Finding similarities between software
development skills

Master of Science in Technology
Thesis

University of Turku

Department of Computing

Software Engineering

2023

Kristian Koskinen

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

KRISTIAN KOSKINEN: Finding similarities between software development skills

Master of Science in Technology Thesis, 57 p., 11 app. p.
Software Engineering
April 2023

As software development becomes an increasingly important part of modern soci-
ety, understanding the similarities and differences between different software devel-
opment skills is critical for improving the effectiveness and efficiency of software
development teams.

In this thesis we explore the use of user skill level data to identify similarities in
software development skills. Using data from an application that a company uses to
gather information about the competence of their personnel. In this thesis we try
to explore the possibility of finding similar skills and measuring this similarity.
The initial results from this data do not give clear clusters of similar skills however
further processing of this data gives results that hold great potential. By providing a
measure of similarity between different skills we can better match candidates to job
requirements and training programs improving the overall effectiveness and efficiency
of software development teams.

Keywords: semantic search, similarity, software development

Contents

Introduction

Semantic search fundamentals

2.1 Machine learning

2.2 Supervised learningo oo

2.3 Unsupervised learning L
2.3.1 Clustering
2.3.2 Clustering evaluation
2.3.3 K-means algorithm00,

2.4 Semantics and semantic search

Search engine and Elasticsearch fundamentals
3.1 Brief history of search engines
3.2 Elasticsearch

3.3 Searching in Elasticsearch L.

Case Competence management system

4.1 About the company

4.2 Demand for semantic search and use cases
4.2.1 Other solutions

4.3 Examples of thedata

10

12
12
13
16

5 Processing the data
5.1 Preprocessingo
5.1.1 Formatting o
5.1.2 Validating
5.1.3 Separating skillso
0.2 Processing
5.2.1 First clustering o
5.2.2 Standardizing and normalizing the data.
5.2.3 Using the Principal Component Analysis
5.2.4 Conclusion from clustering
5.2.5 Using dot product to create similarity matrix
5.2.6 Cosine similarity oL
5.2.7 Presence of unnamed skills

5.3 Conclusion from processing

6 Validation
6.1 Evaluating with experiments/interviews
6.2 Validation methods
6.3 Interview materialso

6.4 Results from the interview

7 Conclusion
7.1 Answers to the research question

7.2 DISCUusSIONn
References
Appendices

A Code

11

26
26
26
27
27
29
30
32
34
36
37
40
40
42

43
43
44
45
20

54
o4
25

58

B Interview materials

111

List of Figures

2.1 Local minimum [3]

2.2 Different clustering results [6]

4.1 Top 50 most common skills, right with skills with no name (red)
includedo

4.2 Graph about skill occurrences

5.1 Histogram on skill distribution (x-axis is the amount of skills per user
and y-axis is the number of users with this number of skills)
5.2 Histogram on level distribution (x-axis is the skill level and the y-axis
is the number of skills with that level)
5.3 Histogram on interest distribution (x-axis is the user interest in skill
and the y-axis is the number of skills with that interest)
5.4 Cluster size with default data
5.5 Cluster size with normalized data
5.6 Cluster size with standardized data
5.7 Cluster size with normalized and standardized data
5.8 Boxplot from different PCA dimension count with percentage of vari-
ance explained by each of the selected components
5.9 Cluster size with using PCA
5.10 Visualizing PCA result

5.11 Dot product ranking normal data and results.

v

6.2
6.3
6.4
6.5
6.6

Dot product ranking normal and standardized results 38

Dot product ranking standardized data and normal results 38
Dot product ranking standardized data and results 39
Dot product ranking with python 39
Cosine similarity with JavaScript 41
Cosine similarity with an unnamed skill 42

Interview materials showing cluster size and sample from first three

clusters on what skills they contain. 46
Interview materials showing two lists from the similarity matrix . . . 47
Interview materials showing four lists with different scaling 48
Interview materials two list to compare the order 48
Interview material showing cosine similarity with "AWS" 49

Interview material showing cosine similarity with a skill with no name 50

List of Tables

3.1
3.2

4.1
4.2

5.1
0.2

Example of forward index 17
Example of inverted index 17
Example of unprocessed skill data 21
Example of unprocessed userskill data 22
Example of processed data 28
Example of data used in clustering 28

vi

1 Introduction

We are all familiar with keyword search which is often used by search applications
in our own computer and throughout the internet. In keyword searching, you enter
some text, and the search engine returns documents containing the text that you
entered. These results are then ranked, based on different criteria.

Although this type of keyword search generally does a good job in ranking web
pages, most of us know that this kind of search completely fails in other contexts.
For example, searching your own computer for a document by relying on keywords
can be very frustrating. Not to mention searching a data store the size of your
corporate intranet.

Rather than blindly returning anything that contains the text you typed into
the search bar, semantic search takes into account the context of your search as well
as the underlying meaning of the documents to be searched. For example, searching
with the keyword java, it might mean the programming language, the island, or
a drink. There are multiple different meanings for one word, so it is quite hard to
know what the user is actually trying to achieve with just one word. If you are using
that particular search engine for the first time, usually it just ranks them based on
popularity. Later the search engine can learn more about the user from its search
history and give more relevant answers based on that. If those are not suitable then
users can just add descriptions like “java island” if they meant the island.

Semantic search denotes search with meaning. It seeks to improve search ac-

CHAPTER 1. INTRODUCTION 2

curacy by understanding the intent and the contextual meaning of the search by
ranking the results based on similarity. When it comes to software development
there are a huge amount of different skills. All the tools, languages, methods of
programming and managing the development are just a few to mention. Given the
proper background knowledge we can tell which skills are similar. But it is impos-
sible for one person to know all the skills in the world and rank them against each
other based on similarity.

The application in this thesis has data on the user’s own measurement of their
skill level as well as interest on that specific skill in a 0-5 scale. For example, if
person is interested in Java, maybe they would also like C#, because many other
C# users are interested or skilled in similar skills.

RQ1: What is the best method to process data of user skill levels to
achieve the best possible result in similarity?

Measuring this similarity can be very difficult. Does there exist any standardized
metrics currently that can be used? Or do we just trust on basic instinct on the
similarity between the skills?

RQ2: How can we measure similarity between skills in software devel-
opment?

At the moment, the application users do not have a specific process to find
suitable candidates for new projects. They just search with terms they think are
relevant. Currently the application uses Elasticsearch, and one of the applications of
this similarity data would be to integrate semantic search to this using a similarity
score found by the model for the similarities.

In this thesis we are tackling a problem that includes creating a semantic search
for different expertise in the software development business, like what programming
languages one has experience in or what kind of development methodologies are

used. What if some people only list programming languages they have used and then

CHAPTER 1. INTRODUCTION 3

someone would like to find a person with experience in “web technologies™ Using
just a regular search would not show people who have not added web technologies
into their expertise, even though they have multiple years of experience in the field.
This is the problem that this thesis is trying to solve. If this kind of similarity can
be found using this type of data, it should be easy to scale this into much larger
data set to get even more precise results and add more skills.

The Chapter 2 goes through the necessary background information required to
understand what semantic search is and how it works. It also goes through some
other relevant information regarding the processing of the data and methods used
in it. The Chapter 3 takes a look at the current situation in search engines and a
deeper look into specific search engine used by the application in this thesis. The
Chapter 4 tells about the company and their need for the application. It explains
how the current application is used and why does the company have this need for
this new approach. The Chapter 5 goes through different methodologies used in this
thesis and tries to argument why they are used. It also goes through the results and
tries to reflect on those whether they succeeded or not. The Chapter 6 goes through

the validation of the results from the processing. And then finally the conclusions.

2 Semantic search fundamentals

As stated before semantic search denotes search with a meaning. But where does
this meaning come from? How can a machine know the meaning behind some text
that is given to the search engine? There are different ways of constructing the logic
behind the semantic search. Usually they use artificial intelligence and machine
learning techniques like natural language processing or clustering to achieve this

kind of similarity score.

2.1 Machine learning

Machine learning is a subject that studies how to use computers to simulate human
learning activities, and to study self-improvement methods of computers that to
obtain new knowledge and new skills, identify existing knowledge, and continuously
improve the performance and achievement.|1]

If the machine is given one simple task then the learning can also be done easily
and the machine learns quickly. But if one increases the complexity of tasks and/or
increases the amount of tasks this learning process becomes increasingly more diffi-
cult.

The most important part of machine learning is the data the machine is used
to train and test with. When it comes to the amount of data one obviously wants
to use all of the available data. But the trick is to use the least amount of possible

data in order to achieve the result wanted. This is because the more data one has

2.2 SUPERVISED LEARNING 5

to teach its machine the more confident one can be with the results. But this comes
with a cost of time and complexity.

The result of machine learning is called a model. Model is trained with the given
data and its performance can be measured during and after the training. There are
ever increasing ways to perform this learning on the model. Some ways of learning
are better suited for specific tasks and the best way to teach the model should always
be chosen given the data and the task at hand.

As Wang et. al stated: "Generally speaking, the machine learning algorithm
comes down to solving the optimization problem" [2]. Getting a number to represent
this optimization problem usually happens with loss function (or sometimes called
cost or error function). This function maps values of one or more variables into
a number that represents the "cost" of that specific event. Job for the machine
learning algorithm is to minimize this cost. But depending on where the initial
position is the algorithm may end up in a local minimum instead.|2]

The figure from Wikipedia illustrates this very well (Figure 2.1). In the figure we
can see that if we start on the right side of the local maximum then the algorithm
may start diverting to the right and end up in the local minimum. One solution to
this problem is to have multiple runs with different initialization to have possible

different results and thus reducing the risk of ending in the local minimum.

2.2 Supervised learning

There are many different approaches to the usage of data in machine learning. One is
called supervised learning where the algorithm gets to use labeled data as an input.
Because we already know the answer in this dataset, we can use it to supervise
the algorithm into giving more accurate results. In this the data is usually divided
into training and test sets. The training set is used to train the model to increase

its performance. And the test set is used to verify the results and improve the

2.2 SUPERVISED LEARNING

global maximum

local maximum

>

local minimum

global minimum

0.2 0.4 0.6 0.8 1 1.2

Figure 2.1: Local minimum |[3]

2.3 UNSUPERVISED LEARNING 7

performance of the model based on feedback. It is important to not use the same
data for training and verification as this will cause unbiased results.[4]

Supervised learning can be divided into two different types: classification and
regression. Classification problems use an algorithm to accurately assign test data
into specific categories, such as separating apples from oranges. Or, in the real
world, supervised learning algorithms can be used to classify spam in a separate
folder from your inbox. Evaluating classification can be done in different ways. One
way is calculating precision and recall. Recall is the proportion of real positive
cases that are correctly predicted positive. And recall is the proportion of predicted
positive cases that are correctly real positives. [5]

Regression is another type of supervised learning method that uses an algorithm
to understand the relationship between dependent and independent variables. Re-
gression models are helpful for predicting numerical values based on different data

points. [4]

2.3 Unsupervised learning

Another one that we are more interested in in this thesis is called unsupervised
learning. In this type of learning we do not have the labeled data as the model
only gets inputs without labels, categories or classes. The model is not given any
feedback and instead tries to find similarities/patterns, or the lack of those in the

given data without human interaction. [4]

2.3.1 Clustering

Clustering is one of the most common types of unsupervised learning. In this type
of learning the model tries to split the given input data into subsets that are called

clusters. This splitting happens so that each data point in a cluster is similar with

2.3 UNSUPERVISED LEARNING 8

MiniBatch Affinity Spectral Agglomerative Gaussian
KMeans Propagation MeanShift Clustering Ward Clustering DBSCAN OPTICS BIRCH Mixture
.00s| .15s .05s/ .07s A .
i .00s .13s|) .03s|
2 L 2
*?:".’5' i?:?é ﬁ
.00s| e 125 B 07s
> L >
NENEY
k;l .13s| \&g
- - -
» » »
», ». »,
.00s .13s] .03s|
PP iy
sis | pae
wnLoall || STy
Loy || Lokt
T || st
.00s| .15s|

Figure 2.2: Different clustering results [6]

each other point in the cluster with one or more predefined criteria. There are
multiple ways to define the criteria for the given tasks and they give very different
results depending on what criteria is used. The example from the Scikit-learn website
illustrates this very well (Figure 2.2). Looking at the figure one can see how different
these methods perform in multiple situations. As said before, all of these come with
their own pros and cons. As for an example, looking at the first row one can see
how some clustering methods divide this into halves or into thirds and some can
actually separate the circles into separate clusters. This same thing happens again

with different datasets with these clustering techniques performing very differently.

2.3 UNSUPERVISED LEARNING 9

2.3.2 Clustering evaluation

Evaluating the performance of a clustering algorithm is not as trivial as counting the
number of errors or the precision and recall of a supervised classification algorithm.

Evaluation of clustering results can happen in different ways. The best method
is usually chosen based on if one knows the true labels or not. [7]

In this thesis we are more interested in the methods where the labels are not
known because we do not know for sure what labels we should use for different
clusters. When the labels are unknown the evaluation must be performed on the
model itself. And usually try to give a number on how similar the clusters are
compared to other clusters. One of these methods is called Silhouette Coefficient
(or silhouette score) which is designed to calculate how well defined the clusters are.
The Silhouette Coefficient s of a single sample is calculated using

b—a
* 7 max(a,b)
Where the a is the mean distance between sample a and all other points in the same
class. And b is the mean distance between sample a and all other points in the next
nearest cluster. Then the Silhouette Coefficient of the model is the mean of all of

the samples. [7]

2.3.3 K-means algorithm

We are going to take a deeper dive into k-means clustering as this is going to be
used in this thesis as the clustering method. K-means clustering algorithm tries to
cluster data by separating data samples into a given number of samples with equal
variance. As said this algorithm requires the number of clusters given as an input
before the clustering. One benefit of this algorithm is that it scales very well to large
number of samples and it has been widely used in multiple different applications in

many different fields. K-means divides the dataset into clusters with each cluster

2.4 SEMANTICS AND SEMANTIC SEARCH 10

described with its mean of the samples in the cluster. These mean points do not
necessarily belong to the original dataset and are usually called centroids.|8|

The algorithm itself has three steps. First is the initialization where the algo-
rithm randomly chooses points in dataset to use as the first centroids of the clusters.
The second step is when the algorithm calculates the distance between all of the
points and the centroids and assigns points to the cluster. Then in the third step the
algorithm calculates new mean from all of the points inside the cluster and assigns
this as the new centroid. The algorithm also calculates the distance between the
old and new centroid. The second and third step is repeated until the centroids no
longer move over the given threshold and stable configuration is found. These are
then the final clusters that are returned. [§]

Given enough time the k-means always converges but this can happen inside a
local minimum This result is highly dependent on the initialization of the centroids so
multiple runs are recommended for best results. One can also try to use initialization
scheme called k-means++. K-means++ ensures that the first centroids are far apart

from each other and lowering the chance of local minimum and improving the results.

2.4 Semantics and semantic search

Semantics is the philosophical and scientific study of meaning in natural and artificial
languages. The word semantics comes from Greek verb semaino meaning "to mean"
or "to signify". [9] Semantics studies the meaning of words, phrases, sentences, and
other linguistic entities, not the meanings of actions or phenomena. [10]

Semantic web is an extension to current web where information is given well-
defined meaning. This enables better cooperation between computers and humans.
Semantic web also contains information about persons, places, events and so on, not
only media on the internet that contains objects like web pages, images and videos.

Even further the semantic web contains more than just hyperlink between these

2.4 SEMANTICS AND SEMANTIC SEARCH 11

objects instead it can contain multiple relations between the resources mentioned

before. In short semantic search is an application of semantic web to search. [11]

3 Search engine and Elasticsearch

fundamentals

3.1 Brief history of search engines

As the number of web sites increased quickly in the 90s more search engines started
to appear to help people to find information they wanted quickly and more easily.
A search engine is a program that when given a search query it will look up from
its database for a corresponding result based on given parameters. A web search
engine is a search engine that is used to search web pages. [12]

In today’s life the search engines especially the web search engines have become
part of our daily life. We constantly use them to look for news, funny images, recipes
or find answers to questions. The amount of information available to us today is
something that is very hard to visualize.

During the early development of the web, there was a list of web servers edited
by Tim Berners-Lee and it was hosted on the CERN web server. As the number of
pages that went online increased the central list could not keep up. [12]

The very first tool used to search the Internet was called "Archie". The name
came from the word "archive". It was created by a group of computer science
students at McGill University in Montreal in 1990. The program downloaded the

directory listings of all the files located on public anonymous FTP (File Transfer

3.2 ELASTICSEARCH 13

Protocol) sites, creating a searchable database of file names. However Archie did
not index the contents of these sites and since the amount of data was so limited it
could be readily searched manually. [12]

There were some new tools used to search that incrementally improved from
the previous. But the next major improvement was the first full text crawler-based
search engines was called WebCrawler. It came out in 1994 and unlike its prede-
cessors, it let users search for any word in any web page, which has become the
standard for all major search engines since. It was also the first one to be widely
known by the public. [12]

Around 2000, Google’s search engine rose to prominence. The company achieved
better results for many searches with an innovation called PageRank. This iterative
algorithm ranks web pages based on the number and PageRank of other web sites
and pages that link there, on the premise that good or desirable pages are linked
to more than others. Google also maintained a minimalist interface to its search
engine. Unlike many of its competitors embedded a search engine in a web portal.

[12]

3.2 Elasticsearch

We are going through some basic information about Elasticsearch engine, because
the application already has a search application built on top of the Elasticsearch
engine.

Shay Banon created the precursor for Elasticsearch called Compass to help his
wife to search from her growing list of food recipes. After few iterations he wanted
to create more scalable solution and renamed it Elasticsearch and made the project
open source. The response from community was good and few people joined together
and created company around the Elasticsearch.|13]

The main point of Elasticsearch compared to others is that it is according to

3.2 ELASTICSEARCH 14

Banon: "a solution built from the ground up to be distributed and used a common
interface, JSON over HTTP, suitable for programming languages other than Java
as well" [14].

As Andhavarapu describes Elasticsearch: "Elasticsearch is a highly scalable open
source search engine. Although it started as a text search engine, it is evolving as
an analytical engine, which can support not only search but complex aggregations.
Its distributed nature and ease of use makes it very easy to get started and scale as

you get more data" [15].

Document

Elasticsearch stores the data in the JSON format like most NoSQL databases. This
is because JSON format is flexible and readily understandable by humans. And-
havarapu describes why JSON is used: "Reading similar information without the
JSON structure would also be difficult as the information would have to be read
from multiple tables. Elasticsearch allows you to store the entire JSON as it is.
For a database table, the schema has to be defined before you can use the table.
Elasticsearch is built to handle unstructured data and can automatically determine
the data types for the fields in the document. You can index new documents or add
new fields without adding or changing the schema. This process is also known as

dynamic mapping." [15]

Index

An index is similar to a database. The term index should not be confused with a
database index, as someone familiar with traditional SQL might assume. Your data
is stored in one or more indexes just like you would store it in one or more databases.
The word indexing means inserting/updating the documents into an Elasticsearch

index. The name of the index must be unique and typed in all lowercase letters.

3.2 ELASTICSEARCH 15

[15]

Type

A type can be compared to a table in a database, and an index may include one or
more types. Essentially, a type serves as a means of logically separating different
categories of data. It is also possible to establish relationships between different
types of data. For instance, one could define a parent/child relationship between
articles and comments, such that an article serves as the parent and can have one

or more comments as its children. [15]

Cluster and node

Elasticsearch is a distributed system, meaning it consists of one or more nodes that
operate as a single application which allows it to handle larger workloads than a
single server can handle. Each node contains a portion of the data and you can
start with a single node and expand the cluster by adding more nodes as your data
grows. The nodes work together to manage all the indexing and query requests on
the data and each cluster and node has a unique name. If a name is not defined in
the configuration Elasticsearch automatically assigns a unique name to each node.
Elastic search also enables you to add or remove nodes on the go without interrupting

the application. This process is handled seamlessly by Elasticsearch. [15]

Shard

In Elasticsearch an index refers to a grouping of one or more shards. Each in-
dex’s data is spread across multiple shards which enables Elasticsearch to store vast
amounts of data that cannot be accommodated by a single server. To index and
query data Elasticsearch employs Apache Lucene as an internal tool. Essentially a

shard in Elasticsearch is an instance of Apache Lucene. [15]

3.3 SEARCHING IN ELASTICSEARCH 16

Handling documents

The primary way of interacting with Elasticsearch is with the REST API The
Elasticsearch itself provides JSON-based REST API over HT'TP. Handling the docu-
ments in Elasticsearch happens with simple CRUD (Create Retrieve Update Delete)
operations. Elasticsearch will automatically index new documents added to the sys-
tem and also create the indices if they are missing. Updating the document is quite
expensive as under the hood the Elasticsearch would retrieve the old document,

apply changes and then insert it as a new document to the system. [15]

3.3 Searching in Elasticsearch

As the computation power is increasing and cost of storage is decreasing, the amount
of day-to-day data we deal with is growing exponentially. But without a way to
retrieve the information and to be able to query it, the information we collect does
not help. [15]

Information retrieval systems are very important to make sense of the data.
Imagine how hard it would be to find some information on the Internet without
Google or other search engines out there. Information is not knowledge without
information retrieval systems.

When it comes to text search engines in forward index each word in the document
is stored in the index of the document. In inverted index instead each word contains
the information on what documents contain that particular word. [15]

Using the same example as Andhavarapu to explain the forward and inverted
index. Imagine if we have three documents each containing a quote from Yoda from
Star Wars. These quotes are "Fear leads to anger", "Anger leads to hate" and "Hate
leads to suffering". Forward index for these types of documents would be created

like this 3.1. Using the same documents to create an inverted index would create

3.3 SEARCHING IN ELASTICSEARCH 17

the following index 3.2.

Document Terms

Document 1 fear leads,to,anger
Document 2 | anger,leads,to,hate

Document 3 | hate,leads,to,suffering

Table 3.1: Example of forward index

Term | Document
fear 1
leads 1,2,3
to 1,2,3
anger 1,2
hate 2,3
suffering 3

Table 3.2: Example of inverted index

Understanding how the index works in Elasticsearch is important as it is on of
the main step on configuring the search engine. By default, Elasticsearch indexes all
data in every field and each indexed field has a dedicated, optimized data structure.
Elasticsearch also has the ability to be schema-less, which means that documents
can be indexed without explicitly specifying how to handle each of the different fields
that might occur in a document. When dynamic mapping is enabled, Elasticsearch
automatically detects and adds new fields to the index. This default behavior makes
it easy to index and explore your data. |16]

Elasticsearch is much more than just index based search engine. It can also
support complex queries with vector search or even embedding a machine learning

model directly to determine the ranking of the results.

3.3 SEARCHING IN ELASTICSEARCH 18

Elasticsearch describes vector search as: "Vector search transforms text, audio,
and images into numeric representations and leverages deep learning and machine
learning to interpret the meaning, intent, and context of these representations to
serve up much more relevant search results." [17]

With vectors we represent word in a numeric vector. This vector tries to capture
the semantic properties of the word. These vectors are ranging from dense with
10 to 1000 dimensions to sparse with over 50 000 dimensions. Comparing the se-
mantic properties, or similarity, between these vectors is usually done with Cosine
similarity. 18]

Cosine similarity is a measure of similarity between two sequences of numbers,
in this case, vectors. The cosine similarity is defined as the cosine angle between
the vectors in an inner product space. It is calculated using the dot product of the
vectors divided by the product of the lengths of the vectors. The cosine similarity
will always be between -1 and 1. Two proportional vectors have a cosine similarity

of 1, orthogonal vectors have 0 and two opposite vectors have similarity of -1. [19]

4 Case Competence management

system

4.1 About the company

There are two companies involved in this thesis, the company X that develops this
application and the company Y actually uses and has the data that is used in this
thesis. The company Y is quite large and has many employees with multiple different
skills and interests. Their main income is to sell the expertise of these persons as
consultants so it is very important for them to know what everyone wants and can
do.

Currently the application that is the target of this thesis is not publicly available
and is only used internally by the company Y. The company Y uses this application
to allow its employees to fill out their profiles containing information for example
about their skills, interests, education and previous projects. Skills that the user
fills in their profile are ranked on 0-5 scale on how good the user thinks they are

with this specific skill. We are focusing on those skills in this thesis.

4.2 Demand for semantic search and use cases

The demand for this semantic search feature that allows user to search candidates

for new projects more easily comes from the company X that wants to improve the

4.2 DEMAND FOR SEMANTIC SEARCH AND USE CASES 20

product. We looked different approaches and this semantic search feature was the
most interesting and we thought this would bring the most value of all of the other
proposals.

In the application when a new project is starting and it is known what types of
technologies would be used in the new project, then the person in charge of finding
people to the new project uses this application to find people suitable for this project
based on their skills and vacancy. Of course the exact match for all the requirements
is hard to find so usually the person finding these people just takes one skill at the
time and tries to find a suitable person for the job.

Having a large number of people with different skill levels it has become increas-
ingly challenging to identify the best employees for new projects. With a large and
diverse workforce, it can be difficult to determine which employees have the skills
and experience needed to excel in a new project.

The intended use case of the new search would be that the person searching
people from the application could just list all of the skills required for the new project
and the application would then return best possible matches based on similarity and
vacancy. Of course exact match would be ideal, but in real world these rarely happen
if the list of required skills is long and contain multiple different skills from different
categories. Usually the new people to the project are not just a person, but multiple
persons that would form the team that would then fulfill the requirements for the
new project. But using this search currently happens only for a single position in
the team, for example back-end developer and skill needed for that. Of course if
the new project also has a front-end developer then obviously those skills are not

needed from the back-end developer.

4.3 EXAMPLES OF THE DATA 21

4.2.1 Other solutions

I was unable to find other solutions that would fit in the same category which is
creating this similarity data based on peoples own perception of skill levels. Papers
that came somewhat close were mostly comparing programming languages based
on their syntax or other methods using the text needed to write the code. I was
looking something that would result in some kind of similarity data that could be
used with search engine. This result would then be used in the application to help

these people find more easily the people they need for their new projects.

4.3 Examples of the data

The data in its unprocessed form had two different tables. One containing the skills
and the other skills of the users. The following tables are just examples of given data
and do not contain any information about the contents of the real data. All of the
ids are simplified for readability but are actually using the 16-octet version of UUID
in the real data. The simplest of the tables contains the information about the
skills (Table 4.1). It only contains the id of the skill and its given name. This table
does not contain any other information. I think that this table does not require any
further processing to be able to use it. We are only interested in this data because
it would be very beneficial to know what skills we are working with as all of the
actual processing later will only be done with the ids so knowing what skill is what

would be nice. In the example there is the id and the display name of the skill.

id name

321 | Angular
332 | NodelJs

9019 | React

Table 4.1: Example of unprocessed skill data

4.3 EXAMPLES OF THE DATA 22

The next table contains the actual data that we are interested in. This table
contains the skills of all of the users (Table 4.2). Each row in this table contains one
skill of a single user. Starting from the id field of the data, this actually is the id
of the user. Then we have the skillld which is the id of the skill. Next skilllnterest
which is users own interpretation of their interest level on that skill on a scale of 0 to
100. The next field is expInYears which is just as the name suggests the experience
of the user in years with that particular skill. The next field is the most interesting
for us, the skillLevel, this is users own interpretation of their skill level on a 1-5 scale.
Note that in this data there are bigger numbers than 5, this is because there was an
older system that used scale of 0-100. The new system maps the new values to the
old scale. Lastly we have the category field. This is users own input on how they
want to categorise these skills in their own profile. I believe that this is not usable
for the clustering later as it can contain anything and would not give enough value

for the result to be included.

id | skillld | skilllnterest | expInYears | skillLevel category

12 | 321 100 5 64 Front End

12 | 332 100 2 14 Back-end / Backend
23 | 9019 80 4 100 JavaScript

Table 4.2: Example of unprocessed userskill data

The Figure 4.1 shows us a list of the 50 most common skills found in the infor-
mation we have. It gives us a quick look at the most frequent skills that are present.
There are 2 different lists of skills. One is without the unnamed skills and the other
with the unnamed skills. The unnamed skills are just skills that do not have a name
attached to them. These are explained later in Chapter 5 that goes through the
processing and handling of these skills.

Each skill is followed with a number that represents the count of users that have

4.3 EXAMPLES OF THE DATA 23

that particular skill in their profile. Given that the dataset contains almost 1000
different users that means that half of them know JavaScript, which is a quite large
portion.

We also have a graph that shows how common each skill is in the dataset. The
Y-axis is the times that skills appeared in the dataset. And the X-axis is the ranking
of that skill based on the amount of times it appears in the dataset. We can clearly
see how quickly they drop to only single digit appearances. This is something that
gives me worries about the possibilities of the data I am using. If most of these
skills only appear once or twice in the dataset, they only give little to no value when
trying to cluster based on similarity. I am hoping I can prove myself wrong in the
next chapter where I go through the processing of the data and get some initial

results.

4.3 EXAMPLES OF THE DATA

javascript 492

git 445

java 436

python 363

css 344

scrum 264

mysql 262

xml 259

jenkins 259

c++ 254

X html 247

docker 247
postgresql 245
mariadb 244

node.js 240

react.js 234

sass 220

scss 218

amazon web services 216
aws 216

linux 2e8

svn 208

sql 2e7

microsoft .net c# 199
subversion 195
typescript 193
jquery 19e

mongodb 189
microsoft sql server 186
atlassian jira 179
windows 166

unix 163

php 161

azure 159

angularjs 159

robot framework 158
c 156

agile 154

spring framework 146
oracle 133

bash 119

kanban 118

microsoft visual studio 117
etc. 117

unix and linux shell scripts 114

vue.js 113
angular 113
clojure 108
sh 1e8

ksh 1e8

javascript 492
git 445

java 436
python 363

css 344
unnamedskill-8 299
scrum 264
mysql 262

xml 259
jenkins 259
c++ 254

x html 247
docker 247
postgresql 245
mariadb 244
node.js 24@
react.js 234
sass 220

scss 218

amazon web services 216

aws 216

linux 2e8

svn 288

sql 287
unnamedskill-85 201
microsoft .net c# 199
subversion 195
typescript 193
unnamedskill-3 192
jquery 19e

mongodb 189

microsoft sql server 186

unnamedskill-57 188
atlassian jira 179
windows 166

unix 163

php 161

azure 159

angularjs 159

robot framework 158
unnamedskill-24 157
c 156

agile 154
unnamedskill-40 147
spring framework 146
unnamedskill-4 137
unnamedskill-17 137
oracle 133
unnamedskill-16 138
bash 119

Figure 4.1: Top 50 most common skills, right with skills with no name (red) included

4.3 EXAMPLES OF THE DATA

25

500 1

400 4

300 4

200 4

100 1

1000 2000 3000 4000 5000 6000

Figure 4.2: Graph about skill occurrences

7000

5 Processing the data

5.1 Preprocessing

5.1.1 Formatting

Before data can be processed it requires to take a look more closely and trying to
clean it as best as one can. The received data needs to be formatted so it can
be processed by the selected programming language with ease. Luckily the scale
of the skill level is limited so there should not be any outliers above or below the
predetermined scale. But this is something that also should be checked and fixed if
any are found.

The data was packed so that it came in multiple pieces so first I had to combine
the data together. And doing so I get some first look at the contents. Javascript was
used to combine these datasets as they were all in JSON format and the dataset was
not that large that it would have required a more performing language to process.
The dataset contained two tables, first one, call it skill table, containing the skill ids
and their names, and the other one, call it the user skill table, containing user id,
skill id and user skill level with that skill as a number from 0 to 100 as well as their
interest towards that skill. After the first run it was found that there are 5624 skills
in the skill table and 35120 user skills in the user skill table. But looking closely
the user skill table had 7426 different skill ids so that means about 1800 skills are

missing from the skill table.

5.1 PREPROCESSING 27

5.1.2 Validating

It is also important to check for missing values and try to figure why those are missing
and if possible try to deduce what those missing values could be. Knowing that this
dataset also contains data from older versions of this application and knowing that
the data has gone through several migrations it is highly possible that some values
are invalid or unusable. It is important to check how much of the data is possibly
affected by those migrations and try to fix them.

Like said before about 1800 skills have their ids missing from the skill table.
After trying to figure out why they are missing and finding those missing skills, I
came to the conclusion that they are nowhere to be found. Most likely scenario was
that they used some old id that was removed from one of those migrations where
the old data was migrated to support the new system. But the migration failed to
clean those same ids from other places leaving these traces of old data.

We are trying to find similarities between skills so leaving these skills in the data
can actually be helpful for the results. Even though these skills have no name, they
still can help find the similarities between skills. So I decided to just leave those

skills there and named them just as unnamed skills.

5.1.3 Separating skills

Looking more closely on the skills that are in the table, it was found that they
contain a lot of old data that still allowed users to fill their skill with text field,
meaning that they can contain anything. I found that many users had used one field
to list multiple skills and on top of that, different users used different separators.
Looking more closely I decided to separate the skill names into separate skills if
they contained any of the following characters: comma, ampersand, slash or bracers.
Again Javascript was used to separate these names as the data was in JSON format.

See code 1 and 2. After separation, if we find a skill that already exists, we do not

5.1 PREPROCESSING 28

create a new skill but instead add this same skill to the user to keep the amount of
duplicates low and save the similarity data.

There is also a lot of skill names containing the word "and" but looking more
closely to those, I decided that most of those actually require the word "and" between
them. After this separation we now have 41415 user skills and 8983 different skills.
The result from preprocessing is two files, the first one containing the skills and the
other contains the user skill in JSON-format.

As to give examples on how the data looks after the processing I present you
some example with the Table 5.1. Each row contains the information of one skill of
a single user. The fields are the same as before, but now the skill display name is

embedded to the information about the skills of the users.

id | skillld skill skillLevel

12| 321 | Angular 64
12] 332 NodelJs 14

23 | 9019 React 100

Table 5.1: Example of processed data

And lastly here is an example of what kind of data I am using in the clustering
(Table 5.2). I created a matrix where each row is a skill and each column is a user.
And the values are the skill levels of the user with that skill. This gives us nice

vectors on user skill levels which we can then compare on the similarity to create

clusters.
12 | 23
321 |64 0O
332 | 14| 0
9019 | 0 | 100

Table 5.2: Example of data used in clustering

5.2 PROCESSING 29

Skills

200 A

100 1

0 50 100 150

Figure 5.1: Histogram on skill distribution (x-axis is the amount of skills per user

and y-axis is the number of users with this number of skills)
5.2 Processing

Processing is going to start from getting a look of the data and doing some diagrams
on how the data is distributed and can we detect something from those distributions.

I used jupyter notebook and python libraries like pandas to create the dataset
from the tables and matplotlib to draw the diagrams. The histograms were drawn
using the matplotlib histogram method with the Sturges’ formula on the bin width.
The first figure shows the distribution of the amount of skills per user. I am expecting
something like 10 skills per user. As we can see that most users have around 50
skills, which is still quite a bit more than I expected. I think that this will help us
find the similarities because the user has more skills in their profile than expected
thus expanding the possible matches for the skill similarities. (Figure 5.1).

The second figure shows the distribution of levels that users have rated their skill
level with that particular skill. Although users currently can only use zero to five
scale, it used to be 0-100. I am expecting to see these levels well distributed between
all skill levels. As seen from the figure (Figure 5.2) the levels are evenly distributed.
There are some peaks on the spots that map the current system to the old one. For
example the new scale of 4 is located near the 75 of the old system.

The third figure shows the distribution of interest in that skill rated by the user.

5.2 PROCESSING 30

levels

6000

4000 1

2000 1

Figure 5.2: Histogram on level distribution (x-axis is the skill level and the y-axis is
the number of skills with that level)

interests

20000

10000

Figure 5.3: Histogram on interest distribution (x-axis is the user interest in skill and

the y-axis is the number of skills with that interest)

Clearly most of the skills have an interest of 100 so this data does not help us that
much (Figure 5.3).

5.2.1 First clustering

Clustering is the important part here as I am interested to find if we can group these
skills together in clusters that well define certain types of skills. Clustering is done
only with the skill levels because as seen from the histograms earlier the interest
level was heavily sided on the top end. For example I expect to find clusters that
one contains the front-end skills and the other back-end skills. Maybe some cluster
could contain the general skills in software development like using the git and some

may contain about managing the software development for example tools like JIRA

5.2 PROCESSING 31

or using agile.

K-means clustering is going to be used as it is general clustering algorithm that
is used in various applications. At least it is going to be a good starting point for the
initial results. T am using the Scitkit learn toolkit for their K-mean algorithm and
start by using default values and try to change those around after the first results to
see if I can improve the results somehow. The most important default parameters
used aside from cluster count are the number of time the k-means algorithm will
be run with different centroid seeds, which is in this case 10, maximum number of
iterations per run, which is in this case 300, and the tolerance on which the cluster
is considered converged, which is in this case le-4.

The clustering is calculated based on the user skill levels. One vector contains
user skill levels on all of the skills that are present in this dataset.

With just eight clusters, there are some good clusters that in my opinion contains
some similar skills, but it is hard to determine if those are actually the closest skills
together. We clearly had front-end skills in one group and skills that are used to
manage software development in another group. But there is also always one cluster
that contains "everything else". It does not matter if the cluster count is five, ten or
even fifty, all other clusters are between two and twenty and one always has the rest
containing over 6000 skills. Based on these results, the clustering did not achieve
the results wanted.

Next I tried to change the default values to try to improve the results. The most
notable difference came from changing the maximum number of iterations to 1000.
This notably increased the run duration but also improved the results in my opinion.
Clusters had less skills that I think that did not belong to that cluster. But still
however there is still the one cluster with over 6000 skills and there are still a lot of
skills that I would move to another cluster.

Increasing the maximum number of iterations over 1000 did not change the result

5.2 PROCESSING 32

Default data

Cluster : @, Length: 34
Cluster : 1, Length: 6854
Cluster : 2, Length: 48
Cluster : 3, Length: 7
Cluster : 4, Length: 11
Cluster : 5, Length: 81
Cluster : 6, Length: 2
Cluster : 7, Length: 4
Cluster : 8, Length: 37
Cluster : 9, Length: 1@

Figure 5.4: Cluster size with default data

and the run time would also remain the same meaning the clusters did manage to
converge before that. Changing the tolerance or the amount of runs per different
centroid seed did not seem to have much effect on the results for the clustering.

Conclusion from the first clustering is that it did not succeed like I expected.
Maybe the data needs some more refining in order to get some clear clusters out
of it. I understand that the big over 6000 skill cluster is there to catch all of the
"outlier" that are present with only a couple of users. But suspect that these skills
would still belong to some other cluster and I would really like to get rid of that
huge cluster. See Figure 5.4.

Next I am going to try to refine the data even further to see if the results im-
prove. I am approaching this with normalizing and standardizing the data and then

comparing the results between the previous results and results after the refinement.

5.2.2 Standardizing and normalizing the data

Normalizing and standardizing is important. This ensures that all of the values
have the same importance in the model. There are numerous ways to achieve the
normalization and/or the standardization of the data. One of these is called z-score

standardization that standardizes features by removing the mean and scaling to unit

5.2 PROCESSING

33

Normalized data

Cluster: @, Length:
Cluster: 1, Length:
Cluster: 2, Length:
Cluster: 3, Length:
Cluster: 4, Length:
Cluster: 5, Length:
Cluster: 6, Length:
Cluster: 7, Length:
Cluster: 8, Length:
Cluster: 9, Length:

6987

Figure 5.5: Cluster size with normalized data

Standardized data

Cluster: @, Length:
Cluster: 1, Length:
Cluster: 2, Length:
Cluster: 3, Length:
Cluster: 4, Length:
Cluster: 5, Length:
Cluster: 6, Length:
Cluster: 7, Length:
Cluster: 8, Length:
Cluster: 9, Length:

28
1344
lee2
295
44
81
30
74
67
3523

Figure 5.6: Cluster size with standardized data

variance. This is done with z-score which is calculated by subtracting each value

with the mean value and dividing the result with standard deviation.

After normalizing the data with the Scikit-learn Normalizer method the clusters

did not change like was expected (Figure 5.5).

I used the Scikit-learn StandardScaler method that uses z-score to standardize

the data and then try clustering with that data. The cluster size got way more even,

but it is hard to know if they contain similar skills as they contain so many skill and

looking what they contained there were always some skills that in my mind they did

not belong to the same cluster.

Normalization brought the standardization result with even more evenly dis-

5.2 PROCESSING 34

Normalized and standardized data

Cluster: @, Length: 2451
Cluster: 1, Length: 329
Cluster: 2, Length: 1829
Cluster: 3, Length: 23
Cluster: 4, Length: 142
Cluster: 5, Length: 9
Cluster: 6, Length: 2021
Cluster: 7, Length: 31
Cluster: 8, Length: 1048
Cluster: 9, Length: 5

Figure 5.7: Cluster size with normalized and standardized data

tributed clusters (Figure 5.7). At a glance it is very hard to determine if these
clusters properly contain similar skills due to the amount of skills in them. But
the sizes seem quite promising, but we still have those huge clusters with multiple
thousand skills and those with only few.

Currently the data used in this has high amount of features or dimensions. Next
[am trying to apply PCA (Principal Component Analysis) to the data to see if it

can improve the results.

5.2.3 Using the Principal Component Analysis

PCA lowers the amount of dimensions or features in the data. In this case we are
comparing thousands of skills against each other and each skill is its own feature
so the data has several thousands of features. Using the PCA can greatly speed up
the processing and it can also be used to remove or lower the impact of features or
dimensions that are not important for the results.

Using Principal Component Analysis to project the normalized data into fewer
dimensions and trying the clustering with that data. I tried using different amounts
of dimensions to determine the best result to keep the distribution of skill similar.
I visualized the results using MatplotLib Boxplot to see the distribution of each
dimension and to see how much they affect the final result by looking at the outliers

and where the majority of skills are located. From the Figure 5.8 we can see that it

5.2 PROCESSING 35

PCA with 2 dimensions explained variance ratio:
[e.144713 8.008519422]

50 4 e
S
30 4

20 1
10 1
| O
-10 1

-20 1

-30 T

1 2

PCA with 10 dimensions explained variance ratio:
[e.144713 ©.00519424 ©.00423593 ©.00320724 ©.00309625 0.00287263
©6.808269321 0.88259305 0.0082460891 0.00237518]

01 8

i

Rl H
8

-20 1

-30 4 '

Figure 5.8: Boxplot from different PCA dimension count with percentage of variance

explained by each of the selected components

seems that only the first feature is important for the distribution. The rest of the
features are located near the center meaning they might be able to reduce to fewer
features. I did more testing with even bigger sizes of features but the results were
the same that only the first feature seemed to have any impact.

[used PCA to lower the dimensions to only 2 dimensions so I can try to visualize
the result properly. The cluster size again got way more evenly distributed as we
can see from Figure 5.9. Now all of the clusters got so big it is extremely hard to
determine if all of the skills are properly similar.

Visualizing the PCA clustering result we can see some clearly defined clusters

5.2 PROCESSING 36

PCA to 2 dimensions with standardized and normalized data

Cluster: @, Length: 973
Cluster: 1, Length: 626
Cluster: 2, Length: 1156
Cluster: 3, Length: 1845
Cluster: 4, Length: 283
Cluster: 5, Length: 298
Cluster: 6, Length: 247
Cluster: 7, Length: 1827
Cluster: 8, Length: 1ee
Cluster: 9, Length: 533

Figure 5.9: Cluster size with using PCA

Skills by cluster

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
@ Cluster7

Cluster 8
® Cluster9

[3L B BN

pl

30 -20 -0 0 1 2 32 4 50
PO

Figure 5.10: Visualizing PCA result

(Figure 5.10). All of the most common skills are located on the top right section of
the plot. I also included some skills in the visualizing to present that most of the

popular skills are located in the right side.

5.2.4 Conclusion from clustering

The clustering did not achieve the result that was wanted. Maybe the data does not
have that strong connections between the skills of same type, but instead quite loose
connection with multiple types. This makes the clustering this type of dataset quite
hard. I believe that trying to refine this clustering even further does not improve

the results significantly. I think that it would not be worth trying to pursue with

5.2 PROCESSING 37

skill

javascript 1601203.90
css 1818231.0
git 996183.90
java 857761.0
sScss 691e03.8
node.js 674725.0
sass 673344.0
xml 670820.9
react.js 665641.0
X html 647477.9

Figure 5.11: Dot product ranking normal data and results

this approach any futher.

Instead I think the next step would be to trying to actually compare skills against
each other. This way we can create a sort of ranking system to determine which
skills are similar. Using dot product on the dataset we can create a similarity matrix

that tries to represent a numeric value of the similarity between two types of skills.

5.2.5 Using dot product to create similarity matrix

Taking a dot product from the skills we can create a matrix on how similar skills
are compared to each other. I used normal dot product calculation for dot product
and Scikit-learn StandardScaler with z-score to standardize values. I compared four
different results. We use JavaScript as the target in all of these and show the top
ten of most similar skills, based on the dot product. Note that all of the "unnamed
skills" have been filtered from the results. The first image shows the results when
the data before dot product and the dot product are not standardized (Figure 5.11).
As we can see in the results there are some skills that I think are quite close to
JavaScript, for example the "css" and "node.js". But some are not and I think they
appeared here only because they are very common amongst all users.

In the second image we can see the results when the data is not standardized but

5.2 PROCESSING 38

skill

javascript 31.761283
react 28.423816
typescript 27.837276
graphql 25.983543
jquery 25.746951
node. js 25.736796
reactjs 25.649805
react native 25.154997
vue.js 25.881358
webpack 24.983641

Figure 5.12: Dot product ranking normal and standardized results

skill

javascript 6132.543301
node. js 2991.358258
typescript 2848.817175
CSs 2769.578613
react.js 2741.500133
jquery 2619.633728
scss 2347.961633
sass 2158.183616
git 1993.042284
vue.js 1955.138913

Figure 5.13: Dot product ranking standardized data and normal results

the dot product is standardized (Figure 5.12). This completely changes the results
but these still seem like good results, all seem to be related to JavaScript, but that
may be because it is a common skill.

The third image show the results when the data for dot product is standardized
but the result of dot product is not (Figure 5.13). Here everything again is related
to JavaScript, but I would say that the order is better than in results before.

The fourth and final image show the results when the data and the result of the
dot product are standardized. These results again change the order quite signifi-
cantly, and again some of these results are quite off. (Figure 5.14)

In my opinion the result with standardized data for dot product but not stan-

5.2 PROCESSING 39

skill

javascript 42.746369
react js 28.540476
microsoft tfs 27.453182
typescript 26.233114
react query 25.876800
react context api 25.8768680
node.js 25.331292
keml 25.859614
jguery 24.870981
apollo client 24.739246

Figure 5.14: Dot product ranking standardized data and results

skill skill

python 935496.0 python 35.179502

git 577842.0 django 26.655642

java 530847.0 pandas 26.571061
javascript 508081.0 machine learning 25.397181
jenkins 381588.0 flask 24.918074

docker 331364.0 matlab 23.924658

linux 299833.0 r language 22.936473

robot framework 293827.0 numpy 21.974551
postgresql 292896.0 robot framework 19.741578

c++ 288097.0 scripting 19.588894

skill skill

python 5889.236588 python 56.196011
robot framework 1823.618735 django 30.323536
jenkins 1537.73e327 communication protocols 30.265829
django 1508.199297 selenium library 30.246215
pandas 1408.226799 electronics design 30.095445
selenium library 1268.956545 robotics 30.095445
matlab 1254.108062 embedded developer 30.095445
machine learning 1214.300651 embedded testing 28.917449
scikit-learn 1186.540328 pytest 28.179493
numpy 1156.159821 pandas 27.723482

Figure 5.15: Dot product ranking with python

dardized result of the dot product presented the best results. Here in the case of
JavaScript we can still see some similarities, but if we change to some more un-
common skill, the standardized results have drastically different results to the ones
without standardizing the results. This requires more testing to make sure this is
consistent among most of the skills. Here are the results using "python" (Figure
5.15). Here the top row has normal data and bottom row has standardized data
and the left column has normal results and right standardized results. As we can

see from the python example that it reinforces the claim on the JavaScript case.

5.2 PROCESSING 40

5.2.6 Cosine similarity

Just using the similarity matrix we can easily see how different skills are ranked
against each other. But not necessarily how similar they are between each other.
We can use cosine similarity to calculate how similar the vectors in the matrix
are. This can give us a number on how similar the skills are based on the data we
currently have. I am comparing different cosine similarity results from using data
without standardization or normalization, data with only normalization, data with
only standardization and data with both standardization and normalization.

I am expecting the results varying between the different types of data, but I
think that the same result from previous test also apply here, so that the result with
just standardized data would give the best results.

I used Scikit-learn cosine similarity method to calculate the cosine similarity
between the skills. T tested this with different skills but to highlight the results I am
presenting to you the results using JavaScript as an example.

From the Figure 5.16 we can see that results are somewhat similar to each other.
Some skills are ranked differently in each of the results. The main difference here is
that each of the results except the result with standardized data is containing skills
"Git" and "Java" in them. They are both very common skills and so is JavaScript
which is why I think they appear so high in the similarity. However the result
with the standardized data does not include the mentioned skills in them. Also the
skills contained in this list are in my opinion very close to JavaScript or JavaScript

environments in general.

5.2.7 Presence of unnamed skills

The earlier mentioned unnamed skills are filtered out from the results but they are
still included in the data. If we bring back the discussion on what to do about the

unnamed skills we can start using this similarity data to try to figure out what skill

5.2 PROCESSING 41

---------- Default ------------ ---------- Standardized data ------------
skill skill

javascript 1.000000 javascript 1.000000

node.js 9.965752 node.js 9.738164

jquery ©.958324 react.js ©.721449

react.js ©.957220 jquery ©8.685429

git ©.954046 css 9.668091

css 0.953256 typescript ©.658856

typescript 0.943159 scss 8.618214

angularjs 0.941215 vue.js ©.605398

mongodb 0.932659 sass ©.600626

java ©.931446 angularjs ©.578543

Name: javascript, dtype: float64 Name: javascript, dtype: floatée4
---------- Normalized data ----------- __________ Norm and std data ------------
skill skill

javascript 1.000080 javascript 1.0@eeee

node.js 0.962179 node. js 0.915048

jquery ©.951188 typescript ©.908090

react.js @.958265 git ©.884685

css @.9499@3 mongodb 0.862249

git 8.946724 postgresql 8.851385
typescript ©.941055 react.js ©.846056

java ©.931134 java @.843247
angularjs ©.930746 php ©.833809

mongodb @.927376 vue.js @.833080

Name: javascript, dtype: floaté4 Name: javascript, dtype: float64

Figure 5.16: Cosine similarity with JavaScript

they actually may be.

Looking at the Figure 5.17 we can see how the skills are ranked when comparing
to "unnamedskill-8". T chose this skill as it is the most common skill of the ones that
does not have a name. From the figure we can see that it is considered to be close
to Git, Subversion and SVN which all are some sort of version controls. This means
that with high probability this skill with no name might actually be some of these
and almost certainly it is linked to version control. Using the same method for the
second most common skill of the ones that does not have a name, "unnamedskill-
85", I can say with high probability that it is either mariadb or mysql, because they
both are considered similar with the unnamed skill. At least the skill has something
to do with similar databases as those two.

But they are not a exact match. This means that they also might contain some
other similarity data that the others do not. So for now I am going to leave them as

is and maybe later if needed might run this type of conversion to the closest match

5.3 CONCLUSION FROM PROCESSING

42

skill
unnamedskill-8
git

subversion

svn
unnamedskill-22
java
unnamedskill-10
unnamedskill-4
jenkins

Q00000 @® 0K

unix a.
Name: unnamedskill-8,

.0eeeee
. 767190
.515306
.580697
.497560
.492231
.481320
.455975
.453290

452429

dtype:

floated

Figure 5.17: Cosine similarity with an unnamed skill

and see if the results of the similarity change drastically.

5.3 Conclusion from processing

The clustering did not succeed like expected. The clusters were not bound strongly

by single type of skill instead they contained random skills that can be explained by

the data. Like said before I believe that the data contains loose connection between

multiple skills and they are not focused on the same types of skills.

However using the dot product to create similarity matrix and cosine similarity

brought some great results. The ranking and cosine similarity showed very promising

results and the next chapter will go through the validation of these results.

6 Validation

This chapter goes through the evaluation of the results from the processing. Now
that I have the similarity data I need to validate the results. This is not something as
easy as to just comparing the results to some other data to see how well it performed.
In this chapter I also discuss the possibilities of the similarity data and how it can
be used in applications.

Validating the results from the processing is not an easy task. There is no ready
database to compare the results to verify. Instead we need to use people to give their
take on how similar the skills are. Of course when we incorporate humans to give
their opinion, it is never fully objective. This is why we need multiple experiments or
interviews with different people to achieve the best possible result on the validation.
Due to the limitations of current situation, only way to evaluate the results is with

an interview.

6.1 Evaluating with experiments/interviews

There are many ways to try to validate these results with data from experiments.
One way to approach this would be to try to create the same kind of similarity
matrix from interviewing different people. But with dataset of this size it is quite
difficult and cumbersome to make people rank all of the skills with all of the other
skills. Not to mention that the person ranking would need some information about

all of the skills in order to know where to place it. Of course it would be more

6.2 VALIDATION METHODS 44

feasible to only include the most common ones, both from the processing and for
the people to rank. This way we could compare these two together and it would
give us a number on how well the processing of the data performed. This would give
confidence on the similarity matrix from the processing that it is on to something if
the results would be similar.

Another way to approach this is to have people go through the similarity matrix
from the processing and give their own take on how well it performed. This could
happen by interviewing people and presenting them with different results from the
processing. One option could be to present the four different results from the pro-
cessing when the data and the result was scaled or not and ask them which one of
these would they consider the most similar. Another option would be to give for
example the same top ten results for one skill in random order and ask them to
select the ones that are similar to the given skill. Another variation to this would
also be to ask them to rank them based on similarity and then comparing this to

the actual result.

6.2 Validation methods

For the interview I need to make sure that the person is well qualified to speak on
the topic. The most optimal person would be to use someone that was involved
in assigning this topic of creating this semantic search as they would most likely
have some picture in their mind as of what the end result should contain. But
unfortunately this is not possible so this adds a limitation to validating these results.
But I believe that anyone who knows the field is well suited to give their take on
the results in order to give the results more validation.

During the interview I would go through the methods used in the thesis so
that we can validate if the thesis produced good results and maybe if they can be

improved somehow. In the interview I will use around 10 skills from the top 100

6.3 INTERVIEW MATERIALS 45

most common skills. T will select these skills myself so that I think these skills would
give the best overview of the results. I will show results of the clustering for the
interviewee to validate those results if they were a success or not. I will also show
results of the dot product ranking and the cosine similarity score on the skills with
the variations mentioned in the thesis. These variations included standardizing and
not standardizing the data to see how the results would change. I also include 2
skills with no name with the cosine similarity to present how this data can be used

as a tool to help determine what these skills could be.

6.3 Interview materials

The whole interview is presented in the Appendix B. The interview is going to be
semi-structured, meaning the actual order and phrasing of the questions are not
predetermined. But the overall theme and content for the questions are determined
beforehand. There also might be some questions that are not presented here in the
materials but those will be well documented in the results section. This section
shows the highlights of its content. It is possible for the interviewee to not know all
the possible skills that might be shown so it is allowed to look up what those skills
are.

First in the interview I will go through the results from the clustering. I will
explain how the clustering was done and show the sizes of the cluster as well as a
sample from each cluster of what skills are inside. See Figure 6.1. With this part I
want to know what they think about the clustering, whether it was a success or not
and why they think so.

Q1: Do you think the clustering was a success or not and why?

After that I will explain how the similarity matrix was created and show different
results from there. First I will show just a list of skills and ask if they are similar

to the top skill. T would also like to ask if one would change any of these skills to

6.3 INTERVIEW MATERIALS 46

Cluster:
Cluster:

, Size: 53
, Size: 42

Cluster: @, Size: 3473
Cluster: 1, Size: 67
Cluster: 2, Size: 223@
Cluster: 3, Size: 55
Cluster: 4, Size: 34
Cluster: 5, Size: 1836
Cluster: 6, Size: 44
Cluster: 7, Size: 54

8

9

First cluster

Index(['"can do" attitude', '1', '10', '14', '17°,
'1st - 3rd line support for applications and workstations',
'200@ kantataulua', '2003', '2003 - 2016', '2007',

'ylldpito', 'yocto project', 'yup', 'zachman framework', 'zef',

‘zend framework', ‘zephyr for jira®',

‘zepto and other popular libraries', 'zoom', 'zustand'],
dtype='object', name='skill', length=3473)

Second cluster

Index(['apple time machine', 'bpftrace', 'collectd', 'debian-installer’,
'dhepd', 'dovecot', 'dtrace', 'embedded linux', 'gdb', 'gnu autotools’,
‘hiera', 'hp procurve switches', 'ida pro', 'illumos zones',
'infrastructure as code', 'ip networking', 'iptables', 'ipvé’',

'isc bind', 'juniper', 'junos switches', 'ldap', 'linux kvm',
'linux mdraid', 'linux system administration', 'lvm', 'lxc', 'make’,
'mdb', 'meson', 'microsoft hyper-v', ‘'netfilter', 'nsd', 'ollydbg',
'openbsd pf', 'openbsd vmm', 'openembedded', 'opensmtpd', 'packaging’,
‘pam', 'pki', 'postfix', 'public key infrastructure', 'puppet', 'pxe’,
'receive based systems', 'rrdtool’', 'solaris', 'systemd',
'systemd-nspawn', 'tcpdump', 'traditional unix visibility tools®,
'‘unbound', 'unix programming', 'unnamedskill-1899', 'unnamedskill-6@1',
'unnamedskill-767', 'unnamedskill-786', 'unnamedskill-ge3',
'unnamedskill-835', 'unnamedskill-928', 'unnamedskill-996', 'wireshark’,
'xen', 'zabbix', 'zfs', 'zfs send'],

dtype='object', name='skill')

Third cluster

Index(['+ browser dev tools', '-toimiston tuki', '1@ mobile’,
'1st line support for cash registers’',
'1st line support for pda devices and mobile devices', '2', '2.8',
'3-tier models', '3.5', '3d design’,
'xpages', 'xrebel', 'y2k', 'yagni', 'yeesgl', 'yeoman', 'yourkit',
'zed attack proxy', 'zendesk', 'zkoss'],
dtype="object', name='skill', length=2238)

Figure 6.1: Interview materials showing cluster size and sample from first three

clusters on what skills they contain.

6.3 INTERVIEW MATERIALS 47

javascript python

node.js robot framework
typescript jenkins

css django

react.js pandas

jquery selenium library
scss matlab

sass machine learning
git scikit-learn
vue.js numpy

Figure 6.2: Interview materials showing two lists from the similarity matrix

the other list. T will use "JavaScript" and "Python" as the reference skills here. See
Figure 6.2. The purpose of this question is to get feedback on the similarity matrix
that produces similar skills.

Q2: Do you think that these lists contain similar skills?

Next in the interview is comparing the different scaling methods and how they
affect the results. I will show a list of results with different scaling methods and ask
which of these lists look like they have the most similar skill together. I will show
these lists as "Java" and "Git" as reference. See Figure 6.3 showing these lists with
Java as reference. The goal of this part is to verify which of these methods give the
best results as was discussed in the earlier chapter.

Q3: Which one of these lists do you consider containing the most
similar skills compared to the top most one?

Next I will show lists from the similarity matrix using "Scrum" and "MySQL"
as reference. Here I will ask if the lists are properly ordered based on similarity.
See Figure 6.4 The goal of this step is to get feedback if the similarity is correctly
weighed on a certain skill so that the order of the skills based on similarity is good.

Q4: Do you think the order in these lists is good?

Next in the interview I will go through some results from the cosine similarity

6.3 INTERVIEW MATERIALS

48

java

spring boot
kotlin

spring framework
vaadin framework
junit

hibernate

scala

apache maven
android studio

java

spring boot
jakarta ee
spring framework
vaadin framework
kotlin

guice

junit

hibernate

spring portlets

Figure 6.3: Interview materials showing four lists with different scaling

scrum
kanban

safe

agile

atlassian jira

agile project leadership
sitefinity cms

agile project management
scrum master

lean

java

spring framework
spring boot
apache maven
junit

hibernate

mysqgl

postgresql
mariadb
javascript

java

javascript

git

python

css

mysql

spring framework
postgresqgl
mariadb

jenkins

mysql

mariadb
postgresqgl

java

mongodb

php

oracle
javascript
apache tomcat
spring framework

Figure 6.4: Interview materials two list to compare the order

6.3 INTERVIEW MATERIALS 49

skill

aws 1.0080600
amazon web services ©.999513
docker ©.518207
gcp ©.481041
google cloud platform ©.462584
postgresqgl ©.438887
kubernetes ©.415993
jenkins ©.394069
azure ©.398455
aws dynamodb ©.3908392

Figure 6.5: Interview material showing cosine similarity with "AWS"

and how we can measure the similarity between skills. I will show examples using
"C", "Docker", "AWS" and "Linux" as reference points and ask their opinion about
if they agree or not about the similarity score with cosine similarity between the
skills. See Figure 6.5 for an example with "AWS". The goal is to get feedback if
this is a good way to measure the similarities between the skills.

Q5: Do you think that this is a good way to measure similarity?

Lastly T will go through the presence of skills with no name. I will show two
examples of skills with no name and their cosine similarities from the dataset. See
Figure 6.6 for an example. The goal is to get feedback if this is something that can
be used to determine what these skills with no name could be. And maybe use this
tool to automatically convert those skills into corresponding skills to improve the
quality of the dataset.

Q6: Do you think that this can be used as a tool to find what those

skills with no names could have been?

6.4 RESULTS FROM THE INTERVIEW 20

skill

unnamedskill-8 1.000000
git 8.7671980
subversion ©.515306
svn ©.588697
unnamedskill-22 ©.497560
java ©.492231
unnamedskill-1e ©.481320
unnamedskill-4 ©.455975
jenkins ©.453290
unix ©.452429

Figure 6.6: Interview material showing cosine similarity with a skill with no name

6.4 Results from the interview

Even though I got some results back from the first interview and immediately had
some ideas on how to improve the interview I decided that I will keep the interview
the same for all of the interviews so that they all would have the same materials. 1
interviewed three people for this interview. All of them were more than suited for
this interview. First of them had previously worked for this same project and now
worked as a senior developer. The second person works as the CIO of the company
Y that actually uses this application. This person has some good insight on the
application as he has worked with it more than I have. And the last person has
good knowledge on multiple different skills and is currently working as a freelancer.
I will present the results from the interview from question to question and share the

main points that came up during the interview.

Q1: The list that I presented definitely should have been cleaned a bit more. The
lists contained a lot of information that was only not needed but actually hindered

reviewing these results. The lists were sorted alphabetically, which was not the

6.4 RESULTS FROM THE INTERVIEW ol

correct solution. It would have been very helpful to sort these lists so that they
would be in order of how many times these skills were present in the data. This
would then show the most relevant skill for that cluster first and give the interviewee
better understanding what are the common skills that bind these all together. One
good point that also was raised is that these lists should have been filtered so that
skills with less than some amount of occurrences in the data would be filtered away.
All-in-all some of the clusters seemed very balanced in terms of size. Others had
the majority skill in them and were kind of trash bins containing all sorts of things.
One thing that was raised is that the smaller the cluster the more concise it was.
Especially the fifth cluster contained very similar or relevant skills. Few suggestions
for the future were that the most insignificant skill would be filtered away so that

the data actually had skills that were being used.

Q2: The main points that were said here were the fact that maybe these skills in
some cases are not that similar but rather relevant to each other. In the JavaScript
list all of the other skills are related to web development except Git. I believe that
Git raises here because JavaScript and Git are both in the top of the list of skills
when it comes to occurrences. One point that was said was that this list could be
used to help find suitable people for educating new skills. And it was said about the
list with Python as reference point that most of these skills do not even use Python
as a language if they are a framework or a tool. Instead this list tells that if a person
knows Python, they most likely are into machine learning and DevOps. But in the

end both of these lists were said that they looked very good and contained similar

skills.

Q3: This question showed how differently these lists can be made even with small
changes like standardizing the data. All three interviewees though the same ones

were the best ones, these were the top-left in the first example and top-right in

6.4 RESULTS FROM THE INTERVIEW 52

the second example. However there were some tough choices. Everyone said that
the bottom-right was in both cases just full of random skills so we can clearly rule
that version out. Result of this question gave me a thought that maybe some small
variations in the data, for example standardizing it, are better with other skills than
others. From my own testing I usually found that the top-right was the clear winner
but in the case of Java the top-left is clearly better. So maybe this has something

to do with how many occurrences these skills and similar skills to those have.

Q4: When it comes to the order of these lists there is still a lot of improvement to
do. Although they contained similar or relevant skills the ordering was not optimal.
For example if you are looking for a person to do Scrum you would not take someone
with experience with Jira over someone who is considered Scrum master. This
repeats the same problem that was found before that if you are looking for someone
with experience in a specific skills this list does not guarantee that the person has any
skill in that even if those skills are considered similar. Clearly this way of ordering
the skills does not tell how close some skills are compared to others. Instead it tells

how likely these skills are relevant to each other.

Q5: All interviewees agreed that showing a number is a better way to compare
the relevancy between skill than just showing an ordered list. This gives a good
estimation on how similar this model thinks these skills are. Even though the same
problems from before are present here like some skills are higher up than others when
it should be the other way around. Some points that were noted were about the
values in the list. In the C language example the C++ was quite close but everyone
thought that it should have been closer. And the values in the list dropped way
quicker than compared to other skills. This was thought to be caused by the fact
that people with C skill do not have many other skills. Other point that was noted

was on how close the "aws" and "amazon web services" were because they are the

6.4 RESULTS FROM THE INTERVIEW 93

same thing and it was impressive to find that the model also found that. When it
comes to the example with operating systems all of the operating systems are in the
top part. But it was quite interesting to find the "unix and linux shell scripts" in
the list so high. It was thought that just "shell scripts" should have been higher and
that was way too specific to be so high in the list. This number representation was
said to be a good representation of the possibility of that person knowing the other
skill also. And this would a great tool to help recruiters to rank suitable candidates

on a new project based on a number rather than just looking through a list of skills.

Q6: When it comes to presence of these unnamed skills this number representation
would certainly help to find what those missing skills are linked to. Even though
they are not as close as the "AWS" and "Amazon Web Services" so that it can be
said with almost certain accuracy that this unnamed skill is the skill closest to it
but it can be clearly seen that skill is linked to the same area. In the example of
the "unnamedskill-8" it can be clearly seen that it is linked to version control but

it cannot be said for certain that it is one of those listed version control tools.

Other Some other comments that were given were about how this could be a great
tool for recruiting even if the person in charge of the recruitment is not familiar with
the skills. Also this would be used to find new people for training new skills so that
a company could just query with the skill and the application would give the best
possible match of people who would be most likely interested in that particular skill.
In the end the interview was a great success and it gave me some good feedback on

the results.

7 Conclusion

7.1 Answers to the research question

RQ1: What is the best method to process data of user skill levels to
achieve the best possible result in similarity? Unfortunately there were no
similar studies for this type of assignment so there was not much comparing to
do between results from this thesis and other papers. Although there were studies
that tried to find similarities between programming languages but those used very
different approaches.

Through the process of the trial and error of processing the data I can say that
there is no definite answer to this question. Different processes produced different
results and the process to use in some specific case should always be tailored to
that specific problem. Even a small change in the process can drastically change
the results. For example the simple act of standardizing the data gave very different
results from the normal. And as was seen from the interview results that these small
tweaks changes what the results look like and based on those results one should
decide what type of processing to use. And the results may even differ depending
on different characteristics of the skill in the data for example how common it is and
does it have many links to other skills.

In conclusion while this study could not draw upon similar research it provides

valuable insights into the processing of skill data. The trial and error approach used

7.2 DISCUSSION 95

in this study highlights the importance of tailoring the processing approach to the
specific problem at hand. It also emphasizes the need to consider the characteristics

of the skills in the data to obtain accurate and meaningful results.

RQ2: How can we measure similarity between skills in software develop-
ment? The results of this study and the feedback from the interviewees suggest
that measuring the similarity or relevance between two skills using a numerical score
holds great potential. Measuring the similarity or relevancy between two skills with
a number gives great advantages over for example using just a list with skills in
order of similarity. When the similarity score is between zero to one it is very easy
to compare how similar it actually is compared to the skill we want.

In case of this thesis I used cosine similarity to calculate how similar two vectors
were and as it was seen from the results and from the interview it seemed to work
very well. This kind of tool could be found useful for recruiters trying to find suitable
candidates to hire or for companies trying to find suitable people to educate new
skill to increase their competence with that skill.

In conclusion the use of similarity scores to measure the relevance of skills holds
significant potential as demonstrated by the results of this study and feedback from
the interviewees. This approach could prove to be a valuable tool for recruiters
and companies seeking to identify the most suitable candidates for specific roles or

training programs.

7.2 Discussion

In this thesis we explored the possibility of finding similarities between software
development skill only using user skill levels. While there were no similar studies for
this type of assignment the process of data processing revealed valuable insights into

tailoring the processing approach to the specific problem at hand. Furthermore we

7.2 DISCUSSION o6

found that measuring the similarity or relevancy between two skills using a numerical
score holds great potential offering significant advantages over using just a list of
skills in order of similarity. Also the unnamed skills could be defined with this type
of similarity score but I believe that this would require more data to be certain
about the similarities.

The data that was used in this thesis only contained people working in a single
company. Of course these people had some experience prior to joining this company
but I still believe that company policies and culture would still affect how common
certain skill are presented in the data. Not to mention how the data was structured
and migrated multiple times making the data not so coherent. Users had previously
been able to write in text field their skill and those got migrated as such.

I believe that if this same process would have been done with data from multi-
ple companies and many more users then we would have seen even better results.
Around 35 000 user skills is nothing small but this number could have been far
greater. Even with data like this the results were very promising and more data
would be very easy to produce.

Unfortunately due to the limitations of current situation I was not able to create
the semantic search application that was the goal for the results from this thesis.
However I believe that once we have this similarity data it is not that difficult to
create semantic search in Elasticsearch using vectors from the matrix as the basis
for vector search.

Like said before these results could be improved with even more data. Also
cleaning up the data used in this by the company using this could also improve
these results as that would reduce the amount of those skills that would appear
only one time. One could use this matrix as the corpus for some machine learning
application that tries to guess skill given similar skills and their similarity scores

with that skill. In conclusion with data that was this simple to produce and still

7.2 DISCUSSION o7

gave such promising results holds great potential moving forward finding similarities

between software development skills.

References

1]

2l

13l

4]

[5]

(6]

17l

H. Wang, C. Ma, and L. Zhou, “A brief review of machine learning and its
application”, in 2009 International Conference on Information Engineering

and Computer Science, 2009, pp. 1-4. DOI: 10.1109/ICIECS.2009.5362936.

Q. Wang, Y. Ma, K. Zhao, and et al., “A comprehensive survey of loss functions
in machine learning”, vol. 9, 2022, pp. 187-212. DOI: https://doi.org/10.

1007/s40745-020-00253-5.

Wikipedia. “Maxima and minima”. (2022), [Online|. Available: https://en.

wikipedia.org/wiki/Maxima_and_minima. (accessed: 16.11.2022).

IBM. “Supervised vs. unsupervised learning: What’s the difference?” (2022),
[Online|. Available: https://www.ibm. com/cloud/blog/supervised-vs-

unsupervised-learning. (accessed: 30.10.2022).

D. M. W. Powers, “Evaluation: From precision, recall and f-measure to roc,

informedness, markedness & correlation”, 2011.

Scikit-learn. “Overview of clustering methods”. (2022), [Online|. Available:

https://scikit-learn.org/stable/modules/clustering.html#overview

of-clustering-methods. (accessed: 19.10.2022).

Scikit-learn. “Clustering evaluation”. (2022), [Online|. Available: https://
scikit - learn . org/ stable /modules / clustering . html # clustering -

performance-evaluation. (accessed: 19.10.2022).

https://doi.org/10.1109/ICIECS.2009.5362936
https://doi.org/https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/https://doi.org/10.1007/s40745-020-00253-5
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Maxima_and_minima
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods
https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods
https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation
https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation
https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

REFERENCES 29

[8] Scikit-learn. “Clustering - k-means”. (2022), [Online|. Available: https://
scikit - learn . org/ stable /modules/ clustering . html #k - means. (ac-

cessed: 19.10.2022).

[9] “Semantics | definition & theories | britannica”. (2022), [Online|. Available:

https://www.britannica.com/science/semantics. (accessed: 16.11.2022).
[10] S. Lobner, “Understanding semantics”, Routledge, 2013.

[11] R. Guha, R. McCool, and E. Miller, “Semantic search”, in Proceedings of
the 12th International Conference on World Wide Web, ser. WWW 03, Bu-
dapest, Hungary: Association for Computing Machinery, 2003, pp. 700-709,
ISBN: 1581136803. DOI: 10.1145/775152.775250. [Online|. Available: https:

//doi.org/10.1145/775152.775250.

[12] T. Seymour, D. Frantsvog, and S. Kumar, “History of search engines”, 4,
vol. 15, 2011, pp. 47-58. DOIL: https://doi.org/10.19030/1ijmis.v15i4.

5799.

[13] Elasticsearch. “Our story”. (2022), [Online|. Available: https://www.elastic.

co/about/history-of-elasticsearch. (accessed: 16.11.2022).

[14] S. Banon. “The future of compass & elasticsearch”. (2022), [Online|. Avail-
able: https://thedudeabides.com/articles/the_future_of _compass.

(accessed: 16.11.2022).

[15] A. Andhavarapu, Learning Elasticsearch. Packt Publishing, 2017, 1ISBN: 9781787129917.

[Online|. Available: https://books.google.fi/books?id=2nc5DwAAQBAJ.

[16] Elasticsearch. “Data in: Documents and indices”. (2022), [Online|. Available:
https://www.elastic.co/guide/en/elasticsearch/reference/master/

documents-indices.html. (accessed: 30.11.2022).

https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://www.britannica.com/science/semantics
https://doi.org/10.1145/775152.775250
https://doi.org/10.1145/775152.775250
https://doi.org/10.1145/775152.775250
https://doi.org/https://doi.org/10.19030/ijmis.v15i4.5799
https://doi.org/https://doi.org/10.19030/ijmis.v15i4.5799
https://www.elastic.co/about/history-of-elasticsearch
https://www.elastic.co/about/history-of-elasticsearch
https://thedudeabides.com/articles/the_future_of_compass
https://books.google.fi/books?id=2nc5DwAAQBAJ
https://www.elastic.co/guide/en/elasticsearch/reference/master/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/documents-indices.html

REFERENCES 60

[17] Elasticsearch. “5 reasons it leaders need vector search to improve search ex-
periences”. (2022), [Online|. Available: https://www.elastic.co/blog/why-

technology-leaders-need-vector-search. (accessed: 05.12.2022).

[18] Elasticsearch. “Text similarity search with vector fields”. (2022), [Online|. Avail-
able: https://www.elastic.co/blog/text-similarity-search-with-
vectors-in-elasticsearch. (accessed: 05.12.2022).

[19] Wikipedia. “Cosine similarity”. (2022), [Online|. Available: https://en .

wikipedia.org/wiki/Cosine_similarity. (accessed: 05.12.2022).

https://www.elastic.co/blog/why-technology-leaders-need-vector-search
https://www.elastic.co/blog/why-technology-leaders-need-vector-search
https://www.elastic.co/blog/text-similarity-search-with-vectors-in-elasticsearch
https://www.elastic.co/blog/text-similarity-search-with-vectors-in-elasticsearch
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity

Appendix A Code

APPENDIX A. CODE A-2

Listing 1 Function to split skill name into an array of skill names.

{javascript}

function splitName(name) {

name = name.toLowerCase().replace("(", ", ").replace(")", " ");
let 0ldSplit = [name];

let newSplit = [];

const splitters = [",", "&", "/"]

for (const splitter of splitters) {
for (const n of 0ldSplit) {

if (n.includes(splitter)) {

newSplit = newSplit.concat(n.split(splitter));
}
else {
newSplit = newSplit.concat(n);
}
}
0ldSplit = [...newSplit]
newSplit = [];

b

return oldSplit.map(e => e.trim()).filter(e => e.length > 0)

APPENDIX A. CODE

A-3

Listing 2 Function to separate skill name into multiple skills.

{javascript}

function separate() {
const combined = JSON.parse(fs.readFileSync("./combined.json", "utf8"));
const skills = JSON.parse(fs.readFileSync("./skills/result.json", "utf8"));
const fixedSkills = [];

const fixed = [];

{};

const splittedById = {};

const skillsByName

for (const skill of skills) {
const idx = skill.id;
const splitted = splitName(skill.displayName) ;
splittedById[idx] = splitted;
for (const name of splitted) {
const id = uuidv4()
skillsByName [name] = id;

fixedSkills.push({id: id, name: name})

}
for (const userSkill of combined) {
const splitted = splittedById[userSkill.skillId]
if (splitted &% splitted.length > 0) {
for (const split of splitted) {
const id = skillsByName[split];

fixed.push({...userSkill, skillId: id, skill: split})

}

fs.writeFileSync("fixed.json", JSON.stringify(fixed), {encoding: "utf8"});

fs.writeFileSync("fixedSkills.json", JSON.stringify(fixedSkills), {encoding:

"atf£8"}) ;

Appendix B Interview materials

Questions:

Q1: Do you think the clustering was a success or not and why?

Q2: Do you think that these lists contain similar skills?

Q3: Which one of these lists do you consider containing the most
similar skills compared to the top most one?

Q4: Do you think the order in these lists is good?

Q5: Do you think that this is a good way to measure similarity?

Q6: Do you think that this can be used as a tool to find what those

skills with no names could have been?

APPENDIX B. INTERVIEW MATERIALS

B-2

Cluster: @, Size: 3473
Cluster: 1, Size: 67
Cluster: 2, Size: 2230
Cluster: 3, Size: 55
Cluster: 4, Size: 34
Cluster: 5, Size: 1836
Cluster: 6, Size: 44
Cluster: 7, Size: 54
Cluster: 8, Size: 53
Cluster: 9, Size: 42
First cluster

Index(['“cén do" attitude', '1', '1@', '14', '17°',
'1st - 3rd line support for applications and workstations',
'200 kantataulua', '2003', '2003 - 2016', '2007',

'ylldpito', 'yocto project', 'yup', 'zachman framework', 'zef',

‘zend framework', 'zephyr for jira’',

'zepto and other popular libraries', 'zoom', 'zustand'],
dtype='object', name='skill', length=3473)

Second cluster

Index(['apple time machine', 'bpftrace', 'collectd', 'debian-installer’,
‘dhepd', 'dovecot', 'dtrace', 'embedded linux', 'gdb', 'gnu autotools’,
‘hiera', 'hp procurve switches', 'ida pro', 'illumos zones',
'infrastructure as code', 'ip networking', 'iptables', 'ipvé’',

‘isc bind', 'juniper', ‘'junos switches', ‘ldap’', 'linux kvm',

'linux mdraid', 'linux system administration', 'lvm', 'lxc', 'make’,
'mdb', 'meson', 'microsoft hyper-v', ‘'netfilter', 'nsd', 'ollydbg',
‘openbsd pf', 'openbsd vmm', 'openembedded’', 'opensmtpd', 'packaging’,
‘pam', 'pki', 'postfix', 'public key infrastructure', 'puppet', 'pxe’,
'receive based systems', 'rrdtool', 'solaris', 'systemd',
'systemd-nspawn', 'tcpdump', 'traditional unix visibility tools®,
‘unbound', 'unix programming', ‘'unnamedskill-1899', 'unnamedskill-ée1',
'unnamedskill-767', 'unnamedskill-786', 'unnamedskill-ge3',

‘unnamedskill-835', 'unnamedskill-928', 'unnamedskill-996', ‘'wireshark’,

'xen', 'zabbix', 'zfs', 'zfs send'],
dtype='object', name='skill')

Third cluster

Index(['+ browser dev tools', '-toimiston tuki®', '1@ mobile’,
'1st line support for cash registers’',
'1st line support for pda devices and mobile devices', '2', '2.8',
'3-tier models', '3.5', '3d design’,

'xpages', 'xrebel', 'y2k', 'yagni', 'veesql', 'yeoman', 'yourkit',
'zed attack proxy', 'zendesk', 'zkoss'],
dtype="object', name='skill', length=2238)

APPENDIX B. INTERVIEW MATERIALS

Fourth cluster

Index(['ad (active directory)', 'apache camel', 'apache jmeter', 'archi',
'archimate’, 'aris', 'arquillian', 'aws cloudfront’,
'aws serverless application model', 'business architecture’', 'hudson',
'iaf', 'ibm websphere mq', 'ide', 'information systems security’,
'integrated architecture framework', 'java application servers',
'jax-rs', 'jhs 179 enterprise architecture planning and development’,
'lamda functions', 'libressl', 'mule esb', 'okta',
'open source smart card tools and middleware', 'openmq', 'opensc',
'openssl', 'gpr process designer', 'saml', 'single sign on', 'sso',
'techology architecture', 'the grinder', 'togaf architecture framework',
"tomcat', 'unnamedskill-126@', 'unnamedskill-1444', 'unnamedskill-148@',
'unnamedskill-151@', 'unnamedskill-153@', 'unnamedskill-1561",
'unnamedskill-168@', 'unnamedskill-1686', 'unnamedskill-1725",
'unnamedskill-1729', 'unnamedskill-1763', 'unnamedskill-18@2',
‘unnamedskill-212', ‘'unnamedskill-254', ‘'unnamedskill-3e’',
‘unnamedskill-52', ‘'unnamedskill-594', ‘'unnamedskill-812', ‘'weblogic',
‘websphere’],

dtype=‘object’', name='skill')

Fifth cluster

Index(['business leadership', 'business models', 'business strategy’,
'compensations models', 'digital marketing', ‘'digital strategy’,
'financial reporting', 'internal tools', 'key account management',
'kpi's', 'kpis', 'management reporting', ‘okrs', 'processes’,
'product strategy', 'pruductization', 'public speaking', 'reporting',

'resourcing’, 'sales lifecycle', 'sales management', 'sales operations',

'sales trainining and coaching', 'solution sales',

'stakeholder management', 'strategic planning', 'strategy’,

‘talent strategy', 'targets', 'team', 'team development’,

'user acquisition', 'user retention’', ‘'vision crystallisation'],
dtype='object', name='skill')

Sixth cluster

Index(['2eee', '2e1e', '2013", '3.11', '3d', '3d modeling', '3ds max', '7',
‘95", '98',

'xaml', 'xcode', 'xml', 'xml technologies', 'xp', 'xunit', 'yaml’,
'yarn', 'zbrush', 'zeplin'],
dtype='object', name='skill', length=1036)

Seventh cluster

Index(['cordoba', 'developer', 'embarcadaro rad studio series', 'etc',

'hybrid mobile', 'idm systems', 'intel xdk', 'java native mobile’,

'js frameworks', 'kiss', 'knockout', 'lamp', "microsoft server’,
'ms sql stack', ‘oracle forms', 'patterns and principles’,
'quest software db tools', 'reports', 'require', ‘'solid',
'support manager', 'ubisecure', 'unnamedskill-1064',
'unnamedskill-1e86°', 'unnamedskill-1248', 'unnamedskill-1445',
'unnamedskill-1465', 'unnamedskill-1497', 'unnamedskill-1517',
'unnamedskill-1538', 'unnamedskill-154@', 'unnamedskill-1545',
'unnamedskill-16@6', 'unnamedskill-161@', 'unnamedskill-1613',
‘unnamedskill-1687', 'unnamedskill-1727', 'unnamedskill-1735°,
'unnamedskill-1747", ‘unnamedskill-179@', ‘vbox', ‘wamp stack’,
'web servers'],

dtype='object', name='skill"')

Vs
mim®,

APPENDIX B. INTERVIEW MATERIALS

Eight cluster

Index(['acquia', ‘acquia cloud', ‘'acquia cloud site factory', ‘'akamai’,
‘amazon cloudsearch', 'apache solr', 'api integrations', 'backstop.js',
‘behat’, 'bitbucket pipelines®’, 'bodybuilding’,

'client support and communications', 'composer', 'dev desktop',
'documenting’, 'drone', 'drupal 8', 'drupal 9', 'fitness',
'front-end development', 'id', 'infrastructure management', 'js',
'junior training', 'lando’', 'migrate api', 'modern front-end',
'module development', 'performance testing', 'php 7.4+,
'planning and estimation', 'platform.sh', 'powerlifting',
'regression testing', 'site building', 'teamwork', 'theme', 'trainne’,
"twig', 'unnamedskill-182', ‘'unnamedskill-114', 'unnamedskill-159°',
‘unnamedskill-181", 'unnamedskill-205', ‘unnamedskill-226",
‘unnamedskill-361', 'unnamedskill-395', 'unnamedskill-44@',
'unnamedskill-558", 'unnamedskill-622', 'varnish', 'virtual machines’',
'vue', 'wraith'],

dtype='object’, name='skill')

Ninth cluster

Index(['amazon elastic container service', ‘api connect’, 'api management’,
‘apiops’, 'app connect', ‘architectural patterns’,
'architecture design', 'azure analysis services',
'azure api management', 'azure data lake', 'azure iot hub’,
'azure network', 'azure storage', 'bapi', 'cloud foundry', 'compute’,
‘containers’', 'data’, 'dell boomi', ‘ecs’, ‘enterprise service bus',
‘financial management', 'integration’,
'iterative and incremental development', 'materials management',
'microsoft visual studio team services®', 'personality insights’,
'product development', 'purchase-to-pay', 'rds', 'recognize', 'rfc',
'serverless’', 'sql data warehouse', 'sqgs queue', 'streams and events',
"tone analyser', ‘unnamedskill-1011', ‘unnamedskill-1014"',
'unnamedskill-1e4e', 'unnamedskill-1673', 'unnamedskill-1e78',
'unnamedskill-1e87', 'unnamedskill-46', 'unnamedskill-8e5',
‘unnamedskill-g8e9', 'unnamedskill-82@', 'unnamedskill-876',
'unnamedskill-887', 'unnamedskill-976', 'vision - face', 'vpn', 'vsts'],

dtype='object', name='skill") |

Tenth cluster

Index(['azure app service', 'azure functions', ‘'azure key vault',

‘azure pipelines’,

'communication skills - successful in building strong co-operative relationships with key clients and decision-makers.’,

'company objectives.', 'crystal reports', 'ibm websphere studio 5.1.2'

'microsoft access', 'microsoft visual basic .net’',

'microsoft visual sourcesafe’', 'mks',

'planning and organizing - proven track record of effectively prioritizing multiple tasks and assignments in a fast-pace
d work environment to efficiently meet departmental’,

‘problem solving ability - regarded as a resourceful problem solver evident in the successful development and implementa
tion of new policies and procedures.',

‘rational rose', ‘'razor’,

‘self-starter - considered a highly motivated employee with the capacity to learn quickly and take responsibility for my
own development.',

'sql stored procedure'; 'team work', 'unnamedskill-1179',

'unnamedskill-1258', 'unnamedskill-1259', 'unnamedskill-1326',

'unnamedskill-1413', ‘'unnamedskill-238', 'unnamedskill-244°',

'unnamedskill-25@', 'unnamedskill-421', 'unnamedskill-462°,

‘unnamedskill-476', 'vb &', 'vb.net', ‘'vbscript', ‘web api’,

'webmatrix', 'websites', 'wincvs', 'windows 7', 'windows 8',

'windows nt', ‘'windows xp', ‘winrunner'],

dtype='object', name='skill')

javascript python

node.js robot framework
typescript jenkins

css django

react.js pandas

jquery selenium library
scss matlab

sass machine learning
git scikit-learn
vue.js numpy

APPENDIX B. INTERVIEW MATERIALS B-5

java

spring boot
kotlin

spring framework
vaadin framework
junit

hibernate

scala

apache maven
android studio

java

spring boot
jakarta ee
spring framework
vaadin framework
kotlin

guice

junit

hibernate

spring portlets

git
javascript
java

css

scrum
python
docker
jenkins
node. js
sass

git

docker

svn
subversion
javascript
java
jenkins
node.js
typescript
linux

java

spring framework
spring boot
apache maven
junit

hibernate

mysql

postgresqgl
mariadb
javascript

java

javascript

git

python

css

mysql

spring framework
postgresqgl
mariadb

jenkins

git

svn

docker
subversion
gitlab
jenkins
bitbucket
gitlab ci
python

unit testing

git

bolt cms
cybersecurity

aws architecting
symfony framework
docker

gherkin

svn

subversion
embedded ¢

APPENDIX B. INTERVIEW MATERIALS

scrum mysql

kanban mariadb

safe postgresql

agile java

atlassian jira mongodb

agile project leadership php

sitefinity cms oracle

agile project management javascript

scrum master apache tomcat
lean spring framework
skill

C 1.0600080
c++ ©.5917380
qt ©.384074
unix ©.327741
linux ©.314773
svn ©.291183
subversion ©.289168
python ©.2659806
java ©.258093
perl ©.236696
skill

docker 1.00080080
kubernetes 8.619477
postgresql ©.550793
git 8.544604
jenkins ©.536666
ansible ©.523036
aws ©.518287
amazon web services ©.516680
terraform ©.507377
gitlab ci 8.499299

APPENDIX B. INTERVIEW MATERIALS

B-7

skill

aws

amazon web services
docker

gcp

google cloud platform
postgresgl
kubernetes

jenkins

azure

aws dynamodb

skill
linux

unix
windows
git

0s X

bash
subversion
svn

unix and linux shell scripts

jenkins

skill
unnamedskill-8
git

subversion

svn
unnamedskill-22
java
unnamedskill-1@
unnamedskill-4
jenkins

unix

200 00 000 @K

.Boe00e
.999513
.518207
.481e41
.462584
.438887
.415993
.394069
.398455
.398392

00 00 00 0 ® K

.@0e0ee
.864532
.746124
.429378@
.422612
.421132
.413837
.404941
.403668
.399135

Q0000 00 @O K

. 006000
. 767190
.515386
.508697
.497560
.492231
.481320
.455975
.453290
.452429

APPENDIX B. INTERVIEW MATERIALS

B-8

skill
unnamedskill-85
mariadb

mysql
unnamedskill-4
unnamedskill-16
spring framework
java

apache tomcat
apache maven
unnamedskill-49

®@ 00 00 000 OO ®PKL

.0eeeee
. 862804
.832578
.615275
. 556666
.553494
. 546869
.526623
.516e44
.515884

	Introduction
	Semantic search fundamentals
	Machine learning
	Supervised learning
	Unsupervised learning
	Clustering
	Clustering evaluation
	K-means algorithm

	Semantics and semantic search

	Search engine and Elasticsearch fundamentals
	Brief history of search engines
	Elasticsearch
	Searching in Elasticsearch

	Case Competence management system
	About the company
	Demand for semantic search and use cases
	Other solutions

	Examples of the data

	Processing the data
	Preprocessing
	Formatting
	Validating
	Separating skills

	Processing
	First clustering
	Standardizing and normalizing the data
	Using the Principal Component Analysis
	Conclusion from clustering
	Using dot product to create similarity matrix
	Cosine similarity
	Presence of unnamed skills

	Conclusion from processing

	Validation
	Evaluating with experiments/interviews
	Validation methods
	Interview materials
	Results from the interview

	Conclusion
	Answers to the research question
	Discussion

	References
	Code
	Interview materials

