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Abstract 1

ABSTRACT

Due to the global issues related to climate change and population growth, more
sustainable use of existing food resources is required. Fish and other aquatic
organisms are rich in health beneficial polyunsaturated fatty acids, protein, and
several vitamins and minerals. Fish and other aquatic resources are estimated to
play an even more vital role in the future. While many popular fish stocks have
already been overexploited, several species are currently not utilized at all or are
directed to low-value, non-human uses, such as feed.

One example of such species is Baltic herring (Clupea harengus membras).
Baltic herring is the most important commercial capture species in Finland,
based on both value and quantity. However, only a small fraction of the total
catch is used as food. Some factors limiting the food use of Baltic herring include
the decreasing size of the caught fish, its high susceptibility to oxidation and
other degradation leading to quality loss, as well as its distinct odor and flavor
that are not preferred by some consumers. Roach (Rutilus rutilus) along with
other cyprinid fish, are not commercially important fish species, and are utilized
for human consumption even less than Baltic herring. In addition to providing a
valuable source of proteins, lipids and other nutriens, increasing the capture of
roach and other cyprinid fish could result in beneficial effects in reducing
eutrophication.

This thesis focused on alternative ways of increasing utilization of under-
utilized fish, with a focus on Baltic herring and roach. The two processing
methods studied were the pH shift and enzymatic hydrolysis, both of which have
been widely studied for other fish species but not Baltic herring or roach. Both
processes have the advantage that whole fish or fish side streams without any
pre-processing can be used as raw materials. Further, the addition of natural
antioxidants was investigated as a means of inhibiting lipid oxidation and
degradation of sensory quality during frozen and refrigerated storage of minced
Baltic herring. Lingonberry juice press residue, sea buckthorn juice press residue,
sea buckthorn juice press residue after supercritical CO; extraction of lipids, and
a commercial extract mixture as natural additions were compared to
conventional antioxidants ethylenediaminetetraacetic acid (EDTA) and
combination of a-tocopherol and ascorbic acid.

The composition of proteins and lipids in Baltic herring and roach protein
isolates and hydrolysates was significantly affected by the processing type (pH
shift or enzymatic hydrolysis). Compared to enzymatic hydrolysis, the pH shift
led to enrichment of essential amino acids, phospholipids, and in case of acid
extraction, also polyunsaturated fatty acids such as docosahexaenoic acid (DHA).
The pH shift, especially alkaline pH shift, however, induced considerable lipid
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and protein oxidation. The fish protein hydrolysates (prepared using enzymatic
hydrolysis) showed more moderate formation of hydroperoxides, secondary
volatile oxidation products, and protein carbonyls. The incomplete elimination
of fishy odors and flavors during preparation of fish protein isolates and
hydrolysates is a major factor limiting their use. Based on this research, while
not completely eliminating these odors, the alkaline pH shift reduced the total
intensity of odor and intensity of the fishy odor in Baltic herring, which was
reflected in the quantity and quality of odor-active compounds.

The natural antioxidants, lingonberry juice press residue (3%), sea buckthorn
juice press residue (3% w/w), and commercial extract mixture (0.1%) retarded
lipid oxidation in Baltic herring mince stored at —20 °C more effectively than
EDTA or combination of a-tocopherol and ascorbic acid, as indicated by lower
loss of polyunsaturated fatty acids, lower PV, and/or lower formation of
secondary oxidation related volatiles, such as 1-penten-3-ol and hexanal. During
refrigerated storage (1 °C), sea buckthorn juice press residue after supercritical
CO2 oil extraction and lingonberry juice press residue were effective
antioxidants also at the lower concentrations (1.5%, 1%). Based on the odor and
flavor profile of Baltic herring minces, particularly sea buckthorn juice press
residue after supercritical oil extraction (1.5%), also prevented changes in
sensory quality during a 3-day storage. This was further reflected in the odor-
active compounds of raw minces. Berry press residues are side streams of berry
juice and oil production, and their use as antioxidantive materials would provide
added value for these currently under-utilized materials as well.

This thesis provided valuable insights related to increasing utilization of
Baltic herring and other under-utilized fish. The results showed that pH-shift
processing and enzymatic hydrolysis of Baltic herring and roach produced fish
protein isolates and hydrolysates with high nutritional quality. However, lipid
and protein oxidation during these processes and storage of Baltic herring poses
a challenge for preservation of quality. Use of antioxidants may improve
preservation of the nutritional and sensory quality of Baltic herring during
processing and storage.
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SUOMENKIELINEN ABSTRAKTI

Viestonkasvuun ja ilmastonmuutokseen liittyvét haasteet vaativat olemassa
olevien resurssien hyodyntdmisti elintarvikekéyttoon yha tehokkaammin. Kala
ja muut mereneldvdt ovat erinomaisia terveyttd edistdvien monityydytty-
mattomien rasvahappojen, proteiinin ja useiden vitamiinien ja kivennéisaineiden
lahteitd. Kalan ja muiden mereneldvien merkityksen ravinnon ldhteené odotetaan
kasvavan edelleen tulevaisuudessa. Vaikka monien kaupallisesti hyodynnettyjen
kalalajien kannat ovat romahtaneet ylikalastuksen wvuoksi, useita lajeja ei
hyddynnetd lainkaan, tai ne kdytetddn muuksi kuin ihmisravinnoksi, kuten
rehuksi.

Esimerkki vajaasti hyddynnetystd kalalajista on silakka (Clupea harengus
membras). Silakka on sekd saalismadréltddn ettd arvoltaan merkittdvin kaupal-
lisen kalastuksen laji Suomessa. Vain pieni osa silakkasaaliista padtyy kuitenkin
elintarvikekayttoon. Silakan elintarvikekéyttod rajoittaa saaliskalojen pieneneva
koko, alttius rasvojen hapettumiselle ja muulle laadun heikkenemiselle, seké
silakalle tyypillinen maku ja haju, jotka eivét miellytd kaikkia kuluttajia. Sarki
(Rutilus rutilus) ja muut sirkikalat eivit ole kaupallisesti merkittivid kalalajeja
Suomessa, ja siksi niitd hyodynnetddn elintarvikkeeksi vield vihemmain kuin
silakkaa. Ne ovat arvokkaita hyvilaatuisten proteiinien ja rasvojen lihteitd ja
niiden kalastuksen lisddmiselld voi olla suotuisia vaikutuksia rehevditymisen
véhentdmiseen.

Tama viitoskirjatutkimus keskittyi uudenlaisiin tapoihin lisdtd alihy6dyn-
nettyjen kalalajien, erityisesti silakan ja sérjen, kayttod elintarvikkeena. Tutki-
muksessa kéytettiin kahta eri prosessointimenetelmédd, pH:n muunnokseen
perustuvaa proteiinien uuttoa ja entsymaattista hydrolyysid, joista on julkaistu
tutkimuksia useille muille kalalajeille, mutta ei silakalle ja sérjelle. Molempien
menetelmien etuna on, ettd kokonaisia kaloja tai kalojen sivuvirtoja voidaan
kayttdd sellaisenaan prosessin raaka-aineena. Viitdskirjatutkimuksessa tutkittiin
myos luonnollisten antioksidanttien vaikutusta silakan rasvojen hapettumiseen
ja aistinvaraiseen laatuun pakkas- ja kylmaésailytyksen aikana. Tutkimuksessa
kiytettyja luonnollisia antioksidantteja olivat puolukkamehun ja tyrnimehun
puristuksessa muodostuvat puristejddnnokset, tyrnimehun puristejaannds, josta
oli lisdksi uutettu 6ljy superkriittiselld hiilidioksidiuutolla, sekd kaupallinen
uuteseos. N4iitd luonnollisia antioksidanttilisiyksid verrattiin  etyleeni-
diamiinitetra-asetaattiin (EDTA) ja askorbiinihapon ja a-tokoferolin yhdis-
telméén.

Prosessointimenetelmd (pH:n muutokseen tai entsymaattiseen hydrolyysiin
perustuva uutto) vaikutti merkittdvasti proteiinien ja rasvojen koostumukseen.
PH:n muutokseen perustuvalla menetelmélld valmistetut silakan ja sérjen
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proteiini-isolaatit sisdlsivdt enemmén valttdméttomid aminohappoja ja fosfo-
lipidejd, ja happaman uuton tapauksessa myds monityydyttyméattomia
rasvahappoja, kuten dokosaheksaeenihappoa (DHA), kuin entsymaattisesti
valmistetut hydrolysaatit. PH:n muutokseen perustuva menetelmad, erityisesti
emaiksinen uutto, aiheutti kuitenkin huomattavaa rasvojen ja proteiinien
hapettumista. Entsymaattisella uutolla valmistetuissa proteiinihydrolysaateissa
hydroperoksidien, haihtuvien sekundiéristen hapettumistuotteiden ja proteiini-
karbonyylien muodostuminen oli maltillisempaa. Epétdydellinen kalaisan hajun
ja maun poistuminen kalaproteiini-isolaattien ja -hydrolysaattien valmistuksessa
rajoittaa merkittdvasti niiden kayttdd elintarvikkeissa. Tutkimuksen perusteella
silakan proteiini-isolaatti koettiin hajultaan hieman kalaiseksi, mutta
merkitsevésti vihemman kalaiseksi kuin silakka. Silakan ja silakkaproteiinin ero
kalaisan hajun voimakkuudessa ja hajun kokonaisvoimakkuudessa ja nikyi
my0s hajuun vaikuttavien yhdisteiden laadussa ja maérassa.

Luonnolliset antioksidantit, puolukkamehun puristejdédnnds (3 %), tyrni-
mehun puristejadnnos (3 %) ja kaupallinen uuteseos (0,1 %) hidastivat —
20 °C:ssa sdilotyn jauhetun silakan rasvojen hapettumista tehokkaammin kuin
EDTA tai o-tokoferolin ja askorbiinihapon yhdistelmd vdhdisemmén moni-
tyydyttymétdomien rasvahappojen tuhoutumisen ja matalampien peroksidi-
lukujen ja/tai sekundééristen hapettumistuotteiden miaran perusteella. Kylmassa
(1°C) toteutetussa kokeessa erityisesti puolukkamehun puristejddnnos ja
tyrnimehun ja Oljyn uuttojddnnds hidastivat primddristen ja sekunddiristen
hapettumistuotteiden muodostumista my6s matalampina pitoisuuksina (1,5 % ja
1 %). Marjojen puristejdédnnokset, erityisesti tyrnimehun ja 6ljyn uuttojaannds
(1,5 %) esti my0s silakan hajun ja maun muutoksia kolmen péivén séilytyksen
aikana, mik4 havaittiin my0s hajuun vaikuttavissa yhdisteissd. Marjojen puriste-
jadnnokset ovat marjamehujen ja -6ljyjen valmistuksen sivuvirtoja, ja niiden
hyodyntdminen antioksidatiivisina materiaaleina lisdisi myos niiden arvoa.

Tamidn vaitoskirjan tulokset toivat uutta tietoa silakan ja muiden vajaasti
hyodynnettyjen kalalajien kdyton lisddamiseen liittyen. Tutkimus osoitti pH:n
muunnokseen perustuvan uuton ja entsymaattisen hydrolyysin tuottavan
ravitsemuksellisesti laadukkaita proteiini-isolaatteja ja -hydrolysaatteja silakasta
ja sérjestd. Rasvojen ja proteiinien hapettuminen niissi prosesseissa ja silakan
sdilytyksen aikana on kuitenkin haaste laadun sdilymisen kannalta. Antioksi-
danttien kéytolld voidaan parantaa silakan ravitsemuksellisen ja aistinvaraisen
laadun sdilymisti prosessoinnin ja sdilytyksen aikana.
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Introduction 1

1 INTRODUCTION

The food industry is under pressure to find alternative ways to feed the growing
population in a sustainable way. The challenge includes discovery of new protein
sources, but also utilization of all resources more efficiently. The vital role of
fish and other marine resources as food and feed has been estimated to increase
further in the future (FAO, 2022). Overfishing has led to endangerement of
several fish species, such as bluefin tuna (Thunnus thynnus), halibut
(Hippoglossus hippoglossus), and Atlantic sturgeon (Acipenser oxyrinchus
oxyrinchus) (World Wildlife Fund, 2021). Meanwhile, many other fishes and
other marine resources are currently not utilized to their full potential. Baltic
herring (Clupea harengus membras) is an example of an under-utilized fish
species, as a marine resource of significant potential. It is volume- and catch-
wise the most significant fish species in Finland with its share of the total catch
in 2021 being 79% (77 000 tonnes) (Natural Resources Institute Finland, 2022a).
However, most of this catch is used as feed, and only 17% is utilized as food, of
which 4% accounts for domestic consumption (Natural Resources Institute
Finland, 2022b). On the other hand, most of the fish consumed in Finland is
imported. In 2021, Finns consumed approximately 8.3 kg/person/year imported
fish, while the consumption of Baltic herring was 0.4 kg/person (Natural
Resources Institute Finland, 2022c).

Challenges related to low utilization of Baltic herring as food include its small
size, high content of polyunsaturated lipids prone to oxidation, and abundance
of dark muscle rich in pro-oxidants. Baltic herring is commonly processed into
fillets, but Baltic herring under 17 cm in length are too small for commercial
filleting and are mostly used as feed for farmed fish and fur animals. The high
content of polyunsaturated fatty acids (PUFAs), combined with a high content
of pro-oxidants makes Baltic herring susceptible to lipid oxidation, posing a
challenge for preserving its nutritional and sensory quality during storage.
Furthermore, Baltic herring has a distinct odor and flavor, possibly derived from
lipid oxidation, which are not preferred by many consumers (Pihlajamiki et al.,
2019).

Lipid oxidation is a major challenge in preserving the quality of fish, but
especially in the case of dark-muscled fish (Undeland et al., 1998), such as Baltic
herring. Most processing technologies aiming to improve utilization of small fish
or fish co-products, such as the pH shift or enzymatic hydrolysis, include the use
of high temperature or extremely acidic or alkaline conditions, that may further
promote oxidation of lipids and proteins (Abdollahi et al., 2020; Halldorsdottir
et al., 2013). Lipid oxidation leads to development of off-odors and off-flavors
(Lindsay, 1990) that limit the application and consumption of fish and fish



2 Introduction

products. Sufficient control of lipid oxidation, by the use of antioxidants or other
methods, is therefore required to increase the use of under-utilized fish.

This thesis aimed to tackle the challenges related to the use of Baltic herring
and other under-utilized fish from a food perspective. Though the focus was on
regionally important fish, the same concepts may be applied to other fish with
similar challenges. The literature review discusses some common challenges
related to under-utilized fish. In particular, lipid oxidation and its implications
on the sensory quality of fish are discussed. Finally, the use of natural
antioxidants to control oxidation, as well as pH-shift processing and enzymatic
hydrolysis as protein extraction mehods are reviewed. The experimental part of
the thesis investigated different solutions to improve the utilization of Baltic
herring and roach. The pH shift and enzymatic hydrolysis were assessed in terms
of the nutritional quality and oxidative stability of the resulting protein isolates
and hydrolysates. The odor profile of the protein isolate produced by alkaline
pH-shift processing, as well as the underlying odor-active compounds were
studied. The inhibiting effect on lipid oxidation by antioxidants, such as a-
tocopherol, ascorbic acid, and side streams of berry processing were examined
in frozen or refrigerated minced Baltic herring. The berry side streams were
further evaluated in terms of their effect on the odor and flavor as well as odor-
active compounds of Baltic herring.
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2 REVIEW OF THE LITERATURE

2.1 Baltic herring and other under-utilized fish
2.1.1 Baltic herring

Baltic herring (Clupea harengus membras) is a subspecies of Atlantic herring
(Clupea harengus) found in the Baltic Sea region. Baltic herring are spring-
spawning fish, and spawning occurs in coastal areas of the Baltic Sea (Arula et
al., 2019). Baltic herring is relatively small, with the usual length varying
between 15-20 cm (NatureGate, 2022). The size of Baltic herring has however
been gradually decreasing. According to a recent report (Rajasilta et al., 2022),
most of the tested Baltic herring from Archipelago Sea in winter 2020 were 15—
16 cm long, while fish over 17 cm were scarce.

The fatty acid (Aro et al., 2000) and lipid class (Linko et al., 1985)
composition of Baltic herring fluctuate between seasons due to the fluctuation in
the lipid composition of the plankton that they feed on (Linko et al., 1985;
Mollmann et al., 2004).The highest feeding activity of Baltic herring occurrs
during spring and summer (Md&llmann et al., 2004). The total and relative amount
of phospholipids (PLs) was found to be highest in June (1.0% of flesh weight,
41% of total lipids) and lowest in October (0.4% of flesh weight, 8% of total
lipids) when the total lipid content was highest (3.1% of flesh weight) (Linko et
al., 1985). The PUFA content, on the other hand, was seen to vary between 34%
in the summer and 38% in the autumn (Aro et al., 2000). While the lipid content
in the muscle of Baltic herring (caught during winter) has decreased from
approximately 7-8% to 2-3% over the past decades, the relative content of n-3
PUFAs has increased (Rajasilta et al., 2022). Of Baltic herring caught 2020-2021,
almost 40% of all fatty acids consisted of EPA and DHA. The decreasing trend
in the lipid content is postulated to be due to the decreasing size of spawning
Baltic herring and decreasing water salinity of the Baltic sea (Rajasilta et al.,
2019). Baltic herring contains approximately 16% protein, and is also an
excellent source of vitamin D (Finnish Institute for Health and Welfare, 2022).

The annual catch of Baltic herring in Finland has in most years exceeded
100 000 tonnes (Natural Resources Institute Finland, 2022a) and it is one of the
most caught species in the Baltic Sea region in terms of volume, but majority of
the catch ends up as feed for farmed fish or fur animals (Sarkki and Pihlajaméki,
2019). The domestic consumption of Baltic herring has decreased during the past
decades (Figure 1). Meanwhile, most of fish consumed in Finland is imported
(Natural Resources Institute Finland, 2022c). It has been estimated that the
contribution of Baltic herring to food security and safety could be significantly
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increased (Pihlajaméki et al., 2016). The main catch season for Baltic herring
usually extends from October to May, depending on the year.
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Figure 1. Consumption of domestic Baltic herring and farmed rainbow trout and
imported farmed salmon in Finland (kg/person/year). Drawn based on data from
the Statistics database of Natural Resources Institute Finland (Natural Resources
Institute Finland, 2022c¢).

2.1.2 Challenges and opportunities of Baltic herring and other
under-utilized fish

Fish is not only a source of high-quality lipids with an abundance of long-chain
PUFAs, but also an excellent source of animal proteins (presence of all essential
amino acids (EAAs)) and micronutrients (Gil and Gil, 2015). Due to the global
issues related to climate change and population growth, fish and other aquatic
resources have been recognized as having a vital and increasing role in food
security (FAO, 2022). Fish, especially wild fish, have generally a considerably
lower carbon footprint compared to other animal protein sources. For instance,
roach (Rutilus rutilus) has a lower “global warming potential” compared to
several other protein sources, including vegetal meat substitutes and pulses
(Uusitalo et al., 2018). In addition, increased catching of zooplanktivorous fish,
such as cyprinid fish, may help to reduce predation pressure on zooplankton and
therefore enhance their grazing on phytoplankton, which has an alleviating effect
on eutrophication (Gerke et al., 2021). In Finland, roach catches from
commercial inland and marine fisheries were 444 tonnes and 298 tonnes,
respectively, in 2021, which was only 0.7% of the total fish catch from inland
and marine fisheries (Natural Resources Institute Finland, 2023a, 2023b).
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While many desired or popular fish stocks have been over-exploited (Branch
et al., 2011), there are several fish species and other marine resources that are
currently under-utilized, or even wasted by discarding as landfill. Fish may be
considered “under-utilized” for various reasons. Here, under-utilized refers to
fish that are either directed to feed, waste, or other uses with low value from an
economic or sustainability point of view. According to Kruijssen et al. (2020),
loss in fish value chain may be caused by either physical, quality, nutritional, and
market loss. Baltic herring in Finland may be considered as under-utilized as
most of the catch is used as feed (Sarkki and Pihlajaméki, 2019). On the contrary,
some fish are caught as by-catch, and therefore might be considered of low-value
and treated only as waste. For instance, whitemouth croaker (Micropogonias
furnieri) in Brazil is caught as by-catch of shrimp trawling, but there is currently
no destined use for this by-catch (Rocha Camargo et al., 2021). Cyprinid fish are
not common targets of commercial fishery, and their consumer awareness and
demand is low (Dahlin et al., 2021). Though improvements have been seen in
implementing more selective fishing gear, it was assessed that between 2010 and
2014, 9.1 million tonnes, 10.8% of the whole catch was discarded by global
marine fisheries (Pérez Roda et al., 2019). According to the report, almost half
of all discards were produced by bottom trawls, and highest discards were
produced by fisheries targeting crustaceans. According to another estimation,
approximately 20 million tonnes of global marine fisheries landings were
destined for other purposes than direct human consumption, and most of this,
approximately 90%, was food-grade or prime food grade (Cashion et al., 2017).
Poor fishing practices and management procedures are the most common reasons
behind the excessive amount of discards (Zeller et al., 2018). Improving
utilization of fish currently destined for non-food and low-value use could in part
help answer the growing demand of protein.

However, increasing the utilization of low-value fishes and their co-products
is not without challenges. Fish may be considered “low-value” or “trash fish”
due to having a low commercial value, low quality, small size, or lack of
consumer preference (Tacon and Metian, 2009). For instance, the challenges in
case of Baltic herring relate to its small size, susceptibility to oxidation, and low
consumer acceptance. Baltic herring is commonly processed into fillets, but
Baltic herring <17 cm in length are too small for commercial filleting and are
mostly used as feed for farmed fish and fur animals. The high content of PUFAs
(Aro et al., 2000) combined with a high content of dark muscle, known to be rich
in pro-oxidants compared to white muscle (Park, 2013; Undeland et al., 1998),
make Baltic herring susceptible to lipid oxidation, which poses a challenge for
preserving its nutritional and sensory quality during storage. Baltic herring has a
distinct aroma and flavor that are not preferred by many consumers. According
to a study by (Pihlajamaki et al., 2019), ‘bad taste’ was the most common reason
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for not consuming Baltic herring, among Finnish and Swedish consumers. Baltic
herring is especially unpopular among younger people, which implies that novel
products are needed to attract various consumer groups (Pihlajaméki et al., 2016).
Dark muscle is also higher in lipids, lower in pH, higher in proteolytic activity,
and higher in other sarcoplasmic prtoeins (in addition to heme proteins) (Park,
2013).

Fish is a highly perishable resource, and in addition to being prone to
oxidation, microbial spoilage is an issue, emphasizing the need for maintaining
low temperatures during transportation, storage, and processing. In addition, the
presence of environmental contaminants may limit the use of certain fishes. In
the Baltic Sea region, dioxins and polychlorinated bifenyls (PCBs) accumulate
in the lipids of especially prey fish. The EU limit for dioxins, dioxins + dioxin-
like PCBs, and non dioxin-like PCBs, are 3,5 pg/g, 6,5 pg/g, and 75 ng/g muscle
(fresh weight), respectively (European Union, 2011). The content of these
pollutants in Baltic herring have been higher than the limit set by EU, but have
decreased by 80% over the past decades, and the levels in small (< 17 cm) Baltic
herring have been found to be low (Airaksinen et al., 2014). According to a
recent assessment, the health benefits of consuming small Baltic fish are greater
than the risk posed by environmental pollutants (Tuomisto et al., 2020).

Despite the challenges, it is highly desirable or even required to increase the
utilization of low-value fish and fish co-products. Potential ways to improve
utilization include their fractionation to utilize fish proteins and lipids separately,
as well as addition of antioxidants to limit oxidation during storage and
processing and help maintain the quality.

2.2 Oxidation in fish
2.2.1 Factors effecting lipid oxidation in fish

Lipid oxidation is one of the most important factors influencing the quality of
fish. In addition to degradation of sensory quality (further discussed in chapter
2.2.5) oxidation can be detrimental in terms of nutritional quality (Huang and
Ahn, 2019). It is well established that the PUFAs in fish have several health
benefits (Ruxton et al., 2007), but due to their unsaturated nature and
susceptibility to oxidation they are easily destroyed. Oxidation can not only lead
to loss of PUFAs, but ingestion of oxidized lipids can also give rise to
unfavorable metabolic responses (Kubow, 1993; Turner et al., 2006). For
example, oxidized fish oil was shown to have a less beneficial or even negative
effect on cardiovascular disease markers compared to high-quality fish oil,
despite having the same n-3 fatty acid concentration (Rundblad et al., 2017). In
addition, primary and secondary lipid oxidation products can react with proteins,
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leading to changes such as increased hydrophobicity and aggregation, which may
further impact the functionality and bioavailability of the proteins (Hematyar et
al., 2019).

Lipid content is not a driver of lipid oxidation, as lipid oxidation takes place
even at a lipid content as low as 0.01% (Richards & Hultin, 2001). Susceptibility
of different lipids to oxidation, however, varies. Highly unsaturated long-chain
PUFAs are more susceptible to oxidation, as the number of bis allylic positions
in the molecule have been shown to correlate with autoxidation rate (Cosgrove
et al., 1987). However, there is some contradiction related to whether a high
content of unsaturated lipids increases the rate of lipid oxidation. For instance,
Aubourg (2001) reported that free fatty acids (FFAs) with high degree of
unsaturation, compared to low degree of unsaturation, increased the rate of lipid
oxidation more when added in cod liver oil. Wu et al. (2021d), on the other hand,
reported that PLs promoted myoglobin mediated oxidation in washed pig muscle,
regardless of whether the added PLs were from cod and had a high polyenoic
index (282) or from the pig muscle and had a low polyenoic index (24). In a
study by Richards et al. (2007), hemoglobin was more pro-oxidative in washed
tilapia compared to washed cod muscle despite an almost 3-fold higher polyenoic
index in the washed cod. However, suggested hydrolysis of PLs was
hypothesized to provide an antioxidative effect in washed cod. Wu et al. (2022a)
also found no correlation between lipid oxidation rate and quantity of lipid
substrates (e.g. total lipids, PUFA, or long chain n-3 PUFA). Due to the presence
of both pro-oxidants and antioxidants and interaction of various components in
complex systems, such as the fish muscle, direct comparison of different systems
in terms of lipid oxidation is challenging.

In the fish muscle, PLs are mostly present as membrane lipids and have a role
in regulating the fluidity of the membranes. Compared to triacylgycerols that are
storage fats present as inter- or intracellular fat droplets, PLs are thought to be
more susceptible to oxidation due to their high degree of unsaturation, presence
in membranes, close proximity to pro-oxidants, and large surface area (Erickson,
2002; Liang and Hultin, 2005a; Soyer and Hultin, 2000). PLs have been found
to have both pro-oxidative and antioxidative effects in different systems, as
reviewed by Cui and Decker (2016). The PUFAs in marine PLs are usually
positioned in the sn-2 position, and different stability of PLs in different system
is likely due to their different organization in these systems, such as bulk oil vs
liposomes (Araseki et al., 2002). The accessibility of pro-oxidants to lipids may
have a more determining effect on lipid oxidation than lipid class or degree of
unsaturation (Wu et al., 2021d).

Lipases or extremely alkaline conditions induce hydrolysis of TAGs (Kim et
al., 2016). Hydrolyzed lipids may be more susceptible to oxidation, and oxidized
lipids may be more susceptible to hydrolysis by lipases (Erickson, 2002).
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Lipolysis may have either an anti- or pro-oxidative effect on lipid oxidation
(Tatiyaborworntham et al., 2022). FFAs with varying chain lengths and degrees
of unsaturation were seen to increase oxidation when added in a commercial
marine oil or white muscles of and hake and pout (Aubourg, 2001). On the
contrary, addition of FFAs was seen to inhibit lipid oxidation in a washed turkey
model, which was attributed to conversion of hemoglobin to hemichrome, which
in turn was seen to eliminate the pro-oxidative effect of hemoglobin (Wu et al.,
2021e). In addition, phospholipase A2, cleaving the fatty acid from the sn-2
position of PLs, has been reported to prevent lipid oxidation by trout hemoglobin,
and the hydrolytic activity to be necessary for the antioxidant activity
(Tatiyaborworntham et al., 2021).

In order to optimize utilization of fish co-products, investigations have been
carried out to determine the fish parts most susceptible to oxidation. Belly flap,
compared to skin and mince, was identified as having the highest rate of
oxidation in silver carp (Hypophthalmichthys molitrix) (Kunyaboon et al., 2021).
On the contrary, viscera + belly flap were identified as the most stable parts in
herring, while head was the least stable towards oxidation (Wu et al., 2022a).

All processing of fish has a potential to promote oxidation. Salting (addition
of NaCl) has been seen to increase lipid oxidation, due to increasing the activity
of lipoxygenase (Guo et al.,, 2019). For instance, injection of salt prior to
marinating Atlantic herring (Clupea harengus) fillets resulted in higher TBARS
and lower a-tocopherol content compared to when fillets were only marinated
(Sampels et al., 2010). Alteration of pH on the other hand has an effect on lipid
oxidation due to its effect on heme proteins (Kristinsson and Hultin, 2004a;
Magsood and Benjakul, 2011a), as further discussed in chapter 2.2.3.
Temperature is one of the most important factors influencing the rate of
oxidation of lipids as well as proteins. Both storage (Nerrelykke et al., 2006) and
cooking (Cropotova et al., 2019) temperature play an important role. Different
cooking methods also show differences in promoting oxidation, and methods
using milder temperatures, such as boiling or steaming have been shown to result
in lower rates of lipid and protein oxidation (Hu et al., 2017). On the other hand,
sous vide cooking European sea bass (Dicentrarchus labrax) fillets at 85 °C (20
min, inner temperature of fish 83 °C at the end) was seen to induce higher
formation of oxidation derived volatiles compared to boiling (100 °C, 10 min,
inner temperature of fish 88 °C at the end) (Nieva-Echevarria et al., 2017).

Lipid oxidation in fish can occur via different routes. Autoxidation in fish can
be initiated by light, heat, presence of metal ions and radicals (Sampels, 2013).
Transition metals, such as iron, are able to reduce molecular oxygen to form
oxygen radicals (Welch et al., 2002). Along with endogenous pro-oxidants, the
level of endogenous antioxidants, such as tocopherols, is a determining factor
related to oxidation (Wu et al., 2022a). According to previous literature (Fu et
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al., 2009; German et al., 1985; Medina et al., 1999; Richards and Hultin, 2002,
2001; Tolasa Yilmaz et al., 2018; Undeland et al., 1998), the most important
oxidation routes in fish are hemeprotein and lipoxygenase mediated oxidation,
and hence they will be further discussed in the following chapters.

2.2.2 Lipoxygenase mediated oxidation

Lipoxygenases, endogenous enzymes catalysing the inclusion of oxygen into
unsaturated fatty acids, are present in various plants and animal tissues. They are
metallo-oxides with iron in their active sites, and catalyze oxidation of PUFAs
with cis-1,4-pentadiene structures (Figure 2) to form hydroperoxides (Schaich
et al.,, 2013). The only major difference between metal and lipoxygenase
catalyzed oxidation is the regio- and stercospecificity of the latter (Ghnimi et al.,
2017).
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Figure 2. Oxidation of EPA via 12-lipoxygenase (adapted from Hsieh and
Kinsella (1989) and Shahidi and Hossain (2022)).

In fish, 12- and 15-lipoxygenases, producing 12- and 15-hydroperoxides,
respectively, are most important. Activity of lipoxygenase isoforms is species
dependent. Metal ions can increase the activity of lipoxygenase (Samson and
Stodolnik, 2001). Also sodium chloride has been seen to increase lipoxygenase
activity at moderate concentrations, while high concentrations have an inhibitory
effect (Jin et al., 2011). The redox state of the metal is essential for enzymatic
activity. In the inactive state, iron is as Fe*, but hydroperoxides are able to
activate the enzyme by oxidizing the iron to Fe**, which is again reduced as the
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fatty acid ligand is oxidized (Ghnimi et al., 2017; Waller et al., 2008)
Lipoxygenase alone is not sufficient to facilitate oxidation since no radicals are
formed, but the hydroperoxides produced by it are decomposed by other
oxidizing agents, such as light, heat, or metal ions. Especially in some conditions,
lipoxygenase may lead to a high accumulation of hydroperoxides which can then
lead to rapid oxidation once the hydroperoxides decompose and autoxidation
takes over (Schaich et al., 2013).

Stodolnik and Samson (2000) studied the lipoxygenase activity of different
Baltic herring tissues from four different catch times and three stages of gonad
maturity. Lipoxygenase activity was highest in fins (96 nmol AM/mg), followed
by muscle tissue (70), roe (67), skin (54), milt (54) and gills (34). Season and
gonad maturity were seen to effect activity of lipoxygenase. They also studied
the affinity of Baltic herring lipoxygenase against different substrates, of which
lipoxygenase had the highest activity towards a-linolenic acid 18:3(n-3) (102
nmol AM/mg), followed by extracted Baltic herring muscle lipids (47), and
linoleic acid (19). Wu et al. (2022a) reported that in sorted herring, lipoxygenase
activity was almost 10 times higher in head compared to other parts, i.e. viscera,
belly flap, fillet, backbone, and tail.

Storage temperature plays a key role in the activity of lipoxygenase.
According to Tolasa Yilmaz et al. (2018), increase of fillet temperature from 0
to 10 °C significantly increased lipoxygenase activity in sardine mince. Also
different preservation methods have an effect on the activity of lipoxygenase.
Samson and Stodolnik (2001) studied the effect of freezing and salting on the
lipoxygenase activity of Baltic herring muscle and roe. The enzyme retained 78
and 70% of its activity after 6 months of frozen storage in muscle and roe,
respectively. Salting had either a catalyzing or inhibiting effect, depending on
the salt type and concentration, as well as the tissue (muscle or roe).

2.2.3 Hemoglobin, myoglobin, and iron mediated oxidation

Heme proteins are responsible for oxygen transportation and storage and are
thought to be the most significant endogenous pro-oxidants in fish. Hemoglobin
is mostly found as a tetramer, each monomer containing one heme group, while
myoglobin is a monomer. The heme consists of an iron ion inside a porfyrin ring
formed by four pyrrol molecules (Magsood et al., 2012). The protein part in
hemoglobin and myoglobin has an important function in preventing the auto-
oxidation of heme iron from Fe?" to Fe*', since autoxidation of free hemin iron
is much faster (Brantley et al., 1993). A significant amount of blood, and
therefore hemoglobin, remains in the muscle tissue of fish after bleeding
(Richards and Hultin, 2002). In fact, removal of blood has been shown to reduce
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the release of non-heme iron and control lipid oxidation during storage
(Harrysson et al., 2020; Maqsood and Benjakul, 2011b).

Several mechanisms for heme protein mediated oxidation have been
suggested, but auto-oxidation of hemoglobin and myoglobin, i.e., oxidation of
heme iron (Figure 3) is a crucial step regarding its pro-oxidativity. Autoxidation
occurs via two mechanisms, depending on the availability of oxygen (Brantley
et al, 1993). At high O: concentrations, oxyhemoglobin/oxymyoglobin
dissociates to methemoglobin/metmyoglobin and a neutral superoxide radical
(HOO"). This reaction requires H* and is therefore catalyzed by low pH. At low
O concentrations, deoxyhemoglobin reacts with free O to produce
methemoglobin and a superoxide anion radical (O2'"), which is readily converted
to hydrogen peroxide H>O; (Aranda et al., 2009; Brantley et al., 1993; Richards
et al., 2002). Methemoglobin may further react with H>O> or preformed lipid
hydroperoxides to create a prooxidative ferryl protein radical (Aranda et al.,
2009). Released iron can catalyze the breakdown of lipid hydroperoxides leading
to production of alkoxyl radicals (Magsood et al., 2012).
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Figure 3. Autoxidation of heme iron (adapted from Aranda et al. (2009)).

Hemoglobin and myoglobin have been seen to exhibit pseudolipoxygenase
activity (Kiihn et al., 1981; Rao et al., 1994). For instance, myoglobin from
sperm whale oxidized linoleic acid in the heme pocket (crevice) by ferryl oxygen
and not the protein radical (Rao et al., 1994). In a study by Grunwald and
Richards (2006) hemin release was shown to drive oxidation, whereas hemin
degradation and iron release had an opposite effect. After death, heme iron is
mostly in the ferrous Fe?' state, but due to the postmortem changes auto-
oxidation is accelerated. The decrease in oxygenation of heme proteins due to
decreasing pH is called the Bohr effect, whereas a further decrease in
oxygenation below pH 6.5 is called the Root effect (Richards et al., 2002). The
pH has a determining role in the pro-oxidativity of hemoglobin. In addition to
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the decrease in oxygenation, a low pH can promote hemin release, autoxidation,
solubility of released iron, and H,O; formation from the superoxide anion radical
(Magsood et al., 2012).

The reason behind the high susceptibility of fish to lipid oxidation compared
to other muscles may in part be due to differences in heme proteins. Despite high
sequence homology of avian, mammalian and fish hemoglobins, the last have
been seen to autooxidize much faster (Jensen, 2001; Richards and Dettmann,
2003). Compared to bovine hemoglobin, perch and trout hemoglobin have been
found to autooxidize 30-80 fold more rapidly (Aranda et al., 2009). Further,
biological, genetical, and environmental differences may play a role in pro-
oxidative differences observed between fish species (Magsood et al., 2012;
Undeland et al., 2004). For instance, autoxidation of hemoglobin from cold-
water species has been found to be faster compared to those species adapted to
warmer temperature (Maqgsood and Benjakul, 2011a; Wilson and Knowles,
1987). Richards et al. (2007) observed that trout (cold water fish) Hb promoted
more lipid oxidation compared to tilapia (warm water fish) Hb. The findings of
the study indicated that trout Hb exhibited a stronger Root effect (decrease in
oxygen affinity at decreased pH) at pH 6.3. At pH 7.4 oxygenation of both Hbs
was at a similar level, but trout Hb auto-oxidized more and promoted more lipid
oxidation compared to tilapia Hb. The results indicated that trout Hb had a more
flexible structure that tilapia Hb, which was likely the reason for the differences
in pro-oxidativity.

Also the content of heme proteins varies between fish species (Thiansilakul et
al.,, 2010; Wu et al., 2021a). Hemoglobin content is higher in dark muscle
compared to light muscle (Undeland et al., 1998). Hemoglobin content was also
shown to vary between spring and fall in herring fillets and tail, and non-heme
iron content was significantly higher in the head of spring fish compared to fall
herring (approx. 40 vs <10 mg/kg) (Wu et al., 2022a). The hemoglobin or
myoglobin contents in Baltic herring muscle have not been reported.

2.2.4 Connection between lipid and protein oxidation

Not only lipid, but also protein oxidation may be detrimental to the quality of
fish, since oxidative damage induces changes in protein conformation,
functionality, solubility, color, enzymatic activity, and changes in nutritive value
and bioavailability (Zhang et al., 2013). Unlike lipid oxidation, protein oxidation
has not been studied as extensively as it is more challenging to measure. The
reaction products are even more diverse due to a higher amount of reactive
targets (Hematyar et al., 2019). Lipid oxidation and protein oxidation, both
driven by transition metals and formation of oxygen radicals, can be provoked
by one another or occur independently, but often they are somehow connected.
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Transition metals, such as iron, may bind to metal-binding sites in the protein
and produce oxygen radicals that react with amino acid side chains to produce
carbonyl derivatives, among other modifications (Stadtman, 1990). Besides
modification of amino acid residues, oxidative damage to proteins induce their
cross-linkage and increase their susceptibility to proteolytic enzymes (Stadtman,
1990). Both primary and secondary oxidation products of lipids may react with
proteins (Viljanen et al., 2004). Protein oxidation in biological systems, such as
muscles, may occur more rapidly than lipid oxidation, since proteins are in the
aqueous phase where many radicals are formed (Soyer and Hultin, 2000).
Proteins may also “compete” for formed radicals with membrane lipids and
therefore provide an antioxidative effect from the perspective of lipids (Soyer
and Hultin, 2000). Vice versa, PUFAs have been seen to reduce oxidative
damage to proteins (Méndez et al., 2013). Some proteins are more susceptible to
oxidation (Nerrelykke et al., 2006), and certain amino acid residues, such as
proline, histidine, arginine, lysine, and cysteine are most sensitive to oxidative
damage (Stadtman, 1990).

As in the case of lipid oxidation, temperature is an important factor in the
development of protein oxidation. Nerrelykke et al. (2006) showed that rainbow
trout muscle stored at —20 °C vs. had a protein carbonyl content of approx. 4.5
mmol carbonyls/kg protein, which was twice the amount observed in samples
stored at lower temperatures (—30 or —80 °C). PV also increased faster at the
higher temperature; after 2 years of storage at —20 °C, —30 and —80 °C, PV was
12.2, 1.8, and 0.1 mequivalents/kg oil, respectively. Hu et al. (2017) investigated
the effect of different cooking methods on protein and lipid oxidation in sturgeon
(Acipenser gueldenstaedtii) fillets, and observed that all cooking methods, but
especially roasting and frying, induced protein oxidation indicated by increase
carbonylation, formation of Schiff’s bases, and decrease in free thiols, and was
characterized by oxidative damage to aromatic amino acids and lysine. TBARS
content, however, was lower in fried fillets, compared to the uncooked samples,
which indicated their further reaction with other compounds. A closer analysis
of modified proteins revealed that 4-hydroxynonenal (HNE) -modified and
malondialdehyde (MDA) -modified peptides were present in all cooked fillets,
clearly demonstrating the connection between protein and lipid oxidation. Most
studies have also reported simultaneous inhibition of lipid and protein oxidation
by addition of antioxidants (Farvin et al., 2012; Ozalp Ozen and Soyer, 2018;
Viljanen et al., 2004).
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2.2.5 Formation of secondary volatile oxidation compounds and
their impact on odor and flavor of fish

Secondary volatile oxidation products are formed during decomposition of
hydroperoxides (Gémez-Cortés et al., 2015). They have been widely used as
indicators of fish freshness (Duflos et al., 2006) and lipid oxidation (Kunyaboon
et al., 2021), due to their correlation with oxidation derived off-odors (Fu et al.,
2009; Jonsdottir et al., 2007; Venkateshwarlu et al., 2004a). Hydroperoxides are
decomposed by multiple pathways to form numerous volatile and non-volatile
compounds. Unsaturated aldehydes may also further react with other compounds,
and secondary non-volatile oxidation compounds may further decompose to
form new volatile compounds (Frankel, 1983). For instance, (Z)-4-heptenal is
produced from (£, 2)-2,6-nonadienal through water addition to form 3-hydroxy-
(Z£)-6-nonenal, which is then in turn transformed through retro-aldol
condensation to (Z)-4-heptenal (Josephson and Lindsay, 1987) (Figure 4).
Propanal and hexanal, as products of n-3 and n-6 fatty acids, respectively, have
been widely used as oxidation indicators due to their stability (lack of double
bonds) and especially hexanal usually shows high formation compared to some
other oxidation products (Barriuso et al., 2013). Hexanal is produced from the
13-hydroperoxide (13-OOH) of linoleic acid (18:2r-6) (Frankel, 1983), and has
been shown to be a good indicator of lipid oxidation in fish (Alghazeer et al.,
2008).
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Figure 4. Formation of (Z2)-4-heptenal from (E,Z)-2,6-nonadienal, adapted from
Josephson and Lindsay (1987).

According to Lindsay (1990) the classes of fish flavors can be classified to six
categories 1) very fresh fish and seafood-like, 2) oxidized, stale, and stored
flavors, 3) spoiled and putrid, 4) species-related characterizing flavors, 5)
derived or processing flavors, and 6) environmentally derived. Although some
microbial-derived compounds such as geosmin and 2-methylisoborneol or
trimethylamine contribute to earthy (Frank et al., 2009; Liu et al., 2017; Phetsang
et al., 2021a) and fishy, ammonia-like, crab-like, or fishhouse-like odors
(Lindsay, 1990; Wu et al., 2014), respectively, majority of the odor and flavor
compounds in fish are lipid oxidation derived. Fresh fish is found palatable by
consumers, but the loss of freshness and development of fishiness often leads to
rejection (Lindsay, 1990). Human senses may detect oxidation derived
compounds when their concentrations are too low for instrumental
measurements. For instance, off-odors have been detected in fish oil with
extremely low PV (Hamilton et al., 1998).

The term “rancid” is used in many foods to describe off-odors or flavors
formed due to lipid oxidation. However, since various secondary oxidation
products with sensory significance may be formed depending on the food,
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“rancid” may present a different sensory perception in different products
(Jacobsen, 1999). Also, oxidation reactions are influenced by the processing and
storage conditions, which leads to variation in the development of rancidity
within the same fish raw material (Refsgaard et al., 1998). Some sensory
attributes used to describe fish off-odors and off-flavors formed due to lipid
oxidation are presented in Table 1.

Thiansilakul et al. (2010) reported that there was a prominent increase in fishy,
and to some extent also rancid odor, in sea bass and red tilapia during 15 days of
storage on ice. Sea bass showed higher fishy and rancid odor scores, which was
in line with higher formation of TBARS in sea bass compared to red tilapia. In
another study, bleeding was shown to decrease fishy odor formation, PV and
TBARS in sea bass stored on ice for 15 days (Maqsood and Benjakul, 2011b).
Farmed hybrid catfish was shown to develop fishy, rancid and overall off-odor
intensity, which correlated with volatile lipid oxidation products, but also
trimethylamine and total volatile base-nitrogen (TVB-N). Wen et al. (2023)
characterized oxidized fish oil odors as rancid, fishy, grassy, painty, and metallic,
and of these attributes, fishy odor increased fastest and most during oxidation.
Painty odor was also used as an indicator of oxidation in a washed cod mince
with added hemoglobin from different species (Undeland et al., 2004).
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Lipid oxidation is a complex combination of different reactions and may thus
lead to highly diverse sensory outputs depending on the conditions and
precursors (fatty acids) present. Some volatile compounds associated with off-
odors in fish are shown in Table 2. Hammer and Schieberle (2013) investigated
the degradation products of n-3 fatty acids, formed via to autoxidation by copper,
or lipoxygenase action. The autoxidation products of EPA were found intensely
fishy, with metallic, fatty, and pungent notes, and the most significant volatile
compounds contributing to these odors were (Z)-1,5-octadien-3-one (flavor
dilution, FD>8192), trans-4,5-epoxy-(E,Z)-2,7-decadienal (FD>8192), (Z)-3-
hexenal (FD=1024), (ZZ)-2,5-octadienal (FD=1024), (Z Z)-3,6-nonadienal
(FD=1024), butanoic acid (FD=1024), and (£, E, E)-2,4,7-decatrienal (FD=1024).
Compared to autoxidation, the distillate of lipoxygenase-oxidized EPA was
found less fishy and more pungent and metallic, with volatiles such as 1-penten-
3-one (FD>8192) and (Z)-3-hexenal (FD>8192) being more pronounced.
Likewise, autoxidation of DHA produced a more intense pungent odor and
slightly less fishy odor compared to autoxidation of EPA. However, even in fish
oil, several other fatty acids than EPA and DHA exist and their degradation
products contribute to formation of off-odors (Wen et al., 2023). When taking
into account the number of different precursors and oxidizing agents present in
fish, as well as different storage or processing conditions, it can be considered
that a vast range of volatile combinations can be produced during lipid oxidation
of fish. It has also been shown that the diet of fish strongly influences the volatile
profile and sensory properties, due to influencing that fatty acid composition of
the muscle (Sérot et al., 2002).

Fu et al. (2009) investigated the effect of added hemoglobin or lipoxygenase
on the off-odor formation of washed silver carp mince. Lipoxygenase produced
a prominent fishy odor, whereas hemoglobin addition gave rise to a strong
oxidated oil odor. Nonanal and hexanal had a higher concentration in the
hemoglobin treated mince and were suggested to contribute to the oxidized oil
odor, whereas (E,E)-2,4-heptadienal was suggested to contribute to the fishy
odor in lipoxygenase treated mince.
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Milo and Grosch (1995) observed that trout mince stored for 26 weeks at —13 °C
prior to boiling, exhibited a strong train-like odor, which correlated with a higher
intensities of (£)-1,5-octadien-3-one, 1-octen-3-one, hexanal, (Z)-3-hexenal, (£)-
heptenal, (Z,7Z)-3,6-nonadienal, and (Z,Z)-2,6-nonadienal compared to trout
mince stored at —60 °C. (Z)-1,5-octadien-3-one seems to be one of the most
potent volatiles in fish and fish-oil emulsions (Hartvigsen et al., 2000; Milo and
Grosch, 1996; Triqui, 2006; Venkateshwarlu et al., 2004b), and due to its low
threshold is usually observed already when the fish is still fresh (Triqui, 2006).

(Z2)-4-heptenal has been suggested as one of the most significant volatiles
contributing to fishy odor (Hartvigsen et al., 2000; McGill et al., 1977, 1974).
On the other hand, when hybrid catfish muscle was stored refrigerated for 15
days, the concentration of (Z)-4-heptenal remained relatively constant, but a
prominent increase in fishy odor was observed (Phetsang et al., 2021a). It is
likely that other volatile compounds modify the fishy odor or flavor induced by
(Z2)-4-heptenal. For example, Venkateshwarlu et al. (2004b) used sensory
analysis and different multivariate models to investigate the contribution of
(E,Z)-2,6-nonadienal, 1-penten-3-one, (£)-4-heptenal, and (£, E)-2,4-heptadienal
to fishy and metallic off-odors and off-flavors in a milk system. The former two
were seen as most important for both off-flavors but had significant interactions
with (2)-4-heptenal. (E,2)-2,6-nonadienal, which is also a precursor of (Z)-4-
heptenal, showed a synergistic effect with (Z)-4-heptenal on fishy flavor.
Presence of all four volatiles was needed to reach the maximal intensity of fishy
odor and flavor. On the other hand, Triqui (2006) found that (E,Z2)-2,6-
nonadienal, which as its own is described as cucumber-like, was associated with
the fresh odor of hake. During storage, its odor intensity decreased, likely due to
its conversion to (Z)-4-heptenal. Interestingly, (Z)-4-heptenal and (E,E)-2,4-
heptadienal were seen to have compensating effects on fishy odor and fishy
flavor — low or high concentration of both volatiles simultaneously resulted in a
lower intensity compared to having one low and the other one at high
concentration (Venkateshwarlu et al., 2004a).

In addition to contributing to fishy and rancid odors, lipid oxidation products
such as hexanal or l-octen-3-ol may enhance the earthy and muddy odors,
common to freshwater fish and caused by 2-methylisoborneol and geosmin (Liu
etal., 2017). Based on previous literature, it can be concluded that lipid oxidation
derived off-odors, such as fishy odor, are never a result of one volatile, but a
combination of several volatiles (Venkateshwarlu et al., 2004a). It is challenging
to estimate the contribution of individual volatiles on fish off-odors based on
concentration only, since they may have somewhat unexpected interactions with
each other (Venkateshwarlu et al., 2004a). However, some volatiles, such as (2)-
1,5-octadien-3-one, (E,Z)-2,6-nonadienal, (Z)-4-heptenal, and (£, E)-2,4-
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heptadienal have been identified in most studies and are likely key odorants
contributing to fishy odors.

2.3 Strategies to improve utilization of low-value fish
2.3.1 Natural antioxidants

Since lipid oxidation is a significant factor influencing the quality of fish, and
the sensory quality can in many cases be a factor limiting utilization, use of
antioxidants might provide beneficial effects in terms of increasing the food use
of under-utilized fish. In addition, when it comes to utilization of fish side
streams, that may contain even more pro-oxidants than the fillet (Wu et al.,
2022a), limiting oxidation is of even higher importance. In addition, many
technologies aiming to improve utilization of low-value fish, such as the pH-shift
or enzymatic hydrolysis, may further accelerate oxidation, which in turn
emphasizes the need for antioxidants.

Antioxidants can be classified as primary, i.e. type 1 antioxidants, and
secondary, type 2 antioxidants, according to their mechanism of action (Lorenzo
et al,, 2018). Primary, i.e. chain-breaking antioxidants convert radicals into
stable molecules and thus help prevent iniation or interrupt propagation.
Secondary, i.e. preventing antioxidants act in various ways to bind or deactivate
pro-oxidants, or provide synergy for primary antioxidants (Lorenzo et al., 2018).
Some key factors affecting the efficiency of antioxidants are their solubility,
reducing potential, chelation ability, stability, as well as the pH of the
media/matrix, and most of these may also determine whether the their effect is
antioxidative of pro-oxidative (Decker, 1997).

Plant-based compounds with antioxidative activity can be present in any plant
part, e.g. grains (Adom and Liu, 2002), fruits (Ganhao et al., 2013; Maatta-
Riihinen et al., 2005; Zheng and Wang, 2003), nuts (Pycia et al., 2019), seeds
(Sancho et al., 2011; Vuorela et al., 2005), leaves (Capecka et al., 2005; Sancho
et al., 2011), roots and tubers (Kidhkonen et al., 1999; Mattje et al., 2019), arils
(Kulkarni and Aradhya, 2005), and barks (Vuorela et al., 2005), and are usually
phenolic compounds such as tocopherols, flavonoids, and phenolic acids (Kumar
et al., 2015). For instance, lingonberry and cranberry catechins and procyanidins
have been seen to be efficient radical scavengers (Maittd-Riihinen et al., 2005).
The antioxidative effect of sea buckthorn berry residue in mechanically deboned
chicken and turkey was mainly attributed to flavonols (Piissa et al., 2008).
Anthocyanins were postulated to account for the high radical scavenging activity
of black currant press residue extract (Puganen et al., 2018). Quercetin has been
shown to inhibit 12-lipoxygenase (Hsieh et al., 1988) as well as act as an
effective hydroxyl radical scavenger and reduce metHB formation (Wu et al.,
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2022b). Quercetin was also suggested to contribute most to inhibition of Hb-
mediated lipid oxidation by cranberry polyphenols in washed cod muscle (Lee
et al., 2006). However, synergy among different compounds present in natural
sources is likely to have a strong impact on the antioxidative effect (Capecka et
al., 2005). Most commonly, a high total content of phenolics is associated with
high antioxidativity measured in vitro (Puganen et al., 2018; Wojdyto et al.,
2007). Investigation of suitable doses is important, since too high concentrations
might result in pro-oxidative effects (Alghazeer et al., 2008; Silveira Alexandre
et al., 2022).

Several natural and synthetic antioxidants have been investigated on their
efficacy to inhibit lipid oxidation in fish, other muscle foods, fish oil (Sekhon-
Loodu et al., 2013), or fish oil emulsions (Farvin and Jacobsen, 2015; Let et al.,
2005; M. Pazos et al., 2005a). Most of the synthetic antioxidants used in the food,
such as synthethic phenolic antioxidants butylhydroxytoluene E321 (BHT),
butylated hydroxyanisole E320 (BHA), tertiary butylhydroquinone E319
(TBHQ), and their metabolites, may have several negative health implications,
especially if misused (Xu et al., 2021). Due to increased concerns related to
synthetic antioxidants and additives in general, as well as consumer demand for
“naturalness”, natural sources have been the focus of antioxidant research during
the past two decades (Babakhani et al., 2016; Ozalp Ozen and Soyer, 2018; M.
Pazos et al., 2005a; Sanchez-Alonso et al., 2007). Table 3 presents studies where
natural antioxidants were investigated during refrigerated or frozen storage of
fish. Most of the literature has focused on small pelagic fish species such as
mackerels and herring. Most common strategy for antioxidant inclusion in
previous studies has been their addition into mince (Babakhani et al., 2016;
Joaquin et al., 2008; Ozalp Ozen and Soyer, 2018; M. Pazos et al., 2005a;
Tarvainen et al., 2016), although marinating (Cropotova et al., 2019; Sampels et
al., 2010; Tarvainen et al., 2015), brining (Shi et al., 2014), and dipping (Chaijan
et al., 2020; Sveinsdottir et al., 2020; Wu et al., 2021b) treatments have also been
studied.

While most of the research has focused on plant-based antioxidants, also
animal-based antioxidants have been studied. For instance, milk protein
concentrate was seen to reduce the activity of lipoxygenase and decrease TBARS
formation in sardine mince (Tolasa Yilmaz et al., 2018). Milk protein
concentrate also reduced lipid oxidation and fishy odor formation in herring
mince during frozen storage (Joaquin et al., 2008). Chaijan et al. (2020) studied
the protective impact of coating sea bass steaks with mixtures of whey protein
isolate (WPI) and extracts of green tea, lemongrass, and ginger. The coating with
any of the extracts or only WPI retarded lipid and protein oxidation and
prevented decrease in odor likeness score during storage at 4 °C, but the WPI +
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ginger extract was the most efficient treatment, especially in terms of reducing
protein carbonyl formation.

Vinification and juice manufacturing produce large quantities of co-products
that have been investigated as antioxidants. Grape antioxidant dietary fiber
significantly delayed lipid oxidation in minced horse mackerel during first 3
months of frozen storage (Sanchez-Alonso et al., 2007). Pazos et al. (2005a)
studied different polyphenol fractions of grape pomace (after pressing and
maceration) as antioxidants in fish oil, fish oil-in-water emulsions, and frozen
minced mackerel muscle. Out of the tested fractions, flavanol oligomers
(proanthocyanidins) with intermediate degree of polymerization were most
efficient in delaying lipid oxidation of frozen minced muscle and fish oil-in-
water emulsions. Grape proanthocyanidins were also shown to protect washed
horse mackerel mince from hemoglobin mediated oxidation (Maestre et al.,
2009).

It is important to assess the effect of antioxidants on sensory quality as well,
as in some cases the improvements observed in instrumental measurements such
as PV or TBARS are not reflected in the sensory quality (Hamilton et al., 1998;
Harrysson et al., 2020; Sveinsdottir et al., 2020). In a study by Hamilton et al.
(1998), refined fish oil with 2% &-tocopherol, 0.1% ascorbyl palmitate, and 0.5%
lecithin added showed no increase in PV when stored at 20°C over a period of 6
months, but their antioxidant effect did not improve flavor stability, and off-
flavors developed already within 3 weeks. On the contrary, dipping Atlantic
mackerel fillets into a sodium erythorbate solution increased the shelf-life of
frozen fillets from less than 2.5 months (control) to up to 15 months according
to sensory analysis, while differences in PV and TBARS between dipped and
control fillets were less clear (Sveinsdottir et al., 2020). On the other hand,
antioxidants may influence the sensory quality in a negative way and reduce
consumer acceptance (Mattje et al., 2019). Polyphenols may be perceived as
bitter or astringent (Ares et al., 2009), and may react with other compounds
during processing, resulting in changes in odor, flavor and color (Han et al.,
2022). Plant-based extracts or ingredients with antioxidant activity also contain
other compounds with odor and flavor activity which may be a challenge in terms
of their incorporation into food. For instance, addition of ginger essential oil or
ginger supercritical CO» extract had a negative impact on the liking of tilapia fish
burger, due to the strong ginger flavor (Mattje et al., 2019).
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Several natural antioxidants have shown their potential in inhibiting lipid
(Alghazeer et al., 2008; M. Pazos et al., 2005a; Tarvainen et al., 2015) and
protein (Chaijan et al., 2020; Ozalp Ozen et al., 2011) oxidation in fish. In
addition to showing antioxidative effects, the natural additions have to be safe to
consume. Extracts are considered as novel foods that have to be accepted by food
authorities to be used. Similarly, as with synthetic antioxidants, natural
antioxidants may have toxic properties if used excessively. As many natural
antioxidants, such as extracts, fall under the novel food legislation in the EU,
they need to undergo a thorough safety assessment (Regulation (EU) 2015/2283,
2015). Currently, rosemary extract (E392) is the only natural extract accepted by
the European Food Safety Authority (EFSA Panel on Food Additives and
Nutrient Sources added to Food (ANS), 2015).

2.3.2 Extraction of fish proteins using the pH-shift

Production of protein isolates using the pH-shift method has been suggested as a
potential way to provide added value for under-utilized fish species, such as
small pelagic fishes. The pH-shift process, i.e. alkaline or acidic extraction
followed by isoelectric precipitation is based on pH induced changes in protein
solubility (Figure 5). In the process, proteins are first solubilized using acid or
base to increase their positive or negative net charge, inducing protein-protein
electrostatic repulsion and increasing protein-water interactions (Gehring et al.,
2011). The liquid phase containing the solubilized proteins is separated from the
insoluble matter and lipids by decantering or centrifugation, after which the pH
is adjusted to the isoelectric point (IP) of the protein where the protein has a zero
net charge, causing precipitation. In most cases the pH of the isolate is finally
adjusted to a neutral pH (7.0) (Abdollahi and Undeland, 2018) since the
functional properties at [P are usually poor due to low solubility, and the slightly
acidic pH may promote oxidation (Richards et al., 2002).

The pH shift can improve utilization of small fish and by products, since no
pre-processing is needed, and during the process proteins are separated from non-
protein materials due to differences in density (Undeland et al., 2002). In addition
to fillets (Thawornchinsombut and Park, 2007; Undeland et al., 2005) and gutted
fish (Marmon and Undeland, 2010), the pH shift has been applied to extract
proteins from whole fish (Nisov et al., 2021) and side streams (Abdollahi and
Undeland, 2019; Chen and Jaczynski, 2007; Chomnawang and Y ongsawatdigul,
2013; Zhong et al., 2016). In addition to the proteins, other fractions obtained in
the process may be utilized to collect minerals, collagen, or lipids, providing
added value. For instance, the solid fraction obtained after the first separation
step, containing skin and bones, was used to prepare collagen and collagen
hydrolysate (Abdollahi et al., 2018). According to Abdollahi and Undeland
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(2020) the yield of lipids collected during the pH shift was lower compared to
traditional extraction by heating, but the n-3 PUFA content was higher with the

former.
pH=IP

protein net charge=0 +
Protein-protein
interactions > protein- —
water interactions

L =
Decrease in pH Increase in pH
(addition of acid) (addition of base)

4’\;\ = _ ' :
. + + _ 5

Kook

ud “ +

+ +
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Protein-water Protein-water
interactions > protein- interactions > protein-
protein interactions protein interactions

Figure 5. Principle of protein solubilization and precipitation in the pH shift.
When pH is close to the isoelectric point (IP) of the protein, protein solubility as
its lowest, whereas increasing or decreasing pH increases solubility.

A significant advantage of the pH-shift process is that the proteins are not
significantly cleaved or do not have to be subjected to a heat treatment and hence
retain certain functional properties of the muscle, such as gelation (Undeland et
al., 2002; Wang et al., 2015). Due to different proteins having different IPs, the
extraction can be somewhat selective. Of the muscle proteins in fish, myofibrillar
proteins are typically extracted using the pH shift. Sarcoplasmic proteins are
water soluble in both alkaline and acidic conditions and do not in their native
state precipitate to a large extent at pH 5-6 (Gehring et al., 2011). However, the
changes due to extreme pH conditions in the pH shift have been shown to alter
their conformation and solubility, leading to their retention in the protein
precipitate (Tadpitchayangkoon et al., 2010). For instance, the solubility of
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hemoglobin at pH 5.5 was seen to be lower when it was first subjected to high
(11.5) or low (2.5) pH (Abdollahi et al., 2016). In the same study it was also
observed that increasing precipitation pH from 5.5 to 6.5 improved hemoglobin
removal from 78% and 37% to 91% and 74% in alkaline and acid processing,
respectively, which is desired in terms of limiting oxidation.

The pH shift has been seen to have favorable effects on protein and lipid
composition, when compared to the raw material. For instance, the extraction
process has been seen to improve the ratio of EAAs to non-essential amino acids
(NEAAs), since more of the latter are removed during the process (Abdollahi
and Undeland, 2018; Marmon and Undeland, 2010; Surasani et al., 2018; Zhong
et al., 2016). In addition to reducing total lipid content, the pH-shift is reported
to reduce particularly the content of PLs (Liang et al., 2007; Undeland et al.,
2002). Further, in a study by Marmon et al. (2009), both acid and alkaline pH-
shift processing, while removing majority of the lipids, resulted in 70-80% (per
amount of protein) reduction in dioxin and PCB levels. Reduction of these
contaminants is a significant benefit in terms of raw materials from the Baltic
Sea.

One of the challenges in the pH-shift processing of fish is its accelerating
effect on lipid and protein oxidation. Since pH has a vital role in the pro-
oxidativity of hemoglobin (as discussed in section 2.2.3), the extreme high and
especially low pH values used in the pH shift can induce lipid and protein
oxidation. Also, in the process, pH is adjusted in two consecutive steps, and the
pH that hemoglobin has been exposed to during the extraction, may effect its
stability at the precipitation pH (Pazos et al., 2005). In addition, natural
antioxidants present in fish are diluted and to some extent discarded during the
process (Wu et al., 2021a). Further, homogenization and centrifugation break
down the muscle structure, leading to increased contact between pro-oxidants
and membrane lipids. When comparing acidic and alkaline extraction, most
studies have reported the alkaline process to result in protein isolates with a lower
degree of oxidation (Kristinsson & Hultin, 2004; Zhong et al., 2016), although
contradictory findings have been reported (Abdollahi et al., 2020). The
contradiction might be due to species related differences in content and stability
of hemoglobin. For instance, Abdollahi et al. (2020) studied lipid oxidation in
acid- and alkali-extracted protein isolates from salmon and herring side streams.
In case of salmon, there were no significant differences between the two protein
isolates, whereas herring protein isolate made with alkaline pH shift showed a
higher PV and malondialdehyde content compared to acid-extracted isolate. A
similar observation was also made by Zhang et al. (2022), comparing alkali- and
acid-made protein isolates from herring heads and backbones. Several
pretreatments and antioxidants have been seen to control lipid oxidation during
the pH shift (Abdollahi et al., 2020; Zhang et al., 2022). Zhang et al. (2022)
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studied co-products from lingonberry, apple, oat, barley, and shrimp, and two
seaweeds as antioxidants during pH shift of herring and salmon filleting co-
products. Except for the shrimp shells, all additions retarded lipid oxidation
during pH-shift-processing and subsequent ice storage, lingonberry press-cake
being the most efficient. Further, addition of lingonberry press cake was seen to
prevent formation of lipid oxidation derived volatiles (hexanal, (£)-2-hexenal,
heptanal, octanal, and 2,4-heptadienal) during 21 days of ice storage of herring
protein isolate (Zhang et al., 2023).

While different results have been observed depending on the raw material and
processing conditions, in general the alkaline process has been shown to be more
favourable in terms of yield (Abdollahi and Undeland, 2019; van Berlo et al.,
2023), lipid removal (Marmon and Undeland, 2010; van Berlo et al., 2023;
Zhong et al., 2016), and gel forming ability (Phetsang et al., 2021b). Most of the
differences in functional properties have been attributed to higher degree of
denaturation in the acidic conditions (Tang et al., 2020).

Despite the abundant literature on the alkaline/acidic solubilization and
isoelectric precipitation, few studies have investigated the pH-shifted protein
isolates in regard to their sensory properties or compounds responsible for them
(Abdollahi and Undeland, 2018; Nisov et al., 2021; Phetsang et al., 2021b). Also,
research on potential uses or food concepts including pH-shifted fish protein
isolates (FPIs) has mostly been conducted only during the recent years. Table 4
presents studies in which the sensory quality of FPIs produced using the pH shift,
or model foods including them, has been investigated. The pH shift has
commonly been suggested as an alternative for traditional production of surimi
(Nguyen et al., 2022; Phetsang et al., 2021b; Rawdkuen et al., 2009). FPIs have
been successfully added in fish-based foods, such as fish sausages, in which up
to 50% of mince have been replaced with FPI (Surasani et al., 2022a, 2022b,
2020) and fish balls (Shaviklo et al., 2010). However, 2% FPI from lantern fish
could also be added in meat sausages, without significantly reducing the
pleasantness compared to control sausages with soy protein isolate (Moosavi-
Nasab et al., 2018). Also inclusion in pasta has been suggested (Surasani et al.,
2019). While 2.5-10% FPI did not affect the liking of appearance, color, or
texture of pasta, especially levels above 5% decreased flavor acceptability and
increased the intensity of fishy flavor (Singh et al., 2021). Since complete
elimination of fishy odor and flavor during the protein extraction is challenging,
the odor and flavor of the protein isolates is likely to limit their application. In a
study by Phetsang et al. (2021b) both alkaline and acidic pH shift, as well as
surimi processing reduced the fishy and earthy off-odors of hybrid catfish mince.
Acid-made protein isolate was, however, perceived as having the most rancid
odor, which was in accordance with TBARS values.



35

Review of the Literature

(Q1202)
‘Te 12 Suesyoyd

passaooid-ijexye oy 03 paredwod
J0pO Aysiy Jo Aysudjur 1oy3iy € pey [d] passadoid-proy

QouTW YSIjIed PLIqAY 03 pareduwod 10po Ayjred
pue Kysiy 10M0] pey S[J,] Passadoid-proe pue -I[ex[e yog

SISA[OIPAY]
J0 90139p 10y31y 03 payyuI] A[o)I] sem yorym ‘sojdwes yoeol
19130 01 paredwood 1911q d10W sem [d] paonpoid-ijey|y

¥ 01 () woly (snurdarin3
9[edS B UO IOPO PIouRI ¢’ Hd wonendioard  sorwp) x snppydaso.sovu
pue ‘Ayires ‘Aysty ‘L'710 711 HA vonezIiqniog  spv])) YSyIed PUAAH

Bu1kIp-0za31) &

[eLIOYEW MET A1oAnoadsar ‘o1proe pue ourfey[e (snpyn.a snpyny) yoeol

oures oy Jo sajesAjoIpAy urdjoxd paonpoid Ajjeonewizud sisATeue 10J 76 pue 9 Hd uonendioard  pue (svuquow sn3ua.vy

(1207) 1B 19 AOSIN 0} paredwod prouels 210W PAIdPISUOD 1M S[J] [[V 9AndLIOSap SLIUAD) ‘G’z 1o 6'11 Hd uonezijignjos vadnjH) uiay onjeg
SoINQLIE JSOW U] JSAP[IW sem U1)0Id poo

i

ﬁwomm _om % omhw u: MMMH . U w;w wbo vnm ¥ M. ur suorsuadsns o, se -0Z331j & ()" 01 Judunsnipe vadnjH) Juriay pue

B 1o usy s PEY Idd ouioy S1dd € 91 30 1dS pue S[dq 221y} 9y} Hd 1eury ‘g Hgd uonendroaxd ‘(4vpps ouppg) uowyes

(8107) pueopun soINqLIIe JOAR[J pue  JO SIsATeue oAndLIosop ‘3uLLIoY pue uowes I0J 7| pue {(vny.cow snppoy) pod

puU® IYB[[OPQY  JOPO }SOW Ul sapIsuul 12y31y pey s[dd ‘1dS 01 paredwo) JARINUENQ) pod 10§ ¢'1 | Hd uonezijiqnjog Jo s1onpord-09 Sunoyyig

UIIJIY uorsnIuo)) Suryoad L10sudg $8900.14 [eLId)eW MY

-91e[0SI U19301d A0S Saj0Udp [JS ‘@re[os! urajoxd

USIJ $910UIP [d] "Wy} urpnjour spooy paynoy 10 ‘Yrys Hd oy Suisn paredad sarejost urajoad Jo santodoid A10suds uo saipns *p dqe L,



Review of the Literature

36

(1202) '1e 30 ysuis

(0z02)
‘Te 19 tueseIng

(8100) T8
19 ﬂmmmzugmmooz

poppe

JUNOWe o) YIM OUI| Ul JOAR[J AUSI} PaseaIdul uonippe 14
A1oanoadsar ‘oG / pue 94G JO SUOIIRIIUIIUOD Je ApeaIfe
JuROIJTUSIS Sem [0IIU0D 0} JOUAISIP oY) pue ‘Kjijiqeidesoe
[[BISA0 pUR JOAB[J JO FUIYI] PISBAIIAP [IAQ] [d] Surseaou]

sagesnes
Jo ssomuesea|d oy 109358 Appueolyiugis Jo0u pIp [d4
snise3ued jo junowe Aue yym dourwr snise3ued Suroejdoy

sonque
[T Ul PaYI] }SES] PAIOPISUOD SeM [dd %P UYm aSesneg

sanque 12410 ur [enba ‘Ariqerdesde [e1oud3 pue 1000
QIM)x9) Jo swId) Ul (IdS % ¥) [01nuod 03 paredwos jueses[d
9JOW PAIDPISUOD Sem dJe[ost u1d30ld ysiy 9,z yiim o3esnes

A1oAnoadsar ‘syoam g pue 4 Jo 93e10)s UZOIJ 9.

ATu0 Inq ‘ssourdIf PaseaIddp pue SSAUOS PISEIIOUl pue
‘uoneyeredord 1ojye A[0JRIPSWIWI PAYEN[EAD USYM [OIUOD
01 paredwoo ssoururesd pasearour (4. %0S JO UoIppy

%0 Idd SA %08 Idd Ut

Kyisuojur J0AB[J

ysyy pue Ajiqerdodoe
JOAB[J [[RIOAO ‘9[BIS
oruopay jutod g & uo
Aniqeideooe [reIoA0
puE J0AB[} ‘QIN)X3)
‘10100 ‘@ouereaddy

oreos jurod

-6 & uo Ajiqeldoode
[[eIoA0 pue

ssounyons ‘ssourdrn(
‘KIT1IqeMaYD ‘ssouprey
‘10p0 ‘oouereaddy

oTe0s oruopay jurod
-G © UO 2INJX9) pue
‘Knpqerdesoe [e1A0
‘IOARTJ ‘IOPO ‘10[0))

1dd %0701 10 %S°L “%0°S “%S'T
0 pIm pojuowd[ddns sem eiseq

pagroads jou Hd
uoneydioald pue uonezijiqnjos

sagesnes ur [d,] sniseued yym
pooerdar sem oourwr snisedued

JO %08 10 “%ST ‘%01 ‘%S ‘0
6's Hd uonendioard
‘¢1 Hd uonezijiqnjos

(A1oAn09dsax

UdS %0 10 ‘0947 ‘9%t Sururejuoo)
[9AQ] % J0 ‘94T ‘040 Y& oFesnes
JeQW PAOUIW UL PAPPE Sem [J.]

Surkip-ozaa1g & ¢ Hd
uonejdioard ‘71 Hd uonoenxg

S[]eq YSL} Ul 90uIl 320ppeY %0S
10 9,67 ‘0,0 ooe[dor 03 pasn sem

(smisv3und
snisn3ung) sedued

syonpoid-09 (snisv3uvg
snisp3up ) sedued

(wnjo.23d vuwasoyuag)
ysy wdue|

10y31Y sem Yorym ‘I0Ae[j 81035 uszodj,, 10§ 3daoxo ‘0,06 s[req ysy SJFO-IN0 (snuifoj3an

(0102) 10 96T %0 UM S[[eq USIJ US0MIdq SNQIIIE JOAR[] pue  Jo sisA[eue 2AndLIosap 14 (%08 3u23u00 dumsiour) 21 SNUUDLSOUDIPY)

‘Te 32 opyIARYS JOPO 1SOW US2MIDq SOIUIAIJIP JUBIIUSIS OU 210M IO L JAnEIIUERNQ) ¥iys gHd surpeyy yooppeH
UAIYY uoIsSNPUOD) Surpyoad K1osuag $5320.1J [eLId)EW MeY




37

Review of the Literature

(e2200)

‘[e 39 TueseIng

(azzoo)

‘Te 19 1ueseIng

jueoljIugs Afreonsnels

JOU SeA 90ULIQIJIP O} SUOTIEIIUIIUOD PAPPE IO

je Inq ‘[onuo0d oy} 03 paredwos Afiqe)desoe [[eI9A0 10MO]
“Apuesyrusis inq ‘APYSIS pey [dd %S T Ym sofesnes

sagesnes Jo ssoujuesed[d oy 109e A[JuedIUSIS J0U PIP
1dd nyo1 Jo junowe Aue yum dourw snisegued Juroejdoy

9[BOS dIUOpay

jutod-g uo pajen[ead
am Apiqeidadoe
[[BISAO pUR ‘SSAUINONS
‘ssouron( ‘1oaeyy
prouel ‘ssaupiey
‘10p0 ‘2ouereaddy

oeds

wrod-¢ uo pajenjeAd
a1om Aypiqeydaooe
[[eIoA0 pue

‘ssounyons ‘ssouromf
‘KI[Iqemato ‘ssaupiey
‘10p0 ‘douereaddy

sagesnes ur [d, sniseued

m pooerdar sem sourua
nyo1 JO %01 PUL “%0°S “%S'T ‘0
¢'¢ Hd wonejdroard

‘¢l Hd uonezifiqnjog

sagesnes ur [d] nyoI ym
pooedar sem oourw snisegued
30 %06 10 “%ST “%0T ‘%S ‘0
L 0y juoumsnipe

Hd 1euy ‘- Hd uonendroard
‘¢1 Hd uoneziiqnjos

syonpoid-0o (snisvSund
snisp3uv ) sedued

syonpoid
-09 (p111/0.4 02gVT) NYOY

UAIYY

uoIsnPUo)

Suryoad L10sudg

$S320.1d4

[eLId)ew MeYy




38 Review of the Literature

2.3.3 Enzyme-aided fish protein extraction

Enzymatic hydrolysis (enzyme-aided protein extraction) has been widely used to
recover proteins from several fish (Aspevik et al., 2021; Idowu et al., 2019;
Rocha Camargo et al., 2021) but also several other foods (Lamsal et al., 2007;
Severin and Xia, 2006), and was studied for fish long before the pH-shift process
was first developed (Adler-Nissen, 1976; Hale, 1972; Hultin and Kelleher, 2001).
Since then, several different endogenous and exogenous commercial and non-
commercial proteases, including pepsin, trypsin, a-chymotrypsin, Alcalase,
pancreatin, Flavourzyme, Neutrase, Protamex, and papain, have been applied
(Table 5). Proteases vary in their function and specifity, and therefore yield
different peptides. Proteases either act on the N- or C-terminus of the polypeptide
chain (exopeptidases) or cleave the chain from the middle (endopeptidases), and
the specificity of the protease determines at which residue the peptide bond is
cleaved (Tavano, 2013). For instance, Alcalase in an endopeptidase with a broad
specificity and with preference to AAs with hydrophobic side chains, hence the
use of Alcalase often leads to high degree of hydrolysis (DH) and formation of
hydrophobic peptides (Tacias-Pascacio et al., 2020)

As in the case of pH shift, whole fish and side streams may be used, making
enzymatic hydrolysis a suitable way to extract proteins (Aspevik et al., 2021;
Jafarpour et al., 2020; Nisov et al., 2021) or lipids (Aitta et al., 2021; Mbatia et
al., 2010) from under-utilized fish resources. However, the enzymatic extraction
of proteins is fundamentally different compared to the pH shift, regarding the
protein fractions obtained. Enzymatic extraction is based on hydrolyzing the
proteins to increase their solubility (Adler-Nissen, 1976), after which the
aqueous phase with hydrolyzed proteins (peptides) can be separated from
insoluble materials and lipids by decantering or centrifugation, contrary to the
pH shift, where mostly intact proteins are collected as a precipitate (Gehring et
al., 2011). Due to the different degree of protein hydrolysis with the use of these
methods, and therefore different functional properties, fish protein hydrolysates
(FPHs) produced by enzymatic hydrolysis are suitable for different applications
compared to FPIs.
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The hydrolysis of fish muscle proteins may provide several benefits and
challenges. A long recognized issue of bitterness development due to formation
of bitter peptides (Adler-Nissen, 1976) has been a challenge in terms of the
sensory quality of FPHs. However, it has been shown that formation of bitterness
can be controlled by a careful selection of enzyme(s) used (Yarnpakdee et al.,
2015). The selection of enzyme has a role in altering the sensory (Yarnpakdee et
al., 2015) and bioactive properties (Elavarasan et al., 2014) of the hydrolysates.
Further, the DH is an important factor determining the properties of FPHs.
Yarnpakdee et al. (2015) reported that increasing hydrolysis time and DH led to
an increase in antioxidant activity of FPH from Nile tilapia (Oreochromis
niloticus). On the other hand, DH did not affect the emulsifying capacities of
FPHs from Pacific whiting (Merluccius productus), prepared using Alcalase
(Pacheco-Aguilar et al., 2008). The raw material (fish species) is likely to be a
determining factor on the FPH quality (Aspevik et al., 2021). For instance, in a
study by Aspevik et al. (2021) FPHs were prepared from mackerel, salmon, or
herring, from either backbone or head side streams, and using Bromelain or Food
Pro as enzymes. Regardless of the enzyme or raw material fraction, herring FPHs
were characterized as having the most intense sensory properties, such as fishy
flavor, rancid flavor, acidic taste, and total flavor intensity.

Enzymatically fractionated FPHs as food ingredients can provide improved
water-holding capacity, emulsification and foaming (Halim et al., 2016;
Pacheco-Aguilar et al., 2008; Pires et al., 2015). Hydrolysis has been shown to
result in peptides with several bioactivities, such as antioxidative effects
(Centenaro et al., 2014; Khantaphant et al., 2011; Sathivel et al., 2003; Wu et al.,
2003) and angiotensin converting enzyme (ACE) -inhibition (Je et al., 2004;
Pires et al., 2015; Qian et al., 2007). For instance, FPH from rainbow trout side
streams was seen to inhibit oxidation during refrigerated storage of a raw fish
emulsion (Nikoo et al., 2019). FPH from skipjack tuna roe was also seen to retard
hydroperoxide and TBARS formation in fish emulsion sausages (Intarasirisawat
et al., 2014).

Since the optimal temperatures for many enzymes are high and after
hydrolysis even higher temperatures are used for inactivation, and in many cases
also pH adjustments are made, oxidation of lipids and proteins may also pose a
challenge on the stability and quality of FPHs (Halldorsdottir et al., 2013). The
lipids and heme proteins remaining in the FPH induce oxidation and promote
formation of fishy odor (Yarnpakdee et al., 2014), which is a major issue limiting
their commercialization (Halldorsdottir et al., 2014). Washing and/or pre-
treatment with calcium chloride and citric acid prior to hydrolysis have been seen
to reduce heme protein content (Khantaphant et al., 2011), PL content
(Khantaphant et al., 2011; Pires et al., 2015), and lipid oxidation (Khantaphant
et al., 2011; Nikoo et al., 2019). In addition, antioxidants, such as EDTA and
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Trolox (Yarnpakdee et al., 2012c), pistachio green hull extract (Nikoo et al.,
2019), and brown algae (Halldorsdottir et al., 2014), have been used to limit lipid
oxidation in FPHs. According to Amini Sarteshnizi et al. (2021), addition of
pistachio green hull extract during hydrolysis also enhanced the bioactive
properties of the FPHs. FPHs prepared from cod bone mince with brown algae
showed a lower intensity of rancid, soapy, and fish oil flavor, as well as bitterness
(Halldorsdottir et al., 2014).

Some studies have combined the pH shift and enzymatic hydrolysis (Nikoo et
al., 2019; Pires et al., 2015; Yarnpakdee et al., 2012a, 2012b). In a study by Pires
et al. (2015), cape hake co-products were first solubilized using alkaline
extraction and then subjected to hydrolysis by Protamex, which was seen to lead
to higher lipid removal. Yarnpakdee et al. (2012a) used prewashing and alkaline
or acid solubilization to extract proteins from Nile tilapia, which were then
subjected to hydrolysis using Alcalase. Pretreatment including alkaline
solubilization led to lower peroxide values (PVs), TBARS, and non-heme iron
contents in the hydrolysates, and a higher likeness score when the hydrolysate
was added to milk.

2.4 Concluding remarks

Fish is highly nutritious and an excellent source of micronutrients, proteins, as
well as beneficial lipids. Improving utilization of fish resources that are currently
discarded or directed to non-food uses, is vital in the context of global food
security. Small dark-muscled fish, such as Baltic herring may be difficult to
utilize by traditional processing methods (such as filleting), but technologies
such as enzymatic hydrolysis and the pH-shift may enable the valorization of
proteins and lipids from small fish and fish co-products.

The pH-shift process has been suggested, for instance, as an alternative for
traditional production of surimi, since it can be used to extract the muscle
proteins as relatively intact, retaining most of their functional properties. The
protein isolates produced by the pH shift have been incorporated into fish-based
food products, such as fish balls and fish sausages, but also to other foods, such
as pasta. However, despite removing a majority of the lipids as well as pro-
oxidants, the pH shift has been seen to induce protein and lipid oxidation, leading
to development of off-odors and off-flavors that may limit the use of the protein
isolates. Compared to other literature regarding the pH shift, there is still
relatively little information on the sensory properties and underlying chemistry
of the protein isolates.

Similarly to the pH shift, enzymatic hydrolysis has been proven a successful
technology for extracting proteins, as well as lipids, from under-utilized fish
resources. Fish protein hydrolysates obtained via hydrolysis using proteases have
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generally high solubility, foaming, and emulsifying capacities. In addition, fish
protein hydrolysates from several raw materials have been shown to have
bioactivities, such as antioxidation and inhibition of angiotensin converting
enzyme, showing their potential in biomedical applications as well. However,
fish protein hydrolysates are also limited by the development of fishy odor and
flavor, induced by lipid oxidation.

Oxidative enzymes, mainly lipoxygenases, as well as heme proteins are
important factors inducing lipid oxidation in fish. Degradation of the cellular
structures in fish muscle (e.g. during mincing or homogenization) leads to
increased exposure of polyunsaturated fatty acids to both lipoxygenases and
heme proteins. Increasing temperature or adjusting pH increases the rate of
oxidative reactions. Oxidation gives rise to secondary compounds, especially
aldehydes and ketones, which contribute to development of fishy off-odors and
off-flavors during processing and storage.

Several synthetic and natural antioxidants have been investigated for their
effect during frozen or refrigerated storage of fish muscle, as well as during the
pH shift or enzymatic hydrolysis. Antioxidants are not only able to inhibit
oxidation as indicated by a lower content of primary and secondary oxidation
products, but to also limit degradation of sensory quality. Investigation of the
antioxidant effect on sensory quality is important, as it is not always well
reflected by instrumentally measured oxidation markers. Previous literature has
shown that several natural antioxidants to be as or more effective compared to
synthetic or conventional antioxidants. However, the use of natural antioxidants,
such as extracts, may be challenging regarding their sensory properties and
legislative restrictions.
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3 AIMS OF THE STUDY

The overall aim of the thesis was to increase the use of under-utilized fish, with
a focus on Baltic herring and roach, using two approaches. The first approach
was to study the pH-shift and enzymatic hydrolysis as potential processes to
improve the utilization of especially small Baltic herring and roach. The second
approach was to investigate the addition of natural antioxidants to retard lipid
oxidation of Baltic herring, and therefore help preserve its nutritional and sensory
quality. The overall aim was divided to sub aims:

The first aim of the study was to assess pH-shift processing and enzymatic
hydrolysis as protein extraction methods for roach and Baltic herring to compare
their effects on the composition of proteins and lipids, as well as protein and lipid
oxidation (I).

The second aim was to compare the effects of conventional and natural
antioxidants, such as berry press residues, on the loss of EPA and DHA,
formation of hydroperoxides, and formation of secondary lipid oxidation
products in Baltic herring mince stored at —20 °C or 1 °C (IIL, IV).

The third aim was to investigate the effects of pH-shift processing or berry press
residue addition on the sensory quality and odor-active compounds of Baltic
herring (11, IV).
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4 MATERIALS AND METHODS

4.1 Outline of studies I-1V

The outline of studies I-IV is presented in Figure 6. Studies I and II focused on
investigation of protein isolates and hydrolysates produced using the pH-shift or
enzymatic hydrolysis, respectively, whereas studies III and IV examined the
effect of natural antioxidants in minced Baltic herring.

Approaches to overcome challenges
related to utilization of low-value fish

Investigating the
quality of protein
isolates and
hydrolysates

Inhibition of lipid
oxidation using
natural antioxidants

Study IV

Baltic herring
and roach
protein isolates
and hydrolysates

Baltic herring
mass with and
without
antioxidants,
storage 0-10

Baltic herring
protein isolate

Baltic herring
mince with and
without
antioxidants,
storage 0-21 days

months (-20 °C) (1°C)

AA composition FA composition By
% FA composition Odor-active PV Vacs
%’ Lipid classes compounds VOCs Odor-active
2 PV Odor profile o ST
VOCs acceptance oo Do

profile

Figure 6. Outline of studies I-IV. Abbreviations: AA= amino acid, FA= fatty
acid, PV= Peroxide value, VOC= secondary volatile oxidation compound.

4.2 Materials

Freeze-dried protein isolates and hydrolysates from roach (Rutilus rutilus) and
Baltic herring (Clupea harengus membras), investigated in study I, were
prepared by VTT Technical Research Centre in Finland (Espoo, Finland).
Detailed processes are described by (Nisov et al., 2021). Briefly, whole
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unprocessed Baltic herring and descaled roach (AK Foods Arvo Kokkonen Oy,
Finland) were subjected to acidic (solubilization pH 2.5, precipitation pH 5.2)
and alkaline (solubilization pH 11.5, precipitation pH 5.2). Enzymatic hydrolysis
of same raw materials was conducted using three endoproteases (Protamex,
Neutrase, and Corolase 7089).

Freshly caught (within 24 hours) Baltic herring were purchased as fillets
without skin (III), fillets with skin (ILI, IV), or as gutted and beheaded (II, III)
from Martin Kala Oy (Turku, Finland). In study IV, fresh fillets with skin, caught
and filleted in the morning of the same day, were kindly provided by Kalaset Oy
(Uusikaupunki, Finland), and were used for sensory analysis. Fish were always
brought to the laboratory on ice, and immediately frozen or processed, as
discussed in 4.2.1.

Berry press residues, investigated in studies III and IV, were side streams of
commercial production of berry juice and/or oil. Lingonberry juice press residue
(LR) was kindly gifted by Kiantama Oy (Suomussalmi, Finland). Sea buckthorn
juice press residue (SR) in study III was purchased from Polarforma Oy (Tornio,
Finland), whereas SR and sea buckthorn juice press residue, from which oil had
been extracted through supercritical CO; extraction (SRO) in study IV were
provided by Aromtech Oy Ltd (Tornio, Finland). All press residues were
provided by the companies as dried (dried using fluid bed drying, moisture
content <10%) coarse flakes, and were further ground to a smaller particle size
to ensure uniform distribution to the mince. The press residues were added to the
mince as such, i.e. without any further extraction of bioactive compounds. The
polyphenol, tocopherol, and carotenoid content of LR and SR were reported by
(Damerau et al., 2020b). The berry press residues in study IV were collected
from batches that contained less seeds. ‘Antimicrobial blend’ (AB), a mixture of
supercritical COz extracts from sage (Salvi fruticosa M.), hop (Humulus lupulus
L.), licorice root (Glycyrrhizia uralensis F.), temulawak (Curcuma xanthorrhiza
R.), clove bud (Syzygium aromaticum L.), oregano (Origanum vulgare L.) leaves,
and 5% ajowan fruit (Trachyspermum ammi (L.) Sprague ex Turrill), was
purchased from Flavex (Flavex Naturextrakte GmbH, Rehlingen, Germany). L-
Ascorbic acid and a-tocopherol were bought from Sigma-Aldrich (Sigma-
Aldrich Co, St. Louis, Missouri, U.S.A).

4.3 Processing methods

4.3.1 Fish processing and storage tests

In study III, fillets with or without skin were processed into mince using
industrial scale machinery at a fish processing facility (Kolvaan Kala Oy, Sakyl4,
Finland). In studies II and IV gutted and beheaded Baltic herring (II) or Baltic
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herring fillets with skin (IV) were minced using a food processor with a meat
grinder attachment (Chef Titanium, Kenwood Limited, Havant, United Kingdom)
with a 4 mm hole plate installed. In studies III and IV, antioxidant additions
(Table 6) were mixed into the mince immediately after mincing. Storage tests
were conducted by storing the minces frozen at —20 °C for 0—10 months (III) or
refridgerated at 1 °C for 0-21 days (IV), after which they were frozen at —80 °C
until being analysed. Mince samples used for volatile analysis were stored in 20
mL glass vials, while the minces for other analyses were stored in plastic boxes.
Air was not excluded to allow the presence of oxygen in vials and boxes. For the
sensory analysis in study IV, minces with and without LR and SRO were stored
refridgerated at 1 °C for 0 or 3 days, after which they were subjected to sensory
analysis as raw or after cooking sous vide in a 70 °C water bath for 20 minutes.
Prior to cooking, 0.65% NaCl was added to the minces.

Table 6. Antioxidative additions in studies III and IV.

Addition Concentration (g/100g mince) Study
Ethylenediaminetetraacetic acid (EDTA)  0.0075 1T
L-ascorbic acid & a-tocopherol (aT+AA) 0.2 & 0.01 I, IV
Antimicrobial blend (AB) 0.1 1
Lingonberry juice press residue (LR) 1.0 V), 1.5 V), 3.0 (1, IV) L, v
Sea buckthorn juice press residue (SR) 1.0 (IV), 1.5 (IV), 3.0 (I, IV) I, IV

Sea buckthorn juice press and oil
. . 1.0, 1.5,3.0 v
extraction residue (SRO)

4.3.2 The pH-shift

Baltic herring (gutted and beheaded) were processed using alkaline pH shift in
study II (Figure 7). Alkaline pH shift instead of acidic pH shift was used since
most previous literature has reported the former more optimal in terms of yield
(Abdollahi and Undeland, 2019; van Berlo et al., 2023), lipid removal (Marmon
and Undeland, 2010), and gel forming ability (Phetsang et al., 2021b). The latter
was particularly important, since the same protein isolate was used as an
ingredient in surimi type gels and fish balls (Kakko et al., 2022). Degutted and
beheaded fish were homogenised with water (100 g fish + 800 g water), and
proteins were solubilized at pH 11.2. The homogenate was centrifuged and the
proteins in the supernatant were precipitated at pH 5.4. The sediment containing
the precipitated proteins was collected and 2% fructose and 2% sorbitol were
added as cryoprotectants. The combination of fructose and sorbitol was chosen
based on previous experiments, and while it might have been beneficial to use a
non-reducing sugar instead of fructose, no optimization was conducted regarding
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the type and concentration of cryoprotectants. Finally, the pH of the protein
isolate was adjusted to 7.0 using 4 M NaOH, and it was stored frozen at -80 °C.

Gutted and beheaded Baltic herring + water
(1+8), homogenisation

v

Adjustment of pH to 11.2 (4 °C)

v

Centrifugation 4,000 x g, 20 min (5 °C)

v v !

[nsoluble sediment Soluble proteins Lipid emulsion

!

Adjustment of pH to 5.4 (4 °C)

v

Centrifugation 4,000 x g, 20 min (5 °C)

v !

Supernatant +
lipid emulsion

Protein precipitate

!

+2 w-% sorbitol and 2 w-%
fructose, pH adjustment to 7.0

v

Protein isolate
(PD

Figure 7. The alkaline pH-shift processing of gutted and beheaded Baltic herring
(ID).

4.4 Chemical analyses

4.4.1 Lipid extraction and analysis of primary lipid oxidation, fatty
acids, and lipid classes

Two different lipid extraction methods were used. In studies I-III, extraction
and gravimetrical determination of lipid content was conducted according to
Folch et al. (1957). In studies III and IV, lipids for PV or lipid composition
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analyses were extracted according to Lee et al. (1996). In study IV a modified
version of this method, including the use of 0.05% butylated hydroxytoluene
(BHT) (Sigma-Aldrich) in the extraction solvent, as described by Cavonius and
Undeland (2017), was used to prevent lipid oxidation during extraction.

PVs of the lipids extracted from Baltic herring minces with or without
antioxidants (III, IV) and Baltic herring and roach protein isolates and
hydrolysates (I) were analyzed using a ferric thiocyanate method according to
Lehtonen et al. (2011). Fatty acids from Baltic herring minces (III) and roach
and Baltic herring protein isolates and hydrolysates (I) were analyzed using gas
chromatography (GC) with a flame ionization detector (FID) as fatty acid methyl
esters (FAMESs) prepared with an acid-catalyzed method (Damerau et al., 2020a).
The peaks were identified using external standards (37 Component FAME mix,
68D, and GLC-490, Supelco, St. Louis, MO, USA) and quantified using an
internal standard (PC19:0; 1,2-dinonadecanoyl-sn-glycero-3-
phosphatidylcholine, Larodan, Solna, Sweden) and correction factors
determined with the standard mixtures.

Lipid classes of Baltic herring and roach protein isolates and hydrolysates in
study I were determined semiquantitatively using ultra-high-performance liquid
chromatography with electrospray ionization and mass spectrometer (UHPLC—
ESI-MS) as previously described by (Damerau et al., 2020a). Prior to the
analysis, the concentration of extracted lipids was adjusted to 0.5 mg/mL in
chloroform-methanol (2:1, v/v). Data was presented as total peak areas of lipids
belonging to a certain lipid class.

4.4.2 Analysis of amino acid composition and protein carbonyls

In study I, Baltic herring and roach protein isolates and hydrolysates were
analyzed for their amino acid composition and protein carbonyl content. Amino
acids were determined using reverse-phase HPLC and fluorescence detection.
Alkaline (quantification of tryptophan) and acidic (quantification of other amino
acids) hydrolysis of the samples were performed according to Dai et al. (2014)
prior to their analysis. Hydrolyzed samples were derivatized using iodoacetic
acid, ortho-phthalaldehyde, and 9-fluorenyl methoxycarbonyl chloride (Sigma-
Aldrich), and chromatographic separation was achieved using the method by
Henderson et al. (2021). Correction by internal standards norvaline and sarcosine,
and standard curves of external L-amino acid standards (Sigma-Aldrich) were
used to quantify amino acids.

Protein carbonyls, as indicators of protein oxidation, were analyzed
spectrophotometrically after labelling with 2,4-diphenylhydrazine (Sigma-
Aldrich). The protein carbonyls of protein isolates (prepared using the pH-shift)
were analyzed using a method by Levine et al. (1994). The carbonyls in the
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protein hydrolysates (prepared using enzymatic hydrolysis) were quantified
using the method by Mesquita et al. (2014) that does not require precipitation of
the labelled proteins or peptides.

4.4.3 Analysis of volatile compounds

Volatile compounds in studies I-1V were analyzed using headspace-solid phase
microextraction (HS—SPME)-GC-MS. The instrument used was by Thermo
Fisher Scientific (Waltham, MA, USA), consinsting of a TriPlus autosampler,
Trace 1310 GC and TSQ8000 or ISQ7000 mass spectrometer. A divinylbenzene/
carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber (50/30 um film
thickness, Supelco, St. Louis, MO, USA) was used for extraction of volatiles. In
studies I1 and IV for identification of odor-active compounds a 2 cm fiber was
used, but in other cases a fiber with 1 cm length was used. In studies I-I1I,
equilibration and subsequent extraction of volatiles was continued for 20 and 30
min, respectively, at a 40 °C temperature. In study IV, for analysis of odor-active
compounds, an equilibration and extraction temperature of 35 °C was used, and
extraction time was extended to 35 minutes.

In case of raw or cooked fish mince, 3.0 g + 0.05 g was weighed in 20 mL
glass vials, but in case of protein isolates and hydrolysates (I), 0.5 = 0.01 g of
sample was weighed, and 3 mL of water was added. In most cases, headspace of
vials was flushed with nitrogen to limit oxidation during analysis, but not in the
storage tests in studies III and IV, since the storage was conducted in the vials.
Sample tray was cooled at 5 °C.

A semipolar column, SPB-624 (30 or 60 m x 0.25 mm i.d., 1.4 um film
thickness; Supelco, St. Louis, MO, USA) was used in all studies, but in addition
a polar column, DB-WAX (60 m, 0.25 mm, 0.25 pm; Agilent Technologies,
Santa Clara, California, USA) column was used in studies II and IV (Table 7).
The GC temperature gradient depended on the polarity and length of the column
and exact conditions are presented in Table 7. Temperatures of front inlet,
transfer line, and ion source were 240 °C, 220 °C, and 250 °C, respectively. The
MS was operated in electron ionization mode (at a voltage 70 eV), and spectra
was collected in the mass range of 40-300 amu. Volatile data were processed
using Xcalibur or Chromeleon (Thermo Scientific), and compounds were
identified by comparison of the MS spectra to NIST MS library (version 2.3,
National Institute of Standards and Technology, Gaithersburg, Maryland, USA)
or to commercial standard compounds. Calculation of linear retention indices
(LRIs) and their comparison to the NIST library and previous literature was also
used to identify volatiles.
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Table 7. Gas chromatographic conditions for volatile analyses (I-IV).

Study Column Oven programme g{ﬂj‘;‘igow
I, II & SPB-624,60m x0.25 40 °C for 5 min, increase 5 °C/minto 1.4
111 mm, 1.4 um film 200 °C, 200 °C for 10 min
thickness
1I SPB-624, 30 m x 0.25 40 °C for 3 min, increase 8 °C/minto 1.4
mm, 1.4 um film 150 °C, increase 10 °C/min to
thickness 220 °C, 220 °C for 10 min
1I DB-WAX, 60 m x 0.25 40 °C for 3 min, increase 7 °C/minto 1.4
mm, 0.25 pm film 220 °C, 220 °C for 10 min
thickness
v SPB-624, 30 m x 0.25 40 °C for 3 min, increase 10 °C /min 1.4
mm, 1.4 um film until 220 °C, 220 °C for 10 min
thickness
v DB-WAX, 60 m x 0.25 40 °C for 3 min, increase 10 °C /min 1.6
mm, 0.25 pm film until 220 °C, 220 °C for 10 min
thickness

4.5 Sensory analyses and gas chromatography
olfactometry

4.5.1 Consumer test of Baltic herring fish minces with and without
antioxidants

In study III, consumer acceptance of Baltic herring mince with and without
antioxidants was investigated. The consumer studies were carried out in a
sensory laboratory complying with ISO 8589, at the Functional Foods Forum in
the University of Turku, Finland. The volunteer participants (n=55) were
recruited from the Aistila Consumer Register of the University of Turku. Most
of the participants (75%—-85%) were frequent fish eaters (at least 1-2
times/week). For the consumer test, minces with and without added antioxidants
were prepared into fish loaves (67% fish mince, 15% egg, 3% toast crumb, 13%
heavy cream and 1% salt, cooked in an oven for 35 min at 200° C). Liking of
odor, appearance, color, texture, taste, and overall appeal were rated on a 9-point
hedonic scale (1 = dislike extremely to 9 = like extremely).

4.5.2 Odor and flavor profiling

In studies II and IV, panelists for odor and flavor profiling were recruited
from the students and staff of the Food Sciences unit in the University of Turku
(Turku, Finland). Informed consent of the panelists to participate was acquired.
All sensory analyses were conducted using Compusense Cloud (Compusense
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Inc., Guelph, Ontario, Canada). Evaluations were carried out in a sensory
laboratory following the ISO8589 standard.

In study II, 6 panelists (four women, two men, age 24—38) evaluated the odor
of Baltic herring and Baltic herring protein isolate using check-all-that-apply
(CATA). After CATA, panelists were asked to rate the intensities of odor
attributes found in the samples. Panelist participating in odor profiling had
previously participated in gas chromatography — olfactometry (GC-O) analysis
of the same samples. The odor attributes in CATA were chosen from the most
frequently mentioned descriptions in the GC-O analyses. The intensities of the
selected odor attributes were rated on a scale 0—4 (0 = not detected, 1 = very mild,
barely noticeable, 2 = mild, 3 = fairly strong, and 4= strong). The samples were
presented to the panelists in glass bottles (5 g in 30 mL bottle) covered with
aluminum foil and coded with random three-digit codes.

In study IV, generic descriptive analysis (n=9) was used to determine the odor,
flavor, and taste profile of Baltic herring minces with and without LR and SRO,
as fresh (0 d) or after 3-d storage. Nine panelists (4 men, 5 women, age 25-56)
took part in generic descriptive analysis (GDA) focusing on odor and flavor. All
the panelists had prior experience in sensory analysis and were further trained
for the study purposes in 4 sessions. Training included creating the vocabulary
and agreeing on the descriptors and reference samples and their intensities.
Samples of raw minces (6 g) were weighed in 30 mL brown glass bottles, and
the samples were allowed to reach room temperature prior to evaluation. Sous
vide cooked minces were tempered on a 60 °C hot plate immediately after being
cooked and served in approximately 12 g portions in glass bowls with lids.
Samples were presented one sample at a time in randomized order, but raw and
cooked minces were evaluated separately from each other. A list of the attributes
(in the order or evaluation), their descriptions and possible reference samples are
presented in Table 8. Attributes were evaluated on a scale 0—-10 (0= not at all,
10= very intense).
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453 GC-O

Odor-active compounds of Baltic herring protein isolate and Baltic herring
minces with and without SRO (1.5%) were investigated in studies II and IV,
respectively, using GC-O. HS-SPME was used for extraction of volatiles and
was conducted similarly as described for GC-MS analysis of volatiles in chapter
42.6. A2 cm DVB/CAR/PDMS fiber was used for the extraction, which took
place in a 90 mL erlenmeyer flask with 10 g sample (minced Baltic herring or
Baltic herring protein isolate). The sample was incubated for 20 minutes in a
35 °C (study IV) or 40 °C (study II) water bath prior to extraction for 30 min (II)
or 35 min (IV) at the same temperature. The instrument used was a HP 6890
Series GC with a flame ionization detector (FID) (Hewlett Packard, Palo Alto,
California, USA). The column eluent was split 1:1 between the FID and an
olfactometry port (Gerstel, Linthicum, Maryland, USA), except in case of study
II when using the SPB-624 column, when the eluent was directed to either FID
or olfactometry port. The columns and oven temperature programmes were the
same as in Table 7. The panelist used a button connected to a microphone, and
the durations, descriptions, and intensities were recorded as an audio file.

As in the case of odor and flavor profiling, panelists for GC-O were recruited
from the students and staff of the Food Sciences unit in the University of Turku,
and all the panelists had prior experience from GC-O and/or sensory analysis.
Informed consent of the panelists to participate was acquired. In study II, 6
panelists (four women, two men, age 24-38) evaluated the odor-active
compounds of Baltic herring and Baltic herring FPI after two training sessions.
The first session included familiarization of one of the samples on the instrument,
while the second training was a group session that included describing and rating
the intensity of standard compounds identified in fish. In study IV, 6 panelists (4
women, 2 men, age 25-33) assessed Baltic herring minces with and without SRO
(1.5%), using GC-O. Training for the GC-O included 3 sessions, involving a
group training with dilutions of standard compounds, pipetted ona 1 cm x 1 cm
paper in a brown glass bottle (30 mL). The second and third training sessions
included evaluation of a standard compound mix and one of the four Baltic
herring mince samples on the GC-O.

Panelists evaluated the samples in a randomized order. In study 11, 6 panelists
evaluated the samples twice using the SPB-624, and 2 panelists evaluated
samples once using the DB-WAX. In study IV, 6 panelists evaluated the samples
once on SPB-624 and once on DB-WAX. Detection frequency and direct
intensity methods were used. The intensity of odors in both studies, II and III,
was evaluated on a scale of 0—4 (1 = very mild, barely noticeable, 2 = mild, 3 =
fairly strong, and 4= strong; 0= not detected). Recorded audio files were
processed using Audacity 3.0.2 (The Audacity Team). Average odor intensity
for each compound was calculated by only including the intensities given by the
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assessors who detected the odor (i.e. null values were not included). Odorants
with Nasal Impact Frequency (NIF) > 33% were considered as significant odor
contributors. Odorants were identified by HS-SPME-GC-MS analyses and
comparison of ms spectra to the NIST library, as described in section 4.2.6, by
comparison of their linear retention indices to previous literature and RI libraries,
and by comparison of odor descriptors to previous literature and databases.

4.6 Statistical analyses

In most cases the samples were compared using one-way ANOVA and Tukey’s
HSD test or independent-samples t test in SPSS (IBM SPSS Statistics, version
25.0.0.1, IBM, New York, USA). In study II, GC-O detection frequencies and
selection frequencies of CATA attributes of Baltic herring and FPI were
compared using McNemar’s test. In study III, DHA and EPA content and PV at
0 months and 10 months were compared using the paired samples t-test (within
same sample type) and two-way ANOVA (EPA and DHA content as dependent
variables, time point and sample type as fixed factors). In study IV, odor and
flavor attributes of Baltic herring minces, within the same sample type at
different time points, were compared using paired samples’s t test. Differences
were considered statistically significant if p-value was below 0.05. Principal
Component Analysis (PCA) and Partial Least Squares (PLS) regression with the
Unscrambler version 10.4.1 (Camo Process AS, Oslo, Norway) were used in
studies I, III, and IV. In study IV, the agreement, sensitivity, and reproducibility,
of the panel in GDA was evaluated according to Tomic et al. (2009) using
PanelCheck software (version 1.4.2, Nofima, Tromsg, Norway).
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S RESULTS AND DISCUSSION

5.1 Composition
5.1.1 Protein, lipid, and moisture content

The protein, lipid, and moisture content of the raw materials (whole roach, whole
Baltic herring, and gutted and beheaded Baltic herring) as well as FPIs and FPHs
in studies I and II are presented in Table 9. When preparing FPIs and FPHs, it
is desired to remove as much lipids as possible for several reasons. Firstly, the
fish lipids extracted by the pH shift are rich in n-3 PUFAs and can be utilized as
another value-added fraction (Abdollahi and Undeland, 2020), and therefore
their efficient separation from the proteins is beneficial. Secondly, lipids may
have a negative effect on the stability and functional properties of the FPIs and
FPHs. Further, as most compounds contributing to fishy off-odor are lipid
derived (Lindsay, 1990; Venkateshwarlu et al., 2004a), their removal may help
in eliminating fishy odor.

Table 9. Protein, lipid, and moisture contents (%, i.e. g/100g “as is” or on dry
matter basis) of protein isolates and hydrolysates from roach and Baltic herring
I, IT).

Protein Lipids Protein, Lipids
Fish Process (w-%, as (w-%, Moisture (w-%, w-%,

is) as is) d.w.) d.w.)
Roach (study I)*  Raw material 16.1£0.1 4.2+0.0  75.1£0.0 64.9+0.3 17.0+0.1

Acidic pH shift 80.1+1.0 10.7£0.5 3.5+0.7 83.0+1.6 11.1+0.4
Alkaline pH shift ~ 70.8+1.7 18.8£0.9 3.0+0.4 73.0+£2.0  19.4+0.9

Protamex 804422  5.5+0.1 43+1.0  84.0+1.5 5.8+0.1
Neutrase 81.3+1.6 57402  4.4+07  85.1£1.5 6.0£0.2
Corolase 79.9+1.6  6.0+0.1 4.4+03  83.6+1.5 6.3+0.1
Baltic herring Raw material 150600  7.240.1  76.3+0.0 63.1+0.0 29.9+0.4
(Study T)* Acidic pH shift ~ 79.4+0.7  16.5£1.0 12403  80.4+£0.8 16.7+1.0
Alkaline pH shift ~ 76.040.9  16.4+1.8 2.3+04  77.940.7 16.8+1.8
Protamex 87.241.0  3.1+0.1  42+0.7  91.1+1.2 3.2+0.1
Neutrase 84.1413  3.1402 44+1.0  87.940.7 3.3+0.2
Corolase 85.041.4  3.4+02 42403  88.7+1.2 3.540.2
Baltic herring Raw material 147408  6.1£0.1  80.2+0.0 74.443.9 30.8+0.7
(Study 11) Alkaline pH shift  9.240.3  3.740.0  85.340.0 62.34+2.4 25.1£0.0

*Data from Nisov et al. (2021)

When comparing to the lipid content (on dry weight basis) of FPIs in study I,
reported by Nisov et al. (2021), the alkaline pH shift in study II led to slightly
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lower removal of lipids, as the lipid content in Baltic herring FPI was 25% (d.w.),
while the lipid content of alkali extracted FPIs from roach and Baltic herring
were 19% and 17% (d.w.), respectively. The protein content of the FPI in study
I1, on the other hand was only 9% on fresh weight basis and 62% on dry weight
basis, since the FPI contained 85% moisture, and approximately 4%
cryoprotectans (fructose and sorbitol). The mass yield of the isolation process in
study II was 82%.

The lipid contents of Baltic herring raw materials (caught in April 2018) in
study III were 5.02 £+ 0.10% in gutted and beheaded Baltic herring, 5.22 + 0.14%
in fillets with skin, and 4.18 + 0.03% (fresh weight basis) in fillets without skin.
The lipid content of 5.0% gutted and beheaded Baltic herring in study III was
slightly lower compared to the same raw material in study II, caught in March
2019 (6.1%), but slightly higher than the lipid content of whole Baltic herring
(I), caught in September 2018. Nevertheless, the lipid content in Baltic herring
has been seen to fluctuate between seasons (Aro et al., 2000) and all lipid
contents were within the range previously observed for Baltic herring (Aro et al.,
2000; Rajasilta et al., 2019).

5.1.2 Amino acid composition

Amino acids (Table 10 and Table 11) in study I were analysed to assess the
nutritional quality of the prepared FPHs and FPIs and to determine how it is
affected by the processing type (enzyme-aided extraction or pH shift). Both raw
materials, whole Baltic herring and whole roach, were abundant in EA As, which
is common to most fish species. Little variation has been observed between AA
composition of different fish species (Njaa and Utne, 1982), but so far the AA
composition has not been reported for Baltic herring and roach.

Only minor differences in amino acid composition between FPIs and FPHs
prepared by the same process (pH shift or enzymatic hydrolysis) were observed.
In case of Baltic herring (Table 10), the acid extracted FPI prepared contained
less arginine but more glutamine + glutamic acid compared to alkali extracted
FPI. However, in case of roach FPIs (Table 11), acid extracted FPI contained
slightly more arginine and similar amount of glutamine + glutamic acid
compared to alkali-made isolate. In case of different enzymes, even fewer
significant differences were observed.

Processing type, on the other hand, had more pronounced effects. In case of
both raw materials, the FPIs had less glycine and hydroxyproline, and in case of
Baltic herring also proline, compared to the FPHs and fish raw materials. Lower
content of these amino acids in FPIs prepared using the pH shift (compared to
respective raw materials) has been observed in previous studies (Abdollahi and
Undeland, 2018; Marmon and Undeland, 2010; Surasani et al., 2018).
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Hydroxyproline is exclusively found in collagen, and lycine and proline have
been reported as the most abundant amino acids in collagen (Abdollahi et al.,
2018). Collagen is effectively removed during the first centrifugation step of the
pH shift (Abdollahi et al., 2018), whereas, based on the results of the present
study, the collagen was solubilized and/or hydrolyzed by the heating and
enzymatic action during the hydrolysis. Also Aspevik et al. (2021) and Idowu et
al. (2019) reported considerable amounts of glycine, proline, and/or
hydroxyproline in FPHs prepared using bromelain or commercial enzyme ‘Food
Pro’, or alcalase and papain, respectively.

Due to higher removal of NEAAs compared to EAAs in the pH-shift process,
the EAA to NEAA ratio was significantly higher in the FPIs compared to raw
materials or FPHs (0.85 vs 0.67-0.77 in case of Baltic herring, and 0.84—0.85 vs
0.65—0.79 in case of roach). Similar observations have been made in other studies
on FPIs (Abdollahi and Undeland, 2018; Chen et al., 2007; Surasani et al., 2018).
For instance, Abdollahi and Undeland (2018) reported that pH-shift processed
FPIs from salmon, cod and herring by-products all had EAA to NEAA ratios of
0.47 (not including cysteine, tryptophan or hydroxyproline), which was higher
than the respective raw materials (0.38, 0.40, 0.41, respectively). In regard to
FPHs, some studies have reported increased content of EAAs after hydrolysis
using Alcalase and Flavourzyme (Klompong et al., 2009) and pepsin (Amini
Sarteshnizi et al.,, 2021). Other studies have, however, reported losses in
tryptophan and other EAAs (Benjakul and Morrissey, 1997; Shahidi et al., 1995).
The observed decrease in EAA to NEAA ratio in FPHs compared with raw
materials and FPIs in the present study could be explained by loss of hydrophobic
EAAs, valine, leucine, isoleucine, phenylalanine, methionine, and tryptophan to
the sediment during centrifugation.
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5.1.3 Fatty acid composition

The fatty acid composition of Baltic herring and roach FPIs and FPHs (Table 12
and Table 13) was analyzed, as the composition of lipids in FPIs and FPHs has
seldomly been reported in previous studies. Fatty acid composition of lipids
remaining in FPIs and FPHs after the extraction is not only of interest from a
nutrition point-of-view, but in addition, fatty acids are important precursors for
odor-active compounds contributing to fishy odors and flavors, and changes in
fatty acid composition have been shown to affect the composition of odorants in
fish (Sérot et al., 2002). Unlike with amino acids, fatty acid composition differed
considerably between different processes (pH-shift or enzymatic hydrolysis), but
also between different variations of the same process. In case of Baltic herring,
both FPIs contained a higher proportion of SFAs and less MUFAs compared to
FPHs and Baltic herring raw material (34.1-35.3 vs 25.5-29.6% and 32.1-37.5
vs 40.6—41.6%, respectively) (Table 12). However, while acid extracted FPI
contained the highest relative content of PUFAs (33.8%), the content of PUFAs
in the alkali extracted FPI was the lowest (27.2%).

Interestingly, the relative DHA content was particularly high in the FPI
extracted by acidic pH shift, in which the relative content of DHA was 14.4%,
compared to 10.5% in Baltic herring, and 8.6-9.2% in FPHs. Despite having the
lowest proportion of total PUFAs, the alkali extracted FPI was also abundant in
DHA (11%). DHA is mostly found in membrane PLs, whereas only a small
proportion of depot triacylglycerols and flesh PLs contain DHA. Enrichment of
DHA in the FPIs indicates that pH shift led to accumulation of the membrane
lipids, though in general the opposite has been observed (Undeland et al., 2002).
Other studies have also reported increases in the relative content of total PUFAs
and long chain PUFAs (Abdollahi et al., 2021; Wu et al., 2021a) during the pH
shift. For instance, Abdollahi et al. (2021) reported that alkaline pH shifting
increased the relative content of DHA considerably from 9.7% in herring
backbones to 28.6% in the FPI.

The composition of FAs in FPHs were relatively similar compared to the raw
material, though FPHs had a slightly higher content of SFAs (26.6-29.6 vs 25.5).
The FPH prepared using Neutrase had a significantly lower proportion of PUFAs
(29.1%) compared to FPHs prepared using Protamex (31.8%) and Corolase
(31.7%) and Baltic herring (33.1%). The difference could be due to a higher
degree of oxidation and therefore higher loss of PUFAs in the FPH prepared
using Neutrase.
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Table 12. Fatty acids (% of total fatty acids, w/w)* in Baltic herring protein
isolates and hydrolysates (I).

Whole B. Acidic pH Alkaline pH  Protamex Neutrase Corolase
herring shift shift
Saturated
14:0 5.37+0.022 5.51+0.18% 6.01+0.21¢ 5.70+0.03% 5.89+0.04%¢  5.71+0.05¢
16:0 17.39+0.06°  24.80+0.13¢ 25.43£0.277  18.02+0.26*  20.36x0.11¢  18.87+0.21°
18:0 1.65+0.012 2.69+0.03¢ 2.72+0.01¢ 1.78+0.07° 2.14+0.044 1.93+0.04¢
others® 1.13+0.01 1.15+0.02% 1.19+0.05¢ 1.10£0.02° 1.16+0.03% 1.13+0.012
X SFA 25.54+0.07*  34.15+0.28° 35.34+0.52F  26.60+0.35>  29.56+0.12¢  27.64+0.24°
Monounsaturated

16:1(n-7) 9.45+0.11¢ 6.16+0.27° 7.50+0.21° 8.86+0.104 8.54+0.04° 8.33+0.06°

18:1(n-7) 2.85+0.04° 3.23+0.04¢ 3.69+0.044 2.80+0.05% 3.06£0.06° 2.79+0.072

18:1(n-9) 25.62+0.14°  19.7340.79* 22.84+0.75°  26.3440.22° 26.17+0.23¢  25.98+0.18°¢
20:1(n-9) 1.92+0.02¢ 1.36+0.072 1.60+0.08° 2.02+0.014 1.93+0.02¢ 1.93+0.03¢

24:1(n-9) 0.96+0.017 1.12+0.014 1.26+0.02° 1.00+0.02° 1.08+0.00¢ 0.99+0.02°

others® 0.54+0.01% 0.50+0.02° 0.56+0.03%¢  0.59+0.01% 0.62+0.04¢ 0.61+0.07%
~ MUFA 41.35+0.25¢  32.10+£1.152 37.45£1.07°  41.62+0.27¢ 41.39+0.24°  40.63+0.28¢
Polvunsaturated

n-3

18:3(n-3) 1.47+0.02¢ 1.26+0.02° 1.02+0.03? 1.54+0.014 1.47+0.03¢ 1.66+0.03¢

18:4(n-3) 1.63+0.00¢ 0.96+0.01° 0.74+0.03? 1.66+0.024¢ 1.40+0.04¢ 1.69+0.03¢

20:3(n-3) 0.79+0.01°¢ 0.73£0.01% 0.60+0.012 0.89+0.01¢ 0.84+0.014 0.88+0.01¢

20:4(n-3) 1.16£0.014 0.93+0.02° 0.70+0.04? 1.21+0.01¢ 1.03+0.02¢ 1.15+0.014

20:5(n-3) 7.22+0.04¢ 7.03+£0.31°¢ 5.50+0.46? 6.46+0.04° 5.74+0.05% 6.56+0.02°

22:4(n-3) 1.14+0.02¢ 0.73+0.02b 0.5240.02? 1.22+0.01F 0.99+0.02¢ 1.10+0.024

22:5(n-3) 0.86+0.034 0.73+0.03% 0.51+0.042 0.83+0.01¢ 0.70+0.02° 0.81+0.01¢

22:6(n-3) 10.45+0.05°  14.39£1.08¢ 11.03+1.02°  9.13+0.14* 8.63+0.25% 9.194+0.217

24:4(n-3) 1.10£0.01¢ 0.72+0.02° 0.52+0.012 1.17+0.01¢ 0.95+0.03¢ 1.07+0.024

24:5(n-3) 0.61£0.06° 0.37+0.097 0.28+0.12° 0.71£0.11° 0.58+0.12° 0.73+0.07°

Xn-3 26.44+0.17¢  27.87£1.45° 21.44+1.52*  24.82+0.19°  22.34+0.17°  24.83+0.07°
n-6

18:2(n-6) 3.80+0.02¢ 3.26+0.05° 3.39+0.03° 4.01+0.03¢ 3.92+0.034 4.05+0.02¢

20:2(n-6) 1.2940.01¢ 1.06+0.03% 1.02+0.017 1.3940.01¢ 1.32+0.014 1.33+0.014

20:4(n-6) 0.74+0.00° 0.89+0.05¢ 0.76£0.07° 0.66+0.01? 0.67+0.012 0.68+0.01?

22:2(n-6) 0.71+0.01°¢ 0.56+0.04% 0.52+0.02° 0.76+0.01¢ 0.69+0.02°¢ 0.71+0.01°¢

others® 0.13+0.00¢ 0.11=0.00° 0.08+0.00? 0.13+£0.01¢ 0.12+0.00° 0.13+0.00¢
% n-6 6.67+0.04° 5.89+0.06° 5.77+0.08* 6.95+0.04¢ 6.71+0.03¢ 6.90+0.034
X PUFA 33.10£0.20¢  33.75+1.39¢ 27.20£1.59*  31.78+£0.19°  29.05+0.14>  31.73+0.05°
Ratios

UFA:SFA  2.91x0.01f 1.93+0.02° 1.83+0.042 2.76+0.05¢ 2.38+0.01°¢ 2.62+0.034
n-3:n-6 3.97+0.02° 4.74+0.294 3.71+0.21% 3.57+0.04% 3.33+0.04* 3.60+0.03"

aMean and standard deviation (n=6), different letters within the same row indicate a statistically significant
difference (p < 0.05) between samples
bOthers include 12:0, 15:0, 17:0, 20:0, 22:0, 14:1(n-5), 15:1, 22:1(n-9), 20:3(n-6), and 22:3(n-6)
Similarly, as with Baltic herring, the FPI prepared by acidic pH shift had the
highest relative DHA content (10.9%), followed by alkaline pH shift (8.9%)



Results and Discussion 63

(Table 13). The lowest relative DHA content (6.4%) as well as total PUFA
content (25.4%) were observed in the FPH prepared using Corolase. Again, the
difference observed between the three enzymes could be due to oxidative
deterioration. There are few reports about the fatty acid composition of FPHs.
Silva et al. (2014) reported the fatty acid contents of FPHs prepared from tilapia
processing co-products using Alcalase or extracted intestinal enzymes at two
different concentrations (100 or 600 mg/L). FPHs prepared by Alcalase or
extracted enzymes at 100 or 600 mg/L, contained 101, 70 and 138 g PUFAs/ kg
dry FPHs, corresponding to 22, 14, and 18 % of total fatty acids, respectively.
DHA was not detected at all in the FPH prepared by intestinal enzymes at the
lower concentration. In another study, only the FA composition of oil fraction
separated from FPH during hydrolysis of salmon heads (using bromelain and
papain) was analyzed, and was concluded to be comparable to the FA
composition of the raw materials (Kvangarsnes et al., 2021), indicating that
different lipids were separated in similar ratios between the FPH and oil phase.

Table 13. Fatty acids (% of total fatty acids, w/w)? in roach protein isolates and

hydrolysates (I).
Whole Acidic pH Alkaline Protamex Neutrase Corolase
roach shift PH shift
Saturated
14:0 2.26+0.02° 1.94+0.03% 2.32+0.13%  2.69+0.01¢ 2.39+0.03¢ 2.44+0.034
16:0 16.5440.11*  18.28+0.02° 17.99+£0.24>  17.84+0.16°  19.59+0.49¢ 20.02+0.46°¢
18:0 3.23+0.06% 4.00+0.04¢ 3.76+0.14° 3.2340.04% 3.86+0.17% 3.9940.11¢
others 1.13+0.02%  1.08+0.02% 1.06+0.042 1.12+0.01° 1.17+0.05¢ 1.17+0.03¢
X SFA 23.16+0.15*  25.30+0.05° 25.14+0.27°  24.88+0.21°  27.02+0.73¢ 27.62+0.63¢
Monounsaturated
16:1(n-7) 13.2540.10°  12.30+0.06* 17.96£1.59°  17.85+0.12°  17.14+0.59° 17.88+0.52°
18:1(n-7) 5.224+0.07* 5.49+0.04° 5.53+0.10° 5.39+0.02%  5.19+0.16° 5.21+0.277
18:1(n-9) 22.88+0.229  21.7240.20° 20.67+£0.38*  21.75+0.18°  22.42+0.14° 22.3840.23°
20:1(n-9) 0.87+0.02  0.97+0.01¢ 0.87+0.05* 0.91+0.01%  0.95+0.02¢¢ 0.93+0.01¢
others 0.61+0.02° 0.71+0.02¢ 0.78+0.024 0.57+0.02%  0.60+0.07% 0.54+0.017
X MUFA 42.83+0.17°  41.2040.25° 45.81+1.10°  46.47+0.11%¢  46.29+0.39°¢  46.94+0.424
Polvunsaturated
n-3
18:3(n-3) 1.87+0.05¢ 1.37+0.03¢ 1.03+0.11%  1.15+0.03%  1.18+0.14° 1.01£0.117
18:4(n-3) 0.61+0.02° 0.48+0.012 0.60+0.04° 0.68+0.02¢ 0.63+0.02° 0.62+0.02°
20:4(n-3) 0.72+0.02° 0.66+0.01* 0.73£0.01° 0.83+0.01¢ 0.75+0.04° 0.73+0.03%
20:5(n-3) 8.30+0.12°¢ 7.40+0.04° 6.46+0.167 7.07+0.06° 6.67+0.31* 6.41£0.27*
22:5(n-3) 2.31£0.04¢ 1.98+0.03¢ 1.95£0.01%  2.17+0.03¢ 1.91£0.01 1.88+0.02°
22:6(n-3) 8.63+0.17¢ 10.89+0.23¢ 8.92+0.14¢ 7.47£0.07° 6.62+0.26? 6.38+0.312
others 0.73+0.01¢ 0.71+0.01¢ 0.55+0.04* 0.64+0.01° 0.56+0.04* 0.52+0.032
~n-3 23.15+0.07¢  23.50+0.26° 20.25+0.38>  20.01+0.03>  18.31+0.80° 17.55+0.76°

n-6
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Whole Acidic pH Alkaline Protamex Neutrase Corolase
roach shift pH shift
18:2(n-6) 4.85+0.10¢ 3.70+0.04¢ 3.32+0.12° 3.72+0.05¢ 3.24+0.28° 2.93+0.26*
20:2(n-6) 1.1240.02¢¢  1.17+0.00¢ 0.95+0.10? 1.02+0.02% 1.07+0.02b¢ 1.03£0.012
20:4(n-6) 4.11+0.07¢ 4.37+0.07¢ 3.77£0.23° 3.09+0.022 3.21+0.05° 3.10+0.05°
others 0.77+0.01* 0.77+0.00* 0.77+0.05* 0.80+0.02%°  0.84+0.03° 0.84+0.03"
Zn-6 10.85+0.14¢  10.01+0.04° 8.80£0.48" 8.64+0.11° 8.37£0.32% 7.90+0.297
X PUFA 34.00£0.09¢  33.50+0.29¢ 29.05+£0.86"  28.65+0.11°  26.69+1.11% 25.44+1.05°
Ratios
UFA:SFA 3.32+0.03¢ 2.95+0.01° 2.98+0.04° 3.02+0.03° 2.70+0.10? 2.62+0.08?
n-3:n-6 2.134+0.03? 2.35+0.02¢ 2.30+0.08¢ 2.32+0.03¢ 2.19+0.03% 2.22+0.03%

iMean and standard deviation (n=6), different letters within the same row indicate a statistically significant
difference (p < 0.05) between samples
®Others include 12:0, 15:0, 17:0, 20:0, 22:0, 14:1(n-5), 15:1, 22:1(n-9), 20:3(n-6), and 22:3(n-6)

In study III, FA composition of different minces were compared at the beginning
of the study to establish the effect of the additions on composition. Main
differences in the FAs were due to the added lipids from AB, LR and SR.
Compared to the control mince, mince with SR contained more 16:0 (23.1 vs
18.6% of total FAs), 16:1(n-7) (15.5 vs 11.1%), and 18:1(n-7) (4.0 vs 3.4%),
which are the most abundant FAs in sea buckthorn pulp and peel (Yang and
Kallio, 2001). Mince with LR contained more 18:3(n-3) (2.9 vs 1.4%) and
18:2(n-6) (5.6 vs 4.1%), which were previously reported to be the most abundant
FAs in lingonberry pomace oil (Kitryté et al., 2020).

The changes in EPA and DHA content (Table 14) due to oxidative
degradation during 10 months of storage at —20 °C were investigated in study I.
EPA and DHA were chosen as indicators due to their importance and high
susceptibility to oxidation compared to shorter FAs with less double bonds
(Cosgrove et al., 1987). The content of EPA and DHA (mg/100 mg lipids) in
Baltic herring minces with and without antioxidants differed statistically
significantly (p < 0.05) at the beginning of storage. Compared to the control,
DHA and EPA content were lower in minces containing LR and SR, and in case
of DHA also AB, since all of these contain fatty acids other than EPA or DHA.
On the contrary, minces containing aT+AA or EDTA, and mince containing
EDTA, in case of DHA and EPA, respectively, contained significantly more of
these FAs compared to the control, which is likely due to lipid oxidation
occurring in the control mince during sample preparation prior to the first
measurement. Minor differences could have also occured through sampling of
minces for lipid extraction.
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Table 14. EPA and DHA content (mg/100 mg lipids)® in Baltic herring mince
(from fillets without skin) with and without antioxidants after 0 and 10 months
of storage at —20 °C (III).

Baltic herring EPA 0 EPA 10 DHA 0 DHA 10 EPA DHA
mince months months months months loss loss
Gutted & 5.98+0.01¢®  5.63£0.05°4  9.36+0.02°®  8.65+0.15* 5.75%  7.63 %
beheaded

Fillet, with 5.41£0.01"®  5.05£0.01**  7.79+0.01*®B  6.61£0.01** 6.62% 15.25%
skin

Fillet, skinless ~ 5.93+0.04%®  5.36+0.00°*  8.87+0.06®  7.78+0.01%* 9.64%  12.20 %
©

EDTA 6.03+0.05®  5.61+0.01°*  9.21+0.09%®  8.22+0.03* 7.02% 10.80 %
aT+AA 5.88+0.04%  545+0.06°4  9.49+£0.07°  8.59+0.06%* 735%  9.45%
AB 5.96+0.01°  5.56+0.05%A  9.54+0.01®  8.42+0.07%" 6.87% 11.69 %
LR 5.60+0.00®  537+0.05°*  9.11+0.019®  8.51+0.05%* 4.06 %  6.64 %
SR 4.90+0.01°®  4.71x0.02**  8.47+0.01°®  7.84+0.03** 3.82%  7.51 %

aMean and standard deviation (n=3), different lower case letters within the same row indicate a
statistically significant difference (p < 0.05) between samples, while different capital letters
indicate a significant difference between 0 and 10 months.

According to 2-way ANOVA, sample type, storage time, and sample
type*storage time were all statistically significant (p < 0.001) in case of both
EPA and DHA, i.e. the storage time effected the EPA and DHA content
differently depending on whether antioxidants were added. The loss of EPA and
DHA during the 10 months of frozen storage was lower in all minces containing
additions when compared to the control. Mince containing LR had the lowest
decrease in EPA content, while SR had the lowest decrease in DHA, indicating
that these berry press residues were able to inhibit oxidation of PUFAs.
Previously, Joaquin et al. (2008) observed decreases up to 45% in the
concentrations of EPA and DHA in minced herring during 4 months of frozen
storage, but treatment of the mince with milk protein concentrate retained these
PUFAs better compared to the untreated mince. In another study, vitamin C and
tea polyphenols helped retain EPA and DHA during during microwave-drying
of silver carp (Fu et al., 2015). In the present study, vitamin C (ascorbic acid) in
combination with a-tocopherol, was able to protect EPA and DHA, but not as
efficiently as LR and SR.

5.1.4 Lipid class composition

Lipid classes of the FPIs and FPHs were analysed semiquantitatively in study I
(Figure 8 and Figure 9). Regarding the effect of different processes (pH shift or
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enzymatic hydrolysis), similar trends were seen in case of both Baltic herring
and roach. The relative content of phospholipids (PLs) in all FPIs was
significantly (p < 0.05) higher compared to the FPHs of the same fish. Except
for the alkali extracted FPI from Baltic herring, FPIs also contained a
significantly higher relative amount of PLs compared to the raw material. The
results are in line with the higher relative content of DHA observed in FPIs
(Table 12 and Table 13), especially acid extracted FPI, having both highest
relative DHA and PL content in case of both raw materials. Polar PLs can be
separated to the sediment during the first centrifugation of the pH shift, while
neutral storage lipids float to the top (Kristinsson et al., 2005). Efficient removal
of membranes, however, requires high speed centrigugation (>10000 x g) or
pretreatments using agents such as Ca*" and citric acid (Liang and Hultin, 2005a,
2005b). However, based on the present data and previous literature, it seems that
without specific pretreatments to remove PLs, an equal or higher amount of total
lipids compared to PLs are removed, leading to increase in the relative content
of PLs. Chanarat and Benjakul (2013) reported that Indian mackerel mince
contained 9.1% total lipids and 0.99% PLs (on a dry weight basis), while alkali
extracted FPI without and with prewashing, contained 1.6% and 1.4% total lipids
and 0.23% and 0.18% PLs, respectively, corresponding to 11%, 15%, and 13%
relative content of PLs in mince and FPIs without and with washing, respectively.
In a another study, 70% and 45% reductions of total lipids and PLs (on a lipids
/g of protein basis), respectively, were observed during centrifugation following
acid solubilization of herring, meaning that the relative content of PLs increased
(Undeland et al., 2002).

Both Baltic herring and roach FPIs had significantly lower relative contents
of triacylglycerols (TAGs) and higher content of monoacylglycerols (MAGs)
compared to FPHs and raw materials (Figure 8 and Figure 9). The lower relative
content of TAGs could be attributed to higher removal of neutral lipids compared
to PLs, but especially in case of alkali extracted FPI from Baltic herring, it was
also accompanied by a significantly higher relative content of free fatty acids
(FFAs), indicating lipid hydrolysis. In case of roach, both FPIs showed high
relative contents of FFAs. The pH-shift processing was previously seen to
increase the susceptibility of microalgae fatty acids to lipolysis by digestive
enzymes, especially when solubilization was conducted at pH 10 instead of 7
(Cavonius et al., 2016). Alkaline conditions are known to induce hydrolysis of
TAGs through saponification, which may explain higher rate of lipid oxidation
in oil-water systems in alkaline conditions (Kim et al., 2016). Increased
hydrolysis is likely to explain also higher relative content of MAGs in FPIs.
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Figure 8. Total peak areas of triacylglycerols (A), diacylglycerols (B),
monoacylglycerols (C), free fatty acids (D), and phospholipids (E) in Baltic
herring raw material, protein isolates (prepared using acidic or alkaline pH shift),
and protein hydrolysates (prepared by hydrolysis using Protamex, Neutrase, or
Corolase) (I) based on semiquantitative UHPLC-ESI-MS analysis. Different
letters indicate a statistically significant (p < 0.05) difference between samples.
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Figure 9. Total peak areas of triacylglycerols (A), diacylglycerols (B),
monoacylglycerols (C), free fatty acids (D), and phospholipids (E) in roach raw
material, protein isolates (prepared using acidic or alkaline pH shift), and protein
hydrolysates (prepared by hydrolysis using Protamex, Neutrase, or Corolase) (I)
based on semiquantitative UHPLC—ESI-MS analysis. Different letters indicate
a statistically significant (p < 0.05) difference between samples.

The FPHs, on the other hand, had mostly a similar lipid class composition
compared to the raw material and to each other. In case of Baltic herring, all
FPHs, but especially the one prepared with Neutrase, contained a significantly
lower relative content of TAGs compared to the raw material. The lower relative
content of TAGs may be related to losses through oxidation, as the Baltic herring
FPH prepared using Neutrase had the lowest relative content of PUFAs as well.
On the other hand, all roach FPHs contained more TAGs and less PLs compared
to the raw material, though in case of TAGs the difference were always not
statistically significant Previous literature on the content of different classes of
lipids in FPHs is scarce. Some studies have reported the content of PLs or free
fatty acids of the fish raw materials prior to hydrolysis (Khantaphant et al., 2011;
Kvangarsnes et al., 2021; Yarnpakdee et al., 2012c), but not in the prepared FPHs.
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The results of the present work suggest that the distribution of lipid classes
during hydrolysis was more dependent on the raw material than the enzyme used.

5.2 Oxidation
5.2.1 Protein oxidation

Carbonyl contents of FPIs and FPHs were similar between the two fish species
(Figure 10). Acid extracted FPI from roach and Baltic herring contained 14.8
and 15.3 nmol carbonyls/ mg protein, respectively, while the content in alkali
extracted FPIs was higher, 31.5 and 29.4 nmol/mg in case of roach and Baltic
herring, respectively. The values were considerably higher than previously
reported for herring FPI (Marmon and Undeland, 2013). In a study by Marmon
and Undeland (2013), protein carbonyls in alkali extracted FPI were found at a
level of 2.5 nmol/mg protein, which was not significantly higher compared to the
raw material. In the present study, the FPIs were subjected to a brief
pasteurization treatment (Nisov et al., 2021), as well as freeze-drying, both of
which may have induced denaturation and oxidation of proteins, and may in part
explain the higher content of protein carbonyls observed. The protein carbonyl
content in alkali extracted FPIs was twice the content observed in the acid
extracted FPI.
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Figure 10. Protein carbonyls (nmol/mg protein) in roach and Baltic herring
protein isolates (prepared using acidic or alkaline pH shift) (A), and protein
hydrolysates (prepared by hydrolysis using Protamex, Neutrase, or Corolase) (B)
(I). Different capital and small letters indicate a statistically significant (p < 0.05)
difference between roach and Baltic herring samples, respectively.

The FPHs showed more moderate levels of protein carbonyls, ranging 7.7-9.0
and 6.1-7.7 nmol/mg protein for Baltic herring and roach FPHs, respectively.
Interestingly, FPH hydrolyzed using Protamex had the lowest carbonyl content
of Baltic herring FPHs, but highest content of roach FPHs. The degree of
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hydrolysis, reported by Nisov et al. (2021), was lowest in case of FPH prepared
by Protamex in case of Baltic herring, but highest in case of roach, though
differences were not statistically significant. The higher degree of hydrolysis
could explain higher degree of protein carbonylation, as more amino acids are
exposed to pro-oxidants. Nikoo et al. (2019) reported the effect of different
washing treatments or an antioxidant on protein carbonyl values after 1, 2, or 3
h hydrolysis of rainbow trout by-product proteins using Alcalase. The lowest
carbonyl value, < 3 nmol/mg protein, was detected after the shortest hydrolysis
time, 1 h, with prior washing of the raw material with only distilled water.

5.2.2 Primary lipid oxidation

In case of both roach and Baltic herring FPIs and FPHs (I), the FPI extracted by
alkaline pH shift had the highest PV of all samples (Figure 11). Though the
difference in PV (as meq/kg FPI) can partly be explained by the considerably
high lipid content in alkali extracted FPIs (Table 9), they also had the highest
PVs even expressed as meq/kg oil. Acid extracted FPIs from both roach and
Baltic herring, however, showed more moderate hydroperoxide formation. Most
previous studies comparing acidic and alkaline pH shift have reported higher
rates of oxidation for acidic pH shift (Kristinsson and Hultin, 2004a; Phetsang et
al., 2021b; Zhong et al., 2016). This has been considered to be due to unfolding
of hemoglobin in acidic conditions, leading to an increase in its pro-oxidativity
(Kristinsson and Hultin, 2004b), whereas as alkaline treatment has even been
seen to have a protective effect compared to native hemoglobin (Kristinsson and
Hultin, 2004a). However, Abdollahi et al. (2020) also reported that alkali-
extracted FPI from herring by-products had a higher PV and higher
malondialdehyde content compared to the acid process. The pro-oxidativity of
heme proteins from different fish species have been shown to be influenced
differently by varying pH (Magsood and Benjakul, 2011a) and may explain
contradictory findings of studies comparing lipid oxidation in acid and alkali
extracted FPIs. Roach FPIs and FPHs had lower PVs compared to the respective
Baltic herring FPIs and FPHs, which is likely related to the content of pro-
oxidants, as roach is a white fish while Baltic herring is a dark-muscled fish.
Similarly, Abdollahi et al. (2020) reported considerably higher PVs for FPIs
from herring compared to salmon by-products, despite similar PVs in the raw
materials.

Roach FPHs prepared using Protamex, Neutrase or Corolase had similar PVs,
but in case of Baltic herring, FPH prepared using Neutrase had the highest PV
(3.0 meq/kg FPH) compared to the other two FPHs (0.7-1.2 meq/kg FPH). While
this difference of PV as meq/kg FPH was not statistically significant (p > 0.05),
the PV of Baltic herring FPH produced with Neutrase expressed per kg oil (96
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meq/kg oil) was significantly higher to other FPHs (21-37 meq/kg oil) and also
the acid-extracted FPI (37 meq/kg oil). The Baltic herring FPH prepared with
Neutrase had also the lowest content of PUFAs (Table 12) and TAGs (Figure 8)
compared to FPHs prepared using Protamex or Corolase).
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Figure 11. Peroxide values in Baltic herring (A-B) and roach (C-D) FPIs and
FPHs, both as meq/kg freeze-dried protein isolate or hydrolysate (A and C) and
meq/kg oil (B and D) (I). Different letters indicate a statistically significant (p <
0.05) difference between roach and Baltic herring samples, respectively.

PVs of Baltic herring minces with and without antioxidants after up to 10 months
storage at —20 °C (study III) or 21 days at 1 °C (study IV) were analyzed as
indicators of primary lipid oxidation (Table 15). The PVs of fresh minces (at the
0-month (study III) or 0-day (study IV) timepoints ranged between 0.3—1.3 and
0.1-0.9 meq/kg mince, respectively. At the end of frozen storage for 10 months,
the lowest PV was measured in AB (1.3 meqg/kg mince), followed by SR3 (1.8
meq/kg mince, both having a significantly (p < 0.05) lower PV compared to the
control (3.0 meqg/kg). In study III, PV of all minces was higher after 10 months
of frozen storage compared to the beginning of storage, but as the PV was not
analyzed at any point in between, it is difficult to estimate to what extent the
added antioxidants were able to retard hydroperoxide formation. Hydroperoxides
are unstable, and are rapidly transformed into volatile and non-volatile secondary
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oxidation products (Frankel, 1983). For instance, mince with 3% LR (LR3) had
the highest PV at 0 months (1.3 meq/kg mince) and second highest PV at 10
months (1.3 and 4.1 meqg/kg mince). In case of refridgerated minces, LR3 also
had a significantly higher PV compared to the control at the beginning, 0 d (1.1
vs 0.1 meq/kg mince), and end of storage, 21 d (5.9 vs 3.6 meq/kg mince), but
comparing their PVs throughout the storage period, it can be seen that mince
with 3% LR maintained a low PV longer than the control.

In the control mince (from fillets with skin) in study 1V, the highest PV
measured was at day 10, 6.5 meq/kg. At day 3, the PV in the control was already
3.6 meq/kg, which was significantly higher compared to other minces, except for
oT+AA, SR1.5 and SRO1. Most of the antioxidants delayed and reduced the
total extent of hydroperoxide formation. For instance, the highest PV observed
for SRO3 was 4.4 meq/kg mince, which was detected at 14 days. LR3 had a
similar PV at 14 days, 4.6 meq/kg, but was still increasing at 21 days (5.9
meq/kg). In a previous study, minced mackerel stored at 5 °C for up to 8 days
showed a rapid increase between days 2 and 4 (to approx. 20 meq/kg oil), after
which the PV increased slowly during the rest of storage, while minces with
added ethanol extract of P. fircoides or BHT maintained a low PV (< 3 meq/kg
oil) throughout storage (Babakhani et al., 2016).

When comparing different concentrations of added berry press residues (1%,
1.5%, and 3%) throughout the storage period of 21 days, SR had more diverse
effects at different concentrations, while in case of LR there were few statistical
differences between different concentrations. Previously lingonberry press
residue (81% moisture) at a 30% concentration/dry weight of fish was seen to
inhibit hydroperoxide formation during pH-shift processing of herring and
salmon by-products (Abdollahi et al., 2020). Dried lingonberry press residue at
a concentration of 15% was seen also seen to retard hydroperoxide formation in
vegetable oil spreads (Baltuonyté et al., 2022). The higher PVs observed in SR3
and aT+AA could be due to pro-oxidative effects or stabilization of
hydroperoxides. Ascorbic acid and a-tocopherol are both endogenous
antioxidants in the fish muscle, and they have a synergy due to the ability of
ascorbic acid to regenerate a-tocopherol. Both a-tocopherol and ascorbic may,
however also act as pro-oxidants (Jayasinghe et al., 2013; Jerzykiewicz et al.,
2013).
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5.2.3 Volatile secondary lipid oxidation products

Volatile oxidation compounds were analyzed as secondary lipid oxidation
indicators in studies I, III and IV. The peak areas of identified volatile
compounds in FPIs and FPHs from Baltic herring and roach (I) were used as
variables in Principal Component analysis (PCA) (Figure 12). In case of both
Baltic herring and roach, most oxidation related volatiles accounted for variation
on the X axis, while 1-penten-3-ol and propanal (roach samples) or nonanal
(Baltic herring samples) accounted for most of the variation on the Y axis. Alkali
extracted FPIs were associated with several lipid oxidation derived volatiles,
such as (E)-2-hexenal, 2,4-heptadienal (E,E and E,Z), 2,6-nonadienal, and
hexanoic acid in Baltic herring FPI, and nonanal, 2-butanone, 1-penten-3-one,
and 2,6-nonadienal in roach FPI. Acid extracted FPIs, however, were
characterized by lower peak areas of all volatiles compared to alkali extracted
FPIs.

Despite having lower release of most oxidation related volatiles, FPHs from
Baltic herring and roach showed high peak areas of 1-penten-3-ol and nonanal
(Baltic herring) or 1-penten-3-ol and propanal (roach). Propanal and 1-penten-3-
ol are oxidation products of n-3 PUFAs, such as DHA (Ahonen et al., 2022).
Nonanal can be produced from the 10-OOH hydroperoxide of 18:1(n-9) (Frankel,
1983), which was measured at a significantly higher relative content in Baltic
herring FPHs (26.0-26.3%) compared to FPIs (19.7-22.8%) (Table 12). Among
Baltic herring FPHs, FPH prepared using Neutrase had the highest peak area of
most volatiles, which is in line with the higher PV, higher content protein
carbonyls, and lower relative content of PUFAs compared to the FPHs prepared
using Protamex or Corolase. In case of roach, Corolase had the highest peak
areas of 1-penten-3-ol and propanal. Compared to roach FPHs prepared by
Protamex or Neutrase, the Corolase FPH had the lowest relative content of #-3
PUFAs (Table 13).
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Figure 12. PCA correlation loadings of identified volatiles (as peak areas, n=19)
in FPIs and FPHs (n=5) from Baltic herring (A) and roach (B) as well as sample
names as dummy variables (I).

PCA was also used to investigate correlations of volatiles (correlation loadings,
as peak areas) in Baltic herring minces (scores) in study III (Figure 13). PC1
accounted for 67% of variation between samples and was related to secondary
lipid oxidation products, such as 2-ethylfuran, 1-penten-3-ol, and 2.4-
heptadienal (£,F and E,Z). PC2, accounting for 26% variation, separated the
minces based on peak areas of 3-methylbutanal, 2-methylbutanal, and 2-
hydroxy-3-butanone. The minces after 0 and 2 months of storage were
characterized by higher areas of these volatiles and lower areas of most other
volatiles. 3-methylbutanal and 2-methylbutanal, branched aldehydes produced
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by various reactions from amino acids, are important aroma compounds in many
foodstuffs (Smit et al., 2009). They were previously seen to be the most abundant
volatiles in fresh, cooked Baltic herring, while their content was greatly reduced
during 8 days of storage at 6 °C (Aro et al., 2003). Similarly in the present study,
the content of 2-methylbutanal and 3-methylbutanal were decreased after 2
months of frozen storage, but then increased again slightly after 6 months. The
biggest increase in oxidation derived volatiles of minces occurs between 6 and
10 months.

A Scores

1000000000
800000000

600000005 o control 6
400000000 Ef;T.-xj EDTA_10
control 10
SR3% 3 T+AA_10 =
200000000 SR3%_6 s o o ]
. SR3%__
0 LR3% 6 .

-200000000

PC-2 (26%)

LR3%_10

-400000000 control 2
600000000 LRS%%: 0 .
SR3% 0 SR3% 2 EDTA 2
-800000000 ¢
LR3% 2
3%_:

-1000000000 EDTA 0
oT+AA O0e * —

control 0
oy

~1200000000 . aT+A} 2 . : y
22000000000 ~1000000000 0 1000000000 2000000000 3000000000

PC-1(67%)
B

Correlation Loadings (X)

08

0.6
exana
0.4 (E.2)-3,5-gctadien-2-one

1-pentenf3-ol

PC-2(26%)

3-methyl-1-butanol
B

2-methyl-1-butanol

04

06

Pentane
.

08

1 3-methylbutanal
Py

2-methylbutanal

1 08 06 04 02 0 02 04 0.6 0.8 1
PC-1(67%)
Figure 13. PCA scores (A) and correlation loadings (B) of identified volatiles
(as peak areas, n=20) in Baltic herring minces with and without antioxidants,
stored at —20 °C for 0, 2, 4, 6, or 10 months (n=30) (III). Different colors in
scores refer to minces at different time points.
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When comparing the positions of different minces within the same time point,
the control was always located further right due to higher rate of formation of
oxidation related volatiles, compared to all other minces except for EDTA.
EDTA, though not strictly an antioxidant, has been seen to have a protective
effect from lipid oxidation due to its metal chelating ability. At a concentration
of 2 mmol/kg, EDTA was seen to have some protective effect against
hemoglobin-mediated lipid oxidation in washed horse mackerel muscle stored 4
days at 4 °C, but it was less effective compared to compounds with reducing
ability, and grape proanthocyanidins with both reducing and chelating properties
(Maestre et al., 2009). In the present study, the concentration of EDTA was
approximately 0.2 mmol/kg mince, which may have been too low to achieve a
sufficient effect.

AB, consisting of seven plant CO; extracts, was previously shown to delay
oxidation of triacylglycerols in Atlantic salmon fillets (Tarvainen et al., 2015) as
well as cholesterol oxidation in Atlantic salmon patties (Tarvainen et al., 2016).
In the present study, AB reduced the extent of lipid oxidation after 10 months of
storage, based on better preservation of EPA (Table 14), lower PV (Table 15),
and lower formation of volatile oxidation products compared to the control
(Figure 13). Both berry juice press residues, LR and SR (3%) were effective in
retarding formation of secondary oxidation products, and only showed moderate
increases in oxidation related volatiles during storage (Figure 13). The result is
in line with the EPA and DHA loss (Table 14), which were lowest in minces
containing LR and SR.

In study IV, 1-penten-3-ol, hexanal, and 3,5-octadien-2-one were selected as
secondary lipid oxidation indicators (Figure 14), since they are produced from
different precursors and were seen to be good indicators based on study III. 3,5-
octadien-2-one is produced from DHA (Ahonen et al., 2022), while 1-penten-3-
ol can result from 15-OOH hydroperoxide of EPA and 17-OOH hydroperoxide
of DHA (Lee et al., 2003), and hexanal is mainly formed from n-6 fatty acids,
e.g. through the 13-hydroperoxide (13-OOH) of linoleic acid (18:2n-6) (Frankel,
1983).
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minces with and without antioxidants stored at 1 °C up to 14 days (IV).

SRO3 and aT+AA, despite showing higher or equal PVs compared to the control
(Table 15), showed lower formation of 1-penten-3-ol, hexanal, and 3,5-octadien-
2-one compared to the control. Of the berry press residues, LR and SRO were
the most efficient in inhibiting volatile formation. In case of SR, only the 3%



Results and Discussion 79

concentration was as or more effective than oT+AA. Interestingly, SRO,
especially at 1.5% and 3% had a more pronounced antioxidative effect compared
to SR. SRO is the extraction residue after supercritical CO; extraction of SR
lipids, and it is likely that most of the lipid soluble antioxidants were removed
with the lipids. However, since SR is high in lipids, it is possible that their
removal concentrated water-soluble antioxidants. Extraction residue of
supercritical CO2 extraction of whole dried sea buckthorn berries was previously
reported to be high in flavonol glycosides, as they are not removed during the
extraction (Linderborg et al., 2012). Piissa et al. (2008) reported that SR
effectively reduced TBARS formation during 6-day refrigerated (6 °C) storage
of mechanically separated chicken and turkey, and the antioxidative effect was
suggested to be imparted by different flavonol glycosides present in SR. When
comparing the different concentrations of SRO and LR in the present study, peak
areas of indicator volatiles between the two higher concentrations (1.5% and 3%)
were relatively similar up to 7 days at 1 °C, especially in case of LR, indicating
that the concentrations of these berry press residues can be reduced without
compromising their antioxidative effect.

5.3 Sensory properties and odor-active compounds
5.3.1 Liking of Baltic herring minces with and without antioxidants

The likeness scores of Baltic herring minces with and without EDTA, o-
tocopherol and ascorbic acid, AB, LR (3%), or SR (3%) (I) (Figure 15), prepared
into fish loaves, were assessed to evaluate the consumer acceptance of the
additions. As expected, fish loaves made of minces with EDTA or aT+AA did
not differ significantly compared to the control (mince from fillets with skin) in
terms of likeness. The more complex additions, AB, LR, and SR, however,
reduced the likeness of most attributes, and were in most attributes rated between
4-5 (dislike slightly—neither like nor dislike) on the scale of 1-9. AB was a
mixture of supercritical CO; extracts from several aromatic plants, such as sage,
hop, and licorice root, and thus possessed a strong odor. Fish loaf with AB was
rated significantly (p < 0.05) lower in overall likeness and likeness of taste/flavor
compared to the control, EDTA, and aT+AA. Similarly, supercritical CO2 ginger
extract was seen to effectively retard lipid oxidation in tilapia burgers, but the
burger containing it was rated as lowest in overall liking and liking of flavor
(Mattje et al., 2019).

LR, on the other hand, was rated as having a lower likeness in all attributes
compared to the control. The fish loaf with LR was rated as having a significantly
lower likeness of color (3.4) and appearance (3.7) compared to all other samples.
Due to the pH dependence of lingonberry anthocyanins, the fish loaf with LR
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had a purpleish/blueish color, which likely contributed to lower liking. In
addition, the LR contained lingonberry seeds, and it was described to impart a
dry and grainy mouthfeel, which may explain the lowest likeness of texture (5.0).
SR received lowest liking scores for flavor/taste (4.0).

In the verbal comments of the consumers, AB, LR, and SR, were reported to
mask the natural odor and flavor of fish, which was considered negative. A clear
majority of consumers participating in the test were frequent fish eaters (71%
reported to eat fish 1-2 times per week, 13% multiple times per week), which
may in part explain the preference for traditional fish loaves, instead of the more
novel combinations of fish and LR, SR, or AB. Further, the consumers were not
aware of the composition of the fish loaves, and the natural additions (AB, LR,
and SR) were considered weird and vague. As the natural antioxidants at the used
concentrations were seen to have a negative influence on consumer acceptance,
careful selection of dosage is essential to minimize negative effect on sensory
quality while maintaining antioxidant effects. Based on PV (Table 15) and
volatile secondary oxidation indicators (Figure 14) of Baltic herring minces with
different concentrations of LR and SRO, stored at 1 °C, their concentration could
be reduced to half (1.5%) or even third (1%) while still protecting the mince from
lipid oxidation.
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Figure 15. Overall liking (A), liking of appearance (B), liking of color (C), odor
(D), taste/flavor (E), and texture (F), on a scale 1-9 (n=55), of fish loaves with
or without antioxidant additions (III). Different letters indicate a statistically
significant (p < 0.05) difference between samples.
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5.3.2 Odor and flavor profile

In study II, the odor properties of raw, minced Baltic herring and alkali extracted
FPI with cryoprotectants were compared using CATA (Figure 16). In case of
Baltic herring, the most frequently chosen attributes were fish-like (92%), fish
oil-like (92%), and fatty (83%). FPI was most often selected as fish oil-like
(50%), sweet (42%), buttery (33%) and potato-like (33%), and hence no attribute
was chosen by more than half of the panelists. Due to a small panel size, the only
significant difference (p < 0.05) according to McNemar’s test was observed in
the frequency to select “fish-like” (92% in Baltic herring vs 25% in FPI).

Based on the intensities of odor attributes, FPI was evaluated as having a
significantly lower total intensity of odor (1.9 vs 2.5) and intensity of fishy odor
3.3 vs 2.2). Both Baltic herring and FPI were considered to have a relatively
intense (1.9 and 1.8, respectively) fatty odor. The sensory properties of FPIs
prepared using the pH shift have previously been investigated by Phetsang et al.
(2021b), Abdollahi and Undeland (2018), and Nisov et al. (2021). Phetsang et al.
(2021b) compared the off-odor intensities (on a scale 0—4) of hybrid catfish (C.
macrocephalus % C. gariepinus) mince, hybrid catfish surimi, and acid and
alkali-extracted FPI from hybrid catfish. Both surimi processing and the pH shift
reduced the fishy odour of the mince (3.2) to 1.3 (surimi) and 0.8 (both alkaline
and acidic pH shift), and led to elimination of oxidation related volatiles, such as
propanal, pentanal, hexanal, (E)-2-heptenal, and 2,3-pentanedione. On the other
hand, Abdollahi et al. (2018) reported that herring protein isolate prepared by pH
shift and freeze-drying was characterised by a high intensity of dried fish and
fish oil odours. The Baltic herring FPI in the present study also showed a
relatively intense fatty odour (1.8), and ‘fatty’ and ‘fish oil odor’ were the two
most frequently chosen CATA attributes.
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The sensory profiles of freeze-dried FPIs and FPHs from Baltic herring and roach
(I) were reported by Nisov et al. (2021). Rancidity was found to be higher in the
FPIs compared to FPHs from both fishes, which is line with the higher rate of
oxidation in FPIs vs FPHs reported here (Figure 11 and Figure 12). The
perceived rancidity for alkali-extracted Baltic herring FPI in study II was low
based on the intensity (1.0 on a scale 0—4) and selection frequency (17%), both
of which were the same for the raw material. The extent of lipid oxidation in
study II was, however, not investigated.

Reducing the fishy odor in FPIs and FPHs is vital in terms of their applications.
For instance, the intensity of fishy odor in pasta supplemented with pangas FPI
increased in line with the amount of added FPI (Singh et al., 2021). However,
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FPIs, when added to fish-based foods, such as fish sausages (Surasani et al., 2020)
or fish balls (Shaviklo et al., 2010) the addition did not cause major changes in
the sensory properties or liking ratings. Baltic herring FPI (II) was shown to be
a suitable ingredient in fish balls and surimi-type gels (Kakko et al., 2022), but
the sensory properties or liking were not investigated. According to the results
presented here, fishy odor was reduced during the pH shift, but the protein isolate
was, nevertheless, recognized as fishy.

The odor and flavor/taste properties of Baltic herring minces with and without
1.5% LR or SRO were evaluated as raw or cooked, and as fresh or after being
stored 3 days at 1°C in study IV (Table 16). As fresh (0d), the three raw minces
differed significantly (p < 0.05) only in terms of berry-like/fruit-like odor, as
LRI1.5 and SRO1.5 expectedly had slightly higher intensities intensities in this
attribute (4.9 and 5.0, respectively, compared to 3.3 in the control mince).
However, already during the 3 days of storage at 1 °C, control exhibited a highly
significant increase (p < 0.001) in fishy odor (3.5 vs 5.3), marine odor (2.0 vs
3.5), and fish oil odor (2.1 vs 2.7), and interestingly also a decrease in berry-
like/fruit-like odor (p = 0.002). In the raw mince containing 1.5% LR, fishy odor
increased slightly (from 3.3 to 4.0, p = 0.02), as well as marine odor (from 2.1 to
2.7, p=0.018), but the mince with SRO (1.5%) showed no significant (p < 0.05)
changes in any odor attributes after 3 days of storage.

In addition to storage, the sous vide cooking affected the the three minces
differently. While in case of odor of raw fresh (0d) minces the only difference
was observed in the berry-like/fruit-like odor, the fresh cooked control mince
showed a significantly higher intensity in marine odor and fish-oil odor
compared to SRO1.5. Cropotova et al. (2019) reported that sous vide cooking of
Atlantic mackerel at 70 °C for 20 minutes, same conditions as used in the present
study, and subsequent storage of 1 day (at 0 °C) increased the PV considerably,
but not when an antioxidant was present during cooking.

Few statistically significant differences were observed in the flavor/taste
attributes of cooked fish minces. Cooking induces various changes in volatile but
also non-volatile compounds, and it is possible that these changes masked the
changes that occurred during storage. Previously, sous vide cooking was seen to
alter the volatile profile of European sea bass more than steaming or boiling
(Nieva-Echevarria et al., 2017). However, control mince cooked after 3 d was
perceived considerably fishier in flavor (5.8) compared to stored minces with LR
(3.8) or SRO (3.6).

According to the results of the storage test, LR and SRO, at a concentration
of 1.5%, not only retarded the formation of hydroperoxides (Table 15) and
oxidation related volatiles (Figure 14) but also changes in sensory quality (odor
and flavor) during storage. In case of 1.5% SRO addition, no statistically
significant changes in odor and flavor attributes were during the 3-day storage.
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Other studies have also reported improved preservation of sensory quality by
natural antioxidants. For instance, brining silver carp fillets with clove bud and
grape seed extracts was seen to retard decline in sensory score during
refridgerated storage (Shi et al., 2014) and milk protein concentrate reduced the
formation of fishy odor during frozen storage of herring (Joaquin et al., 2008).

Table 16. Intensities of odor, flavor, and taste attributes® in raw and cooked
Baltic herring minces with and without 1.5% LR or SRO (IV).

C-0d LR1.5- SRO1.5- C-3d LR1.5-3d SRO1.5-
0d 0d 3d

Raw minces - odor
Total intensity of odor 5.3+1.8%  6.1x1.6  5.5+1.3  6.7+1.0B 6.4+1.4 5.9+1.5
Fishy odor 3.5£1.94  3.3£1.94  3.0+1.8 53+1.8"B 4.0+22%B 354200
Marine odor 2.0£1.64  2.1x1.54  2.0+1.7  3.5£1.6°8 2.7£1.7%B  22+]1.6*
Berry-like/fruit-like odor 3.3+£2.3%  4.9+1.8°  50+1.7° 1.4+1.4%  4.6424> 474220
Fish oil odor 2.1£1.6A  25+1.7  2.0£1.5  3.9+1.5°8  2.7+1.6*  2.1£1.7°
Rancidity 1.5+1.6 1.4+1.5 1.2+1.2 1.9£1.6 1.5+¢1.6 1.3+1.4
Musty odor 1.7+1.4 1.4+1.2 1.3£1.1 1.3+0.9 1.6+1.6 1.8+1.8
Cooked minces - odor
Total intensity of odor 5.6+£1.4% 5514  6.0+12 6.7+1.1B  5.7£13 5.9+1.3
Fishy odor 5.3+1.8 42+1.6  3.7£1.3  6.2+1.4°  4.5£1.6*  3.7+1.5°
Marine odor 3.8£1.7°  2.8+1.4% 2.5+1.2° 3.7£1.5°  3.2+12%  2.1£1.3°
Berry-like/fruit-like odor 124158 3.0£2.1°  4.7+1.7°  12+1.4*  2.8+2.1°  42+2.0°
Fish oil odor 2.541.1°  1.5+1.0*  1.6£0.9° 2.4+13 1.9+1.6 1.5+0.9
Rancidity 1.3+1.1 1.3+1.2 1.0+0.7 1.0+£1.2 1.1+1.1 0.9+0.8
Musty odor 1.5+1.1 1.9+1.3 1.5+1.1 1.2+0.8 1.9+1.5 1.7+1.2
Cooked minces - flavor
Total intensity of flavor 5.1#£1.1 5.5¢1.1 5.9+1.1 5.8¢1.5 5.7+1.0 5.5¢1.2
Fishy flavor 5.1£1.3>  3.6+1.4* 4.1+1.7** 5.8+1.8> 3.8+1.6* 3.6+1.8°
Marine flavor 3.0£1.2 2.0+1.4 2.3+1.6 2.6£1.6 2.1+1.4 1.9+1.2
Berry-like/fruit-like flavor 1.1£1.4%  3.4422°  44+£1.9°  1.0+£1.2*  3.1£2.1> 37423
Umami 3.1%1.5 2.841.0  3.0+1.4  2.9+1.2 2.9+1.0 3.0£1.5
Saltiness 4.1+1.7  4.0+1.3  3.8+1.3 4.1+1.8 4.3+1.6 3.8+1.3
Fish oil flavor 1.9+1.1 1.8+1.5 1.8+1.2 2.3+1.2 1.8+1.1 1.6+0.9
Metallic flavor/aftertaste 1.1£1.1 1.1+1.0 1.4+1.0 1.3+1.3 1.0+0.9 1.8+1.3

aMean and standard deviation (n=8*2 for cooked samples, n=8*3 for raw samples), capital letters
and lower case letters indicate a statistically significant (p < 0.05) difference between different time
points of the same mince and different minces at the same timepoint, respectively.

5.3.3 Odor-active compounds

Altogether, 24 significant odor compounds (NIF > 33%, i.e. odors that at least 2
of 6 panelists detected) were identified in Baltic herring (II, I'V), Baltic herring
with added LR and SRO (IV), and Baltic herring FPI (I) on the SPB-624 column
(Table 17). Most of the identified compounds were alcohols, aldehydes and
ketones derived from degradation of lipids. In study II, more odor-active
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compounds were detected, as the column flow was directed completely to the
olfactometry port, while in study IV the column flow was split 1:1 between
olfactory port and FID. However, the most significant odor-active compounds
(high NIF and/or intensity values) detected in raw Baltic herring in study II were
also detected in Baltic herring minces from fillets with skin in study IV. For
instance, 3-methylbutanal, 2,3-pentanedione, (£)-4-heptenal, (£)-1,5-octadien-3-
ol, and (Z)-1,5-octadien-3-one were detected (at >33% detection frequency) in
all samples in both studies.



Results and Discussion

86

X IO ‘pis 8TCI [eusIpeuou-9°z-(Z4q)

X X X ¥ ‘O ‘sw ‘pIs 0L01 €L01 [eusipesdoy-y*z-(z°7)
X X X X X I¥ ‘O ‘sw ‘pys 986 266 [euaIpexay-°z-(7 ‘7)
X X X X X X ¥ ‘O “sw ‘pis 56 856 [eud1doy-4-(7)
X w6 reueydoyq
X X X X X I ‘O ‘sw ‘pis 678 0S8 [euexoH
X Id ‘O ‘sw ‘pis LOL [eueinqAyow-g
X X X X X X ¥ ‘O ‘sw ‘pis 10L 669 [eueingAyjow-¢
X X X X X Id ‘O ‘sw ‘pis 009 009> reuedoxdjAyow-g
X X T ‘O ‘sw ‘pis 009> reuedoig
sapAyaply
X X X X X X I O ‘s 1€01 S¥01 [0-¢-URIPEIO0-6*1-(7)
X X I °0 ‘pIs 6€01 [0-¢-UaIpeIo0-G*1-(47)
X X I ‘O ‘s €8 0€8 [o-1-uejuad-z-(7)
X X T ‘O ‘sw ‘pIs S¢€L [0-¢-uoyuad-|
X X ‘o 189 [ouedoid-[-[Aypowi-¢
S[OYOI[Y
X ‘o $98 p1oe orouedoidjAyjouwr-g
spy

STONS  STOWS (P  9oUIW [0X)U0d  HdUIW [0)U0D BurLIy Al 1
®OPuos  usd  (POPUNS (P O) s 1dd by REREERT tpmg gpms punodwiod

Al Apm3S§ «I1 ApmS Y29 9dSY T

-o[dures uaAI3 ay) ur 9, ¢ ¢ 1S9 Ik JOo Aouanbaiy uonodgep
© pey JueIopo 9y} Jey} SIIBOIpUI X, YL "A] PUB II SOIPMIS Ul poyyuopl spunodiwiod dAI0B-10p0 (94,¢€ < JIN) UBOYIUSIS "L dIqeL



87

Results and Discussion

310 10u10AR[} MMM //:sANY ‘OSeqeIRp 1OUIOAR]] PUB ‘A0S ISIUo0qgam//:sdny Yoodgam Anstway) 1SIN (2007) Te 10
10198 £(9007) T& 32 I[2S (9107) ‘e 30 Our[[a1y-ZounIeA {(0007) ‘¢ 30 udsSialeH (0Z0T) 'Te 30 UV (1707) T¢ 10 enly {(7T07) T8 30 USUOYY PIPN[OUI SISEQEIEp PuE AIMesd|
snoraaxd 03 wostredwo)) "L STN 10 21nje1dy] snoraaxd Aq pajrodor [ 01 9500 [ PIAISSqO I0/pue () 2I1njeIdI] snoradxd o) uondrossp Iopo Jo AjLre[rus ‘(swr) Areiqr

LSIN 2y 03 (s1sA[eue SIN-DD-TINAS-SH Aq papIodar) yarew enodads sw Jo uostredwod ‘(pis) punoduiod 90U219Ja1 [RIDIQUILIOD B 0} UOSLIEAWOD U0 Paseq Sem UONBIIIUSP],

Aild pue 1od A10308310 USOMIAq [:] 1[dS sem molJ Juano oy} AT Apms ur o[iym 410d A10)9BJ[0 S} 0) PP SeM JUIN[d Y} ‘T] APMIS U,

X X X Iy ‘sw 9$T11 TLII QUO-Z-UDIPEIdO-G¢-(7 )
X X X Iy ‘sw 9€I1 vSII QUO-Z-UAIPEID0-G*¢-(Z )
X X X X X X I O ‘pis ol Ss01 3U0-¢-UBIPEIO-G [~(7)
X X I ‘O ‘sw +001 QUO-¢-Ud)00-|
X X X I¥ ‘O ‘s ‘ps 788 188 ajeoueinqAyau-¢ [Ayg
X X X I ‘O ‘sw ‘pIs L L suorpauejuad-¢‘g
X X X X X X I¥ ‘O ‘s ps 0+9 9€9 auoIpaueINg-¢°g
Y EINY) %:B Sauojoy
X X IO ‘ps 96¢1 [eUSIpEUOU-{°Z-( )
ST0¥S S'TOUS (P ddUIW [0.3U0d  dUIW [01)U0D ButLiay Al n
@OPuols  Qusd  (POPUNS (P 0) s 1dd ooy ORRRIER tpmg gpms punoduod
Al £pmi§ <11 ApmS - adSYY




88 Results and Discussion

Since alkaline pH-shift processing was seen to influence the odor profile of
Baltic herring (Figure 16), detection frequencies and intensities of odorants in
Baltic herring and Baltic herring FPI were compared to investigate the
compounds underlying these changes (Table 18). A total of 33 compounds with
NIF > 33% were detected in raw minced Baltic herring, while only 29 were
detected in the FPI. In addition, all odor-active compounds that differed
significantly in their detection frequencies were lower in FPI compared to Baltic
herring. This is in line with the significantly (p < 0.05) lower total intensity of
odor observed for FPI (Figure 16).

Hexanal, (Z2)-4-heptenal, (E,Z)-2,4-heptadienal, 2,3-butanedione, and 2,3-
pentanedione, appeared to be the most pronounced odorants in both Baltic
herring and FPI, as their detection frequencies in both were 92% or 100%. Most
of these aldehydes and ketones have been previously reported in Baltic herring
(Aro et al., 2003, 2002) and/or other fishes (Jonsdottir et al., 2007; Phetsang et
al., 2021a). Based on the average intensities of odorants weighed by their
detection frequencies (NIF*intensity), the highest values observed in FPI were
(£)-4-heptenal (3.5), hexanal (3.3), and 2,3-pentanedione (3.0). (£)-4-heptenal,
described as fish oil-like and rancid, and 2,3-pentanedione described as having
buttery and fatty notes, may have contributed to the ‘fatty’ and ‘fish oil-like’
attributes, which were the most frequently selected odor attributes for the FPI
(Figure 16). (Z£)-4-heptenal is produced from (£,Z)-2,6-nonadienal (Josephson
and Lindsay, 1987), and has been associated with fishy odor and flavor (Joaquin
et al., 2008; Triqui and Bouchriti, 2003), especially in combination with other
aldehydes, such as its precursor (£,Z)-2,6-nonadienal (Venkateshwarlu et al.,
2004b).

Based on the detection frequencies, the most prominent differences between
Baltic herring and FPI were in 2-methylpropanal, 3-methylbutanal, 2-
methylbutanal, and an unidentified compound (LRIspe-624 985) described as
sweat, burnt, and dry. The detection frequencies of 2-methylpropanal, 3-
methylbutanal, and 2-methylbutanal were 83%, 92%, and 67%, respectively, in
Baltic herring, but only 8%, 50%, and 0%, respectively, in FPI. Though none of
the three branched aldehydes, 2-methylpropanal, 3-methylbutanal, and 2-
methylbutanal, were described as fishy as such, it is possible that in combination
with other compounds they contribute to the fishy odor in Baltic herring, which
was less intense in the FPI. 3-methylbutanal, which is widely present in aquatic
organisms (Jones et al., 2022), was previously reported to have a high odor
activity value (OAV) in fish sauce (Lapsongphon et al., 2015) and to be one of
the most important odorants in dry-cured tuantou bream (Megalobrama
amblycephala) (Chen et al., 2023).

Previous GC-O studies on fish protein isolate produced using the pH shift
were not found. Zhou et al. (2016), however studied the effect of different
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washing processes on odourants on surimi from silver carp (Hypophthalmichthys
molitrix) mince. The OAVs of most of the odor-active compounds were
decreased by the washing processes, with the saline and mildly alkaline washing
solution being more effective than water. The content and release of odour-active
volatile compounds can be affected by several factors in the pH-shift process.
For instance, the proteins undergo significant conformational changes due to the
changes in both pH and ionic strength, both of which affect their ability to bind
volatiles (Damodaran and Kinsella, 1983; Gu et al., 2020; Pérez-Juan et al.,
2006). Therefore, it is likely that some of the differences observed between the
odor-active compounds in Baltic herring and FPI were related to their altered
release due to changes in the proteins and/or lipids present. Differences in the
water content (Table 9) may also have influenced the release of volatiles
(Damerau et al., 2014).
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The odor-active compounds in raw Baltic herring minces with and without SRO
(1.5%) were analyzed prior (0 d) and after (3d) storage at 1 °C (IV). Odor-active
compounds were analyzed using GC-O on the semipolar SPB-624 column
(Table 19) and polar DB-WAX column (Table 20). Considerably more odor-
contributing compounds (NIF > 33%) were detected in the stored control mince
(C-3d), compared to the other minces. On the SPB-624 column, 8, 23, 12, and
11 compounds were detected by > 33% of the panelists in fresh control mince,
stored control mince, fresh SRO1.5, and stored SROL.5, respectively. On the
polar DB-WAX, 11, 20, 8, and 10 compounds, respectively, had a NIF equal to
or exceeding 33%. The number of odor-active compounds is in line with the total
intensities of odor of the minces (Table 16), as there was a significant (p < 0.05)
increase in the total intensity in the control mince during the 3-day storage, but
not in the SRO1.5.

3-methylbutanal (musty, chocolate, solvent) and (Z)-1,5-octadien-3-one
(green, waxy, metal, pelargonium) were detected in all samples by all panelists
and on both columns. (Z)-1,5-octadien-3-one is known to be produced through
autoxidation of EPA (Hammer and Schieberle, 2013). The NIFs and intensities
of other odorants differed between samples. On the semipolar column, (Z£)-4-
heptenal had a NIF value of 100% and average intensity of 3.1 in the stored
control mince, while the NIFs in fresh control mince and fresh and stored
SRO1.5 were 33% and intensities 1.0-2.0. Triqui and Bouchriti (2003) reported
that (2)-1,5-octadien-3-one, due to its low threshold, was one of the most potent
odorants in fresh sardine, but along with (Z)-4-heptenal and methional, its
increase was suggested to impart fishy odor to sardine stored on ice for 2 days.
During the first two days of storage of sardine, also 2,3-pentanedione, (£,2)-3,5-
octadien-2-one, and (£, E)-2,4-decadienal among other secondary lipid oxidation
were seen to increase in their impact. According to the present results, the NIF
values for 2,3-pentanedione and (F,Z)-3,5-octadien-2-one in Baltic herring
control mince increased from 17% to 100% and from 17% to 67%, respectively,
when stored for 3 days at 1 °C. The NIF values for these compounds in SRO1.5
mince remained low (< 17%).

(Z)-4-heptenal has been associated with fishy odor/flavor in several studies
(Hartvigsen et al., 2000; Joaquin et al., 2008; McGill et al., 1974), especially in
combination with other volatiles, such as (F,Z2)-2,6-nonadienal due to a
synergistic effect on fishy flavor (Venkateshwarlu et al., 2004b). As both (Z)-4-
heptenal and (E,Z)-2,6-nonadienal were detected at higher frequencies in the
stored Baltic herring control mince compared to SRO1.5 as fresh or stored, it is
possible that they were at least partially responsible for the higher intensity of
fishy odor and flavor observed in the former (Table 16).

A PLS model (with the weighed intensities, i.e. NIF*intensity values of odor-
active compounds on both columns as X variables, and intensities of odor
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intensities from GDA as Y variables) was created to evaluate the contribution of
detected odorants on the odor attributes of raw minces (Figure 17). In case of
both columns, most of the odorants, separating the samples on Factor-1, were
associated with the total intensity of odor, fishy odor, fish oil odor, marine odor,
and the stored control mince (C-3d). These odorants included several lipid
oxidation derived compounds, such as propanal, hexanal, (Z)-3-hexenal, (£,2)-
2,6-nonadienal, (Z£)-4-heptenal, and (£)-1,5-octadien-3-ol, 2,3-pentanedione, and
(E,Z2)-3,5-octadien-2-one. In a previous study lipid oxidation derived fishy odor
in sea bass skin which was associated with an increase in several volatiles, such
as hexanal, heptanal, and 1,5-octadien-3-ol (Sae-leaw and Benjakul, 2014). In
Figure 17, the other three minces were positioned on the right side of the plot
due to lower weighed intensities of lipid oxidation derived odorants. The close
proximity of SRO1.5 0d and SRO1.5 3d on the plot (in relation to Factor-1)
shows that the odor, flavor, and odor-active compounds of mince containing
SRO was not considerably affected by the storage.
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A Correlation Loadings (X and Y)
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Figure 17. PLS model of odor-active compounds (X variables, as NIF*intensity,
n=26 (A) or n=24 (B)) and rated intensities of odor attributes (Y variables, n=7)
in raw fresh (0 d) and stored (3 d) Baltic herring minces with and without SRO
(1.5%) (IV). Codes A1-A26 and B1-B24 refer to Table 19 and Table 20,
respectively.
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5.4 General discussion

The pH-shift processing and enzymatic hydrolysis, as potential ways of
valorizing Baltic herring and roach, were investigated in study I. While lipid
oxidation in FPIs and FPHs is extensively studied, much less attention has been
paid on investigation of their lipid composition and protein oxidation, though
both may play an important role in the nutritional, sensory, and functional
properties of FPIs and FPHs.

The FPIs and FPHs from Baltic herring and roach differed considerably in the
measured compounds or indicators. Acid and alkali extracted FPIs from both
Baltic herring and roach were associated with a high content of EAAs and high
EAA:NEAA ratios, while FPHs were associated with hydroxyproline and
glycine, which are abundant in collagen. Alkali extracted FPIs were
characterized by oxidation indicators PV, propanal, hexanal, and protein
carbonyls, while #n-3: n-6 ratio was highest in acid extracted isolates. FPHs had
higher relative content of TAGs compared to FPIs. Further, in FPIs and FPHs
there was a negative correlation between the relative content of n-3 FAs and total
PUFAs to 1-penten-3-ol, which is likely due to oxidative degradation of n-3 FAs
since 1-penten-3-ol is known to be an oxidation product of n-3 FAs, such as DHA
(Ahonen et al., 2022). The results presented here showed that the pH shift,
compared to enzyme assisted extraction of Baltic herring and roach
proteins/peptides, was more favorable in terms of nutritional quality, but
challenging in terms of oxidation.

Alkaline extraction has often been considered as more favorable compared to
acidic pH shift, as it has been reported better in terms of protein yield (Abdollahi
and Undeland, 2019; van Berlo et al., 2023), lipid removal (Marmon and
Undeland, 2010; van Berlo et al., 2023; Zhong et al., 2016), and gel forming
ability (Phetsang et al., 2021b), and therefore only alkaline pH-shift extraction
of Baltic herring proteins was investigated in study II. However, according to
the results of study I, as well as findings by others (Abdollahi et al., 2020), the
acid version of the process may lead to more limited oxidation compared to the
alkaline process in some fish raw materials. Further, Surasani et al. (2018)
reported that acidic extraction (pH 2.0) was found to have minimal effect on
proteins and to result in stronger gels, while alkaline extraction (pH 13.0) caused
protein denaturation, resulting in less stable proteins and gel network.

In studies III and IV, most antioxidant additions retarded lipid oxidation in
Baltic herring mince, as indicated by inhibition of oxidation related volatiles
(such as 2-ethylfuran, 1-penten-3-ol, hexanal, (E)-2-hexenal, and (E,Z2)-3,5-
octadien-2-one). Most antioxidants showed higher inhibition at the early storage
period (2 months or 3 days) compared to the end of storage (10 months or 14
days). EDTA, however, did not provide antioxidative effects during frozen
storage, as volatile formation was similar or even higher compared to the control.
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The combination aT+AA showed similar inhibition for formation of all volatiles
during storage at —20 °C (III) and 1 °C (IV), showing a greater effect towards
formation of 2-ethylfuran and 3,5-octadien-2-one, and a weaker effect towards
1-penten-3-ol. The two berry press residues investigated in both studies, SR3 and
LR3, performed similarly in both storage trials. AB was effective in retarding
oxidation during frozen storage of Baltic herring mince, but since AB is a
mixture of supercritical CO» extracts that are considered as novel foods, AB
cannot currently be used in the food industry. Therefore, it was not investigated
further in study 1IV.

In minced Baltic herring with no added antioxidants, lipid oxidation was
reflected in the odor and flavor already after 3 days at 1 °C, but these changes
could be inhibited by addition of 1.5% LR and especially SRO. Their
antioxidative effect could also be seen as lower intensities of lipid oxidation
derived odorants, such as (Z)-4-heptenal, hexanal, (£,Z)-2,6-nonadienal, and 2,3-
pentanedione that may have contributed to the development of fishy odor in the
control mince. In a study by Wu et al. (2021c¢), lipid oxidation occurred already
within one day of storage at 0 °C in herring filleting co-products, but could be
inhibited by an antioxidant dipping treatment. Tolasa Yilmaz et al. (2018) on the
other hand reported that a significant increase in TBARS was already observed
after 20 minutes (at 0 °C) of mincing in sardine in the absence of antioxidants.
Altogether, mechanical treatment further increases the rate of lipid oxidation in
fish susceptible to oxidation due to increased contact of enzymes, pro-oxidants,
and oxygen with lipid oxidation substrates, and therefore use of antioxidants is
essential to prevent a substantial loss in quality.

Based on the present findings and previous literature, the fishy and rancid odor
of FPIs and FPHs is not only determined by the extent of lipid oxidation during
the process but also their capacity to bind/release (odor-contributing) volatiles.
For instance, despite the lower PVs and lower formation of most oxidation
related volatiles in Baltic herring FPHs compared to FPIs (I), FPHs had a higher
intensity of fishy odor and flavor (Nisov et al., 2021). As proteins are known to
bind compounds contributing to odor and flavor (Damodaran and Kinsella, 1983;
Gu et al., 2020), it is likely that their hydrolysis results in a lower ability to bind
these compounds. In study II, the difference in total odor and odor-active
compounds between Baltic herring and Baltic herring FPI could not be simply
attributed to e.g. removal of lipids or possible increase in lipid oxidation during
the pH shift, but was likely at least partly explained the changes in the matrix
(including differences in water content) and therefore altered ability to
bind/release volatiles.
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5.5 Limitations of the study and future prospects

While most of the important odorants in studies II and IV were identified, a
considerable number remained unidentified. Due to the low threshold of many
odorants present in fish, their detection and identification using HS-SPME-GC-
MS was challenging. Despite the many benefits of HS-SPME extraction in the
analysis of odor-active volatiles (Iglesias and Medina, 2008), the content of
extracted volatiles is rather low. Higher extraction temperature than 35-40 °C
used in the present study, or extraction using some other technique, such as
dynamic headspace (Frank et al., 2009) could have enabled higher sensitivity and
better identification. SPME-Arrow extraction was also seen to result in
extraction of a wider range of compounds from fish sauce compared to HS-
SPME (Song et al., 2019). In addition, in order to gain deeper knowledge on the
significance of individual odor-active compounds and their interactions on odors
of Baltic herring, further research including recombinant and omission studies
using different combinations of identified odor-active compounds is needed.

The kinetics and significance of different lipid oxidation pathways were not
studied in this thesis. Assessment of e.g. lipoxygenase activity, content of heme
proteins, heme and non-heme iron, etc. in protein isolates and hydrolysates or
Baltic herring mince could have provided information of progress of lipid
oxidation in different stages of processing or under different storage conditions.
Further research should investigate these mechanisms in Baltic herring, as well
as the mechanism of antioxidative effects of berry residue additions. This work
showed the protective effect of berry press residues on the sensory quality of
Baltic herring mince during storage. However, further consumer tests are needed
regarding the effect of these additions on the liking of Baltic herring.

In study I, only alkaline pH shift was used to prepare the Baltic herring FPI.
Including the acid solubilized FPI would have been interesting in order to see
whether the possibly lower rate of oxidation could have further reduced the fishy
odor and total intensity of odor compared to alkali extracted FPI. The effect of
acidic pH shift should be further studied for Baltic herring, and other fish species
for which only alkaline process has been investigated. Further, in studies I and
I, no antioxidants or washing processes were used during the pH-shift and
enzymatic hydrolysis and a high rate of oxidation especially in case of Baltic
herring FPIs was observed. Previous studies have reported the use of different
pre-washing processes to improve heme protein removal (Abdollahi et al., 2016;
Chanarat and Benjakul, 2013). However, washing may lead to rapid
development of oxidation despite removing heme proteins, due to a decrease in
endogenous antioxidants of the fish muscle (Harrysson et al., 2020). Natural
antioxidants have been shown to limit oxidation during both pH shift (Abdollahi
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et al., 2020; Zhang et al., 2022) and enzymatic hydrolysis of fish (Halldorsdottir
et al., 2014, 2013; Yarnpakdee et al., 2012c). As SRO was an effective
antioxidant in Baltic herring mince, its antioxidative effects during the pH shift
processing of Baltic herring should be investigated in the future.
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6 SUMMARY AND CONCLUSIONS

This thesis focused on new ways of increasing utilization of under-utilized fish.
While this research focused only on Baltic herring and roach, the findings may
provide valuable reference for processing of other under-utilized fish species as
well. The two processing methods studied were the pH shift and enzymatic
hydrolysis, both of which have been widely studied for other fish species but not
Baltic herring or roach. On the other hand, the addition of natural antioxidants in
Baltic herring mince during refrigerated or frozen storage was investigated as a
means of inhibiting lipid oxidation and changes in sensory quality.
‘Antimicrobial blend’, lingonberry juice press residue, sea buckthorn juice press
residue, and sea buckthorn juice press residue after supercritical CO; oil
extraction as natural additions were compared to conventional antioxidants,
EDTA and a-tocopherol in combination with ascorbic acid.

The composition of proteins and lipids was significantly affected by the
processing method (pH shift or enzymatic hydrolysis). The amino acid
composition was better in the alkali and acid extracted FPIs compared to FPHs
from both roach and Baltic herring, as the pH shift led to enrichment of essential
amino acids relative to non-essential amino acids. The pH shift also led to
accumulation of phospholipids and polyunsaturated fatty acids, especially DHA,
in acid extracted FPIs. Particularly alkaline pH shift, however, induced
considerable lipid and protein oxidation. The FPHs showed more moderate
formation of hydroperoxides, secondary volatile oxidation products, and protein
carbonyls.

The incomplete elimination of fishy odors and flavors during preparation of
FPIs and FPHs is a major factor limiting their use. Based on this thesis research,
while not completely eliminating these odors, the alkaline pH shift reduced the
total intensity of odor and the intensity of fishy odor in Baltic herring. Based on
analysis of the odor-active compounds, the reduction in fishy odor could not be
attributed only to lipid-derived compounds. Changes in binding/release of odor-
active volatiles is likely to explain some of the differences observed in the odor
of the protein isolate compared to Baltic herring as such.

The natural antioxidants LR, SR, and AB retarded lipid oxidation in Baltic
herring mince stored at —20 °C more effectively than EDTA or a-tocopherol and
ascorbic acid, as indicated by lower loss of EPA and DHA, lower PV, and/or
lower formation of secondary oxidation related volatiles, such as 1-penten-3-ol
and hexanal. The addition of AB, and 3% LR and SR, however resulted in lower
likeness scores when evaluated as fish loaves. In the refrigerated storage trial,
three different concentrations, 3%, 1.5%, and 1%, of berry residues were
investigated to determine whether the concentration could be decreased without
compromising their antioxidative effect. Based on formation of hydroperoxides
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during 0-21 days, and formation of 1-penten-3-ol, hexanal, and 3,5-octadien-2-
one during 0—14 days of storage at 1 °C, SRO and especially LR were efficient
antioxidants also at the lower concentrations. A significant change in sensory
quality was observed in the Baltic herring mince without antioxidants during the
3-day storage at 1 °C. The fishy odor, fish oil odor, and marine odor increased
significantly in raw control mince, but berry press residues, particularly SRO
(1.5%), prevented changes in sensory quality.

Further investigation of odor-active compounds showed that 1.5% SRO
retarded the formation of lipid oxidation derived odor-active compounds, such
as propanal, hexanal, (Z)-4-heptenal, (E,Z)-2,6-nonadienal, and 2,3-
pentanedione, which were detected at a higher frequency and/or intensity in the
stored control mince. According to the results, SRO at a concentration of 1.5%
was efficient in retarding the lipid oxidation derived quality loss in Baltic herring
mince, based on retarding the formation of hydroperoxides, secondary volatile
oxidation products, lipid-oxidation related odorants, and formation of fishy odor
and flavor. LR, SR, and SRO are side streams of berry juice and oil production,
and their use as antioxidants would provide added value for these currently
under-utilized materials as well.

Altogether, the result showed that the pH shift and enzymatic hydrolysis can
be used to extract proteins from roach and Baltic herring and are potential
methods to improve utilization of especially small fish that are too small to be
filleted. Using these methods also allows collection of lipids as another valuable
fraction, although it was not investigated in this study. However, special attention
should be paid to controlling lipid oxidation during the processing of Baltic
herring. Addition of appropriate antioxidants, such as berry press residues, may
help to preserve the sensory quality of Baltic herring and retard the development
of odor characteristic to stored Baltic herring.
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