of a cartilage matrix gives greater stability to the 
callus which at this stage is also called a soft callus (Figure 4). 

 
Figure 4. Stages of chondrocyte differentiation. 

2.1.3.2 Osteogenesis 

Following the chondrocyte hypertrophy, the soft callus undergoes mineralization to 
form a hard callus made of woven bone along with vascularization (Barnes et al., 
1999; Dimitriou et al., 2005). Osteoblasts originate from different sources during 
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endochondral ossification. Earlier the prevailing understanding has been that the 
hypertrophic chondrocytes undergo apoptosis and osteoblast invade the callus from 
the perichondrium, from the pericytes or via differentiation of osteochondral 
progenitors from the vasculature (Colnot et al., 2004, 2005). However, several 
studies have provided evidence on the ability of hypertrophic chondrocytes to 
directly transdifferentiate into osteoblastic cells rather than undergoing apoptosis 
(Bahney et al., 2014; D. P. Hu et al., 2017; L. Yang et al., 2014; Zhou et al., 2014). 

MSCs differentiation into osteoblasts requires the expression of several specific 
genes. The crucial TFs regulating osteoblastogenesis are runt-related transcription 
factor 2 (Runx2), also known as core binding factor α1 (Cbfa1) (Komori et al., 1997), 
and Sp7/Osterix (Nakashima et al., 2002). A lack of either of those factors results in 
osteoblastogenesis failure and consequently no bone formation. Runx2 activates type 
I collagen (Col1a1), alkaline phosphatase (Alpl), bone sialoprotein (integrin binding 
sialoprotein, Ibsp), osteocalcin (bone gamma-carboxyglutamate protein, Bglap), and 
osterix (Sp7, Osx) genes (Florencio-Silva et al., 2015; Nishio et al., 2006). Osterix 
inactivation in preosteoblastic cells prevents osteoblastic differentiation (Akiyama 
et al., 2005). Runx2 is considered the main TF to determine the commitment of 
MSCs to osteoblastic lineage (Stein et al., 2004). Osteoprogenitors secreting Runx2 
and type I collagen proliferate and become pre-osteoblasts characterized by the 
secretion of alkaline phosphatase. After morphological changes, osteoblasts become 
mature osteoblasts and secrete osteocalcin, osteopontin, bone sialoprotein, and 
MMPs forming the ECM (Figure 5) (Florencio-Silva et al., 2015; Jensen et al., 
2010). 

 
Figure 5. Stages of osteoblast differentiation 

Mature osteoblasts are active cells with secretory vesicles, large Golgi apparatus, 
and a large rough endoplasmic reticulum. Osteoblasts secrete to the fracture site 
unmineralized connective tissue called osteoid which is rich in type I collagen and 
contains minor amounts of osteocalcin, osteopontin, bone sialoprotein, decorin, and 
biglycan. New woven bone forms once hydroxyapatite [Ca10(PO4)6(OH)2] deposits 
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mineralize the fibrillar type I collagen network (F. Long, 2011). The transition 
between mature osteoblastic cells towards the osteocytic cells, called 
osteocytogenesis, is accompanied by morphological and anatomical changes such as 
rough endoplasmic reticulum and Golgi apparatus decreases. Sclerostin, dentin 
matrix acidic phosphoprotein 1 (Dmp1), and podoplanin (E11/gp38 gene) are highly 
expressed in osteocytes (Florencio-Silva et al., 2015). Podoplanin protein is actively 
involved in osteocytogenesis, important in cytoskeletal development, and more 
specifically in the development of dendrites. The lacunocanalicular system connects 
osteocytes together and facilitates cell-cell communications as well as the transport 
of nutrients, oxygen, and signalling molecules (Florencio-Silva et al., 2015) (Figure 
5). Osteocytes are mature osteoblasts embedded into their secreted mineralized 
matrix. They are mostly star-shaped (Florencio-Silva et al., 2015). Osteocytes are 
the most abundant cell type found in bone tissue representing 90 to 95% of all bone 
cells. Osteocytes have a long lifespan (up to 25 years) compared to mature 
osteoblasts (about 150 days) (Tresguerres et al., 2020). Osteoblast can also become 
a bone lining cell if present at the surface of the bone or can even undergo apoptosis 
(F. Long, 2011). Bone lining cells are quiescent flat-shaped bone cells lining the 
bone tissue surface. These cells are present in the bone where no formation or 
resorption occurs, some have cytoplasmic processes for cell-cell communications 
reaching gap junctions and caniculi. Their function is not well understood but can be 
involved in osteoclast differentiation by producing osteoprotegerin and Rankl 
similarly to osteocytes. They also have a role to prevent interactions between 
osteoclasts and bone matrix (Florencio-Silva et al., 2015). 

2.1.4 Intramembranous ossification 
Intramembranous ossification takes place side-by-side with endochondral 
ossification, mainly at the periosteum, progressing towards the fracture gap, to 
increase the stability of the callus (Marsell & Einhorn, 2011). This type of 
ossification requires the osteoblasts to directly differentiate from MSCs. The 
osteoblasts start forming new woven bone also called hard callus surrounding the 
soft callus tissue providing a greater mechanical stability to the fracture site. It was 
previously shown that inflammatory macrophages and osteomacs were crucial 
during endochondral ossification. Osteomacs are localised in bone lining tissues, 
therefore at the site of intramembranous ossification and have been found to enhance 
intramembranous ossification. Osteomacs produce anabolic factors to enhance 
osteoblast recruitment, maturation and function (Alexander et al., 2011). 
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2.1.5 Angiogenesis 
Blood supply is crucial for successful bone regeneration during endochondral 
ossification. During the early healing phase, blood is primarily provided by the 
hematoma which supplies the callus with the necessary cell populations (MSCs, 
immune cells, macrophages, white and red blood cells), nutrients, and oxygen. After 
soft matrix formation, the action of MMPs triggers vessel invasion into the callus 
(Dimitriou et al., 2005; Keramaris et al., 2008). Blood vessel invasion inside the 
cartilage matrix requires reorganization of the soft callus with the intervention of 
osteoclast-like cells. MMP9 and MMP13 facilitate blood vessels to transverse the 
soft callus and allow hypertrophic expansion (Thompson et al., 2015). Vascular 
endothelial growth factor (VEGF) is an angiogenic stimulator produced by 
hypertrophic chondrocytes which can also induce migration and differentiation of 
osteoblasts and osteoclasts (Brouwers et al., 2006). Fibroblast growth factor-2 (FGF-
2) and TGF-β1 are important cytokines which were shown to stimulate the 
expression of VEGF (Saadeh et al., 1999, 2000). MMP9 and MMP13 or VEGF 
deficiency lead to a delay in endochondral ossification (Gauci et al., 2019). 
Angiopoietin 1 and 2 are expressed throughout the fracture healing process and 
contribute to the formation of large vessels as well as collateral branches (Dimitriou 
et al., 2005). 

2.1.6 Bone remodelling 
After the formation of a hard callus by osteoblasts, osteoclasts are constantly 
resorbing the callus. In human, a complete remodelling of the fractured area may 
take several years. However, bone remodelling per se is a continuous process to 
ensure the maintenance of bone function (W. Wang & Yeung, 2017). The bone 
remodelling process is a balance between hard callus resorption mainly driven by 
osteoclasts and lamellar bone formation driven by osteoblasts (Marsell & Einhorn, 
2011). 

The proliferation and differentiation of osteoclasts are driven by Macrophage 
Colony-Stimulating Factor (M-CSF) also known as Colony-Stimulating Factor 1 
(Csf1). M-CSF is secreted by numerous cells such as osteoblasts, osteocytes, and 
bone lining cells but also by monocytes, fibroblasts, endothelial cells, and tumour 
cells (Chockalingam & Ghosh, 2014). After being excreted, M-CSF binds to its 
receptor (CSF1R). M-CSF is highly expressed in osteoclast precursors and activates 
their differentiation towards multinucleated osteoclasts. Microphthalmia-associated 
transcription factor (Mitf) and PU.1 are expressed throughout all stages of 
osteoclasts differentiation. Mitf, and PU.1 act together to activate tartrate-resistant 
acid phosphatase gene expression (Tracp, Acp5) (Soltanoff et al., 2009). Nuclear 
Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells (NF-kB) induces 
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Tracp expression in osteoclast precursors (Q. Zhao et al., 2007). TNF (ligand) 
superfamily, member 11 (TNFSF11, Rankl) is mainly produced by osteocytes to 
form mature osteoclasts and activates its adaptor called TNF receptor-associated 
factor 6 (Traf6) and nuclear factor of activated T cells 1 (Nfatc1) important for 
terminal osteoclast differentiation (Soltanoff et al., 2009). Cathepsin K may have a 
role in osteoclast apoptosis, together with Tracp and calcitonin receptors which are 
considered markers of mature osteoclasts (Soltanoff et al., 2009) (Figure 6). 

 
Figure 6. Stages of osteoclast differentiation. 

Osteocytes act as mechanosensors by detecting pressure on the skeleton and 
transmit signals to osteoblasts and osteoclasts by releasing cell mediators to control 
their differentiation and activation (Goldring, 2015). After mechanical or 
biochemical signalling osteocytes produce Rankl to activate osteoclastogenesis. 
Furthermore, mechanical loading and unloading affect the Sclerostin expression in 
osteocytes by regulating the expression of Rankl and osteoprotegerin (OPG) among 
others. Rankl activates osteoclastogenesis, while OPG represses osteoclastogenesis 
by competitively binding to Rankl, therefore, repressing Rank/Rankl interaction 
(Palumbo & Ferretti, 2021). 

2.2 Non-coding RNAs 
The majority of non-coding RNAs were for long classified as ‘junk’ RNAs or 
degraded mRNA molecules. They include a large variety of RNA classes such as 
ribosomal RNAs (rRNAs), transfer RNAs (tRNAs) long non-coding RNAs 
(lncRNAs), small interfering RNAs (siRNAs), circular RNAs (circRNAs), small 
nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), piwi-interacting RNAs 
(piRNAs), miRNAs, and more recently discovered tsRNAs and ribosomal-derived 
small RNAs (rsRNAs). This review focuses on miRNAs and tsRNAs as they were 
the research topic of this thesis study (Slack & Chinnaiyan, 2019). 
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2.2.1 MicroRNAs 
MiRNAs are abundant and widely conserved through evolution. They are small 
single-stranded, about 22 nucleotides long, non-coding RNA molecules. Mostly, 
they target the 3’ untranslated region (UTR) of the mRNAs to induce translational 
repression or degradation depending on the extent of complementarity with their 
targets (Bartel, 2004). The translational repression of the mRNA is less effective if 
the miRNA binds to the coding region of the mRNA; possibly due to competition 
with the ribosomal complex (Gu et al., 2009). After their discovery, a miRNA 
database was established (miRBase) (Kozomara & Griffiths-Jones, 2014). Database 
version 22.1 from January 2019 contains 38589 entries for hairpin precursor 
miRNAs and 48885 mature miRNAs in 271 species (http://www.mirbase.org/). The 
first miRNA was identified in 1993 (R. C. Lee et al., 1993) from Caenorhabditis 
elegans during larval development. Since then, miRNA expression has been 
associated with practically all biological processes, including organ and tissue 
development and diseases e.g., osteoarthritis (OA), cancer, and in chondro-, and 
osteosarcomas (Engin, 2017; Husain & Jeffries, 2017; Maurizi et al., 2018; Oliveto 
et al., 2017; Oliviero et al., 2019; Palmini et al., 2017; Scimeca & Verron, 2017; 
Tahamtan et al., 2018; J. Wang et al., 2018; Weiner, 2018; C. X. Yu & Sun, 2018). 

2.2.1.1 Biogenesis and function of microRNAs in mammals 

MicroRNAs originate from intergenic, intronic, polycistronic, mirtrons or even from 
exonic regions Figure 7 (Ha & Kim, 2014). In animals, miRNA genes are present in 
all except male chromosomes. A pri-miRNA is transcribed by RNA polymerase II 
or III (Borchert et al., 2006; Y. Lee et al., 2004). Primary miRNAs (pri-miRNAs) 
are capped and polyadenylated, presenting a hairpin-like structure. Drosha (RNase 
III-type enzyme) in association with DiGeorge syndrome critical region 8 (DGCR8) 
co-factor are together called the microprocessor. This microprocessor is responsible 
for the trimming of the pri-miRNA and consequently for the formation of about 70 
nucleotides long hairpin precursor-miRNA (pre-miRNA). Pri-miRNAs originate 
from mirtrons (by-products of intron splicing) by-pass the Drosha-DGCR8 step but 
instead, the pre-miRNA is generated through mRNA splicing. 

Then, the pre-miRNA is exported to the cytoplasm through the Exportin 5 
transporter and RAs-related Nuclear protein (RAN-GTP) to be processed by Dicer 
(RNase III-type enzyme) in association with its co-factor Trans-Activation-
Responsive (TAR) RNA-binding protein 2 (TRBP2). Together they trim the pre-
miRNA terminal loop into a duplex miRNA (miRNA-miRNA*) of about 20 base 
pair (bp). The miRNA duplex will be bound by an Argonaute (AGO) protein which 
is part of a multiprotein complex called RNA-induced silencing complex (RISC). 

http://www.mirbase.org/
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Figure 7. Canonical miRNA biogenesis pathway. The miRNA biogenesis requires multiple steps 

starting from the nucleus where the miRNA precursors are processed by Drosha and 
DGCR8. Then, miRNA precursors are exported to the cytoplasm through the Exportin 5 
and processed by Dicer, TRBP, and by the RISC complex. Following those steps, the 
mature miRNA will recognize and bind to its target mRNA in association with the RISC 
complex. m7G: 5′-end capping with 7-methyl guanosine, A(n): poly-A mRNA tail, ORF: 
Open Reading Frame, pri-miRNA: Primary-miRNA, pre-miRNA: precursor-miRNA, 
DGCR8: DiGeorge syndrome critical region 8, TRBP: RNA-binding protein, Ago: 
Argonaute protein, miR*: Passenger miRNA, RISC: RNA-induced silencing complex. 



Review of the Literature 

 29 

Next, the guide strand of the miRNA duplex will be incorporated into the 
microRNA-induced silencing complex (miRISC) complex whereas the passenger 
strand (miR*) is released. The passenger strand is the complementary strand from 
the pre-miRNA molecule. The miR* strand is either degraded or incorporated into 
another miRISC complex (Beermann et al., 2016; Ha & Kim, 2014; Krol et al., 
2010). The strand selection follows the thermodynamic asymmetry rule. The 5’ends 
of miRNAs tend to possess a Uracyl (low thermodynamic stability) whereas 3’ends 
of miRNAs tend to possess a Cytosine (high thermodynamic stability). As a 
consequence, the miRISC complex will favoured the less thermodynamically stable 
strand over the high thermodynamically stable (Hutvagner, 2005; Medley et al., 
2021). Following the maturation process, occurring in the nucleus and the cytoplasm, 
the mature miRNA will finally be able to silence the targeted mRNAs. Target 
recognition is triggered by the seed sequence of a mature miRNA (nucleotides 2 to 
8 from the 5’ end) within 3´ UTR of the targeted mRNA, dictated by Watson-Crick 
pairing (Lewis et al., 2005). 

MiRNAs are also present in the nucleus (Khudayberdiev et al., 2013; H. Liang 
et al., 2013; Liao et al., 2010; C. W. Park et al., 2010). Nuclear miRNAs induce post-
transcriptional gene silencing, transcriptional gene silencing, gene activation, and 
modulation of alternate splicing (Roberts, 2014). Recently miRNAs were shown to 
regulate the maturation of other miRNAs; miR-709 negatively regulates miR-15a 
and miR-16-1 in mice in the nucleus by targeting the pri-miRNA (R. Tang et al., 
2012). 

2.2.1.2 Nomenclature 

Regarding the miRNA nomenclature, it is important to avoid any confusion between 
species and types of miRNAs. MicroRNAs of animal origin are annotated with a ``-
´´ (e.g., miR-1 for Homo sapiens and miR161 for Arabidopsis thaliana). Precursor 
animal miRNAs are annotated in lowercase and italics (e.g., mir-1) whereas when 
the letter ``r´´ is capitalized it means that the miRNA is matured (e.g., miR-1). For 
plants, when all letters are capitalized and in italics, it refers to the gene(s) necessary 
for the miRNA biosynthesis (e.g., MIR161). When the same mature miRNA 
sequence is shared between different species then a three-letter prefix is attached to 
the miRNA name (e.g., mmu-miR-16 and hsa-miR-16) where ``mmu´´ stands for 
Mus musculus and ``hsa´´ stands for Homo sapiens. When two pre- or pri- miRNAs 
produce a similar mature miRNA sequence, the mature miRNA is annotated with a 
number (e.g., mmu-miR-194-1 from chromosome 1 and mmu-miR-194-2 from 
chromosome 19). Two evolutionary-related miRNAs with similar sequences are 
annotated with a small letter (e.g., mmu-miR-181a and mmu-miR-181b). When two 
mature miRNAs originate from opposite arms of the common pre-miRNA, the 
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mature miRNA will be annotated with a ``-5p´´ or a ``-3p´´ suffixes; the two mature 
miRNAs have different sequences and therefore different targets (Ambros et al., 
2003). Most likely one mature miRNA will be more abundant than the other, an ̀ `*´´ 
will be added to the least abundant mature miRNA to differentiate them (e.g., mmu-
miR-127-5p* and mmu-miR-127-3p) also known as passenger strand. Nonetheless, 
it also happens that both mature miRNAs are equally represented in the cell as a co-
maturation (Beermann et al., 2016; Fromm et al., 2015; Ha & Kim, 2014; Krol et al., 
2010). 

2.2.1.3 Regulation of microRNA expression 

MicroRNA expression is regulated by multiple mechanisms. The first obvious type 
of regulation is linked to random mutations occurring in genes coding for Drosha, 
DGCR8, Exportin 5, Dicer or TRBP. Such mutations, disturbing the microRNA 
processing, were previously linked to generate cancers (A. Hata & Kashima, 2016). 
Another mechanism for miRNA regulation is their biological half-life partially 
depending on the percentage of adenosine and uracyl nucleotides, in the miRNA 
sequence. Several enzymes such as mitochondrial poly(A) polymerase (MTPAP), 
poly(A) RNA polymerase D4 (PAPD4), poly(A) RNA polymerase D5 (PAPD5), 
zinc finger CCHC-type containing 6 (ZCCHC6), zinc finger CCHC-type containing 
11 (ZCCHC11), and terminal uridylyl transferase 1 (TUT1) are known to destabilize 
the mature miRNA, by adding nucleotides to the 3’ end. Some molecules, however, 
protect mature miRNA from degradation such as AGO itself which increases 
miRNA half-life when overexpressed. MicroRNA editing could affect the half-life 
of the molecule as well as target recognition. Adenosine deaminases were found to 
edit mature as well as pri-miRNAs by transforming the adenosine to inosine (A-to-
I), and therefore potentially can affect the miRNA seed sequence crucial for target 
recognition (Gebert & MacRae, 2019; Gulyaeva & Kushlinskiy, 2016). 

Depending on their genomic location, miRNAs are classified as intergenic or 
intragenic. Furthermore, intragenic miRNAs are found in intronic, exonic or junction 
locations or even in the antisense strand of a gene. Intragenic miRNA expression is 
sometimes co-expressed with their host gene, where the miRNA is encoded. 
Particularly, this co-expression happens when the miRNA does not possess a 
promoter on its own. MicroRNAs originating from mirtrons belong to this category. 
Co-expressions have been described in several microarray analyses between miRNA 
and their host genes (Baskerville & Bartel, 2005; Luedde, 2010; Ronchetti et al., 
2008). This co-expression is the result of crosstalk between the RNA splicing 
complex and the miRNA microprocessor complex (Agranat-Tamir et al., 2014; B. 
Liu et al., 2018). It was reported that co-expression is less likely to happen for 
evolutionary less-conserved miRNAs (He et al., 2012). 
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On the other hand, competition occurs in some cases between the microprocessor 
and the spliceosome. This is found when the miRNA originates from the junction 
site. In cases of competition, the spliceosome complex does not recognize the exon, 
and instead, the microprocessor complex binds to the RNA transcript and generates 
a pre-miRNA skipping the exon in mRNA production. In some cases, the exon is 
processed by the spliceosome complex before the miRNA microprocessor 
recognizes the miRNA promoter. Therefore the pre-miRNA is not generated, and 
instead, the spliced variant containing the alternative exon is produced (Melamed et 
al., 2013; Q. Sun et al., 2020). 

Intra- and intergenic miRNA expression is regulated by the expression of TFs 
binding to the regulatory elements of the pre-miRNA (when present) (Arora et al., 
2013). Alternative processing from Drosha and Dicer could affect miRNA length 
and/or sequence and ultimately generate an isomir, which is a variant of a miRNA. 
Isomirs may ultimately recognize a different target than the original miRNA (Gebert 
& MacRae, 2019). Long non-coding RNAs have been reported to interact with 
miRNAs by binding on the mature miRNA molecule to ultimately prevent the 
miRNA-mRNA binding (López-Urrutia et al., 2019; Tornesello et al., 2020). 
Similarly, circRNAs have been reported to sequester miRNAs in cervical cancer 
tissues (Tornesello et al., 2020). 

Also, multiple other factors such as methylation of miRNA promoters, 
hormones, stress factors, anoxia or xenobiotics affect miRNA expression (Gulyaeva 
& Kushlinskiy, 2016). 

2.2.1.4 Evolution 

MicroRNAs are widely expressed in plants and throughout the metazoan group 
comprising all multicellular animals (Cui et al., 2017; Wheeler et al., 2009). Some 
miRNA families are highly conserved amongst animal taxa. For example, the mir-
200 family (miR-200a, miR-200b, miR-200c, miR-141, and miR-429) is highly 
conserved within the Animalia kingdom. The mir-200 family is divided into two 
gene clusters; the tricistronic miR-200a/200b/429 transcribed from a common 
promoter located on mouse chromosome 4 and human chromosome 1p36 and the 
bicistronic miR-200c/141 also transcribed from a common promoter located on 
mouse chromosome 6 and human chromosome 12p13 (Trumbach & Prakash, 
2015). Those two clusters differ by one nucleotide located at position 4 on the 
miRNA seed sequence. The same miRNA family specifically from the bicistronic 
cluster is found in Drosophila melanogaster under the name of miR-8. Due to this 
nucleotide difference, the two groups have different targets but also have some 
common targets. Any mutation in the seed sequence will result in a different 
miRNA name with different target recognition. This miR-200 miRNA family was 
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found to regulate neurogenesis throughout all taxa (Trumbach & Prakash, 2015). 
It was shown that the evolution of miRNAs is very slow across the metazoan group 
and therefore they are highly conserved. For the last 800 million years, the 
acquisition of new miRNAs remained constant, mostly erupting by gene 
duplication, seed shifts, and 5’ edits from pre-existing miRNAs with a minimal 
miRNA loss (Wheeler et al., 2009). 

2.2.1.5 Functions in fracture healing 

The role of miRNAs is under constant investigation. A convenient way to evaluate 
their role, in general, is to perform a conditional knockdown of Dicer under a specific 
promoter. Dicer is an essential enzyme for miRNA biogenesis and therefore for cell 
differentiation and survival. The role of Dicer has been evaluated at different post-
embryonic stages and in adult mice (Bendre et al., 2018; Bernstein et al., 2001, 2003; 
Finnegan & Pasquinelli, 2013; Gaur et al., 2010; Mizoguchi et al., 2010). Dicer 
deletion in embryos triggers skeletal malformation. These studies indicate that 
miRNAs are important regulators of bone homeostasis and skeletal tissue 
maintenance. In 2006, mir-140 was found to be enriched in cartilage and involved in 
the formation and maintenance of cartilage by targeting histone deacetylase 4 
(Hdac4) in mouse embryos (Tuddenham et al., 2006). Cartilage is an important tissue 
for skeletal development and fracture healing as it forms an anlage for the 
endochondral ossification of future bone tissue. 

MicroRNAs are expected to regulate all steps of fracture healing including 
angiogenesis, chondrogenesis, and bone formation and resorption. Angiogenesis was 
found to be inhibited by miR-222 which targets c-Kit and therefore represses 
endothelial cells proliferation and migration and capillary density (Groven et al., 
2021; Komatsu et al., 2021). Angiogenesis was found to be repressed by miR-92a, 
which decreases blood vessel density. Injection of anti-miR-92a combined with anti-
miR-335-5p enhanced fracture healing in rats (Komatsu et al., 2021). 

Bone tissue is under permanent remodelling via a balance between formation 
(osteoblast-mediated) and resorption (osteoclast-mediated). Numerous miRNAs 
have been reported to play a major role in the maintenance of this balance. For 
instance, miR-455-3p, miR-455-5p, miR-133, miR-433, miR-217, miR-375, miR-
505, and miR-497 were found to directly target and inhibit Runx2 expression and 
therefore inhibit osteogenesis (Groven et al., 2021; Nugent, 2017; Xiao et al., 2018; 
Z. Zhang et al., 2015). In C2C12 myoblast cells, miR-214-3p inhibits osteoblast 
differentiation by targeting Sp7/Osx expression (K. Shi et al., 2013). In addition, 
miR-214 inhibits osteogenesis by targeting the activating transcription factor 4 (Atf4) 
and enhances osteoclastogenesis by targeting phosphatase and tensin homolog 
(Pten) (X. Wang et al., 2013; C. Zhao et al., 2015). MiR-144-3p targets SMAD 
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family member 4 (Smad4) and therefore inhibits osteogenic differentiation and 
proliferation in C3H10T1/2 cells (Huang et al., 2016). 

2.2.2 Bioinformatics tools to study miRNA target prediction 
Several bioinformatics tools have been designed to identify putative miRNA-mRNA 
interactions based on the miRNA seed sequence and mRNA 3’ UTR. TargetScan, 
miRanda, and DIANA microT are amongst the most popular tools to identify new 
miRNA-mRNA duplex interactions. TargetScan has been identified as the most 
reliable tool as it takes into account if the interaction is conserved, its database 
includes mRNA isoforms, and its database is up to date (Riffo-Campos et al., 2016). 
It is still advised to use a combination of several tools to predict miRNA-mRNA 
interactions as different tools have different algorithms. 

Although miRNA-mRNA interactions can be predicted by several tools, a large 
number of false positives are predicted, possibly due to the complex mechanisms 
existing between miRNA and target recognition but also most likely due to all 
possible post-transcriptional miRNA modifications. 

2.2.3 Transfer RNA-derived small RNAs 
Transfer RNAs were first described in Escherichia coli in response to bacteriophage 
infection (Levitz et al., 1990). Transfer RNAs are part of the most abundant group 
of non-coding RNAs with a size ranging from 73 to 90 nucleotides harbouring a 
“clover leaf”-shaped secondary structure. In complement to cytoplasmic tRNA, 
mitochondrial tRNAs are small in size and enriched in adenine and uracil 
nucleobases affecting their stability. In brief, their canonical role is crucial in the 
translational machinery by delivering amino acids to ribosomes to translate the 
genetic information into an mRNA template. The structure of a tRNA molecule 
contains a T-loop, a variable loop, an anticodon loop, and a D-loop (see Figure 8) 
(Kirchner & Ignatova, 2015; S. Li et al., 2018; Schimmel, 2018). Non-canonical 
roles of tRNAs were suggested in response to a cellular stress event including post-
transcriptional mRNA regulations (Torres et al., 2019; Tosar et al., 2021). These 
non-canonical functions are supported by the differential abundance observed 
between tsRNAs and parental tRNA molecules (Torres et al., 2019). 

For decades tsRNAs were considered as degradation products from tRNA 
molecules while recent studies have shown that they also are important in the 
regulation of tissue metabolism (Ivanov et al., 2011; H. K. Kim, 2019; Kumar et al., 
2016; S. Li et al., 2018; Mleczko et al., 2018; Oberbauer & Schaefer, 2018; Pandey 
et al., 2021; J. Park et al., 2020; Sharma et al., 2016). 
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A total of 401 highly confident mature tRNAs and 22 mitochondrial tRNAs are 
documented in GtRNAdb for the mouse genome (http://gtrnadb.ucsc.edu/) 
(Thornlow et al., 2020). 

2.2.3.1 Biogenesis 

The nuclear pre-tRNA molecule is transcribed by RNA polymerase III and 
undergoes numerous post-transcriptional modifications such as 5’ end trimming by 
RNase_P and 3’ end trimming by RNase_Z as well as CCA addition at the 3’ 
terminus by tRNA nucleotidyl transferase 1 (Trnt1) (Cao et al., 2020; Hopper & 
Nostramo, 2019). Most modifications are required for tRNA stabilization which 
potentially also affects the biogenesis of tsRNAs. The pre-tRNA molecule is then, 
folded in a “clover-leaf” shape. According to the tRNA/pre-tRNA molecule cleavage 
site, tsRNAs are classified into several categories (Figure 8). 

RNA Z cleaves pre-tRNA molecule into tRNA-fragment type-1 (1-tRFs), also 
called 3’U tRFs, 1-tRF molecules do contain a poly-U tail (S. Li et al., 2018). 1-tRF 
fragments are produced in the nucleus and exported to the cytoplasm by an unknown 
mechanism (Kumar et al., 2016). 

Cleavage of the D-loop and T-loop of the tRNA molecule results in 5-tRFs and 
3-tRFs, respectively. According to their length, they are classified with small letters 
(a, b or c) (Figure 8). Their processing enzymes are still under debate as Dicer was 
first thought to be the main enzyme processing the 3-tRF and 5-tRF fragments. 
However, studies have shown that Dicer depletion does not affect the expression of 
3-tRFs or 5-tRFs (Cao et al., 2020). Later, a ribonuclease A family member 
angiogenin (ANG) was found to be the processing enzyme which cleaves mature 
tRNA to generate 3-tRF and 5-tRF fragments. (Cao et al., 2020; S. Li et al., 2018; Z. 
Li et al., 2012; J. Park et al., 2020). ANG has multiple functions besides regulating 
nucleic acid metabolism such as being involved in vascularization, immune 
responses, and tumorigenesis (Sheng & Xu, 2016). 

The internal tRNA fragment (itRF) contains one-half of D-loop with its arm and 
one part of the anticodon arm with half of the anticodon loop. 2-tRFs, also 
originating from the internal structure of the tRNA molecule, contain anticodon 
stems and loop, but their endonuclease is unknown. (Cao et al., 2020).  

http://gtrnadb.ucsc.edu/
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Figure 8. Biogenesis of tsRNAs from pre-tRNA molecule in the nucleus and mature tRNA 

molecule in the cytoplasm. Rnase Z cleaves pre-tRNA to generate 1-tRF fragments. 
Endonucleases (Angiogenein (ANG) and possibly Dicer) cleave mature tRNA to 
generate 3’tRFs, and 5’tRFs. The naming of 3’ and 5’tRFs depends on their cleavage 
sites: D-loop (5a-tRF), T-loop (3b-tRF), T-stem (3a-tRF), full D-loop including both arms 
of the D-stem (5b-tRF) or one arm of the anticodon stem (5c-tRF). 2-tRFs contain the 
anticodon loop and are generated from the mature tRNA by an unknown endonuclease. 
The itRF fragments originate from the internal part of mature tRNA containing one arm 
of the T-loop and one arm from the anticodon loop. Angiogenin (ANG) is a ribonuclease 
involved in the generation of 3’ and 5’ tiRNAs. Modified from Qin et al., 2020 (C. Qin et 
al., 2020). 

Under cellular stress such as damage, infection or toxin exposure, ANG cleaves 
the tRNA molecule at the anticodon loop resulting in two tRNA halves which are 
also known as tRNA-derived stress-induced fragments (tiRNAs) (Saikia & 
Hatzoglou, 2015). TiRNAs have a size ranging from 28 to 36 nt and originate from 
the 5’ end or 3’ end of the tRNA molecule with a CCA end if originating from the 
3’ end. Under homeostatic conditions, ANG remains inactive due to its high 
affinity with RNase inhibitor 1 (RNH1). Under stress conditions, however, ANG 
dissociates from RNH1 and becomes active resulting in tRNA cleavage. It is 
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speculated that ANG might not be the only endonuclease-producing tiRNA 
fragments as tiRNATyr fragments were not produced after tissue starvation or 
ANG overexpression (Fu et al., 2009; Krishna et al., 2019; Saikia & Hatzoglou, 
2015; Su et al., 2019). It is still unknown in which conditions ANG is acting but it 
could be cell-specific or depend on the nature of stress conditions. Altogether, it is 
plausible that tRF but also tiRNA fragments have different biogenesis pathways 
depending on their cellular locations. 

Transfer RNAs are mostly affected by post-transcriptional modifications which 
give better stability to the tRNA but can also impact ribosomal interactions and 
facilitate the “clover leaf”-shaped secondary structure. One specific modification is 
the 5-methyl cytosine (m5C) which is triggered by DNA methyltransferase 2 
(Dnmt2) and NOP2/Sun RNA Methyltransferase 1-6 Nsun1-6. TiRNA biogenesis 
rate was enhanced in Nsun2-deficient mice thereby suggesting that modification by 
5’ methylation of cytosine protects tRNA from cleavage by ribonucleases (Krishna 
et al., 2021). In agreement with that observation, the demethylation of tRNA 
molecules by AlkB Homolog 3, Alpha-Ketoglutarate Dependent Dioxygenase 
(ALKBH3) was shown to increase tsRNA production (Z. Chen et al., 2019). Other 
modifications such as pseudouridylation, or queuosine at the anticodon by 
substituting guanine were shown to impact the production and/or function of 
tsRNAs. Pseudouridylation was shown to be required for translational control in 
stem cells by targeting specific 5’ tRFs (Guzzi et al., 2018). Queuosine modification 
at the tRNA molecule was shown to protect the tRNAHis and tRNAAsn from ANG 
cleavage and therefore reduce their fragment expressions in human cells (X. Wang 
et al., 2018). 

2.2.3.2 Functions 

With the use of high-throughput sequencing technology and bioinformatics, tsRNAs 
have been recently identified in a wide variety of cells and organisms and have a 
great variety of functions in cellular metabolism. They were discovered to be 
regulators of mRNA stability in a miRNA-fashioned way, epigenetic regulators by 
targeting retrotransposons, controlling RNA reverse transcription, inhibiting 
translational inhibition and elongation, and preventing apoptosis by binding on 
cytochrome C (Figure 9) (S. Li et al., 2018). 
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Figure 9. Identified functions of tsRNAs. 

Under cellular stress, especially under alkaline stress conditions, Val-tRF has 
been found to inhibit mRNA translation by competing with ribosome binding 
(Gebetsberger et al., 2017). 5’ tsRNA have been reported to inhibit the translation of 
targeted mRNAs into protein (Sobala & Hutvagner, 2013). 3-tRFs and 5-tRFs were 
reported to act similarly to miRNAs by promoting the degradation of their target 
mRNAs. For example, tRNAGly-GCC was found to have an affinity with all four 
human AGO proteins and destabilize mRNA by binding on 3’UTR of the 
Replication Protein A1 (RPA1) gene similarly to miRNAs (Maute et al., 2013). 
Similarly to miRNAs, tRFs can regulate gene expression by incorporating into AGO 
protein. Larger tsRNAs (26-34 nucleotides) were found to behave like piRNAs, by 
interacting with Piwi proteins and therefore have a potential role in translation 
regulation in human breast cancer cells (Keam et al., 2014). Also, direct post-
transcriptional regulation of mRNA has been observed between tsRNAs and mRNAs 
based on sequence complementarity (Krishna et al., 2019). 

TiRNAs have slightly different functions, compared to tRFs, partially due to 
their size (28-36 nt). 5’tiRNAs can bind on Y-Box Binding Protein 1 (YBX1) and 
enhance the formation of stress granules. They were also found to bind on 
Eukaryotic Translation Initiation Factor 4A,G (eIF4G/eIF4A) to inhibit cap-
dependent mRNA translation. In addition, 5’ tiRNAs were reported to inhibit 
mRNA expression via different mechanisms than tRFs without the need for 
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sequence complementarity (Pandey et al., 2021; Sobala & Hutvagner, 2013). Also, 
tiRNAs preferentially load into Ago3, due to their larger size and therefore behave 
like piRNAs, they were also found to load into Ago1 and Ago2 like miRNAs (Chai 
et al., 2021; Krishna et al., 2021; Tao et al., 2021). Taken together, under stress, 
tiRNAs with or without the cooperation of YBX1 inhibit translation as a possible 
protecting mechanism against stress conditions (Emara et al., 2010; Ivanov et al., 
2011, 2014; S. Li et al., 2018). TiRNAs have been found to competitively bind on 
the RNA-binding protein YBX1 and therefore destabilize oncogenic targets of 
YBX1 (Krishna et al., 2021). 

Furthermore, tsRNAs have been found to inhibit the expression of 
retrotransposons. Retrotransposons are genetic elements which are found in several 
genomic locations resulting from a mechanism of reverse transcription. In contrast, 
transposons result from the action of transposases by moving a transposable element 
from one genomic location to another (J. Park et al., 2020). Retrotransposons are 
classified into two categories: long terminal repeats (LTRs) and non-LTR including 
short interspersed nuclear elements (SINEs) and long interspersed nuclear elements 
(LINEs) (Mita & Boeke, 2016). Retrotransposons are responsible for genomic 
reorganization and potentially creating genetic diseases. If retrotransposons become 
active and inserted inside a coding region of the genome they can alter the target 
gene expression (Mita & Boeke, 2016). Retrotransposons can create genetic 
disruptions after being inserted in an exon, intron, promoter, enhancer, or even 
UTRs, and they are also able to create new exons (exonisation) and block 
transcription once methylated (Figure 10). In humans, retrotransposon DNA 
sequences compose even about 35 % of the genome (Gorbunova et al., 2021). In 
mammals, LTRs derive from the endogenous retroviruses (ERV) superfamily and 
represent about 8% of the human genome. The same ERVs are further classified into 
sub-families with the most dominant being ERVL, ERVK, and ERV1 (Stocking & 
Kozak, 2008; Teissandier et al., 2019). 



Review of the Literature 

 39 

 
Figure 10. Principal functions of retrotransposons. A: Exon disruption resulting from a TE 

(transposable element) inserted inside an exon. The same could be true for introns, 
gene enhancer, gene promoter and UTRs; B: Exonisation which is the result of a TE 
incorporated, or not, inside a gene fragment, to form a new exon resulting in some 
possible alternative mRNA splicing; C: Epigenetic modifications which result in 
blockage of gene expression. Modified from Pradhan and Ramakrishna, 2022 and 
Savage et al., 2019 (Pradhan & Ramakrishna, 2022; Savage et al., 2019). 

Eighteen and 22 nucleotides long 3’ CCA-capped tsRNAs have been reported to 
inhibit the LTR translation by competitively binding to the primer binding site 
(Schorn et al., 2017). Indirectly, 5’ Gly-GCC tiRNA has been found to suppress gene 
transcription related to mouse endogenous retrovirus type-L (MERVL) LTR-
retrotransposon (Sharma et al., 2016). 3’ tsRNAs were found to competitively bind 
on the primer binding site of LTRs, therefore inhibiting the reverse transcription of 
LTRs by blocking the binding of the mature tRNA (J. Park et al., 2020). 
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3 Aims 

Recently, sncRNAs have been recognized as a novel group of factors that regulate 
body metabolism by interfering with gene expression in multiple and even non-
canonical ways. Their potential as tools in novel therapeutic approaches and 
biomarkers is under eager investigation and data is also emerging on their role in 
fracture healing. The development of genome-wide sequencing technologies have 
opened up novel and efficient possibilities to study these molecules in a broader 
spectrum in multiple tissues and pathological conditions. In this thesis project, 
genome-wide sequencing approach was utilized to study the expression profiles of 
small non-coding RNAs (sncRNAs) during fracture healing focusing mainly on 
tsRNAs and miRNAs. Also, the relationship between DE miRNAs and mRNAs was 
investigated. Furthermore, retrotransposons were studied as they have been shown 
to interact with tsRNAs and their connection with fracture healing process has not 
been studied before. 
 
The specific aims were to 

1. Carry out genome-wide profiling of mRNAs and sncRNAs in normal cartilage 
and bone, as well as in callus tissue during early fracture healing in mice. 

2. Study the effect of bone fracture on the expression profiles of sncRNAs, 
including tsRNAs and miRNAs, during fracture healing from callus tissue in 
comparison to healthy bone and articular cartilage. 

3. Identify miRNA – mRNA target pairs potentially involved in the regulation 
of fracture healing. 

4. Identify sncRNAs from circulation after fracture to serve as biomarkers of 
fracture healing and potential systemic regulators. 

To address these aims, experimental closed tibial fractures were introduced to 
C57BL/6 male mice. Callus tissue and serum were collected during fracture healing 
and total RNA was isolated to carry out next-generation sequencing for genome-
wide expression analyses of mRNA and sncRNAs. 
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4 Materials and Methods 

4.1 Research material 

4.1.1 Animals (I, II) 
C57Bl/6N male mice were used in this study. At the age of two months (70 - 74 
days), a standard closed fracture on mouse tibia was performed under anaesthesia 
using an impact device and after drilling the cortical bone at the proximal head of 
the tibia, a stainless-steel rod was inserted for fracture stability (Hiltunen et al., 1993; 
Puolakkainen et al., 2017). When collecting the samples, mice were euthanized using 
CO2 overdose and blood samples were taken by cardiac puncture. Further, post-natal 
10-day old male mice (P10) were used in this study. Mice received a soya-free diet 
and water ad libitum. 

4.1.2 Ethics (I, II) 
The study plan and use of animal material were approved by the National Animal 
Experiment Board ELLA (project license ESAVI/6129/04.10.03/2011) and animal 
care was in accordance with their guidelines following 3R’s (Replacement, 
Reduction, and Refinement) principles. Animals were maintained in the Central 
Animal Laboratory of the University of Turku. 

4.1.3 Samples (I, II) 
Samples were collected from two months old control mice (D0, serum, tibial 
diaphyseal bone and hip articular cartilage), as well as from mice with a fracture at 
D1 (serum samples), and at D5, D7, D10 and D14 (serum and callus samples) Figure 
11 and Table 1. In addition, epiphyseal cartilage was collected from 10-days old 
male mice for the quantitative polymerase chain reaction (qPCR) normalization 
analysis of miRNAs (I, Supplemental File 1). 
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Figure 11. Schematic representation of the workflow procedure for the sample collection. X-

ray image of an operated hind limb at D14 post-fracture from 2month old male mouse. 
Intact hip articular and knee epiphyseal cartilage, epiphyseal, metaphyseal and 
diaphyseal bones were collected from intact mice (control) and screened by next-
generation sequencing or qPCR. Serum samples from intact mice (D0, control) were 
also collected. nt: nucleotide. D: Day. 

Table 1. Samples collected for genomics analyses. 

Samples Time points Analyses Study 
Tibial diaphyseal bone D0 (n=4) small RNAseq (n=4) I 
Tibial diaphyseal bone D0 (n=4) RNAseq (n=4) I 
Callus D5 (n=3), D7 (n=5), D10 (n=4), and 

D14 (n=2) 
small RNAseq I 

Hip articular cartilage D0 (n=3) small RNAseq I 
Callus D7 (n=4) and D14 (n=4) RNAseq I 
Serum D1 (n=4), D5 (n=4), D7 (n=4), D10 

(n=4), and D14 (n=4) 
small RNAseq II 

Serum from intact mice D0 (n=3) small RNAseq II 
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4.2 Research methods 

4.2.1 Basic evaluation of the fracture model (I) 
Hind limbs were dissected by removing skin and excess fat and muscle tissue. X-ray 
imaging was performed to evaluate the position, state, and stability of the fracture 
after skin removal using Faxitron X-ray MX-20. Thereafter limbs were fixed 
overnight in 4% paraformaldehyde and decalcified in 10% Na2-EDTA, 0.1 M 
phosphate buffer, pH 7.0. Samples were embedded in paraffin and cut into 5 mm 
sections and stained with haematoxylin and eosin or Safranin-O. Slides were imaged 
for histological analysis using Pannoramic 250 Slide Scanner (3DHISTECH, 
Budapest, Hungary). 

4.2.2 Preparation of samples for RNA analyses (I, II) 
Basal (callus, bone, and cartilage) and blood samples were collected for RNA 
analyses to study RNA and smallRNA expression after fracture in mice (Figure 11, 
Table 1). 

4.2.2.1 Callus, bone, and cartilage samples (I) 

All samples were dissected free of surrounding muscle tissue, and removed under a 
stereomicroscope. After dissection, samples were snap-frozen into liquid nitrogen 
and stored at –80°C for later examination. For RNA isolation, tissues were 
pulverized at liquid nitrogen and homogenized in TRIsure (Bioline) usingULTRA-
TURRAX T 25 (Janke&Kunkel IKA Labortechnik). Subsequently, total RNA was 
isolated by the addition of phase separation reagents (chloroform and isopropyl 
alcohol). Total RNA concentration was measured using Nanodrop (Thermo Fisher 
Scientific). 

4.2.2.2 Serum samples (II) 

Blood samples were collected via cardiac puncture. After blood extraction, samples 
were allowed to clot for 60 minutes and centrifuged for 10 minutes at 3,000 x g. The 
supernatant was further centrifuged for 2 minutes at 3,000 x g to remove all cells and 
serum was snap-frozen into liquid nitrogen in 500 μl aliquots. Following the 
manufacturer’s instructions, the exosomes were isolated from serum samples using 
ExoQuick (System Biosciences, ref# EXOQ5A-1), and RNA fraction was isolated 
using miRNeasy Mini Kit (Qiagen, cat# 217004). RNA concentration was measured 
using Nanodrop (Thermo Fisher Scientific). 
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4.2.3 Quantitative real-time PCR analysis (I) 
Quantitative PCR analyses were performed using Bio-Rad instruments, models 
CFX384™ and CFX96™. 

Relative messenger RNA expression was quantified using SensiFAST ™ cDNA 
Synthesis kit (Bioline) for cDNA synthesis from 500 ng of total RNA followed by a 
qPCR step performed using DyNAmo Flash SYBR Green qPCR kit (ThermoFisher 
Scientific) with 10 ng of cDNA as a template. ΔCT was calculated using the 
geometric mean from Tubb_5 and Actb gene expression. 

Relative miRNA expression was quantified using miScript II RT Kit (Qiagen, 
cat# 218161) for reverse transcription step from 500 ng of total RNA followed by a 
qPCR step using miScript SYBR Green PCR Kit (Qiagen, cat#: 218073) with 10 ng 
of cDNA as a template. ΔCT was calculated using the geometric mean from a set of 
stable miRNAs including let-7g-5p, miR-98-5p, and let-7d-3p. MiRNAs stability 
was analysed in I, Supplemental file 2, Figure 6. 

4.2.4 Library preparation and sequencing (I, II) 
Small RNA libraries were prepared using TruSeq Small RNA Sample Preparation 
Kit (Illumina, USA) according to the manufacturer’s protocol and sequenced by 
MiSeq V3 flow cell using Illumina MiSeq reagent kit V3 (I, II). 

RNAseq was done using Illumina TruSeq® Stranded mRNA Sample Preparation 
Kit and Guide (part #15031047) for HS protocol using 300 ng of total RNA as a 
starting material and sequenced by the Illumina HiSeq3000 instrument. 

Sequencing was carried out at Turku Bioscience Centre, Turku, Finland (I). 

4.2.5 Bioinformatics (I, II) 
The pipeline used for bioinformatics analyses is summarized in Figure 12. All 
samples were subjected to quality control using FastQC version 0.11.5 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Raw sequence reads 
were trimmed using FASTX-Toolkit version 0.0.13 for Linux (32Bit). 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure 12. Simplified diagram of the bioinformatics pipeline for small non-coding next 

generation sequencing (NGS) data analyses. DEA: Differential expression 
analysis. FASTX-Toolkit (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), 
DESeq2 (Love et al., 2014), STAR (Dobin et al., 2013), miRDeep2 (Friedlander et al., 
2012), SPORTS (J. Shi et al., 2018), TEtranscripts (Jin & Hammell, 2018). 

4.2.5.1 Mapping and alignment of long RNA sequences (I, II) 

Trimmed sequences were mapped to the mm10 genome using STAR version (v. 
2.4.2a) (Dobin et al., 2013b) and aligned using the subreads package (v. 1.5.0) in R 
(v. 3.0.1). In addition, repeatable elements (including retrotransposons) were 
mapped using STAR (v. 2.7.3) (Dobin et al., 2013b) with recommended parameters 
–outFilterMultimapNmax 100 and –outAnchorMultimapNmax 100 and aligned 
using TEtranscripts (v. 2.2.1) (Jin & Hammell, 2018). Location information of 
transposable was downloaded from UCSC and provided by RepeatMasker (Smit, 
AFA, Hubley, R & Green, P. RepeatMasker Open-4.0. 2013-2015 
<http://www.repeatmasker.org>). 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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4.2.5.2 Mapping and alignment of small non-coding RNA sequences (I, 
II) 

Size distribution profiles of the small RNAs falling within the fraction size range of 
15 to 36 nucleotides selected for library preparation were analysed in the callus and 
control bone samples (Figure 13). Most of the reads were annotated as miRNAs and 
tsRNAs. A small proportion was rsRNAs and no reads belonging to YRNA-derived 
fragments category were detected. YRNA-derived fragments range between 22-36 
nucleotides mostly present in human tissues (Dhahbi, Spindler, Atamna, Boffelli, et 
al., 2013; Guglas et al., 2020). 

 
Figure 13. Distribution of the small RNA reads by size. Average Reads per million (RPM) (A): 

in control tibial diaphyseal bone (D0, 2 months old mouse) (n = 4); (B) in callus tissue 
at D7 post-fracture (n = 5) and (C): in callus tissue at D14 post-fracture (n = 2). 
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For miRNA analysis, trimmed sequences were mapped to the reference genome 
(mm10) using Bowtie (v. 1.2.2) and aligned using miRDeep2 (v. 2.0.1.2) 
(Friedlander et al., 2012). For tsRNA analysis, trimmed sequences were mapped and 
aligned using SPORTS1.1 (v. 1.1.1) (J. Shi et al., 2018). TiRNAs were analysed 
from serum and callus samples due to their observed prevalence in size distribution 
profiles of the small RNAseq reads from callus samples. 

4.2.5.3 Differential expression analyses (I, II) 

Differential expression (DE) analyses were performed using DESeq2 (v. 1.20.0) 
(Love et al., 2014) in R. Raw data were filtered to a minimum raw count of 10 reads 
for each molecule. 

4.2.6 Data mining (I) 
To understand the possible role of DE miRNAs during fracture healing, data mining 
was performed by searching their verified mRNA targets in published data available 
via PubMed. All available literature by June 2020 covering the validated targets of 
54 DE miRNAs was uncovered. Then, Spearman correlation analysis was performed 
to determine whether the miRNA-mRNA relationship was detected in smallRNAseq 
and RNAseq data, evidenced by a significant negative or positive correlation 
between their expression levels. 

4.2.7 Statistical analyses (I, II) 
In qRT-PCR analysis for gene expression, statistical significance between two 
groups was analysed by T-test. Group comparisons were determined by analysis of 
variance (ANOVA) with Tukey post hoc test after assessing the normal distribution 
using a Shapiro-Wilk test and calculating the equality of variances using Levene’s 
test. When any assumption for T-test or ANOVA test was violated such as data 
distribution or normality of the data, a non-parametric equivalent test was used 
instead. 

Padjusted values reported by DESeq2 corresponds to P-values adjusted with 
Benjamini and Hochberg methods (Benjamini & Hochberg, 1995). 

A Spearman rank-order correlation test was used to determine the correlation 
between miRNA-mRNA expressions or between NGS and qPCR results. 

P-values below 0.05 were considered significant for callus tissue I and 0.1 for 
serum samples II. 
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5 Results 

5.1 Fracture healing model (I, II) 
To study the effect of fracture on sncRNA, mRNA, and retrotransposon profiles, a 
closed tibial fracture was generated on C57BL/6 male mice to subsequently carry 
out genome-wide sequencing (I). The fracture was evaluated macroscopically via X-
ray imaging and microscopically using both haematoxylin and eosin and Safranin O 
staining (I, Figure 1). Both methods were used to evaluate the progression of the 
fracture healing and to detect the gradual formation of the soft-callus, which itself is 
reorganized and replaced with the hard-callus. In addition, several mRNA targets 
including Sox5, Runx2, Col2a1, Sp7, Acan, and Bmp2, and miRNA targets including 
miR-148a-3p, 140-3p, 214-3p, 150-5p, and 340-5p were further quantified by qPCR 
and correlated with NGS data for validation (Figure 11, Figure 14, I, Figure 1). 
Figure 14, shows the expression of cartilage- and bone-associated molecules 
following the progression of the callus transformation. Macroscopic and microscopic 
imaging point out the transformation of the callus tissue which becomes clearly 
defined macroscopically and hardens over time. Microscopically, at D5, the invasion 
of MSCs is clearly seen, which subsequently differentiate into chondrocytes 
(observed at D7, I, Figure 1). Then, hypertrophic chondrocytes were observed at 
D10 onwards (I, Figure 1). Finally, at D25, a replacement of the chondrocytic cells 
by bony cells was observed (I, D25, Figure 1). Expression of Sox5, Col2a1, Acan, 
and miR-140-3p indicated progression of the chondrogenic phase of fracture healing 
with a peak at D5-D14. Expression of Runx2, Sp7, Bmp2, and miR148a-3p was 
progressively increased with a peak at D14, indicating a major osteogenic phase at 
D14. The expression of miR-340-5p and miR-150-5p were associated with bone 
tissue (I, Figure 4) with a peak of expression at D0 ad D25 to maintain bone-tissue 
homeostasis (I, Supplemental Figure 7). 
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Figure 14. Validation of the fracture healing model in conjunction with the expression of 

selected mRNAs and miRNAs. Cartilage-specific mRNA targets such as Sox5, 
Col2a1, and Acan and cartilage-specific miRNAs (identified in I, Figure 4) as miR-148a-
3p and miR-140-3p. Bone-specific mRNA targets such as Runx2, Sp7, and Bmp2 and 
bone-specific miRNAs (identified in I, Figure 4) as miR-150-5p and miR-340-5p. Targets 
were validated via qPCR (I, Figure 1, Supplemental Figure 7). D: Day, MC: medullary 
cavity, P: periosteum, E: endosteum, MSC: mesenchymal stem cell, RBC: red blood 
cell, M: macrophage, Mo: monocyte, C: chondrocyte, HC: hypertrophic chondrocyte, 
Ob: osteoblast, Oc: osteoclast, BV: blood vessel. The grey beams depict the temporal 
peaks of expression for the molecules cited above in relation to the time frames shown 
above (D0-3, D3-5, D5-10, D10-16, and D16-35) and their associated cellular 
composition. 

1.1 RNA expression is affected in the fracture 
healing model (I, II) 

Small non-coding RNAs were analysed after fracture to study the effect of fracture 
healing on their expression and the possible effects they may have on the expression 
of their mRNA targets in the tissue. Samples containing small RNA fractions ranging 
between 15 and 36 nucleotides were processed for NGS analyses (I, II). This size 
range covers miRNAs and tsRNAs, including tiRNAs and tRFs, as shown above in 
Figure 13. 

The majority of tiRNAs originated from the 5’ end (> 95%) of the tRNA 
molecule (I, II). The observed low amount of 3’ end tiRNA is most likely linked to 
the used library preparation chemistry which is not adapted to the detection of 
modifications present at the 3’ end of the tiRNA molecule (Honda et al., 2015; J. Shi 
et al., 2021). Under cellular stress, angiogenin expression increases triggering the 
synthesis of tiRNAs (Saikia et al., 2012; Yamasaki et al., 2009). In callus tissue 
samples, as well as in bone, 191 tsRNAs were identified. In serum, 36 tsRNAs were 
identified. 

For target prediction purposes of miRNAs, also RNAseq was performed in 
control diaphyseal bone and callus tissues at D7 and D14 (I). This data covers the 



Matthieu Bourgery 

 50 

genome-wide expression of mRNAs and repeatable elements, including 
retrotransposons which were analysed afterwards (unpublished). In callus tissue 
samples, as well as in bone, and hip cartilage samples, 806 miRNAs were identified. 
In serum, 290 tsRNAs were identified. In addition, 18700 mRNAs were found in 
RNAseq data in callus tissue and bone samples. 

Interestingly, tiRNAs have been shown to directly target mRNAs and therefore 
to play a role as post-transcriptional regulators. However, the role of tiRNAs is not 
limited to target mRNAs but also retrotransposons and particularly LTRs (Sharma 
et al., 2016). For this reason, differential expression of retrotransposons was also 
performed in callus NGS RNAseq data to find out if retrotransposons have a role 
during fracture healing. A total of 1148 repeatable elements including 
retrotransposons (LTRs, SINEs, LINEs) but also simple repeats, DNA and RNA 
fragments, and satellites were found at D7 and D14 post-fracture in callus tissue and 
bone samples. 

5.1.1 The expression of tiRNAs is affected by the fracture 
The expression levels of tsRNAs, including tiRNAs and itRFs, were assessed in 
callus tissue and serum after fracture. Altogether, eleven tsRNAs were highly 
expressed, in callus tissue at a level over 1000 reads (baseMean). The high threshold 
was arbitrarily selected to only focus on highly expressed tsRNAs as they are 
expected to have a bigger impact on fracture healing and therefore considered as 
promising biomarker candidates. Amongst these, expression levels of five tiRNAs 
including Gly-CCC-5’, Asp-GTC-5’, His-GTG-5’, Lys-CTT-5’, and Cys-GCA-5’ , 
as well as one itRF His-GTG were increased post-fracture by log2 fold change 
(log2FC) >2 (Table 2, and I, Figure 3). In serum, the expression levels of two tiRNAs 
Lys-CTT-5’ and Lys-TTT-5’ were reduced and one tiRNA His-GTG-5’ was 
increased after fracture, with no correlation to their expression levels in callus tissue 
(Table 2 and I, Figure 3; II, Figure 2). Val tRNA isoacceptor derived tiRNAs Val-
CAC-5’ and Val-AAC-5’ were also DE in callus tissue but their log2FC was little a 
lower than the selected threshold value of 2, being 1.92 and 1.86, respectively. In 
serum, they composed the major type of 5’-tiRNAs but were not affected by the 
fracture (I, Figure 1). 
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Table 2. Differentially expressed tiRNAs in serum or callus after fracture. 

tsRNA Callus Serum Function Target References 

Lys-CTT-5' Up: D10, D14 Down: D1, 
D10, D14 

Increases 
glucose 
metabolism 

glucose-6-
phosphatase 
catalytic 
subunit 
(G6PC) 

(P. Zhu et al., 
2021) 

His-GTG-5' Up: D5, D7, 
D10, D14 

Up: D1, D5, 
D7, D10, D14 

Promotes 
colorectal 
cancer 

LATS2, 
GABBR2, 
TLR4, and 
GABARAP 

(Chai et al., 
2021; Tao et 
al., 2021) 

Cys-GCA-5' Up: D7, D10, 
D14 

NDE Represses cell 
proliferation, 
migration, and 
transformation 

STAT4 (Zong et al., 
2021) 

Lys-TTT-5' NDE Down: D1, D5, 
D7, D10, D14 

Regulates cell 
proliferation 

Unknown (Krishna et al., 
2019) 

Asp-GTC-5’ Up: D5 NDE Unknown Unknown NA 

Gly-CCC-5’ Up: D5, D7, 
D10, D14 

NDE Unknown Unknown NA 

NDE, not differentially expressed. 
NA, No available publication found in literature. 

5.1.2 Retrotransposons expression is destabilized during 
fracture healing 

In this study, retrotransposon expression was evaluated for the first time during 
fracture healing in addition to mRNA from callus tissue samples. Retrotransposons 
have a role in epigenetics, transcriptional regulation, cell differentiation, and 
reprogramming (Mita & Boeke, 2016). The expressions of retrotransposons and 
more specifically LTRs were analysed in RNAseq data of the callus tissue focusing 
on LTR subfamily, as they have been described to be targeted by tiRNAs (J. Park et 
al., 2020; Schorn et al., 2017; Sharma et al., 2016). A total of 576 LTRs with 
baseMean over 10 were observed and 15 of them were DE and met the criteria of the 
absolute value of log2FC > 2 and Padjusted value < 0.05 (Figure 15). 
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Figure 15. Differential expression of retrotransposons after fracture retrieved from RNAseq 

data visualized by volcano plots. Red dots show upregulated retrotransposons 
(log2FC > 2 and Padjusted value < 0.05) whereas blue dots show downregulated 
retrotransposons (log2FC < 2 and Padjusted value < 0.05) compared to intact bone tissue 
(D0). D0 (n = 4), D7 (n = 4), and D14 (n = 4). Only DE repeats belonging to LTR family 
with a baseMean > 10 are annotated in the figure. 

The majority of the DE retrotransposons derive from LTRs which mostly belong 
to the ERVK sub-family (Figure 15, Table 3). Expression levels of six LTRs were 
increased by 2.2 to 3.94 log2FC while the levels of nine LTRs were decreased by 
2.0 to 4.94 Log2FC. ERVK is a genetic parasite called ERV. This retrovirus family 
is partly responsible for the human genome evolution. ERVK is particularly active 
in cases of inflammatory diseases and viral infections (Manghera & Douville, 2013). 

Table 3. Differentially expressed LTRs observed in callus RNAseq data at D7 and D14 post-
fracture, extracted from Figure 15. 

Repeat_id Sub-family baseMean log2FC 0.00E+00 DE Day 
SRV_MM-int ERVK 673.30 -2.99 7.28E-62 D7 
RLTR3_Mm ERVK 163.99 -4.94 8.48E-34 D7 
RLTR14-int ERV1 2437.51 2.20 1.07E-17 D7 
LTR107_Mam LTR 32.09 2.73 2.60E-14 D7 
MER73 ERVL 142.92 3.90 6.19E-13 D7 
MER34-int ERV1 13.61 3.94 8.54E-12 D7 
RLTR50A ERVK 16.96 -2.99 3.96E-05 D7 
SRV_MM-int ERVK 1182.40 -3.89 2.85E-43 D14 
RLTR47 ERVK 269.74 -2.22 7.71E-09 D14 
LTR80B ERVL 131.55 2.91 2.09E-07 D14 
IAPEY4_I-int ERVK 58289.38 2.63 1.66E-06 D14 
RLTR13G ERVK 16067.07 -2.38 2.61E-06 D14 
RLTR3_Mm ERVK 320.50 -3.61 8.48E-06 D14 
ERVB4_1C-LTR_Mm ERVK 6247.14 -2.42 1.35E-05 D14 
LTRIS2 ERV1 40581.97 -2.22 4.17E-05 D14 
MMETn-int ERVK 68505.00 -2.18 9.10E-05 D14 
RLTR50A ERVK 33.26 -2.18 1.31E-03 D14 
ERVB2_1-I_MM-int ERVK 171.78 -2.00 6.57E-03 D14 
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5.1.3 Comparison of the miRNA populations in bone, 
cartilage and callus tissues and their association with 
mRNA targets 

MicroRNA populations were first identified in control hip cartilage and diaphyseal 
bone by simply comparing one tissue against the other (I, Figure 4). This analysis 
was done to identify cartilage and bone homeostasis-associated miRNAs in the 
fracture healing data where D5-D7 represent mainly ongoing chondrogenesis and 
D10-D14 osteogenesis. By comparing healthy bone and cartilage miRNA profiles at 
the age of two months, expression levels of several miRNAs were high in one tissue 
while low in the other, suggesting that these miRNAs are characteristic of their 
homeostasis while the remaining miRNAs associated with the maintenance of 
general skeletal tissue balance. So, logically during fracture healing, bone 
homeostasis-associated miRNAs are reduced during the chondrogenic phase 
compared to control bone while cartilage homeostasis-associated miRNAs are 
upregulated. With a similar logic, levels of bone homeostasis-associated miRNAs 
would be increased during the osteogenic phase or bone remodelling. 

In cartilage, altogether 29 miRNAs were expressed at a high level while being 
low in bone, suggesting their association with the maintenance of chondrogenic 
phenotype. Further, in bone tissue 25 miRNAs were highly expressed compared to 
cartilage and are suggested to be associated with the maintenance of bone phenotype 
(I, Figure 6). 

Altogether, 54 DE miRNAs out of 806 were identified in the fracture callus 
tissues with the criteria of baseMean > 100, the absolute value of log2FC > 2, and 
adjusted p-value < 0.05 (I, Figure 4). Out of them, 36 miRNAs, including 16 
cartilage-associated miRNAs (miR-410-3p, 411-5p, 541-5p, 434-3p, 434-5p, 136-
3p, 127-3p, 455-3p, 455-5p, 140-3p, 140-5p, 6240, 182-5p, 181-1-3p, 125b-2-3p, 
and 148a-3p) were DE with increased levels in callus after fracture (I, Figure 6). 

Further, 18 miRNAs, including 12 bone homeostasis-associated miRNAs (miR-
144-3p, 451a, 142a-5p, 340-5p, 181c-5p, 142a-3p, 150-5p, 144-5p, 486a-5p, 10a-5p, 
223-3p, and 652-3p) were DE with decreased levels in callus tissue after fracture. 
MicroRNAs were divided into four clusters (D5, D7, D10, D14) based on the date 
of their highest absolute log2FC indicating differential expression. 

In serum, a total of 290 miRNAs were identified, and out of them, eight miRNAs 
were DE with the criteria of baseMean > 100, the absolute value of log2FC > 1.5, 
and adjusted p-value < 0.1 (Table 4; II, Figure 3, Supplemental file 1). Levels of five 
miRNAs, including miR-328-3p, miR-133a-3p, miR-375-3p, miR-423-5p, and miR-
150-5p were significantly increased after fracture and levels of two miRNAs miR-
451a and miR-143-3p were decreased. 

To better understand the possible role of these miRNAs during the fracture 
healing process, data mining was carried out to search for the verified targets of all 
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DE miRNAs in callus and serum data. A total of 750 potential miRNA=mRNA target 
pairs were first identified for the 54 DE miRNAs in callus tissue by June 2021. 
Thereafter, a correlation analysis was carried out between expression levels of a 
given miRNA and its target mRNA in callus and bone tissues (I, Table 1 and 2 and 
Supplemental file 5). A total of 164 miRNA=mRNA pairs with significant negative 
correlation were identified. 

Recent literature search updates on mRNA targets of DE miRNAs in callus and 
in circulation indicated their involvement in all the steps which are also essential in 
the fracture healing process (Table 4). These functions include regulation of MSC 
differentiation into chondrocytes, and further terminal differentiation into 
hypertrophic chondrocytes, osteogenesis, angiogenesis, and finally 
osteoclastogenesis and bone remodelling. 

Out of the remaining miRNA=mRNA target pairs (I, supplemental file 5), 
expression levels of 171 miRNAs correlated positively with their verified target mRNA, 
and 415 target mRNAs did not correlate significantly with their miRNAs, suggesting 
that expression of these mRNAs may either be regulated by other factors or be tissue 
specific. They may also be so local or restricted to a certain cell type that the possible 
correlations were not observed due to the mixed cell population in callus tissue. 

Table 4. Differentially expressed miRNAs and their target mRNAs in serum and callus 
tissue after fracture. Current knowledge on targets, pathways and functions in bone, 
cartilage and fracture healing of recently and earlier identified targets with negatively 
correlated expression levels (updated in November 2022 and I, Table 1 and 2, 
Supplemental file 5). 

A. DE miRNAs in serum compared to their expression in callus tissue 

miRNA/tissue Target mRNA/ 
Pathway 

Function References 

143-3p 
Callus, NDE () 

SOX5, IGFBP5, 
BMPR2 
MAPK signaling 
pathways 

(-) chondrogenesis 
(-) osteogenesis 
(-) osteoclastogenesis 

(D. Gao et al., 2022; 
Jiang et al., 2021; J. 
Tian et al., 2018; C. 
Yang, Xu, et al., 2022) ⁠ 

Serum, Down D5 (160)  

375-3p 
Callus: NDE (1) 

LRP5, b-catenin 
YAP1/LEKTI pathway 

(-) inflammation 
(-) osteogenesis 

(Cheng et al., 2020; T. 
Sun et al., 2017) ⁠ 

Serum, Up D1-D14 (107)  

328-3p 
Callus, NDE (54) 

COL1A1, PTEN 
PTEN/PI3K/AKT 
pathway 

(-) endochondral 
ossification 

(T. Liu et al., 2020; 
Xie et al., 2020) ⁠ 

Serum, Up D1 (114)  
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133a-3p 
Other 
Callus, Up D5 (7149) 

VEGFA, ANKRD44 
PI3K/AKT pathway 

(-) angiogenesis 
(-) osteogenic diff. 

(Ahmed et al., 2022; 
M. Li et al., 2021; Y. 
Tang et al., 2018) 

Serum, Up D1 (270) ‡: Met 

451a 
bone-associated 
Calllus, Down D5-D14 
(1056) 

CDKN2D, Bmp6, 
Osr1 

(-) angiogenesis, 
(-) osteogenic diff. 

(Karvande et al., 
2018; Lu et al., 2019; 
H.-Y. Zhu et al., 2021) 

Serum, Down D1 (598) ‡: Osr1†, Cav1, Trim66, Mif, Tbx1, Oxtr 

423-5p 
Other 
Callus, Down D14 (142) 

Sufu, Tnip2 (+) angiogenesis 
(-) osteoclastogenesis 

(W. Wang et al., 2017; 
F. Xu et al., 2019) 

Serum, Up D1-D14 (243) ‡: Tnip2†, Cdkn1a, Igf2bp1 

150-5p 
bone-associated 
Callus, Down D7, D10 
(177) 

Vezf1, VEGFA, 
Mmp14 

(-) angiogenesis 
Modulates ECM 

(Z. Chen et al., 2018; 
Perales et al., 2022; 
Vimalraj et al., 2021) ⁠ 

Serum, Up D1-D14 (164) ‡: Mmp14†, Socs1, Rab9, Slc2a1, Elk1 

 

B. Cartilage homeostasis associated DE miRNAs – increased expression 

MiRNA Target mRNA/ 
Pathway 

Function References 

410-3p Hmgb1 
NF-κB signaling 
pathway 

(-) chondrogenesis (Pan et al., 2020) 

D5-D14 ‡: Cxcr5, Fmr1, Yy1, Pten 

411-5p Gata4 
GATA4/Runx2 pathway 

(+) osteoblast diff. (X. Gao et al., 2020) 

D5-D14 (847) ‡: Txnip, Vasp, Grp2 

541-5p    

D5-D14 (448) ‡: Cdk6 

434-3p Gata4 
GATA4/Runx2 pathway 

(+) osteoblast diff. (X. Gao et al., 2020) 

D5-D14 (510) ‡: Eif5a1 

136-3p PTEN (+) osteoblast diff. (Y. Chen et al., 2020) ⁠ 

D5-D14 (132) ‡: Pten† 
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127-3p CDH11 
Wnt/β-catenin pathway 

(-) Wnt/β-catenin 
pathway 

(J. Dong et al., 2021) 

D5-D14 (3002) ‡: Kif3b 

455-3p Twist1, Runx2 (-) angiogenesis 
(-) osteogenesis 

(Z. Zhang et al., 2015; 
L. Zhao et al., 2022) 

D5-D14 (142) ‡: Fam83f 

455-5p Runx2 (-) osteogenesis (Xiao et al., 2018) 

D5-D14 (133) ‡: Lgals9, Jak1, Myd88, Dnmt1 

140-3p Kmt5b, Smad2, 
Mcf2l 

(+) osteogenesis 
(-) preosteoblasts viab. 
(+) chondrogenesis 

(X. Liu et al., 2020; J.-
H. Mao et al., 2020; 
H. Zheng et al., 2021) 

D7-D14 (9311) ‡: Cxcl12, Trpm2, Cd38, Tnfa, Jak1, Sirt1, 
Atp1b, Myb, Mcf2l, Atp8a1, Bcl2 

140-5p Igf1r, Hmgb1 
Mtor pathway 

(-) osteogenesis (Y. Tang et al., 2022; Y. 
Wang et al., 2020) 

D7-D14 (350) ‡: Tnf, Nfe2l2, Map3k11, Stat1, Bloc1s2, 
Creb1, Birc5, Glul, Hdac4, Pin1, Adam10, 
Igf1r†, Hmgb1†, Hmgn5, Tlr4 

182-5p Smad4, PTHLH (-) chondrogenesis (Bai et al., 2019) 

D7-D14 (454) ‡: Rab27a, Flot1, Foxo3, Cdkn1b, Bcl2l12, 
Sesn2, Cfl1, Creb1, Pten 

181a-1-3p  fracture in diabetic 
rats 

(Takahara et al., 2018) 

D7-D14 (290)  

148a-3p Kdm6b (-) osteogenesis (L. Tian et al., 2017; 
Yuan et al., 2019) 

D14 (19385) ‡: Dnmt1, Ikbkb, Mcl1, Kdm6b†, Snhg4 

 

C. Other DE miRNAs, increased expression 

MiRNA Target mRNA/ 
Pathway 

Function References 

381-3p FGF7 
MEK/ERK signaling 
pathway 

(-) osteogenesis (L. Qiu et al., 2022) 

D5-D14 (129) ‡: Map3k8†, Ube2c, Cdk6, Cxcr4 

335-3p  OsteomiR (Avendaño-Félix et 
al., 2019) 

D5-D14 (318)  
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351-5p    

D7-D14 (1737) ‡: Mapk13 

214-3p ATF4, Sp7  (K. Shi et al., 2013; X. 
Wang et al., 2013; C. 
Zhao et al., 2015) D5-D14 (318) ‡: Nlrc5, Hmga1, St6gal1, Atg12, Ezh2, 

Ezh1, Pim1, Stat6, Cadm1, Pten 

99b-5p FGFR3 (-) osteoblast prolif. (Ding et al., 2021) 

D7, D14 (2368)  

133b-3p FBN1 
 

(-) angiogenesis (G. Liang et al., 2022) ⁠ 

D7 (375)  

152-3p  osteoporotic fractures (Zarecki et al., 2020) ⁠ 

D7 (276) ‡: Atg12, Fasl, Brd4, Dnmt1 

34c-5p  MSC osteogenesis (B. Liu et al., 2021) ⁠ 

D5-D14 (304) ‡Gucy1b3, Flot2, Sp1, Etv6, Atg4b, Ccl22 

214-5p ITGA7 (+) osteoclastogenesis (L.-L. Liu et al., 2022) ⁠ 

D5-D10 (113) ‡: Rock1, Klf5, Cxcr5, E2f2, Ciz1 

335-5p  (+) bone formation 
regeneration 

(L. Zhang et al., 2017) ⁠ 

D5-D14 (269)  

99a-5p  (-) osteogenesis 
(+) osteoclastogenesis 

(Moura et al., 2020) ⁠ 

D7, D14 (894)   

152-5p Atg14 (-) osteogenesis (S. Li et al., 2022) 

D5-D14 (144) ‡: Txnip 

199a-5p Tet2 (+) osteoblast diff. (Qi et al., 2020) ⁠ 

D7, D14 (1874) ‡: Ccr7, Mst1, Ccnb1, Slit1, Nfkb1, Rela, 
Ccn2, Rock1, March8, Fkbp5, Sirt1 

322-5p Smad7 (+) chondrogenesis 
(-) chondrocyte 
hypertr. 

(Zeng et al., 2021) ⁠ 

D10-D14 (580) ‡: Fam3b, Nfkb1 
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D. Bone homeostasis associated DE miRNAs, decreased expression 

MiRNA Target mRNA/ 
Pathway 

Function References 

144-3p PTEN, Bmpr1b, Bmp2, 
Tet2, Fzd4, Smad4 
PI3K/AKT pathway 

osteoblast diff., 
(-) chondrogenesis 

(Huang et al., 2016; N. 
Li et al., 2020; Ling et 
al., 2022; M.-L. Mo et 
al., 2022; Peng et al., 
2022; Z. Sun et al., 
2019) 

D5-D10 (148) ‡: Hif1a, Pbx3, Fn1, App, Fzd4†, Smad4†, 
Fosb, Ctbp2, Hoxa7, Tie2 

340-5p Runx2, Ctnnb1, Hif1a, 
Fmod 

(-) osteogenesis 
down during 
osteoclastogenesis 

(Du et al., 2017; Y. Ma 
et al., 2016; X. Wang 
et al., 2021; W. Zhang 
et al., 2018) 

D7-D10 (428) ‡: Hif1a†, Fmod†, Yap1, Arg1, Stat3, Nrp1, 
Ctnnb1† 

181c-5p SMAD7, SFRP1 
Wnt3a/β-catenin 
pathway 

(+) chondrogenic diff. 
(+) osteogenic diff. 
(+) angiogenesis 
(-) osteoclastogenesis 

(X. Yu et al., 2021; Q. 
Zhang et al., 2022) 

D7-D10 (368) ‡: Sfrp1† 

142a-5p NFIA (+) osteoblast 
diff. 

(Yuan et al., 2021) 

D7-D10 (2990) ‡: Cyr61, Socs1, Ghr 

142a-3p Adam9, Ctnnb1, Il6 
 

(-) chondrogenic diff. 
(-) osteogenic diff. 
(-) fracture healing 

(T. Hu et al., 2016; Y. 
Liu et al., 2016) 

D5-D14 (349) ‡: Adam9†, Ctnnb1†, Il6†, Fam98a, Fzd7, 
Rab3a, Nr2f6 

144-5p Smad1 (-) fracture healing (D. Zhang et al., 2021) 

D5-D14 (108) ‡: Smad1 

10a-5p Hoxa1 (-) osteogenesis 
(+) chondrocytes 
apoptosis 

(Y. Ma et al., 2019; Y. 
Zhang et al., 2020) 

D10 (8979) ‡: Ccn2, Hoxa1† 

486-5p    

D10-D14 (9990) ‡: Dock1, Cemip, Nrp2 

223-3p FGFR2, FOXO3 fracture healing 
(-) osteogenesis 

(C. Long et al., 2021; 
B. Wang et al., 2021) 

D10-D14 (9990) ‡: Fgfr2†, Nf2, Lif, Fat1, Ctnnd1, Skil, 
Zeb1, Cdh6, Smad3, Fam5c, Rasa1, Il17rd 
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E. Other DE miRNAs, decreased expression 

MiRNA Pathway 
Target mRNA/ 
Pathway 

Function References 

92a-3p WNT5A, HDAC2 (+) chondrogenesis (G. Mao et al., 2016, 
2018) 

D14 (2978) ‡: Nhg14 

146a-5p  bone mass 
osteoclastogenesis 

(Lin et al., 2019; M. 
Zheng et al., 2021) ⁠ 

D14 (292) ‡: Sirt1 

423-5p  (-) osteosarcoma 
glycolysis 

(Wan et al., 2021) 

D14 (142) ‡: Tnip2, Cdkn1a, Igf2bp1 

NDE, not differentially expressed. 
Numbers in parentheses indicate the baseMean expression in I, II. 
‡, mRNAs with bold fonts were identified as targets of the miRNA and negative correlation was 
observed between their expression in callus tissue (I, Supplemental file 5). 
†, mRNA found to be negatively correlated with miRNA in I and associated to bone, cartilage or 
fracture healing. 
MicroRNA targets were searched in PubMed ("molecule"[All Fields] AND ("angiogenesis"[All Fields] OR 
"bone"[All Fields] OR "ossification"[All Fields] OR "cartilage"[All Fields] OR "inflammation"[All Fields])). 
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6 Discussion 

6.1 RNA expression in callus tissue and in 
circulation during fracture healing 

The expression of ncRNAs was uncovered after fracture from callus and serum 
samples. Their differential expression in callus tissue is suggested to reflect the 
active regulation of the fracture healing process by targeting mRNA expression. In 
circulation, their expression may reflect the biological processes associated with 
fracture healing either in callus tissue or originate from other tissues affected by the 
fracture via systemic effects. 

Small non-coding RNAs, including tsRNAs and miRNAs, were first studied in 
callus tissue samples at D5-D14 post-fracture. In addition, mRNA and 
retrotransposon profiles were studied at D7 and D14 post-fracture. The expression 
of mRNAs was mainly uncovered to correlate their expression levels with miRNAs 
and to identify possible miRNA-mRNA interactions in callus tissue. 

In circulation, RNAs are carried freely associated with lipid particles, and RNA 
binding proteins and packaged in extracellular vesicles, including exosomes 
(Etheridge et al., 2013). In the present thesis project, sncRNA profiles were studied 
in circulation at D1-D14 after fracture in the exosome-containing fraction and 
compared to the levels in intact control mice. Exosomal vesicles contain DNA and 
RNA as well as proteins and lipids, used for cell-cell communication (W. Qin & 
Dallas, 2019). The sorting mechanism of exosomal ncRNAs has not been 
established as yet. Several publications refer to motif recognition, interaction with 
their secondary/tertiary structures, and/or post-transcriptional modifications of the 
ncRNA recognised by ribonucleoproteins which form a complex 
ribonucleoprotein-ncRNA subsequently sorted to an exosomal vesicle (Y. Qiu et 
al., 2021). Exosomal vesicles are playing a role in systemic regulation by carrying 
non-coding RNAs which might regulate targets in receptor cells (Thomou et al., 
2017). 
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6.1.1 Expression and putative functions of tsRNAs after 
fracture both in the callus and in circulation 

For the first time, tsRNAs were analysed after fracture from callus tissue and serum 
samples. The expression of tsRNAs was previously reported to have similar roles as 
miRNAs (Krishna et al., 2021). In callus tissue, eleven mature tsRNAs out of a total 
of 191 were highly expressed at level > 1000 reads (baseMean). Among those, 5’ 
end tiRNAs Gly-GCC-5’, and Glu-CTC-5’ were most abundant and stably expressed 
and with baseMean > 15,000 reads. Being so abundant and stably expressed, these 
5’ end tiRNAs may have an important role in the regulation of the general tissue 
homeostasis. Val isoacceptor-derived 5’ end tiRNAs Val-CAC-5’ and Val-AAC-5’ 
were the most abundant tRNA-derived fragments in callus tissue with a baseMean 
above 35,000 reads. Val isoacceptor tRNA-derived 5’-end tiRNAs have been shown 
to bind to the human Frizzled class receptor 3 (FZD3) and therefore suppress the 
Wnt signalling pathway (D. Mo et al., 2019; Sarais et al., 2022). They have also been 
shown to repress Sirt1 expression by targeting its 3’UTR, leading to an accumulation 
of Hif1a, and therefore promoting angiogenesis in mice with diabetic retinopathy (Y. 
Xu et al., 2022). Hif1a has been shown to regulate ECM secretion by regulating 
cellular oxygen level and allowing collagen hydroxylation and maturation, in ER, in 
hypoxic environment (Bentovim et al., 2012). This is interesting as compared to 
bone, Val-CAC-5’ and Val-AAC-5’ expression levels in callus tissue almost reached 
the differential expression criteria of the absolute value of log2FC > 2 at D5, being 
1.92, and 1.86, respectively. Based on these studies, their roles in callus may be 
related to the modulation of the systemic immune response during early fracture 
healing as well as in the regulation of angiogenesis. In circulation, Val isoacceptor-
derived tiRNAs were also the most abundant 5’ end tiRNAs with the baseMean of 
1599 and 1640 reads, respectively, although their expression levels were not affected 
by the fracture. 

Expression levels of five 5’ end tiRNAs (Gly-CCC-5’, Asp-GTC-5’, His-GTG-
5’, Lys-CTT-5’, and Cys-GCA-5’) were higher in comparison to the healthy intact 
bone throughout the observation period of D5-D14. In circulation, Gly-CCC-5’, 
Asp-GTC-5’ and Cys-GCA-5’ were barely present, suggesting that their role is 
mainly in the fracture callus tissue and that they are not exported to the serum. Not 
much is known about these three tiRNAs, but in a recent study, Gly-CCC-5’/Gly-
GCC-5’ was suggested as a mediator of palmitic acid-induced effects in human 
trophoblasts, based on that, the inhibition of these tiRNAs enhanced palmitic acid-
induced apoptosis, including DNA fragmentation and mitochondrial depolarization 
(C. Yang, Park, et al., 2022). Cys-GCA-5' was found to directly target STAT4 at 
gene and protein levels, and therefore represses cell proliferation, migration, and 
transformation (Zong et al., 2021). 
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In circulation, a total of 36 tsRNAs were identified which was much lower than 
that in callus where a total of 191 tsRNAs were identified. The reason for this 
difference is not known but it may be related to the isolation techniques as in callus 
tissue, total RNA was first extracted while in serum, the analysis was carried out 
with the exosome fraction. Further studies are required to find out if the freely 
circulating pool of tsRNAs associated with RNA binding proteins and lipid fraction 
contains different and richer populations. 5’ tiRNAs were reported to be depleted 
from exosomal vesicles but found in circulation as components of RNA-
protein/lipoprotein complexes data. However, in their study, they hybridized tiRNA-
Gly-GCC-5’ and tiRNA-Val-CAC-5’ and detect their presence by northern blotting 
but these two examples might be different compared to the other tiRNAs from other 
isoacceptors and/or decoders (Dhahbi, Spindler, Atamna, Yamakawa, et al., 2013). 
In accordance with Dhahbi et al., Val-CAC was highly expressed in serum (II, Table 
1), regardless if they originate from extracellular vesicles or as components of RNA-
protein/lipoprotein complexes. 

In circulation, Lys and His isoacceptor tRNA-derived fragments were expressed 
among the top ten 5’ end tiRNAs and they were found differentially expressed in 
both serum and callus tissues during fracture healing. Levels of Lys-CTT-5’ and 
Lys-TTT-5’ were reduced in serum although increased in callus tissue, with no 
correlation in expression levels between tissues (I, II). Lys-TTT-5’ together with 
Gln-GTG-5’ and Val-CAC-5’ have been suggested to restrain the expression of 
stemness-promoting genes Lif and Wnt3, as well as regulation of cell proliferation 
via RNA binding protein Igf2Bp1/cMyc (Krishna et al., 2019). Further, Lys-CTT-5’ 
was also found to increase glucose metabolism by directly targeting the glucose-6-
phosphatase catalytic subunit (G6PC) in human triple-negative breast cancer patients 
(P. Zhu et al., 2021). Levels of His-GTG-5’ tiRNA and His-GTG itRF levels were 
increased both in the callus and in circulation throughout fracture healing (I, II). 
Similarly to miRNA function, tiRNA-His-GTG-5’ has been shown to directly target 
large tumor suppressor kinase 2 (LATS2) 3’UTR after loading into AGO1 and 
AGO3 and to destabilize Gamma-Aminobutyric Acid Type B Receptor Subunit 2 
(GABBR2) by binding to its 3’UTR (Chai et al., 2021; Tao et al., 2021). His-GTG-
5’ has been found to target and suppress Toll Like Receptor 4 (TLR4), thereby 
leading to the activation of the Wnt/β-catenin signalling pathway to promote 
osteoblast differentiation and fracture healing (Chai et al., 2021; H. Xu et al., 2014; 
C. Zhao et al., 2020). 

 Functional data on tsRNAs and tiRNAs is slowly emerging, and it is already 
obvious that the 5’end tiRNAs have multiple functions in the regulation of tissue 
metabolism, and as shown by the NGS data, they are also involved in the regulation 
of fracture healing. These data also suggest that circulating tiRNAs may function as 
regulators of systemic effects and reflect the metabolic changes in tissues and 
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therefore have value as biomarkers of various disorders. They are also involved in 
the regulation of retrotransposon expression, as is discussed below. It has been 
reported that 5’ tiRNAs affect gene expression by direct binding to the mRNA 
molecule but also to regulate the expression of LTR retrotransposons (Advani & 
Ivanov, 2019; H. K. Kim, 2019; Krishna et al., 2019; J. Park et al., 2020; Sharma et 
al., 2016). 

6.1.2 Bone fracture induced expression of LTR 
retrotransposons in callus 

Retrotransposon expression was studied in the RNAseq data to extend the current 
knowledge on whether their expression was affected by the fracture. Extension of 
the RNAseq data analysis into retrotransposon-derived fragments indicated, that 
especially the expression of LTRs was DE in callus tissue compared to the intact 
bone during fracture healing. For the first time, the presence and differential 
expression of LTRs were demonstrated in callus tissue. This is of particular interest 
as also tsRNAs have been connected to the control of retrotransposons (Martinez, 
2018). 

Expression levels of six LTRs were increased while levels of ten LTRs were 
decreased at D7 and D14. The major DE LTR sub-family was ERVK which has been 
described to be active in cases of inflammatory diseases (Manghera & Douville, 
2013). Stress is a documented factor in the activation of retroelements (Mita & 
Boeke, 2016). Cellular stress generated by fracture may be responsible for the 
increased levels of tiRNAs as well as retrotransposable elements in the callus tissue. 
The active inflammatory phase during fracture healing may at least partially explain 
the activity of ERVK LTRs in callus tissue (Dimitriou et al., 2005). Increased 
expression of transposable elements has been associated with genome instability 
(Maxwell et al., 2011) which may be one mechanism for the regulation of gene 
expression in tissues. The expression of retrotransposons is controlled by several 
mechanisms including TFs, tiRNAs, RNA interference, piRNAs, and self-regulation 
(Bourque et al., 2018; Levy et al., 2008; Martinez, 2018; Mita & Boeke, 2016; 
Schorn et al., 2017; Sharma et al., 2016). Transposable elements occasionally also 
incorporate in the 3’UTR of genes resulting in elongation of the 3’ UTR and thus 
providing more opportunities for binding of miRNAs to the 3’ end and post-
transcriptional gene regulation (Levy et al., 2008). The role of tiRNAs in the 
regulation of the transposons and particularly in the protection of the genome against 
retrotransposon effects is interesting and deserves further investigation (Martinez, 
2018). 
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6.1.3 Role of miRNAs as regulators of mRNAs after fracture 
MicroRNA expression was analysed in callus samples in connection with the 
expression of their mRNA targets. The miRNA-mRNA relationships were 
investigated by correlation analysis to evaluate their role as regulators of fracture 
healing. 

In callus, because miRNAs with increased levels of expression were cartilage-
associated in comparison to intact bone (I, Figure 6), they were mainly expected to 
have a role in the maintenance of chondrogenic phenotype. Twenty-eight increased 
miRNAs negatively correlated altogether with 105 mRNA targets identified by the 
literature searches (Table 4; I, Table 1). Out of these putative interactions during 
fracture healing, several interactions are associated with the maintenance of the 
chondrocyte phenotype. Several miRNAs, such as miR-140, miR-181a, and miR-
455-3p have been previously shown to be associated with cartilage tissue biology 
(Razmara et al., 2019). E.g., miR-140-5p and miR-410-3p have been found to target 
the high mobility group box 1 (Hmgb1) mRNA, which suppresses chondrocyte 
viability. Further, increased levels of miR-140-5p have been shown to repress 
Hmgb1 expression through the PI3K/AKT signalling pathway to enhance 
chondrocyte viability (Pan et al., 2020; Y. Wang et al., 2020). HMGB1 is enriched 
in OA tissue compared to healthy cartilage, which is almost depleted of HMGB1 
(Wagner et al., 2021; Y. Wang et al., 2020). In addition, in the present data miR-
381-3p is an example of a regulator of angiogenesis, as it has been found to directly 
target mitogen-activated protein kinase kinase kinase 8 (Map3k8) (J. Li et al., 2020). 
Map3k8 represses angiogenesis; therefore, increased expression of miR-381-3p in 
fracture callus is suggested to promote angiogenesis via downregulation of Map3k8. 

As discussed earlier, downregulated miRNAs in callus tissue were expected to 
facilitate the expression of mRNAs necessary in fracture healing. Fourteen miRNAs 
were identified to negatively correlate with a total of 59 mRNAs which were their 
verified targets, based on the published data (I, Table 1, Table 4;). Out of these, e.g., 
miR-142a-3p has been shown to repress the expressions of A disintegrin and 
metalloproteinase domain 9 (Adam9), β-catenin (Ctnnb1) (T. Hu et al., 2016), and 
Il-6 (Y. Liu et al., 2016). Adam9 has been found to play a role during chondrogenesis 
by inducing apoptotic death of chondroprogenitors and inhibiting cell migration (D. 
Kim et al., 2011), Il-6 is known to initiate fracture repair by enhancing ECM 
synthesis, angiogenesis, and recruiting endogenous fibrogenic cells to the fracture 
site (Dimitriou et al., 2005) and Ctnnb1 is an important factor in Wnt/β-catenin 
signalling pathway to regulate both chondrogenesis and osteogenesis (Oichi et al., 
2020). MiR-451a mediates osteoblastic differentiation by directly targeting odd-
skipped related transcription factor 1 (Osr1) (Karvande et al., 2018). MiR-144-3p 
was found to target Smad4 (Huang et al., 2016) and frizzled class receptor 4 (Fzd4) 
(Z. Sun et al., 2019); therefore, negatively regulating osteogenesis. MiR-150-5p 
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targets Mmp14 and therefore indirectly promotes osteoblast mineralization and 
represses collagen degradation (C.-L. Dong et al., 2015). MiR-340-5p was found to 
regulate Ctnnb1 (Du et al., 2017), hypoxia-inducible factor 1 subunit alpha (Hif1a) 
(Du et al., 2017) and fibromodulin (Fmod) (W. Zhang et al., 2018), also playing an 
important role in osteogenesis. Finally, miR-10a-5p targets homeobox A1 (Hoxa1) 
(Y. Ma et al., 2019), which promotes chondrocytes apoptosis, as a result of miR-
10a-5p increased expression. MiR-10a-5p was upregulated at D10 post-fracture 
when most of the chondrocytes have already reached the hypertrophic stage. All 
downregulated miRNAs cited in the chapter above were enriched in bone compared 
to cartilage and associated with the regulation of osteogenesis with differential 
expression. It is also worth mentioning many of the mRNA targets are also important 
in chondrogenesis and cartilage homeostasis, including Mmp14, Fmod, and Hif1a 
(Embree et al., 2010; Schipani, 2006; M. Takahashi et al., 2019). 

Here, only a few examples of the DE miRNAs and their target mRNAs were 
discussed, but the data points out that the miRNAs with a differential expression that 
negatively correlated with their target mRNAs, were associated with bone fracture 
healing to fine-tune the fracture healing process. While concluding this data, it is 
important to keep in mind that callus tissue is composed of multiple cell types and 
stages of differentiation which may dilute the observed effects. Also, in addition to 
miRNAs, tsRNAs and retrotransposons, as discussed in this thesis, the regulation of 
mRNA transcription is a complex process including co-factors, microRNAs, 
epigenetics, systemic factors, circadian rhythm, and the microenvironments (Chan 
et al., 2021). 

6.1.4 Role of miRNAs as biomarkers and systemic 
regulators 

In circulation, the role of miRNAs and sncRNAs, in general, is more elusive than it 
is in tissues. The result of differential expression of miRNAs in circulation can be 
seen as biomarkers of fracture healing in addition to being regulators of mRNA 
targets in recipient tissues. An interesting observation was that e.g., in cases of some 
miRNAs the expression level in serum was reduced although it was highly expressed 
in callus tissue, and on the contrary, levels of some miRNAs were increased although 
decreased in callus tissue. A similar observation was also noticed in the expression 
of tsRNA in callus and circulation. This highlights the complexity of the regulatory 
mechanisms that also reach beyond local to systemic effects. 

In serum, one miRNA (miR-451a) was decreased at D1 post-fracture, while 
increasing in the callus tissues. On the contrary, levels of three other miRNAs (miR-
375-3p, miR-423-5p, and miR-150-5p) were increased at D1, D5, D7, and D14 post-
fracture although in callus tissue they were either decreased or stable, suggesting that 
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callus is unlikely the source for increased levels in serum. This raised a question on 
the source of the miRNAs in circulation after fracture and hence the role of systemic 
regulation contributing to the miRNA levels in systemic regulation. 

MiR-375-3p regulates osteogenesis by directly targeting LRP5 and β-catenin (T. 
Sun et al., 2017). MiR-375-3p was found to reduce inflammation in atopic dermatitis 
by targeting YAP1 (Cheng et al., 2020). It is therefore interesting that miR-375-3p 
was not DE in callus but enhanced at D1-D14 in serum. It might have a role as a 
systemic regulator to reduce inflammation in tissue other than callus but its source 
in circulation is not known. Further, it has been shown that miR-375-3p is released 
in circulation by human and mouse pancreatic beta cells via high-density lipoproteins 
complexes to target mRNAs in recipient cells (Sedgeman et al., 2019). However, its 
tissue/mRNA targets are still unknown. 

MiR-423-5p was found to regulate bone remodelling by targeting Tnip2 which 
activates NF-κB signalling crucial for osteoclastogenesis (Fischer & Haffner-
Luntzer, 2022; W. Wang et al., 2017). miR-150-5p was shown to regulate matrix 
remodelling by targeting Mmp14 (C.-L. Dong et al., 2015). Taken altogether, these 
three miRNAs have a role in fracture healing in-situ but their role in systemic 
regulation is still unclear. 

As discussed above and presented in Table 4, it is not abnormal that a given 
miRNA will have a pivotal role in the differentiation of MSCs by facilitating the 
differentiation of MSCs towards one lineage rather than another (C. Yang et al., 
2021). For example, Peroxisome Proliferator Activated Receptor Gamma (PPARγ) 
is known to promote adipogenesis and inhibit osteogenesis (Kawai & Rosen, 2010). 
Interestingly, PPARγ expression was found to be increased in adipose-derived stem 
cells (ADSCs) after overexpression of miR-150-5p to trigger adipogenesis (X. Li et 
al., 2019). Because miR-150-5p expression was found to be increase in serum after 
fracture and decreased in callus samples, it is reasonable to define miR-150-5p as a 
pivotal miRNA with the ability to modulate the ECM in callus tissue and play a role 
in systemic regulation in circulation. 

Expression levels of most of the molecules in serum did not correlate to their 
expression in the callus. This discrepancy suggests that the levels in circulation are 
mainly independent of their expression levels observed in trauma tissue, and perhaps 
controlled by a sorting mechanism (Y. Qiu et al., 2021) or other systemic or indirect 
factors affecting changes such as the physical activity, pain or nutrition due to the 
trauma. Also, possible changes in sorting for transport may be a cellular response in 
the trauma and ncRNAs acting as communicators have a role as biomarkers of a 
physiological phenomenon. 
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6.2 Limitations of the data 
Callus tissue is composed of multiple cells undergoing overlapping stages of 
differentiation including chondrogenesis, osteogenesis, angiogenesis and finally 
remodelling. Therefore, the data presented here represent the average expression 
levels in the callus tissue at the particular sampling time point. An option to 
overcome this problem would be single-cell sequencing. Single-cell sequencing 
technology would show the spatial segregation of all cell types present in the callus 
microenvironment and detect from which specific cell type a given mRNA is 
expressed. Further, it would be easier to allocate which miRNA-mRNA interactions 
are available in which cell type. In addition, it would be a nice way to detect RNA 
expression changes during cell differentiation. 

While processing the serum samples, one obvious challenge is to avoid blood 
cell contamination as blood cells are rich in small RNA. E.g., erythrocytes have been 
shown to deliver exosomes loaded with small RNA cargo into circulation (Harisa et 
al., 2017). During serum isolation, hemolytic samples were rejected according to 
their colour to avoid uncontrolled small RNA contamination.  Total RNA for 
smallRNAseq was isolated from exosome isolate. In this study, the ExoQuick kit 
was used for exosome extraction because of the simplicity and the large number of 
samples that were taken for the analysis. Precipitation-based exosome isolation 
methods have been considered equally acceptable as ultracentrifugation (Rekker et 
al., 2014), although they are limited by the fact that RNA-binding proteins 
coprecipitate with the exosomes (Karttunen et al., 2019). Therefore, it is possible 
that in the present data the cargo in the RNA binding complexes has contributed to 
the observed levels of sncRNAs in circulation (Dhahbi, Spindler, Atamna, 
Yamakawa, et al., 2013). 

The abundance of 5’ tiRNAs, or rather the shortage of 3’ tiRNAs in our data is 
linked to the used traditional sequencing method which is optimised for miRNA 
analysis, and not adapted to tsRNA. For example, miRNAs contain a 5’ phosphate 
(5’-P) and a 3’ hydroxyl (3’-OH) end but tsRNAs possess a 3’ end bearing 
modifications such as a 3’ phosphate (3’-P) or 2′,3′-cyclic phosphate (2′3′-cP) which 
blocks the 3’ adapter ligation and therefore prevents the detection of modified 3’ end 
molecules (Honda et al., 2015; J. Shi et al., 2021). The use of a special kit, such as 
PANDORA-seq, for RNA library preparation, would allow more accurate detection 
of modified tsRNA fragments and overcome this problem (J. Shi et al., 2021). 
PANDORA-seq is designed to remove internal RNA methylations and terminal 
modifications, detailed above. However, the technique requires further improvement 
to overcome other tRNA modifications which can interfere with reverse transcription 
such as 2-methylthio-N6-isopentenyl adenosine (ms2i6A) (Wei et al., 2015). 



Matthieu Bourgery 

 68 

6.3 Future perspectives 
NGS data are not limited and restricted to only mRNA and miRNAs. Rather the 
fragment size selected, the chemistry, and the techniques used in the library 
preparation are the limiting steps on which RNA molecules can be analysed from the 
given NGS data. To take advantage of this, the thesis aimed at analysing from the 
RNAseq data also the retrotransposons in addition to mRNAs, and in smallRNAseq 
data the tsRNAs falling within the same size range with miRNAs, in terms of library 
preparation, with the limited detection of 3’ end modified tiRNA fragments. In 
addition to miRNAs and mRNAs, also LTR retrotransposons were analysed for their 
known interaction with tiRNAs. However, it would be great in the future to push this 
even further by looking more particularly at long non-coding RNAs, snRNAs, or 
even DNA methylation during fracture healing which is known to be related to the 
retrotransposons. 

The data presented in this thesis project provides a basis for the future studies to 
look at the role of specific miRNAs and tiRNAs in fracture healing and bone biology 
by silencing their expression in mouse models, after generating a genomic knockout 
by selecting the miRNA/tiRNA locus. These types of experiments would allow 
further understanding on the role and function of selected ncRNAs important in 
fracture healing. For example, this thesis uncovered the abundant and differential 
expression of several tiRNAs such as Lys-CTT and His-GTG and miRNAs such as 
miR-150-5p, miR-340-5p, miR-455-5p, and 455-3p. A similar, but a broader 
approach would be to delete the expression of endonucleases responsible for tsRNA 
and/or miRNA biogenesis from a given cell type and to follow the fracture healing 
process to investigate how important are these tsRNAs/miRNAs originating from a 
given cell type are in the regulation of fracture healing. 

While considering the biomarker applications, the potential of selected sncRNAs 
presented in this thesis could be tested in human bone fracture cases to follow the 
fracture healing and efficacy of possible medicines in treating the trauma. Fracture 
healing is a complexe mechanism and a full recovery is a lengthy process, the use of 
circulatory biomarkers could indicate a putative non-union of the fracture healing. 

Another potential approach to study fracture healing is to combine multi-omics 
data sets such as RNAseq (found in this study), DNAseq such as ATAC-seq and 
ChIP-seq, sncRNAseq (found in this study), DNA methylation analysis, proteomics, 
and metabolomics. This approach allows generation of a whole network interacting 
biomolecules including their associations and correlations-based on various 
statistical analyses. 
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7 Summary and conclusions 

Expression of sncRNAs (tsRNAs and miRNAs) was assessed during mouse tibial 
closed fracture healing, in callus, bone, cartilage, and serum samples. Based on the 
results presented in this thesis, the following conclusions were made (Figure 16): 

1. In control bone and cartilage, 25 bone and 29 cartilage homeostasis-associated 
miRNAs were identified by comparing their expression against each other 
tissue. 

2. Differential expression of 54 miRNAs and seven tsRNAs was shown after 
fracture in callus tissue at D5-D14, and eight miRNAs and six tsRNAs in 
circulation at D1-D14 when comparing their expression to the expression of 
D0 samples (intact diaphyseal bone samples). 

3. In callus tissues, 164 miRNA-mRNA interactions were observed, based on 
statistical findings using a Spearman correlation test. MiRNAs and 5’end 
tiRNAs are suggested to target mRNAs during fracture healing to fine-tune 
their expression in callus tissue samples. 

4. In circulation, miRNAs and tsRNAs are suggested to have a putative role as 
biomarkers of fracture healing and as systemic regulators originating even 
outside the trauma tissue to facilitate fracture healing. 

5. Retrotransposon and more specifically LTRs expression differs between intact 
bone and callus tissue, and it is also DE during fracture healing. 
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Figure 16. Summary of the tsRNA and miRNA expressions found in callus and serum 

samples. MiRNAs and tsRNAs were clustered based on the date with maximum 
absolute value of log2FC at D1, D5, D7, D10, and D14 compared to D0. Blue highlighted 
miRNAs are cartilage-associated while red highlighted miRNAs are bone-associated. ↑: 
increased expression compared to D0 control, ↓: decreased expression compared to 
D0 control.D: Day, MC: medullary cavity, P: periosteum, E: endosteum, MSC: 
mesenchymal stem cell, RBC: red blood cell, M: macrophage, Mo: monocyte, C: 
chondrocyte, HC: hypertrophic chondrocyte, Ob: osteoblast, Oc: osteoclast, BV: blood 
vessel, ?: unknown interaction in fracture healing. 
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