
Assisting product line thinking and
information sharing using a real-time
visual tracking model for agile epics

Master of Science in Technology Thesis
University of Turku
Department of Computing
Software engineering
2023
Mio Mattila

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Mio Mattila: Assisting product line thinking and information sharing using a
real-time visual tracking model for agile epics

Master of Science in Technology Thesis, 92 p., 3 app. p.
Software engineering
May 2023

The aim of this thesis is to understand and reduce repeated development of software
artefacts, mainly in terms of the software components that are produced in the or-
ganization of Natural Resources Institute Finland. The thesis consists of a literature
review around code reuse and the software product line method of building software.
In the case study of the thesis, a visual model is added to the Jira environment of the
organization of Natural Resources Institute Finland DIGI unit. The project workers
associated with each project are interviewed both before and after the visual model
was added.
Through the results of the interviews, the study identifies improvements to un-
derstandability and presentability of projects. Suggesting that the addition of a
graphical model for epics on a high abstraction level helps project workers increase
information sharing within an organization, but more research is needed to under-
stand and enable the technical impact of the model.

Keywords: Visualization, information, software product line, software reuse,
component-based development, software development

Contents

1 Introduction 1

2 Conventional code reuse and software product line 5

2.1 Fortuitous, small-grain reuse . 6

2.2 Component and service based development 7

2.3 Software product line engineering . 10

2.3.1 Variability in software product lines 11

2.3.2 The basics of SPL . 13

2.3.3 Visual assistance . 17

2.3.4 SPL and agile development 19

3 Software product line activities 21

3.1 Domain engineering and core assets development 22

3.1.1 Domain engineering . 22

3.1.2 Domain analysis . 24

3.1.3 Domain design . 25

3.1.4 Domain implementation . 26

3.1.5 Core assets development . 26

3.1.6 Similarities of core asset development and domain engineering 27

3.2 Product development and application engineering 28

3.3 Management and organizational management 29

i

4 Case study 32

4.1 Backround . 32

4.1.1 Luonnonvarakeskus as an organization 32

4.1.2 Jira . 34

4.2 Case description . 36

4.3 Methodology . 40

4.3.1 Research outline . 41

4.3.2 interview method and implementation 46

4.4 Case implementation . 55

4.5 Interview results . 64

4.5.1 Background question answers 64

4.5.2 Interview round 1 . 67

4.5.3 Interview round 2 . 73

4.5.4 Other disscussion during interviews 82

4.5.5 To summarize . 84

4.6 Case study results . 84

5 Discussion 87

6 Conclusion 91

References 93

Appendices

A The original interview document in Finnish A-1

List of Figures

2.1 Custom software and outsourced software compared, drawn by ideas

of Cost efficiency and adaptability by Sryperski et al. [12] 8

3.1 The essential activities cycle of software product line according to

Northrop, Linda, et al. [7] . 22

4.1 Natural Resources Institute Finland being formed from 4 different

organizations . 33

4.2 The native sidebar in Jira showing epics in a list as well as epic progress 38

4.3 Initial conceptual draft for a graph-based view for a system called

Ahti showing the epics of the project as movable cells 39

4.4 Research outline of this thesis drawn with the methodology of Wohlin,

C. and Aurum, A. [45] . 42

4.5 The main interview question structure 48

4.6 The number of participants sectioned by their Job descriptions 52

4.7 The interview challenge of the interview drifting off from the origi-

nal interview question multiple times and the interviewer eventually

moving on to the next question without clarifying the original answer 54

4.8 The add-on used to build the visual model, Epics Map by Herocoders,

pictured in the Atlassian marketplace 56

4.9 The Sidebar of the Jira project view, after downloading the Epics

map add-on . 57

iii

4.10 The future roadmap plans of Epics map, Atlassian marketplace . . . 58

4.11 Epics map showing dependency lines to the author’s test project ”Ad-

vanced epics” . 59

4.12 The Epics map view showing the user stories under an epic, after the

epic has been clicked . 60

4.13 View of Suomu project . 61

4.14 View of Näytehallinta project . 61

4.15 View of Tikal project . 62

4.16 An epic card showing it’s title being cut off 63

4.17 A issue view of an epic’s title being shown first, and the much shorter

epic name being shown after in a modified Jira issue view 64

1 Introduction

Since I started studying computer science over seven years ago, I’ve been wondering

how do programmers avoid building the same systems in different places. Back in

2015 I had this thought that there must be ready-made software solutions in the

world for managing large organizations and their data, and that the market share

of these solutions would be fairly big.

This way there would not be too many providers of the same solution, lets say

in the field of hospitals and patient care for example. My thought also was that the

building blocks for implementing management systems would be easily available.

I’ve assumed that the role of a organizations IT department is equal amounts of

maintaining the systems and building new software, that the IT department could

easily address the needs of the whole organization.

But now, as the dark reality of the world has slowly been setting into me, I’ve

discovered that no, there are no real easy building blocks, and no, there are no widely

used solutions worldwide. Everyone’s just implementing the same things over and

over and over again.

So for my thesis I wanted to do a case study that was grounded in practicality

and fit my current employer, possibly adding some new value to my employer’s

software development methods as well as improving upon the literature that has

already been written. The idea was largely centered on how I could reduce the

amount of repetitive software development worldwide.

CHAPTER 1. INTRODUCTION 2

I thought that I cannot find a simple solution to this problem but I can build

upon a solution from the bottom up, and this thesis is a part of that bottom solution,

me finding my bearings on how repetitive software development could be reduced

and how the software development process works on a very basic level.

At Luonnonvarakeskus, the Natural Resources Institute Finland also called Luke,

our project team kept running into the challenge of needing new common compo-

nents to function, while also acknowledging that those common components could

be used for our own project and for other projects at Luke, components such as con-

tact information register and login manager. Our team also knew there was a high

likelihood of similar components being implemented before in previous and adjacent

projects, and us simply not knowing about their existence.

I wanted to see if this problem could be addressed on software production level,

if our tools could somehow facilitate the development of software components in

a way that made their development more visible and easier to be included in the

design process, and since I had worked as a Jira-admin in Luke for half a year, I

decided that Jira as a platform would be best suited to answer this challenge.

Jira is a issue tracking system, at Luke it also functions as a requirements man-

agement system, as the requirements are documented as jira issues, often at epics

level. Because of this it was the tool where software development work was most

often listed, referenced and viewed by developers of our project.

To see how we could make software production more complete and reduce re-

peated work, I decided to do a interview-based case study at Luke. To see if my

project team, and other developers at Luke could benefit from a visual Jira add-on,

I first implement the add-on, and after a trial period, interview project members

to get an idea whether or not the add-on helped with the software development

process.

The add-on would help people understand the state and structure of projects

CHAPTER 1. INTRODUCTION 3

better, and also make it easier to communicate with other users using the visual

graph-based views. My hypothesis being that if visual clarity and linking of issues

between projects was added to Jira, information sharing and identifying repeated

software components would get significantly easier.

The research question to direct this thesis formed to be: How can a high-level

real-time visual tracking model assist in bringing product line thinking and increas-

ing information sharing within an organization? To answer the research question,

the original research question was broken down into three subcategories which would

be answered trough the case study interviews. The subquestions were:

• In what ways can a visual Jira architecture model of high level abstraction

help software engineering?

• Could a Jira architecture model of high abstraction level help in information

sharing for both a project and an organization?

• Could a repeatable Jira architecture model of high abstraction help with de-

veloping repeated software components?

The focus of the study was in implementing a visual model for agile requirements

artifacts in order for it’s users to better detect repetitive components, and to commu-

nicate better through being able to see projects state in a clear, up-to-date visual

manner, ultimately paving way for the organization of Luke DIGI unit to better

avoid building the same components twice and being able to move towards product

line thinking. To measure the effect of the study, two rounds of interviews were done

before and after the implemented visual model, the interviews are analyzed through

an adapted version of thematic analysis.

CHAPTER 1. INTRODUCTION 4

There are three main chapters in this thesis, the first two are chapters 2 and 3

which go through the current research environment around software reuse and soft-

ware product line through the means of a literature review. In chapter 4 the research

setting, implementation of the visual model, interviews and the results of the study

are observed. Lastly, the findings of the thesis are discussed and concluded.

2 Conventional code reuse and

software product line

Software reuse is the process of creating new software systems from existing software

artifacts instead of always building new software systems from scratch[1, p. 133]. The

existing software artifacts can be anything like source code fragments added with

simply just copying and pasting, but they can also be things like design structures,

module-level implementation structures, specifications, documentation, transforma-

tions, and so on[2].

There is a great diversity in software technologies and and artifacts that involve

reuse, but there is also commonality among all of the different reuse techniques[1,

p. 133]. This commonality can take the form of software component libraries, object-

oriented knowledge bases, application generators and code skeletons[3], they all in-

volve abstraction, specialization of use, selection and some level of integration.

Developing a viable reusability system is an investment that does not have an

early payoff, meaning that populating a library of reusable artifacts blocks the de-

velopment of a working reusability system[3]. Most reuse strategies fail in their

efforts to have any real technical or economic impact[4]. Making high-quality mod-

ern software is hard[5], and making it systematically while also enabling reuse is

even harder[6].

This chapter takes a brief look on the different kinds of approaches towards

2.1 FORTUITOUS, SMALL-GRAIN REUSE 6

software reuse in the field of software development, weighted towards introducing

the software product line engineering method.

2.1 Fortuitous, small-grain reuse

Reuse, as a software strategy for reducing development costs and increasing software

quality is not a new idea. Many reuse agendas have focused on reuse of relatively

small parts of code, called small-grained reuse. Libraries of algorithms, modules,

objects, or components, and developers are urged to use the library instead of writing

their own code from scratch. [7, p. 6–7]

Unfortunately, it takes time to locate these small pieces of code, add them to

the library, and integrate them into a system, this process often takes more time

than making a new system from scratch, and the possibly existing documentation

for these pieces of reusability might make the integration easier but not how it can

be generalized or adapted to the new system. [7, p. 6–7]

Opportunistic reuse, for example cutting and pasting code from old programs

into new ones[5], creates technical debt[8] and the traceability of copy-pasted code

may introduce problems tracing back to it’s source[9]. Things like the increased

productivity from code reuse and cost reduction, have downsides of snowballing

dependencies and questionable maintenance[9].

Benefits of small-grained reuse depend on the software engineer’s predisposition

to use the contents of the library, the applicability of the library’s contents for what

the engineer needs, and the success of the integration of the library’s units into

the rest of the system that the engineer is developing. If reuse occurs under these

conditions, it is deemed as fortuitous reuse and the payoff is usually nonexistent. [7,

p. 6–7]

Maximising the reuse of tested source code can bring improvements in cost, time

and quality, while also reducing the need to develop new code. Reusing code is only

2.2 COMPONENT AND SERVICE BASED DEVELOPMENT 7

the low-level beginning of reuse. Practising reuse systematically requires additional

effort. [10, p. 11]

Single-System Development with Reuse

There’s also single-system development with reuse. If you are developing a new

system that is very similar in structure to the one you have built previously, you

borrow what you can from your previous offer, modify it as necessary, add what-

ever it takes, and ship the product, which then assumes its own maintenance cycle

separate from the original system, you have just performed an action called "clone

your own", which is single system reuse. By doing this, you have taken a economic

advantage of your previous work by reusing a part of a another system. But now a

new problem has emerged, you have two entirely different systems, not two systems

built from the same base. This is also ad hoc reuse. [7, p. 7]

2.2 Component and service based development

In 1999 Gartner Group predicted that by 2003 up to 70% of all new software-

intensive solutions will be constructed with "building blocks" such as prebuilt com-

ponents and templates. [11]

Literature offers many definitions for what the word component means in soft-

ware development[12]. Perhaps the most used one is Szyperski’s definition[13]; A

software component is a unit of composition with contractually specified interfaces

and explicit context dependencies only. A software component can be deployed inde-

pendently and is subject to composition by third parties. [12, p. 195]

In component-based development, a component is a independently deliverable

piece of functionality providing access to its services through interfaces. It is more

than just a modular programming approach, an object or class in an object-oriented

system, or a package in a system model. The basic approach of CBD is to build

2.2 COMPONENT AND SERVICE BASED DEVELOPMENT 8

systems from these well-defined, independently produced pieces.[11]

The purpose of component-based development, is to develop systems as assem-

blies of parts (components), the process of making these parts as reusable entities

as well as the maintenance[11][12, p. 4–5] and upgrading of these systems by cus-

tomizing and replacing such parts. [13]

This is an ideal software development scenario where development is done by

building applications by assembling high-level components[10, p. 67], also known

as services, from both in-house and from the market of components[7, p. 7]. If a

desired component is not available, it can be built from lower-level components or

built from scratch by code[10, p. 67].

Szyperski et al.[12] describe component-based development as a middle path

between fully self-built custom software and buying a ready solution[12, p. 6], Illus-

trated in figure 2.1.

Figure 2.1: Custom software and outsourced software compared, drawn by ideas of

Cost efficiency and adaptability by Sryperski et al. [12]

2.2 COMPONENT AND SERVICE BASED DEVELOPMENT 9

Component-based systems provide advantages when compared to buying ready-

made software solutions, they provide more flexibility, as they are extensible and

modifiable, they also allow the acquiring party more organizational flexibility, as

the organization does not need to fit their practice around the software solution

that was bought. [12, p. 5–6]

And while custom software does offer high adaptability and can perfectly fit the

needs of a organization, production from scratch is a very expensive undertaking[10,

p. 97]. Reaching the optimal solutions is hard in anything but the local areas of

expertise, and the risk of failure is high. Interoperability requirements and delivery

time into the desired market window can also introduce a burden. [12, p. 5–6]

The ability to both buy and develop components could offer guaranteed quality,

adaptability[12, p. 4] and faster time to market when comparing component-based

software to both custom built software and a ready made standard solutions[12,

p. 4–504].

The advantages of component based design include more effective management

of complexity, reduced time to market, increased productivity, a greater degree of

consistency, and a wider range of usability. [13]

But there are also disadvantages and risks in using Component-based design

which can be a danger to it’s success[13]. The factors which can discourage the

development of reusable components is the complexity difference in designing and

developing components as they require more effort in designing requirements, testing

as well as integration[14] [15]. Even though development time of systems using

components is reduced in coding, debugging, unit testing, and code inspections,

design and testing are modified or increased[14] [15].

In practice, those working in the field of software have noted that the develop-

ment and design of reusable components takes significantly more effort compared

to components that are designed for a singular use [16] [13] [15] while the cost can

2.3 SOFTWARE PRODUCT LINE ENGINEERING 10

be gained back from the reuse of the reusable component[16]. Engineers at siemens

had made an observation that the overhead cost of developing reusable components

was recovered after the fifth reuse[16].

Difference between component-based development and product line en-

gineering

Northdrop et al. [7, p. 7] states that in a product line the generic form of a com-

ponent is evolved and maintained in the core asset base as opposed to component

development where variation is usually accomplished by writing code, and variants

are most likely maintained separately. Northdrop et al. also state that component-

based development lacks the technical and organizational management aspects that

are important to the success of a software product.[7, p. 7]

It is clear that Component-based development is very close to software product

line development. Components, plans for reuse and systems planning reuse of the

components in CBD are all still very close to the core idea of SPL, CBD could be

seen as a precursor to SPL.

2.3 Software product line engineering

Initially this research struggled to find reference points to literature that would ap-

propriately describe the environment which the author was trying to find solutions

for, but as a saving grace the term software product line was found. The term "soft-

ware product line" is used almost synonymously with the term "software product

family". In Europe the term software product family is used more often and in

North America the term software product line is used more frequently[17, p. 4-18].

So what is a software product line? The way goods are produced has changed

throughout human history, formerly goods were handcrafted for individual cus-

tomers, and later on, product lines started to appear which enabled the production

2.3 SOFTWARE PRODUCT LINE ENGINEERING 11

of large amounts of products for large audiences much more cheaply than what the

previous method, crafting by had, allowed. Although the drawback to the product

assembly line being that it reduced possibilities for diversification. [17, p. 4-18]

Roughly, both individually crafted and mass produced produced products can

be identified in the field of software nut just in traditional fields of production. The

different kinds of software products can roughly be identified as individual software

and standard software. Each type of these products has it’s drawbacks, individual

software can be costly, and standard software products lack sufficient diversification.

[17, p. 4-18]

So how do we move on from individual software to mass produced software where

there can also be diversification? We design a common platform on which to build

more individualized products. Much like in the car industry where engineers started

to build sets of platforms for cars.

A car chassis for example, is a part of the car platform[18]. For example, entirely

different cars could be built for different customer segments[17, p. 4-18]. Large-scale

production where the products are tailored to individual customers’ needs is called

mass customization[17, p. 4-18].

By systematically combining a common platform and mass customization, the

benefits of both individual and standard software can be achieved. The practice of

systematically combining mass customization and the use of common platforms for

the development of software-intensive systems is called product line engineering. An

example in the physical world would be a car platform: A set of bases is built and

variations can be designed on top of the platforms. [17, p. 4–18]

2.3.1 Variability in software product lines

Documenting and managing variability is one of the key properties that makes soft-

ware product line engineering unique. The explicit definition and management of

2.3 SOFTWARE PRODUCT LINE ENGINEERING 12

variability differentiates SPLE from single-system development and software reuse.

[17, p. 55–88]

A variant is a representation of a variability object within a domain artefact[17,

p. 55–88]. Meaning for example, that if the domain artefact is a car, the variation

point for that car could be ”type of wheels” and the different variants could be square

wheels and round wheels. Than playing along with this example, the resulting

applications from this product line could be square-wheeled car and round-wheeled

car. All the parts of the car could be the same exept for the wheels.

Variability enables the derivation of different distinguishable applications in the

product line. The importance of being able to communicate the variability and avail-

able variability within a software product line to customers entails the distinction

between internal and external variability. [17, p. 55–88]

Variability can be represented through various models, plans and textual docu-

ments, variability modeling is a central technique required to put software product

line engineering into practice. The variability of a software product line is repre-

sented and specified in a separate model consisting of the variation points, variants

and their relationships. [17, p. 55–88]

A variability model must be established so that developers and other project

workers have a consistent way of representing variability, and have a guideline and

a shared understanding on the way variability is represented in all of it’s forms in

different artefacts. [17, p. 89–113]

It’s worth also noting that the tools for modeling variability play a key role in

the variability model representation and understandability. There are additional

challenges in documenting variability, as feature models for variability contain vari-

ability[17, p. 89–113]. Documenting variability in textual requirements presents

additional challenges for readability[17, p. 89–113].

The variability model helps developers in the domain engineering, so that variable

2.3 SOFTWARE PRODUCT LINE ENGINEERING 13

requirements artifacts are consistent, and in application requirements engineering

the variability model is used to create consistent sets of requirement artifacts. [17,

p. 89–113]

In their book, Pohl et al. [17] list the intricacies of variants as well as their

documentation in fine detail, this section only represents a very fine scratch on the

surface of the subject: product line variability.

2.3.2 The basics of SPL

This sections aims to define and introduce more specific traits of software product

line through the benefits and costs of the paradigm.

The benefits

According to Reinhartz-Berger et al. [4], software product line engineering discipline

addresses both technical and economic benefits and achieves systematic reuse of

software across the product line through the following means:

1. capturing common features and factoring the variations across the domain or

domains of a product line

2. developing core assets used in constructing the systems of the product line

3. promulgating and enforcing a prescribed way for building software product

line assets and systems

4. evolving both core assets and products in the product line to sustain their

applicability

Additionally, Northdrop et al. [7, p. 8–9] list the organizational benefits of having

a software product line approach.

• large-scale productivity gains

2.3 SOFTWARE PRODUCT LINE ENGINEERING 14

• decreased time to market

• increased product quality

• decreased product risk

• increased market agility

• increased customer satisfaction

• more efficient use of human resources

• ability to effect mass customization

• ability to maintain market presence

• ability to sustain unprecedented growth

These benefits lead to the organizations using SLP to having competitive ad-

vantage, the benefits are derived from the reuse of core assets in a strategic and

prescribed way. [7, p. 8–9]

According to Northdrop et al. [7, p. 8–9] once the care asset base for the prod-

uct line is established, there are direct savings each time a product gets built in

requirements, architecture, components, modeling, and analysis:

Requirements There are common product line requirements, which can be reused.

Architecture Architecture documents are a big commitment requiring the time

and effort of experienced software developers setting the quality details of a

system. If the architecture is wrong, the system cannot be saved. Software

product line allows for a singular architecture used for each product of the

same product line and only needs to be instantiated. Considerable time and

risk are spared.

2.3 SOFTWARE PRODUCT LINE ENGINEERING 15

Components Up to 100% of the components in the core asset base can be used

used in each product.

Modeling and analysis Different analysis outputs have been established for ex-

isting core assets. With each product, the confidence of estimations gets better

and the bugs associated with distributed systems and their networks and such

have been corrected.

Testing Generic test plans, test processes, test cases, test data and communica-

tion paths have already been built, only new test cases have to be made for

variations in the product line.

Planning The production plan has already been made and budgets and schedules

from previous plans provide a good basis for product work plans.

Process Configuration management tools and processes, management processes,

and the overall software development process are in place, have been in use,

are robust, reliable, and responsive to the organization’s needs.

People Fewer people are required to build products and people are more easily

transferred across the entire product line.

The assets base includes those artefacts that are the most costly to develop from

scratch in software development, things like requirements, domain models, software

architecture documents, performance models, test cases and components[7, p. 7].

In a product line, all the core assets are designed to be reused and are optimized

for use in more than a single system. The reuse with software product lines is

comprehensive, planned and profitable[7, p. 7].

Software product lines give economies of scope, which means that you take ad-

vantage of of the many products in the organizations portfolio, that are very similar

to each other, but not by accident. It’s because the you it that way. Deliberate,

2.3 SOFTWARE PRODUCT LINE ENGINEERING 16

strategic decisions are made and you are systematic in effecting those decisions. [7,

p. 5–6]

After a product line has been implemented, creating software is more about

integration and less about traditional coding. For each software product line, there

is a predefined guide or plan that tells the exact path to building a product. [7, p. 5]

The costs

Even though the strategic reuse of core assets that defines product line practice

represents an opportunity for benefits across the board, decision to launch a product

line should not be made lightly, any organization should have a clear business goal

in mind and the benefits of those goals should align with the achievement of those

goals. When establishing a software product line there’s going to be a upfront cost

of establishment, as well as costs related to the maintenance of the core asset base.

[7, p. 11–13].

Bringing a software product line to the market requires a blend of skilful engineer-

ing, technical management and organizational management [7, p. 3]. Requirements

become much more tasking in terms of negotiation and analysis, requirements ne-

gotiations have to account for both common requirements and variation points. [7,

p. 11–13]

Defining the product architecture also becomes harder, the architecture must

support the variation of the product line, requiring additional expertise, components

must also be designed with extensibility in mind so that they can support variability

as well as generality. [7, p. 11–13]

Planning the business case, marketing analysis and estimates for time and cost

must also be generalized, test artefacts must be made more robust so that they

can support more than one product, and they must be extensible so that they

accommodate variation among the products. [7, p. 11–13]

2.3 SOFTWARE PRODUCT LINE ENGINEERING 17

And lastly, personnel must be trained beyond general software engineering and

corporate procedures, to ensure that they understand software product line practices

and can use the core assets and procedures associated with the product line. The

training of new personnel also becomes more tasking as they need to be introduced

to product line development so training materials must be created that address the

product line. As the organization matures, the shift towards more specific domain

expertise and technology forecasting, the shift towards this kind of expertise change

must be managed. [7, p. 11–13]

It takes a certain level of maturity from the developing organization to use soft-

ware product line successfully. There are technological practice changes as well as

managemental changes to be made in order for a organization to use SPL. The suc-

cessful use of SPL tests the prowess of an organization in terms of organizational

and technological leadership through a multitude of improvements.[7, p. 12-13] The

developing organization also need to have process discipline, as organizations that

fail to define and adopt processes will have to address those deficiencies early in

their path to SPL adoption[7, p. 174]. Software product can be iteratively improved

on during it’s adoption and use[7, p. 174].

However, for each of the aforementioned costs and drawbacks, the value of the

investment is usually far greater than the investment cost, most of the costs are

up-front costs, but once the approach is established, the organization’s productivity

accelerates rapidly, and the benefits far outweigh the costs, developer and customer

confidence both rising with each new instantiation. [7, p. 10–13]

2.3.3 Visual assistance

For the longest time, the data produced by computers has been visualized through

graphical methods[19]. There are many advantages to using visuality to represent

data[20][21].

2.3 SOFTWARE PRODUCT LINE ENGINEERING 18

in terms of readability, Well-designed charts are more effective in creating inter-

est and appealing to the viewers attention than huge text-based tables and visual

relationships are easier to grasp and remember. [21, p. 1–51][20, p. 6–14]

Graphical displays also represent many details in a small space, thus providing a

comprehensive picture of the problem environment, while also encouraging the eye

of the beholder to compare different sets of data simultaneously. [21, p. 1–51]

Software product lines are complex environments where the interactions with

the product line as a whole are complex, and in large numbers[22]. This presents

new unique challenges and makes maintenance and evolution tasks challenging[22],

demanding robust tool support for the software engineers to carry out the task of

feature implementation and interaction[23].

Unfortunately, there have been no robust visualization tools to support the work

of engineers to identify, analyse and manage features interactions which is indispens-

able for performing SPL evolution and maintenance tasks[23].

Current research around software product line engineering seems to rely on dia-

gram tools like the graphic API provided by Java SDK and Eclipse Modeling Frame-

work used with the Graphical Editing Framework. Visualization could be used a

lot more for SPL activities, when one looks at the publications made in the field of

software product line engineering, the visual techniques for testing have only been

used by 2 papers up until the year 2017. [24]

The most common artifacts that were visualized in research were feature models.

And the most common visualization technique was both trees and graphs. [24]

Complex interactions and layout possibilities are not used much in research,

however, using colour coding to distinguish artifacts from each other was a common

trend. [24]

The visualization of software is a subject which is gaining attention in the soft-

ware engineering community[23]. At the end of their paper, Illecas et al. [23]

2.3 SOFTWARE PRODUCT LINE ENGINEERING 19

mention that there are performance issues with larger feature models, and that they

aim to further integrate visualization with source code editors by introducing a link

between them. This might be for the same reasons that this study aims to include

the visual model in the same place as where the developers do their daily work.

2.3.4 SPL and agile development

While SPL and agile methods may seem contradicting, they can be combined in the

real world[25].

There exists a method called SPLICE, invented rather recently, a lightweight

software product line development process for small and medium size projects[26].

Altohough Vale et al. mentions that there seems to be no literature describing real-

life experiences in small and medium size companies using the method, not during

the writing of the splice method[26], there appears to be a study [25] by Geir K.

Hanssen and Tor E. Fægri, where they observed an organization successfully combine

SPL and agile methods.

SPLICE addresses the needs of small development teams who aim to adopt SLP

practices with low initial investment and fast return of investment in a volatile

environment by combining SPL and agile practices. In SLP there are a set of roles

for team members and a scrum team, but instead of a product owner, there’s a scope

owner. [26]

Instead of sprints starting with a regular planning phase, there’s portfolio plan-

ning which aims to provide a high-level description of the SLP business domain by

setting business goals, marketing strategies, products and major features. [26]

A product map is built along with a feature model, and prioritization is set

for the major features. Portfolio planning results in stakeholders being able to

perform comprehensive planning for development releases and sprints[26]. However,

the paper by Vale et al. does not provide proposals for the business case of the

2.3 SOFTWARE PRODUCT LINE ENGINEERING 20

funding structure associated with the agile product line.

According to [26] there are two major phases in SPLICE: Portfolio planning and

release development. Portfolio planning occurs first, to set the high-level domain

and business plans, Release development focuses more on the sprint planning side

of things. The research done by Hanssen et al. and Vale et al. proves that agile and

software product line development can be combined with promising results.

Software product lines continue to be the subject of research and research sur-

veys[24], and pose a possibility of a different future for the software development

environment. Maybe a future where the constant creation of unique bases for every

customer becomes a little less unique in the modern software development environ-

ment.

3 Software product line activities

This section uses two main sources to describe the activities of product line engi-

neering, A framework for software product line practice, version 5.0 [7]

by Northrop et al. and Software product line engineering [17] by Pohl et al.

The approaches of these two books differ in terms of the terminology used, and

slightly in terms of structure, but the outline and meanings behind the terminology

are essentially the same.

A notable key difference is that Northrop et al. in A framework for software

product line practice, version 5.0 describe the organizational aspects of product

line engineering separately in an activity they call management.

In a software product line there are three main activities, core-asset development

or domain engineering, product development or application engineering and man-

agement[7], illustrated in figure 3.1. The products or applications are built from

core-assets, but the core-assets may be built from existing products, or the core as-

sets that they are comprised of. Management oversees the synchronization of these

two processes[27].

3.1 DOMAIN ENGINEERING AND CORE ASSETS DEVELOPMENT 22

Figure 3.1: The essential activities cycle of software product line according to

Northrop, Linda, et al. [7]

3.1 Domain engineering and core assets develop-

ment

The article A Framework for Software Product Line Practice, Version 5.0 (2012)

[7] lists a different name for the domain engineering process called core assets de-

velopment. The article also recognizes that the terms core assets development and

domain engineering are often used synonymously in literature. To describe the do-

main engineering process, exclusively in the context of product lines, the term core

assets development will be used.

3.1.1 Domain engineering

Domain engineering is a set of activities that aim to develop, maintain, and manage

the creation and lifecycle of domains[4]. A domain can be defined by the set of

problems that applications can solve in that problem domain[28][10]. Examples

of domains include airline reservation systems, software development tools, user

3.1 DOMAIN ENGINEERING AND CORE ASSETS DEVELOPMENT 23

interfaces, and financial applications[10].

Software product lines give us a way to design and develop closely related systems

in unison. This kind of a application family shares a lot of common features, and

thus, it is possible to produce the members of the same family together in order to

take full advantage of reusable requirements and other common elements. [29]

To make reuse possible, software engineering is sectioned into two parts: domain

engineering to identify, find and implement the common features, and application

engineering that handles the production of individual applications[29]. This section

focuses on the domain engineering part.

Both SLP literature and component-based development mention domain engi-

neering as a focus. For example the works [30][7][31][17][29] all point out domain

engineering as a part of either component development or as a part of software

product line component development.

Domain engineering is an activity that should be carried out at the beginning

of the software specification phase if reuse is to be supported. Domain engineering

can yield an initial taxonomy of the main concepts of entities within an applica-

tions domain along with a artefact of some kind, such as a abstract model of the

application. Essential properties of the domain are captured and initial candidates

of reusable components can already be drafted. [31]

In terms of specified benefits of domain engineering, Bert et al. [32] have noted

that domain engineering offers several benefits in the field of digital decision support

software(DDSS). These benefits include reusability, adaptability, enhanced commu-

nication and collaboration, improved maintainability, reduced development time and

costs, as well as increased interoperability. These results are very similar to the ben-

efits of component-based development described earlier, as domain engineering is a

part of component-based development[31].

According to Harsu [29] Domain engineering is most often divided into three main

3.1 DOMAIN ENGINEERING AND CORE ASSETS DEVELOPMENT 24

phases: Domain analysis, domain design, and domain implementation. Domain

engineering process starts with domain analysis. The primary sources of information

are the existing applications and experts on the respective domain[31].

3.1.2 Domain analysis

Domain analysis can be seen as a process, the purpose of domain analysis is to

use software development information in a manner which leads to structuring and

organizing it to enable further reuse. Domain analysis supports the development

and evolution of information infrastructure that helps and enables reuse. Pieces of

this infrastructure can be domain models, development standards, and libraries or

repositories of reusable components. [33]

Domain analysis is not only restricted to product-line related applications, it

can also be used in single-systems engineering. The corresponding term for single

systems is system analysis. [29]

According to Harsu [29] the domain model, a result of domain analysis can consist

of the following parts:

Domain scoping

Domain scoping consists of domain definition and context analysis to find and

set the boundaries of a domain.

Commonality analysis

Commonality analysis produces the commonality document, it’s purpose is

to consider commonalities and variabilities in the domain by studying the

requirements and properties of the applications and concepts in the chosen

domain.

Domain dictionary

Domain dictionary is like a contextual wikipedia for the domain, it’s produced

3.1 DOMAIN ENGINEERING AND CORE ASSETS DEVELOPMENT 25

so that communication between stakeholders and project members becomes

easier and more precise.

Notations (concept modeling, concept representation)

Notations provide a uniform way of understanding, notations of the domain

model are things like object diagrams, state-transition diagrams, entity-relationship

diagrams, and data-flow diagrams. A guideline would be to use notations

and language that is easy to understand so that learning overhead can be

avoided[34].

Requirements engineering (feature modeling)

Requirements engineering is gathering, defining, documenting, verifying[35,

p. 24] and managing[35, p. 234] a set of requirements that specify an appli-

cation[36]. In the domain engineering context, this refers to the reuse and

configuration of the requirements among individual applications[34]. These

requirements can also be called features[37].

3.1.3 Domain design

Domain design, and domain implementation come after domain analysis, according

to Harsu[29].

Domain design sub-process produces the reference architecture for defining the

main software structure and it’s design patterns[17, p. 218–239]. Domain design

provides reference architecture for the software product line from domain realization

to application design[17, p. 218–239].

Domain design is performed iteratively along with domain requirements engi-

neering as requirements are revised[17, p. 218–239].

In addition to architecture style, domain design produces a production plan

or an architecture to tell how the application can be derived from both the core

3.1 DOMAIN ENGINEERING AND CORE ASSETS DEVELOPMENT 26

architecture and from the reusable components[29][17].

A production plan may consist of the following: The organization developing

the core assets, core asset development and maintenance, dependencies among the

assets and products, core assets configuration, estimations for development time,

resources for core-asset development. [27]

Domain design may be a part of analysing the core architecture against its quality

requirements in order to reveal possible risks in the architecture[29]. According to

[38], the system architecture documents should be evaluated early, since it makes

iteration of errors easy and cost effective during the planning phase, instead of during

implementation.

It would be preferable to use multiple views for representing the common archi-

tecture, since different views can help different project participants understand the

architecture better from their respective views[39].

3.1.4 Domain implementation

Domain implementation is essentially implementing the architecture, reusable com-

ponents and the tools designed in the design phase, it consists of writing documen-

tation and implementing domain-specific languages and generators. [29]

3.1.5 Core assets development

Core assets development process is very similar as the domain engineering process[7,

p. 14] described previously, as a whole, it contains almost all the same activities that

domain engineering describes. Northdrop et al. [7] describe core assets development

through its outputs:

Product line scope

The product line scope describes the products that will be included on the

3.1 DOMAIN ENGINEERING AND CORE ASSETS DEVELOPMENT 27

product line or that the product line is capable of including. The simplest

scope may just be a list of product names. Typically the descriptions include

similarities and differences in the products and operations that they provide

in terms of quality attributes.

Core asset base

The core asset base includes all the core assets that form the basis of the

products that the product line can produce. Core assets can be things like

tools, generic components, processes, personnel, training, test cases, test data,

schedule estimates and the like.

Production plan

A production plan is used to describe how the products are produced from

the core asset and fills two roles: It includes the building process used for

building products and it lays the project details that enable the execution and

management of the rest of the process such as the schedule, bill of materials,

and metrics.

The production plan also includes the production method for implementing

the possible core assets, were they outsourced or built in-house. It includes

things like models, processes, and tools to be used in the attached processes

across core assets.

3.1.6 Similarities of core asset development and domain en-

gineering

Here we can see that the outputs of core assets development are extremely similar

to the outputs of the domain engineering that Harsu [29] describes. Another very

similar approach is the division of terms that Pohl et al. [17] uses, they describe

domain engineering through these different sub-processes:

3.2 PRODUCT DEVELOPMENT AND APPLICATION ENGINEERING 28

Domain requirements engineering

Produces the domain requirements artifacts and variability model for the do-

main, meaning requirements specification for the realization, design and test-

ing phases.

Domain desing

Reference architecture, reusable software artefact selection.

Domain realization

Design and implementation of reusable software assets such as interface design

and reusable components.

Domain Testing

Validates output of other domain engineering sub-processes resulting in do-

main test artefacts.

It can be concluded that Domain engineering terminology, approaches and de-

scriptions differ from core asset development in the current literature space, but the

key ideas and theory is essentially the same, but with different points of focus.

3.2 Product development and application engineer-

ing

Product development, sometimes called application engineering[7, p. 14], is the pro-

cess of design and implementation of individual applications[29].

Product development depends on the outputs of core assets development, prod-

uct line scope, the core assets, and the production plan.

The builders of the products use core assets such as components to build product

applications that meet the requirements of the outputs of the core asset development

process described earlier[7][17]. Product builders give feedback about the core assets

3.3 MANAGEMENT AND ORGANIZATIONAL MANAGEMENT 29

as they build the applications, so that the core asset base remains high quality and

up to date[7].

3.3 Management and organizational management

Pohl et al. [17] describe product line thinking as 2 layers of processes, the domain

engineering and application engineering layers. Northdrop et al. [7] add another

layer called management.

According to Northdrop et al. management plays a critical role in the success of

a product line, an organization must ensure that activities are given resources, coor-

dinated, and supervised. Management must be strongly committed to the software

product line effort on technical, project, and organizational level[7, p. 22–23].

Organizational management identifies production constraints and ultimately de-

termines the production strategy. The purpose of organizational management is to

create an organizational structure that makes sense for the enterprise and is respon-

sible for appropriate resource allocation, for example in terms of trained personnel[7,

p. 22–23].

Northdrop et al. define organizational management as the authority responsible

for the utmost success and failure of the product line effort, organizational manage-

ment determines the ways of funding that enables the evolution of the core assets[7,

p. 22–23].

We define organizational management as the authority responsible for the ul-

timate success or failure of the product line effort. Organizational management

determines a funding model that will ensure the evolution of the core assets and

then provides the funds accordingly. Organizational management orchestrates the

technical activities in and iterations between the essential activities of core asset

development and product development. [7, p. 22–23]

In addition to the previous, management iteratively orchestrates essential activ-

3.3 MANAGEMENT AND ORGANIZATIONAL MANAGEMENT 30

ities of core assets development and product development. At a sub-management

level, technical management makes sure that the core asset development and product

development activities follow the processes defined for the product line, collecting

data to track it’s progress. Technical management decides on the production method

and provides the project management elements of the production plan. [7, p. 22–23]

Management makes sure that the operations previously described and the ways of

communication of the product line effort are documented in an operational concept.

At the organizational level, management mitigates risks that might threaten the

success of the product line. [7, p. 22–23]

One of the most important functions that the management process does is that

it creates an adoption plan that describes the desired state of the organization and a

strategy for achieving that state. The desired state being one where the organization

is able to routinely produce products in the product line. [7, p. 22–23]

Technical and organizational management also contribute to the core asset base

by making product line management artefacts like schedules and budgets available

for reuse. [7, p. 22–23]

Leadership is required in order to keep the organization pointed towards the

product line goals to ensure success, especially during the rough early stages of the

product line. An individual or a group should be designated to fill the product

line management role and act as a product line champion, they should preferably

be a visionary leader. Management and leadership are not always synonymous. [7,

p. 22–23]

While the book by Pohl et al. [17] does not list management as a core pro-

cess, they do write the following towards the "Organization" part of their book:

"For the successful introduction of the software product line engineering paradigm,

organisation aspects are as important as the technical aspects".

It is also worth noting that building a business case and the transition to soft-

3.3 MANAGEMENT AND ORGANIZATIONAL MANAGEMENT 31

ware product line development are not easy steps for an organization, and requires

investments that have to be determined carefully[17, p. 394]. There are multiple

strategies for the transition listed in the book Software product line engineering [17]

which are outside the scope of this work.

4 Case study

A case study is an empirical inquiry that investigates a contemporary phenomenon

within its real-life context, especially when the boundaries between phenomenon

and context are not clearly evident.[40, p. 13]

In this chapter the author goes through the usual steps of conducting a case study

according to R. K. Yin, A case study involves several steps including designing

and conducting case study, collecting as well as analysing data and composing a

conclusion[40]. In addition to the previous, the methodology of the study will also

be included.

4.1 Backround

This section is used to describe the background of this thesis, for the reader to better

grasp the context and get more out of the discoveries of this study.

4.1.1 Luonnonvarakeskus as an organization

The Natural Resources Institute Finland (Luke) is a research organisation operating

under the Ministry of Agriculture and Forestry of Finland[41]. Some of the Luke’s

DIGI unit’s tasks, are to upkeep most of the in-house software systems and internet

sites that are used by the organization of Luke, and to develop, procure and upkeep

systems that help researcher’s daily work. Although a lot of other software related

work is divided into different units and researchers inside Luke.

4.1 BACKROUND 33

Luke was established at the start of 2015, it was a product of a merger of 4

different organizations: The Agricultural Research Centre of Finland (MTT), the

Finnish Forest Research Institute (Metla), the Finnish Game and Fisheries Research

Institute (RKTL), and the statistics services of Tike, the information centre of the

Ministry of Agriculture and Forestry[41], illustrated in figure 4.1. The results of the

merger can still be seen in the organizational aspects of Luke, as it’s organization is

very dispersed, diverse and patchy.

Figure 4.1: Natural Resources Institute Finland being formed from 4 different orga-

nizations

During my 2 years of working for Luke, while being hunkered down in a project

called Tikal, I slowly gained understanding of how my unit worked, and where I was

placed in the monstrosity that is the Natural Resources Institute Finland. During

my time working at Luke DIGI unit, the information sharing aspect of things kept

coming up: Working methods and practices were not getting shared much within

DIGI, use of software languages was not streamlined and policies were unclear on

their use, policies regarding data storage were also not clear. A lot of very basic

information was retained within tribes of the unit, and since most of the developers

of the unit worked alone with little interaction with the rest of the developers, there

was constantly repetition of the same information work within each tribe.

4.1 BACKROUND 34

One of the biggest dangers of this kind of organization was the possibility of

doing the same thing twice: A system that is needed by two different projects

might be labeled with different names and technologies without the organization as

a whole identifying the system as a common need for projects, if the projects don’t

communicate to each other about their activities, the margin of error becomes high

in this regard. There was also a tendency to have trouble identifying what had been

done during previous projects, especially since projects leads were often people with

little technical experience. These tendencies were amplified by the fact that Luke

came to be from multiple different organizations and their software systems.

So there was a real need for increasing spontaneous interactions between de-

velopers as well as increasing the ability identify systems that could be made into

commonly used services.

4.1.2 Jira

Jira is a issue tracking system, at Luke it also functions as a requirements manage-

ment system, as the requirements are documented as jira issues, most often user

stories and simple tasks. Most of the work of DIGI unit was documented into Jira

as jira issues, issue is a term used for all item entities documented in Jira, such as

epics, user stories, tasks and bugs.

Jira is also a really nice collaboration tool also due to it’s visual aspect, items can

be seen in views called boards, which show the items as squares in different columns

based on their readiness in the development cycle. Developers usually work on a

single or more items at a time, and update the status on the items as they make

progress.

At the start and during 2021-2022 there was a big move at Luke DIGI unit to

move requirements documentation from legacy sites to Jira and Confluence, Conflu-

ence being a team-based documentation site for storing information in page-based

4.1 BACKROUND 35

format. A big motivator for the move was the teams at DIGI being able to move

towards a more team-based collaboration style, to enable team-based work instead

of individual work in future development, as well as to enable agile ways of working.

My team being the pilot for team-based agile work, I was given the task of

administrating our Jira environment, which led to the idea of increasing team col-

laboration through Jira as well as making software systems more comprehensible,

which eventually lead to me being able to do this thesis’ case study in collaboration

with Luke.

In Jira, and at Luke DIGI, a project is usually started by creating a architecture

document, but turning that document into an action plan to figure out where to

start, is a whole other hurdle. In Jira, the order of actual development work is in a

best case scenario started by drafting up the biggest user stories as epics. Epics are

collections of user stories[42] that are related to one another in concrete manner and

would not really make sense to include separate from each other. When all the user

stories are implemented they create somewhat complete pieces of functionality. This

enables the lead of a project to think in a manner of: What pieces of functionality

does this system get composed of?

A agile epic in Jira usually has a title, which contains the user story of the epic,

and a epic name, a field which can be used to describe the epic in a more compact

way, I’d call this field the feature field as it can be used to describe the feature

that will complete once the epic is completed. An epic in Jira also has a field which

describes if the item is dependant on another item, for example if the development of

one one item blocks the development of the epic until that item is complete. These

dependencies can be used to further structure the development process and make

sure that components are developed in the correct order.

All the previously mentioned terminology is unique to the product Jira and does

not represent agile development as a whole.

4.2 CASE DESCRIPTION 36

Many of the projects within DIGI unit’s Jira organization have only partially

been planned using epics, user stories and tasks, and the quality of the execution

of this documentation varies a lot by project, as not everyone within the organiza-

tion has previously worked with agile development. And since many of the project

teams consist of a single developer working along with a product owner or a project

manager, the ways of using Jira pass along slowly.

Epics are one of the main ways of structuring a project[43] in agile development.

The case study of this thesis focuses on epics as a unit of a software systems structure,

an epic can be used to describe a component within a larger software system.

4.2 Case description

Initial plan and hypothesis

The initial vision of this study was to make a model that would link Jira items

together in a way that anyone could edit, the model would be a 2D map with

pieces that could be moved freely - additionally the model would show the state

and relations of the components(epics). To describe the 2D map resulting from the

contents of a project the word ”view” is used.

The initial hypothesis going into this case study was that if visual clarity and

linking of issues between projects was added to the software development envi-

ronment, information sharing and identifying repeated software components would

get significantly easier. There was also an assumption that the visual environment

would make designing software and drafting epics for the project more enjoyable

and comprehensible.

One of the model’s key features would be it’s intuitiveness, visual graph with

information color coded in would make it’s readability very easy when compared to

a simple list of text-based requirements.

4.2 CASE DESCRIPTION 37

One of the key difficulties in planning for this models implementation was it’s

environment, the uncertainty whether or not it was possible to add the model and

it’s views into Jira or a environment that would easily be used alongside Jira. The

hope being that there would at least be a service such as Miro, a online whiteboard

tool, that could reference Jira issues from their service and provide a browser based

service for hosting the view. There was also the option of coding and add-on to

Luke’s Jira from scratch, but it was deemed too laborious to implement.

This solution would still suffer from the arduous task of having to switch browser

tabs between Jira and Miro when viewing the structure of a project, so the obvious

solution was to find ways to implement the model inside Jira through a add-on made

by the author or by looking for a solution that had already been made somewhere

else.

Following images are from the drafting phase of the case study, the first image

is a screen capture from Jira showing the colour coded epics that are listed in a

sidebar, to the author’s experience, this is the most common way a user of Jira is

going to see their own epics on a project. The second picture is the initial vision of

the model view that was going to be implemented.

4.2 CASE DESCRIPTION 38

Figure 4.2: The native sidebar in Jira showing epics in a list as well as epic progress

Key features of the planned model

The key features that were going to be implemented in the model of the initial

research plan were:

Visuality The model should be compromised of individual square shaped boxes

that could be moved independently of each other, the boxes would be epics,

and when clicked, the boxes would show all the user stories grouped as similar

boxes below the square of the epic that was clicked.

Modifiability The view should be modifiable by anyone with access to the envi-

ronment in which the model was hosted.

Colour coding The epics of the model view should show some kind of colour coding

to indicate how ready the epic would be to being finalized into the production

environment.

4.2 CASE DESCRIPTION 39

Figure 4.3: Initial conceptual draft for a graph-based view for a system called Ahti

showing the epics of the project as movable cells

The readiness of a epic would never be concrete as the epic’s user stories would

increase, reduce and their contents and scope would change. Despite this

having an intuitive percentage-based colour indicator of completeness would

help the viewer of the model get a fast and easily comprehensible idea on how

well a project is doing.

Non-colour based progress indicator In addition to colour coding based on

progress, there should at least be a progress bar or a text-based indicator

of progress, the text based progress bar should indicate the amount of com-

pleted user stories and tasks inside an epic as either a percentage amount or

as a number as in the amount of completed tasks and user stories with the

total amount of user stories and tasks to it’s side, with a forward slash (/)

separator in between the numbers.

Dependency lines The default Jira issue manager allows the user to add depen-

dencies to epics, stories and tasks. [44] The model should present these de-

pendencies as visual lines or some other kind of visual connector element in

between the squares of the view that have some kind of a dependency in be-

tween each other.

4.3 METHODOLOGY 40

Common items across projects One of the features that makes the model work,

would be the ability to use the same epic in many different contexts. The rea-

son for this being that if we can see the same epic and it’s progress in multiple

project views, that epic can represent the progress of a common component for

all the projects that need it and benefit from seeing it’s existence and progress!

From the start the plan was to do semi-structured 30 minute interviews with

just around 5-10 participants, the role of the interviewees being product owners

and software developers, it was also thought that adding system architects to inter-

view would add and interesting viewpoint to the study. During implementation the

interviews were extended to 2 separate 30 minute interviews.

The method of interviewing was chosen to be semi-structured interviews. While

it was fairly clear on what kind of information was needed for the study, there was

still a strong possibility that new ideas and takes could emerge as the interview

would go on. Open interviews were considered but deemed too hard to direct in

terms of subject and time.

4.3 Methodology

A research methodology is the strategy or approach to finding and solving a specific

research problem. This section goes through the decision making process of choosing

the research methodology for conducting the research of this thesis and the reasoning

of each of the decision points used. The implementation of the interview method is

also described.

Research question

The research question formed to be

How can a high-level real-time visual tracking model assist in

4.3 METHODOLOGY 41

bringing product line thinking and increasing information sharing

within an organization?

The original research question was broken down into subcategories, The inter-

views document of the study was aimed at answering these subcategories.

• In what ways can a visual Jira architecture model of high level abstraction

help software engineering?

• Could a Jira architecture model of high abstraction level help in information

sharing for both a project and an organization?

• Could a repeatable Jira architecture model of high abstraction help with de-

veloping repeated software components?

The organization of the third sub question refers to the organization of Luke’s

DIGI department, the high-level abstraction model refers to the visual model im-

plemented during the case study.

4.3.1 Research outline

After the research problem had been identified, the approach was to create a model

to help software development and to interview the users of the model in order to see

if the problem could be answered with a possible solution. The aspects and research

approach of this thesis was identified and categorized by using a proposed decision-

making structure by Wohlin, C. and Aurum, A. [45] The focus of their article is to

aid in selecting a research design in empirical software engineering research [45].

This section uses the previously mentioned research decision-making structure

by Wohlin, C. and Aurum, A. [45] to describe and categorize the methodological

approach in which the research of this thesis was done. Each of the 8 points is

4.3 METHODOLOGY 42

further elaborated on to describe the approach that was used. Figure 4.4 illustrates

this decision making process.

Figure 4.4: Research outline of this thesis drawn with the methodology of Wohlin,

C. and Aurum, A. [45]

1. Research outcome: Applied research

The outcome of this thesis’ research is applied research, while basic research is

about finding a problem and studying it for the general good, applied research

is more focused on finding a timely solution in order to improve an existing

practice[46][47], and the visual model implemented for the case study is an

attempt of finding that solution.

4.3 METHODOLOGY 43

2. Research logic: Inductive research

Inductive research is described as fast science[48]. In inductive logic the truth

of the premises provides some[49] or general support[45, p. 1434] for the truth

of the conclusion, moving from individual induvidual observations to state-

ments of general patterns[47]. In this thesis, there are many premises which

the case study aims to weave into coherent statements and solutions. The spe-

cific conclusions or theories made in this research are achieved through themes

identified from the interview notes and presented in the discussion chapter.

3. Research purpose: Evaluation research

The research purpose for the research part of this thesis can be considered

evaluation research, as it describes the author using tools of research to de-

scribe, explore and assess the needs of different groups of users of software

in order to improve it’s planning and effectiveness[45]. The common trait of

all evaluation research is that it aims to be useful and used, either directly,

quickly or as an increment to some other, larger body of practical knowledge

[50].

4. Research approach: Interpretivist research

Interpretive research assumes that our knowledge of how reality can only be

gained through social constructions such as language, shared meanings, docu-

ments as well as tools. [51]

The research approach in this thesis is purely Interpretivist since imperative

research aims to understand the deeper structure of the phenomenon much like

this thesis. Imperative research assumes that people add their own meanings

to things as they interact with the world, and imperative studies aim to collect

and make sense out of those meanings, the case study of this thesis aims to do

just that. Imperative studies abandon the possibility of a factual truth and

4.3 METHODOLOGY 44

seek a relativistic although shared understanding of the phenomena. [52]

5. Research process: Qualitative research

In qualitative research the researchers often try to understand the perspective

of their research subject, those individuals who are inside a process often

see things in a different way than those outside of it, gaining these insider’s

perspective allows the researchers to understand the world in a new ways.

Qualitative data typically includes direct representations of subjects’ thoughts

or actions. [53]

Qualitative research is subjective in its nature and is influenced by the philo-

sophical preferences of the person performing it. [47]

In this thesis the author collects qualitative data such as interviews and par-

ticipant observations and that categorizes the thesis case study as qualitative

research.

6. Research methodology: Case study

Research methodology is a combination of research methods, processes and

frameworks[45]. Case study research is a research inquiry that employs mul-

tiple methods of collecting data in order to collect information from multiple

sources with the purpose of investigating a phenomenon its natural setting[54].

In a case study, The boundaries of the phenomenon are not clearly evident

at the outset of the research and no experimental control or manipulation is

used. [54]

The research methodology of this thesis is case study, as it’s effectiveness is

not measured as is in design science[55], even though an artefact is produced.

It’s also not action research as it’s not systematically studying the problem,

people, and the organization, even though the research problem does very

much exist in real life[56]. This study simply investigates the phenomena in

4.3 METHODOLOGY 45

it’s natural setting, collecting data from multiple sources.

This research methodology is still very close to being action research. The

case study involves collecting data through literature review to understand the

phenomenon of repetitive software components and reflecting on the Natural

Resources Institute Finland organization as a problem environment(natural

setting). A model was created based on what has been learned to further gain

understanding, and than interviewing users of the model in the environment

of Luke in order to understand it’s impact and usability.

7. Data collection method: Interviews

The data collection method is interviews, the interviews are recorded in either

audio or video format. More details about the interviews of this case study

are described under the case implementation section.

8. Data analysis method: Adapted thematic analysis

The data analysis method of this study is an adapted version of thematic

analysis. Qualitative analysis methods such as thematic analysis focus on

making sense or understanding a certain phenomenon[57]. During the data

analysis, new insights can be identified which may require gathering more

data[45].

In thematic analysis verbal data is transcribed word for word into written

form in a rather time-consuming manner in order to be able to later analyse

the content[58]. There are 2 types of themes that can be associated to the

transcribed words, semantic and latent. Semantic includes looking at the

meaning of the words, and grouping those words together. Latent themes try

to include the meaning of the words in their context and interpret the meaning

of these contexts [59] [60].

Themes are patterns within data, and thematic analysis is about identifying

4.3 METHODOLOGY 46

those patterns. Themes organize and describe the collected data in (rich)

detail. Thematic analysis at the latent level goes further than just analysing

the semantic content of the data and starts to identify various aspects of the

research topic including ideas, ideologies, assumptions and conceptualizations

that are theorized as shaping or informing the semantic content of the data.

[58]

In this case study a much simpler thematic analysis method, dubbed by the

author as adapted thematic analysis, will be used. The key difference of this

method to the standard thematic analysis is that instead of transcribing all

of the interviews, the extensive notes of each interview session will be used to

produce themes. The notes are written both during the interviews and after

listening to the interview recordings later on.

Main reason for this approach is the aforementioned lack of time, transcribing

all of the interviews takes an excessive amount of time from the researcher,

and the achievable added quality to this research is not deemed worth the

amount of time transcribing the interviews would take. Identifying themes is

ideally done by multiple researchers[45], in this study, identifying themes is

solely done by the author.

The identified latent themes of each of the interview question will be compiled

and summarized under each of the interview questions, most dominant theme

being written first.

4.3.2 interview method and implementation

Interview method

The semi-structured interview method mentioned before in the case description was

chosen by process of elimination. Doing open interviews would have been too time

4.3 METHODOLOGY 47

consuming for the interviewees and the author due to daily schedules being limited,

while a structured interview or a survey could have left a lot of details and depth

missing, details that would be hard to predict and include in it’s structure.

One of the major downsides of the open ended interview method was that open

ended interviews should have at least an hour of scheduled time, which the author

couldn’t afford, they are also quite straining on the person doing the interviews as

they require the interviewer to have longer mental and physical transition times

in-between the interviews. [61, p. 165–166]

Semi-structured interview is an interview method where the interviewer has a

standard wording of the questions to be asked, but after a unclear answer has been

given, the interviewer can ask further questions freely to further understand the

interviewees view. [62] The questions are open ended and are based on the topics

that the researcher wishes to cover, the open-endedness of the questions allows the

people involved in the interview to discuss the topics in varying depth.

During a semi-structured interview, the interviewer can also ask the interviewee

to elaborate on the answers given or to follow a line of thought that that was

introduced by the interviewee. [63] This makes it possible to acquire emergent insight

into the topic from the interviewee, insight that wasn’t planned or understood when

the question structure was being drafted.

The flexibility aspect of interviewing was also a major aspect of choosing the

semi-structured interview method. The ability to ask key questions in the same,

slightly varied way each time and being able to probe for further information was

deemed a major upside, albeit the method being more limited than a unstructured

interview[61, p. 111].

The weakness of structured interviews is their inflexibility making it really hard

to get deeper into the subject to find unpredictable discoveries, also requiring sub-

stantial planning beforehand[64]. The same goes for questionnaire surveys as they’re

4.3 METHODOLOGY 48

less flexible than semi-structured interviews [65].

Interview question structure and goal

The following picture is the structure of the question pairs asked during each of the

two interviews. This section will explain the structure and purpose of the interview

questions.

Figure 4.5: The main interview question structure

The interview document that was used had two sections. The first section was for

giving the interviewee a simple verbal description of what the study was about and

4.3 METHODOLOGY 49

reading a very brief description of what a software product line is and the purpose

of the visual model that was being developed.

The first section also had personal background questions, questions related to

documentation and communication at Luke and a list of themes that were read

aloud to the interviewee. The list of themes was included to give each interviewee a

rough idea on the theme of the questions that they were being interviewed on. This

first section of the document was only read during the first interview.

The list of themes that were read aloud to each interviewee

• Information sharing

• Comprehensibility of software projects

• Sharing information at Luke

• Detecting repeated software components

• Increasing software product line thinking at Luke

• Assisting development and design of software

General questions related to information sharing at Luke

• On what platforms is the technical documentation of your projects?

• At Luke, how well do you feel information is being shared between projects?

The purpose of the general questions was to get data on the overall situation at

Luke, and to give context to the answers of the more specific question pairs later

on.

The second section of the interviewing document(figure 4.5) had 7 question pairs,

three related to information sharing in projects, and four related to detecting and

comprehending of repetitive software development.

The purpose of the first three questions was to gain data on how the project

view in Jira is understood in terms of content readability. A lot of the work at Luke

4.3 METHODOLOGY 50

is done through Jira but without really understanding what makes a requirement

management tool good on a UI design level and how different people can use it in

their daily work. There’s also a bigger cross-teams dynamic with content readability,

which this study tries to shed light in. As for the last four questions, the purpose

was to gain further understanding on how the content readability and visibility in

Jira affects the understandability of technical details, as well as the detection and

structural planning of repetitive software components.

Interview implementation

Two rounds of interviewing were done to set a baseline for the interviewee’s answers,

interviewees were interviewed during the first round without them having heard or

seen the model that was being implemented. The purpose of this was the assumption

that if the author implemented the model first and asked the interviewee’s opinions

afterwards, the interviewee’s insights could have been influenced by their relationship

with the author and the author’s role in the organization.

For example, with the question "In your experience, how easy it is to get the

general idea of a software project through Jira?", it was deemed helpful for the

interviewee to have a already set a uninfluenced baseline that they could remember

and follow set in the second interview. It would also be easier to do the data

analysis later on, since the answers of the first interview cycle could be compared

to the answers of the second interview cycle.

The interviewees had a period of two weeks in between the interviews to use the

visual model that had been added to the software development environment. The

second interview had slightly modified questions which were essentially the same

questions but were started with the phrase "now, after the model has been added".

Three of the interviews were conducted in person at one of the offices of Luke, the

nine others were done through Microsoft Teams. In-person interviews were recorded

4.3 METHODOLOGY 51

using the author’s phone, and recorded only audio, while online interviews were

recorded using the recording functionality of Teams as a recording tool and they

included both audio and video footage.

All the interviews were spoken in Finnish. When interviewing online, the inter-

viewer always had their camera on so that non-verbal cues could be given throughout

the interview, to better direct the interview and to give feedback to the interviewee.

Participants were not required to have their camera on during interviewing simply

to make the interviews more comfortable.

The length of one interview session was around 30 minutes, with most interviews

of the second cycle lasting under 30 minutes. All interviews were done during the

last three weeks of February 2023.

The study had a total of 6 participants for interviewing, selected non randomly,

the participants were the author’s colleagues working within the same department

of Luke. The roles of the interviewees being mostly software developers (3) with

the addition of a product owner, a project manager and a systems architect. One

of the developers was working as a visiting consultant. The role composition of the

interviewees is illustrated in figure 4.6.

It was deemed important to have input from multiple types of professionals of the

software development field to increase the likelihood of gaining diverse data points

and emergent discoveries from the study.

Time was the main limiting factor of the study, and such the amount of inter-

viewees was limited to only a sampling of 6 people.

4.3 METHODOLOGY 52

Figure 4.6: The number of participants sectioned by their Job descriptions

Most of the notes of the data collection process were written after the interviews

using the recorded audio and video recordings, however, during the interviews, a

small amount of notes was written to better direct future interviews, as well as to

document discussion that happened before or after recording had been started.

Using follow-up questions, interview challenges

The author’s interviewing style was very in line with the standard semi-structured

interview method, non-verbal cues were given to give the interviewees reinforcement

to keep talking about the points that they were making, questions were asked both

to achieve clarity to answers that were deemed not clear enough and a significant

amount of questions were asked in order to gain insight into different divergent

talking points that the interviewees often drifted off to, follow-up questions were

also used to gain clarity on theories and ideas that the interviewees often had.

4.3 METHODOLOGY 53

If a interviewee gave a very punctual answer to a question, follow up questions

were not asked.

As for some unconventional interviewing means, sometimes the author would

make statements around the topic that the interviewee was making to clarify the

interviewees points and to see if the interviewee would agree with the statement,

some quotes of such interviewing will be provided in the ’results’ section.

Often when interviewing, the participants would drift off from the question that

was being asked, when this happened, follow up questions would be asked regarding

the topic that the interviewee had drifted off to, and after the follow up conversation

was satisfied, the original question would be asked again to clarify the participants

answer.

Unfortunately, a few of the answers remained vague due to the author forgetting

to ask the original question again due to the interviewee drifting off multiple times

while the interviewer would forget whether or not the question was answered within

the conversation. This occurrence is illustrated in figure 4.7 below.

4.3 METHODOLOGY 54

Figure 4.7: The interview challenge of the interview drifting off from the original

interview question multiple times and the interviewer eventually moving on to the

next question without clarifying the original answer

Another challenge that was found was the interviewees skipping questions on the

technical section of the interview, interviewees did not know the question structure

so they would answer upcoming questions during the first question of the second

section, meaning that in addition to the interviewer being able to ask questions in

a varying order, they also had to keep track of which questions had been answered

by the interviewee in advance.

During a semi-structured interview, a lot of attention has to be paid to direct

the interviewee to give a clear answer to the original interview question.

4.4 CASE IMPLEMENTATION 55

Other challenges

With the last question pair of the interview document, participants would often

confuse software development dependencies and item correlation, resulting in slightly

more positive answers to the last question pair of the second interview cycle.

There were also unfortunately non-responses to some of the interview questions,

even after follow up questions, a non-response at the item level is described as

a ”don’t know” -answer[66], which was sometimes repeated even after the same

question was asked again from another viewpoint.

The challenges during the interviewing phase only had minor impact on the

quality of collected data. The interviews were successful despite this being the

author’s first time conducting interviews.

4.4 Case implementation

Around the time that the implementation of this model started, the author had been

as a Jira administrator for Luke for about one year, the solution for implementing

the model was found from the Atlassian marketplace for Jira add-ons, Atlassian

being the owner and developer of Jira. Figure 4.8 shows the card link to the add-on

used for this study.

4.4 CASE IMPLEMENTATION 56

Figure 4.8: The add-on used to build the visual model, Epics Map by Herocoders,

pictured in the Atlassian marketplace

The add-on worked simply by downloading it, after downloading, projects that

were within the author’s Jira organization were automatically given a button in the

sidebar, which leads to the Epic map view, shown in figure 4.9.

4.4 CASE IMPLEMENTATION 57

Figure 4.9: The Sidebar of the Jira project view, after downloading the Epics map

add-on

4.4 CASE IMPLEMENTATION 58

The add-on lacked two features that were vital aspects of the desired model’s

vision. One of these two is being able to globally see the same epic in multiple

projects. However the Atlassian marketplace overview for Epics map states that the

roadmap of Epics map has global epics as a goal for future development[67] during

the time of writing of this thesis (figure 4.10).

Figure 4.10: The future roadmap plans of Epics map, Atlassian marketplace

Another key aspect of the original model’s vision was that dependencies could

be visually seen as lines between the components that were dependant on each other

in some way. The model only shows visual lines from an epic to a project, but not

from one epic to another, even when a dependency is set between two epics, the

current way of showing dependency lines shown in figure 4.11.

4.4 CASE IMPLEMENTATION 59

Figure 4.11: Epics map showing dependency lines to the author’s test project ”Ad-

vanced epics”

In order to convince Luke DIGI unit to pilot this view a test project was made

using the Epics map add-on, the test project consists of 6 epics with some of them

including users stories, one of the epics in the view has all of it’s user stories com-

pleted and one having two of it’s five user stories completed. The progress bars

clearly show how many user stories has been done under each epic.

The author stated early on into building this test project that while epics tend

to grow in size during development as additional user stories are added, the viewer

can still get an idea on how ready or how well oof a project is into it’s planning.

For example, if a epic has 90 out of 100 stories done, the epic must be ready or

nearly ready simply by 10 of those stories possibly being related to requirements

that might never be implemented or that might already be obsolete. Or an epic

that has a single or a few user stories under it, might still be in planning.

The model contains a lot of inferable information, that can be understood by

professionals from the context of a project.

Workshops

Right after the first interviews were done, the author held workshops for the inter-

viewees that wished to participate, there were three projects that the interviewees

4.4 CASE IMPLEMENTATION 60

had currently under development; Tikal, Näytehallinta and Suomu.

Näytehallinta and Suomu had their development just started and the projects

had very few epics under them, and the epics which had been written had very

simple titles such as ”integrations”, they weren’t really epics as the were not large

user stories, more like categories for task to be placed under. The workshops held

for Suomu and Näytehallinta had all of their participants participating for the work-

shops two for Suomu, one for Näytehallinta. All of the participants were working

remotely and screen sharing was used to collaborate through Microsoft Teams.

Together with the participants of Näytehallinta and Suomu we managed to make

the projects epic structure include a much more complete structure of the projects

themselves, including a number of user stories under those epics. The workshops

lasted around 4 hours and were done in two different sessions. Figure 4.12 shows a

epic that has been clicked to show the user stories within.

Figure 4.12: The Epics map view showing the user stories under an epic, after the

epic has been clicked

The Epics map was added after the interviews were done, so we had the ability

to use the view it provided to help us to see the epic structure form as we were

adding and editing the epics and user stories of each project. The author was

4.4 CASE IMPLEMENTATION 61

mostly leading the workshops as the project leads of Suomu and Näytehallinta were

giving specifics on what kind of user stories were needed for the epics and story

items, screen sharing was often used by all participants so everyone could contribute

to writing user stories while others provided input. Figures 4.13 and 5.14 show the

respective projects views for Suomu and Näytehallinta projects.

Figure 4.13: View of Suomu project

Figure 4.14: View of Näytehallinta project

For the third project, Tikal, things were not so simple, Tikal had been in de-

velopment for 2 years, and the epic structure of Tikal contained epics that were

categories of tasks, epics that were properly made large user stories, as well as epics

that were named after the services that the project used.

Many of the epics of Tikal had work that had already been done or work

that wasn’t necessarily part of Tikal itself, but something related to it’s branching

projects, for example about the already done work, there’s an epic named "Helu-

4.4 CASE IMPLEMENTATION 62

nan tuotantoonvienti" which is an epic about getting a system under Tikal into

production. If this would be done again, it would likely be a user story.

There’s nothing wrong with having epics that had already been done, but user

stories and categories that shouldn’t be listed as epics should not exist, as they

clutter the epic view and make the structure of the project harder to read, even

without the Epics map, but that is another conversation about technical debt.

The workshop for tikal was held with both the author and the product owner of

Tikal project, and the project was deemed too large to go through in the relatively

short workshop that we had. The product owner of Tikal unfortunately only had

little time to organize the project structure in terms of epics, as software development

related tasks were taking most of their time.

As a result of the aforementioned, the Epics map view of Tikal ended up con-

taining over 30 epics, making it rather hard to read, and the epics listed were not

categorized clearly, making them overlap. Tikal Epics map shown in figure 4.15.

Figure 4.15: View of Tikal project

One issue that was noticed during the implementation phase of the case study,

was that the epics in the Epics map model weren’t very readable in terms of their

text content. The epics that were written with their user story outline in the title,

were very easily cut off after a few words, it would have made more sense to use the

”epic name” field instead in the card headers of the Epics map model to make the

4.4 CASE IMPLEMENTATION 63

cards more readable. Problem shown in figure 4.16. The epic edit screen shown in

figure 4.17 to show the relation of the epic name and the user story of the epic.

Figure 4.16: An epic card showing it’s title being cut off

After the author e-mailed Herocoders, the developers of Epics map, Herocoders

did answer that they did want to improve the epics map by including the epic names

in the cards instead of the epic title, but the change had not been made by the end

of may 2023, when this paragraph was being written.

4.5 INTERVIEW RESULTS 64

Figure 4.17: A issue view of an epic’s title being shown first, and the much shorter

epic name being shown after in a modified Jira issue view

4.5 Interview results

This section presents the results of each interview question listed by the most com-

mon themes being listed first. The results of each interview question were identified

through notes written both during and after the interviews. The results of some of

the interview questions are also backed up by quotes of the interviewees.

The interviewees are categorised as interviewee 1, 2, and 3 for software developers

and x, y and z for project manager, product owner and systems architect in that

order.

4.5.1 Background question answers

Before the question pairs of the first round of interviews were asked, some basic

background questions were asked, questions about each interviewees role in the

organization, education as well as their time in the field of software and Luke.

Additionally, there were two questions related to the information sharing of Luke

and DIGI.

The questions were:

4.5 INTERVIEW RESULTS 65

On what platforms is the technical documentation of your projects?

At Luke, how well do you feel information is being shared in relation to other

projects?

The first question was mostly answered with Confluence and Jira, Confluence

having the most answers, 5/6 and Jira coming second with 4/6. A notable detail was

that three of the participants felt that their documentation was in Github, both as

code and as documentation under each of the project folders. Other notable services

that were mentioned were Miro, Slack and Teams, as well as a in house tool called

Tiimeri and a older legacy documentation site called Redmine.

The information sharing question got a significant amount of answers saying

that information was simply not getting shared. Although conflicting opinions did

arise. Four out of the six interviewees felt that information was not being shared,

of the remaining two answers, one deemed that there wasn’t really a problem with

information sharing, and the another did not wish to answer as they had no personal

experience.

Three out of the six interviewees felt that knowledge was shared within ”tribes”

and teams of Luke, but not outside of those tribes due to the tribes working in their

own ”silos”.

One of the interviewees answered that "The repeated mechanisms for sharing

information are not as good as in the previous projects that I’ve been in", referring

to their prior employers. Also mentioning that information is shared well within

some groups, but also there being groups that do not receive enough information.

Another interviewee was asked if information was being shared to them from

outside of their own project, they answered with: "No, not in my opinion, there’s a

4.5 INTERVIEW RESULTS 66

lot to be improved, on the documentation level, everything can be found if you know

what you’re looking for, but myself, I’d wish for, what we’re lacking for example

is all kinds of, like, what’s going on? What thas been done? Like, review type

of ’what’s been done and what is being prepared’, although it does take a lot of

time. We’d do nothing but that." Finishing their answer with "I’d wish for more

transparency, in all of this work", referring to the work of DIGI.

One of the developers had this to say about personal projects and repeated

software development: "Projects are pretty personalized and siloed, so not a lot of

information gets shared between them. A little bit of a bad habit that we do the

same things again in different projects."

Two of the interviewees also felt that the employees own initiative mattered a

lot in terms of how much information was being shared, and that they had a lot of

freedom in this regard.

"in my own view, from my own perspective, work-wise I am isolated,

for one reason or another, whether I wanted or not, in my own world. I

know very little of what is going on." -Interviewee x

Additionally, in their answer to the second information sharing question, intervie-

wee z referred to the previous question of what platforms are used to store the techni-

cal documentation, they mentioned that the architecture based work is hard to bring

into the daily work of the developer due to it being hard to integrate into the Jira en-

vironment:

"We don’t really have a streamlined tool, jira is good for like, like the tracking

of a software based-project. But Jira does not have the capability of what the

Archi brings for example. Of course there are those clunky add-ons, they don’t

quite serve the, the -of course we could get them as pictures, and links." -z

"So what you do doesn’t quite get transmitted into other work." -Interviewer

"Yeah, unfortunately it gets quite fragmented." -z

4.5 INTERVIEW RESULTS 67

4.5.2 Interview round 1

The first round of interviews went smoothly, I was able to interview all participants

of the case study. One of the six interviews was conducted in person, while the rest

were online through Microsoft Teams.

Transmission and sharing of project information

1. In your experience, how easy is it to get the general idea of a software

project through Jira?

Interviewees 1, 2, 3, y, and z answered this question with a no, saying that Jira

does not help in getting the general outline of a project. Most of these answers

included a saying that Jira was more for documenting work than for giving an idea

of what the work was about.

"As a developer, mostly when looking at the board, the kind of a

overview is left unnoticed as most of the things visible there are more

like detail related stuff." -Interviewee 2

Interviewee x answered: "Poorly, adequately, it depends a lot on how well the

leads of a project update their documentation". They felt that they did not know

enough about Jira to give a good answer to the question.

While participants 1, y and z did make remarks that Jira could be used to gain

some perspective on a project all of them mentioned, in one way or another, that

the focus of jira was not in giving a overview on a project.

"The general idea of a project does not transmit through Jira, since

Jira isn’t currently a service through which we aim to transmit the

idea" "It comes from Miro, for exampl.e" -Interviewee y

4.5 INTERVIEW RESULTS 68

"The overview of a project comes from elsewhere" "It comes from all

around, a sum of many places." -Interviewee 3

Three of the interviewees, 2, x and y also mentioned that Jira projects often

contained old documentation in regards to epics and user stories which would likely

never be implemented.

"And often jira is the kind of service where there is lots of things some

of which is also old, which of course clutters up the overview."

-Interviewee y

"Backlog usually contains all kinds of things it’s hard to tell what is,

what is the barrel of wishes and what is coming." -Interviewee 2

In a rather long conversation with the interviewer, interviewee z noted that their

work with architecture and solution models had trouble being shown in projects

that were using Jira to guide development work, they felt that adding these models

to Jira had a lot of trouble, it was possible but required a lot of work. Interviewee

z hoped for solutions of implementing ways to make architecture work more usable

for the Jira environment.

”You’re at the core of it, how could we get the, when we have the project that has

the project architecture or the architecture report done, and we transition it to Jira,

and then the report would get reflected against the solution” -z ”Yeah, yeah, so it(the

architecture solution model) gets made but it doesn’t quite find the active tracking-”

-interviewer

”(interrupting) Or, or, the progression doesn’t get implemented, it gets kind of left

on nothing.” -z

"Backlog usually contains all kinds of things it’s hard to tell what is,

what is the barrel of wishes and what is coming." -Interviewee 2

4.5 INTERVIEW RESULTS 69

2. If you have looked at other Lukean’s projects in Jira; do you find a big

difference in how easy it is for you to outline your own project compared

to someone else’s Jira project?

Interviewees 2, 3, and x answered by saying that they had not looked at Jira

projects that were not their own. While y and 1 answered that projects that were

not their own were understandable in a "relative" or "basic" way. While adding

that their own project was one of the hardest to understand as they were "One of

the most complicated project packages that we(DIGI) have in Jira".

"(I) Can perceive the basic Jira but I’m not able to perceive the

product that is being built." -y

When prompted about their answer, with "So in other words, Jira simply has

nothing to present the general outline of a project?" Interviewee 1 answered with

a "Yes", continuing that "In some way one could think about using the epic level

structure of where the components would go, would it even be, in the project level?

Well, it can be though about."

Interviewee z answered by saying that the ease of understanding fully depends

on how well the project is prepared into Jira, there’s a lot of variability in the

completeness of the content that gets brought into a Jira project.

"Do, you feel that Jira that the ease of understanding a project

depends more on the level of preparation of a project in Jira, than

what kind of project we’re viewing?" -Interviewer "Yes, there should be

more time spent on the planning of projects." -z

"There should be more time and concentration, projects tend to take

off with too many flying colours." -z

4.5 INTERVIEW RESULTS 70

Interviewee z also noted in their answer that if the epic and user story level is

not well thought out during the start of a non-sprint based project, old unspecified

epics tend to be left to the bog of Jira, cluttering it.

3. If you’d use Jira to present your project to others, would using Jira

as a part of the presentation be helpful?

five of the six answers to this question mentioned that Jira could be useful for

presenting a project in one way or another, most of them mentioning the Jira items

and work that was currently being done.

"Presentation for the short future time-interval, maybe, but there

might be better tools." -Interviewee 2

Interviewee y answered simply by saying that in it’s current state, Jira would

not be helpful for presenting their project, unless add-ons were added such as the

Jira Portfolio add-on.

Comprehending repetitive software development

1. Does Jira help you get an understanding of the technical structure of

your projects?

Four of the interviewees, 1, 2, x and y, answered that Jira would not help in

understanding the technical structure of their software projects.

In their answer, interviewee y said that Jira would give an idea on the technical

structure, if the technical structure was included in some of the Jira items but thus

far it has not been done.

4.5 INTERVIEW RESULTS 71

Interviewee z couldn’t say as they had no experience in working with Jira and 3

said that ”well yes” and ”it might not be the primary help of Jira but it does contain

information and helps with understanding”.

2. Does Jira help you in detecting the possible repeated software compo-

nents or services in your projects? The services may be repetitive within

the software project or in the future of its following projects or work.

Four interviewees answered the question by saying that Jira does not actively

help with detecting repeated software components, although it could help with their

detection through things like text search and being able to associate tasks in their

context which makes detecting repeated tasks easier.

”Possibly, but not in a main way” -3

”It’s better to use it than not to use it” -x

”it could help but in practice, it does not” -2

Interviewees z and y answered with a yes. z Also mentioned about simply notic-

ing that tasks might be repeated under the same epic or story leading to possibly

noticing repeated items, adding that they’re not sure if this is a good practice or a

good way of detecting repeated software components. While y took a look at the

big picture:

”Yeah it helps yes. That is what Jira is good at, it helps in outlining

and classifying those tasks and also through classifying, detecting these

kind of cases.” -y

3. Does Jira help in detecting which parts of a software project aren’t

4.5 INTERVIEW RESULTS 72

repeated?

The answers mostly reflected the answers to the question 2 of this topic. 1, x and

z answered by reflecting on their answers to the question before, saying that Jira

does not directly help with detecting software components that are not repeated.

”Same thing that there you maybe can look at some, invent some kind

of search words of some tickets(Jira items) and if you only find one it’s

probably not a shared component or is not related to a shared

component” ”but it doesn’t really, actively” -1

Interviewee 3 couldn’t say and z as well as y answered by saying that jira would

help with detecting non-repeated parts of a project.

Additionally y noted that Jira labeling could be used in identifying custom-made

parts that would not get repeated, and also by seeing the ticket history of a project.

”You can also observe it from upcoming tickets as well as tickets that

have already been done, you just got to find the information.” -y

4. Does Jira help in identifying dependencies between software compo-

nents?

Interviewees 1, 2, y and z answered this question with a "yes", most of them

mentioning that Jira does not actively help in the identification of dependencies.

"I don’t have experience with defining dependencies in places other

than the descriptions(of items)... but maybe with links, in that way

yes, if there are issues linked from one Jira project to another, from

that you can see some kinds of dependencies." -2

4.5 INTERVIEW RESULTS 73

”Yeah it helps. Referring to my last answer” -z ”So how was it, when

specifying the tickets you can kind of tell what is related to what?”

-interviewer ”Yeah, like, what it’s related to and what body it belongs

to and what is dependent on it, even the order of implementation.” -z

Interviewee x answered with a "I cannot really say, that’s the coder’s expertise",

and 3 with "It does not really in it’s main function." "Maybe it happens somewhere

else, and Jira is more of its manifestation(the dependencies)".

4.5.3 Interview round 2

During the second round of interviews, new perspectives started to emerge, I was able

to interview all selected participants for the case study. two of the six interviewees

were interviewed in person, while the rest were interviewed through Microsoft Teams.

Questions were not asked word for word as there wasn’t really a coherent spoken

questions written within the interview document, usually the interviewer simply

added "now after the model has been developed" to the start of the phrase, and

asked the question of the first round roughly in the same way as it is written in the

interview document.

These interview questions have been formatted with the number 2 before each

interview question, to make the list more readable in terms of understanding that

each question is in fact a question of the second round, after the visual model has

been added.

Transmission and sharing of project information

2.1. After the visual model has been added, in your experience, how easy

is it to get the general idea of a software project through Jira?

4.5 INTERVIEW RESULTS 74

Interviewees y x and z all agreed that the visual model helps in getting the

general outline of a project. While interviewees 1 and 2 agreed that the model could

possibly be useful in the future, if they had used it more.

”Yeah it would be easier to understand, at least I like the visual

box-based view it like shows the pieces better in Jira than what the list

views would” -y

When interviewee y was prompted about why the box based view helped them

more than the list-based view that base Jira has they answered that:

”I always read a list in order, a list is an order which has a beginning and an end,

and this kind of visual order, which has boxes above and below each other, doesn’t

have a beginning and an end. You can read it downwards, from the left to right,

from left upper corner to right corner below.” and ”when there isn’t a beginning

and an end the whole becomes more balanced(to read).”

”How easily? A lot better than without it(the view), so fairly well.” -x

”Yeah in my opinion this is like... enlightening view from which one can

see the general outline.” -z

”Just by hunch I’d say that the visual structuring could help with

getting a general picture” -2

”Even there(In the workshop), we brainstormed a lot of those(items).”

-1 ”Yeah, yeah, could we say that when we had the item workshops, it

was noticed that it did help understanding?” -interviewee ”Yeah, yes” -1

Interviewee 3 felt that they couldn’t really answer the question, as the model for

their project was too cluttered, it had not been used as intended, they said.

4.5 INTERVIEW RESULTS 75

”Well, then, yes maybe it can give visual help, but in this case where

tickets haven’t been made using the model it might not help is much as

it maximally could.”

In a rather lengthy conversation with interviewee z, when prompted about the

list-based view as opposed to the visual box-based view they answered with the

following: "But if you’re doing things through the model, it directs you to really,

like really, to write the stories, like it just becomes more thorough."

Another detail that was added in z’s answer, was that since visual space was

physically limited in the model, it passively directed the user to keep the view

compact and readable.

2.2. If you have looked at other Lukean’s projects in Jira; do you find

a big difference in how easy it is for you to outline your own project

compared to someone else’s Jira project?

Interviewees 1, 2, 3, x and z answered the question by saying that they had not

inspected the projects of other Lukeans, 1 and x saying that they’d assume that the

model would at least make reading the outline of other projects easier.

Interviewee y felt that there wasn’t a difference in comprehensibility between

projects that were their own versus projects that weren’t, the visual model made

them all equal in terms of baseline readability, but not in content.

”The comprehension process is the same in projects regardless of whose

project it is, the main difference is how each of the projects has built

their epics.” -y

2.3. If you’d use Jira to present your project to others, would using Jira

4.5 INTERVIEW RESULTS 76

as a part of the presentation be helpful?

Interviewees 1, 2, x, y and z felt that the Jira model would help with presenting

the project to others through Jira.

”Yeah, one can, one can present it through the model.” -1 ”If one

presents it through Jira, than it is the software side.” -1

"Yes, yes, without a doubt yes, and especially this kind of compact

package of what kind of stories are associated with it and this kind of

structure, what kind of things are associated under each epic." -z

”This makes these things much more accessible than just to the

development team.” -y

”Yeah, it would be yes! If I were to think about showing this to a

customer then yeah this would be much easier to show in a view like

this to them.” -y

When prompted about the progress elements of the model view, y added that:

”Yeah that is true, here you can see better where each thing is going, which is usually

visualized with things like roadmaps or some other tools.” Also adding that it would

be nice if the model could somehow include information regarding the order of items

to be implemented, the list is much harder to show and explain to the customer.

Developer 3 answered that they did not think the model view would help with

presenting their own Jira project, as the view was cluttered from epics that were yet

to be sorted.

”Not necessarily with the project but it could help with the readability

of Jira and with tracking Jira tasks" "Not with Tikal at least” -3

4.5 INTERVIEW RESULTS 77

Comprehending repetitive software development

2.1. Does Jira help you get an understanding of the technical structure

of your projects?

Interviewees 1, x and z answered with a yes, but twith the answers of 1 and x

there was noticable hesitancy

”If the epics are associated with technical solutions, I don’t quite

remember from the top of my own head” ”The way I remember, they

did” -1 ”So they help?” -interviewer ”Yeah.” -1

”Yes, yeah” -z

”Well, I think” -x ”So, a hesitant yes?” -interviewer ”Well yeah, a

hesitant yes.” -x

Interviewee y answered with a yes, saying that ”in our project it helps, yes”

referring to the fact that in their projects, some of the epics had been categorized

from the start by epic name

”Maybe that’s what leads to the fact that, For example, in our project

the epics have been named in such a way that there’s it’s own epic for

integrations and APIs. So that we can see that ’oh there’s that

technical structure’ but it does not apply to everything.” -y

”In our project you can understand the tehnical structure from this,

but it’s not possible for all projects since those epics are those big user

stories.” -y

4.5 INTERVIEW RESULTS 78

Interviewees 2 and 3 answered with a no, saying that their projects contained a

lot of clutter, meaning that the model did not just contain technical information,

making the readability of technical elements harder.

”Not in this case at least since these(items) haven’t been grouped into

logical groupings” -2

”It does not necessarily, because the technical model itself isn’t that

well pictured in the model, there’s all kinds of tickets in the view.” -3

2.2. Does Jira help you in detecting the possible repeated software com-

ponents or services in your projects? The services may be repetitive

within the software project or in the future of its following projects or

work.

Interviewees 1, 2 x and z answered by saying that they could not make a proper

statement as there was too little time to use the model, interviewee z also added

that the model add-on itself could still use some work to actively help the detection

of dependencies.

”At first hand, I cannot say.” -2

”Maybe dependencies yes but I’m not quite sure about the repetition, I

cannot yet say.” -1

”We’re not quite at that stage yet, that this kind of repetitiveness could

be modelled in this.” -z

Interviewee z mentioned that while the model does not help in detecting de-

tecting repeated software components, it does help indirectly, meaning that when a

4.5 INTERVIEW RESULTS 79

repetitive software component has been done once, the model view on a epic level

can be used as a template for the next component, indicating which user stories

worked(were completed) and which ones did not.

Interviewee x couldn’t say about the model helping in identifying repetitive com-

ponents across projects, but when prompted about their own project, which the

model view had been added to, they answered by saying that the view does help in

identifying repetitive components within their project.

”Well maybe the more, like, general understanding of repetition would

require a wider and similar acknowledgement of sister projects and

other projects” -x

”Yeah and because this model does not support bringing epics from

other projects so it might be impossible to understand through this”

-interviewer ”Yes I’d maybe say no, but also because our organization

culture does not support this kind of cross project practice” -x ”It

would require the use of this model across projects.” -x

”but would you say that this helps with identifying repetitive

components within this project?” -interviewer ”Yes it helps, as a tool, it

helps for sure” -x

x was additionally prompted about as to why the visuality helps them, they an-

swered by saying that the picture might be easier to read as it’s easier to concentrate

on compared to a list.

Interviewee 3 and y answered positively to the question. 3 answered with the

following: ”In principle it does provide a view which enables you to see more tickets

at once and through that you can maybe spot similar tickets from the same category,

so in that way it can help.”

4.5 INTERVIEW RESULTS 80

y had a similar way of approaching the problem, they answered by saying that

the model helps by enabling the user to see epics that have already been done, and

compare them to upcoming items.

”It helps because if an epic has been moved to done, or if epics are

small for example, when they’re done and get moved to done, than in

this model you can get the epics that have been moved to done to be

seen.” -y

”So you can look at ongoing, done and future epics and see if there are

repetitive items” -y

y also mentioned that they often reflect on the old epics list against the epics of

a new project, so they would likely be doing the same using the visual model.

2.3. Does Jira help in detecting which parts of a software project aren’t

repeated?

Interviewee 1, y and x answered with a yes, 1 saying that while they answered no

to the previous question, the visuality helps with seeing which items aren’t associated

with other items.

”Yes in my opinion it does, in that perspective it does.” -1

”Visually, I can see that it(the epic) isn’t associated to other items.” -1

”Yes, it helps with that too.” -x

Interviewee y noted that the visuality helps with identifying if something is

going to be repeated or has been repeated, and also that the model helps indirectly

in detecting non repeated components.

4.5 INTERVIEW RESULTS 81

”Yes it does help, we can see from all the epics that are associated with

a project, which ones are done, which ones are under development and

which are up and coming we can, for example, see through the model

that one similar epic doesn’t exist.” -y

”Would you say that it helps indirectly? In detecting non repeated

components?” -interviewer ”Yeah, you kind of, need interpretation, that

we already wish to identify if something has been repeated or might get

repeated.” -y

Interviewees 2 and 3 couldn’t say, interviewee 3 mentioned that if the epics of

their project had been done with the model from the very start, they might be able

to say better.

Interviewee z referred to the previous answer of theirs, by saying that they did

not think the model was quite there yet. They added that the model might help in

practice with repetitive components.

”The model isn’t necessarily quite there yet, it’s gonna be seen here in

due time but I’d see that in terms of repetitiveness it might help to see

a representation of how a project has gone and how it has developed”

2.4. Does Jira help in identifying dependencies between software compo-

nents?

Interviewees 1, x, y and z answered positively with 1 and y saying that Jira with

the added visual model outright help with identifying dependencies, while x and z

believed that Jira indirectly helps with identifying dependencies.

”In a way, no, because this does not show issues that have been linked

to each other.” -y

4.5 INTERVIEW RESULTS 82

”The only way it helps is through the visuality, if a person knows that

they are looking for dependencies, on a high abstraction level at least,

than through that they can find dependencies using this” -y ”So in this

way it does help with identifying dependencies.” -y

”It does help in that too.” -x

”Yeah it helps more in a indirect kind of way, in presenting the kind of

things that can be dependent on each other” -x

”yes, yeah, not actively” -z ”Would you say that it also does help

through it being easier to perceive the possible dependencies?”

-interviewee ”yeah, yes.” -z

Interviewees 2 and 3 answered by saying that it was too early for them to give a

concrete answer on the topic.

4.5.4 Other disscussion during interviews

In a lengthy conversation after the first interview rounds questions, with interviewee

z, it was noted that the problem with Jira is that it does bring out some structure

of the work, so developers often don’t go out of their way to find and read architec-

ture documents, so those documents should be where the actual work takes place.

Another problem that was mentioned was that there were lots of tools that did the

same thing as the tools in Jira, but the cost of switching an environment was high for

the individual, as a certain threshold of stress was required for the software worker

to change the tool that they tend to use.

Another interviewee, interviewee 2 noted after the first interview round’s ques-

tions were done that in their opinion Jira was just pointless nonsense, and that the

times of flip chart were much better.

4.5 INTERVIEW RESULTS 83

They felt that using small pieces of paper were a much better way of representing

requirements, when prompted as to why, the interviewee mentioned that it’s just

better to passively read a board, it’s always in the same place and the movement of

requirements is very visible as they’re moved by individuals.

One can see cluttered areas of the board’s columns very easily at a first glance,

and everything can be colour coded. With the obvious downside being required to

be in the same space as the board. The addition of bugs is also very visible.

After the interview, interviewee 2 also noted that the physical closeness enables

the user to be able to tell what parts of a project are related. They also hoped to see

colour coding on when epics where wholly done, with all stories done inside an epic,

saying that colours are great since they enable the user to see information without

having to specifically read anything.

Interestingly interviewee 2 also mentioned that the visual model was one of the

best ways of possibly modelling dependencies, as they’d be way more visible than

just in the item descriptions after opening a specific item. They also say that

dependencies can be lost in the structure due to them being so hidden, while in a

model, they cannot be lost as easily.

Overall they agreed with the idea that the big downside of Jira was it’s activeness.

A developer is required to look at Jira in order to take a look at the current status of

work, while it was deemed much nicer to be able to passively get that information,

without it requiring any kind of initiative.

Before the interview with interviewee 3, they noted that the epic titles in the

model view get cut off, so it’s considerably harder to read the actual text of the

different epics in the model. 3 also noted that since their project was cobbled

together way before the model view was added, the model view was much more

cluttered than in the other projects that had their base made specifically with the

model in use during workshops. The views would be much more clear if the project

4.6 CASE STUDY RESULTS 84

was started while using the visual model.

During their interview, one of the interviewees mentioned that the move to Jira

has been made in a appropriate manner, but the benefits to be achieved from making

the move, are yet to be achieved.

There was also a note about adding one layer to the model, if one were to inspect

repetitive components across projects, they’d need a view from which they could see

all the places that a single epic would be linked to. Jira already has a implementation

that can provide this view through a feature called a template.

It was noted multiple times by interviewee x that visuality helps them with

concentration, as there’s a richer information environment in using the visual model.

4.5.5 To summarize

To summarize, a lot of the benefits of the visualization of requirements artifacts

has to do with the implementation of visuality, and how the work environment

of software workers is set up, the conversations suggest that the comprehensibility

and closeness of visual features to everyday work can lead to benefits and a better

understanding of requirements, but can also become too demanding to a developer

so the implementation should be compact. It seems that Luke can still gleam more

benefit from taking advantage of Jira and it’s benefits to software development.

4.6 Case study results

During the interviews, the answers to the interview questions changed from the first

round of interviews to the second. The most clear change was in the category of

"transmission and sharing of project information" Where answers to the questions

1 and 3 changed.

The question 1 regarding the overall comprehensibility of software projects changed

4.6 CASE STUDY RESULTS 85

from all the interviewees saying that Jira does not really help with understanding

the general idea of a software project, to half of the interviewees saying that Jira,

with the addition of the visual model, helps in understanding the general idea of a

software project. The rest saying that if they had more time with the model, they’d

likely be able to give defined answers to the question, two of them adding that

their vision was that the model would help them with understandability, expressing

positive attitude towards the visual model.

The question 3 to that same category regarding the presentability of projects

through Jira, changed from five out of six of the answers being partly positive, to

five of the answers agreeing that the model would help with presenting their project.

There were also changes in the answers to the technical section of comprehending

repetitive software development.

The most considerable change in this category was the change to answers regard-

ing question 1 of whether or not the visual model in Jira helped the interviewees

with understanding the technical structure of their projects. During the first inter-

view round, most of the interviewees(4/6) answered with a no, and in the second

round, with most of the answers (4/6) being positive towards Jira with the visual

model added.

Unfortunately, due to the short window of time between the interview rounds,

and the lack of initiative towards actively using the model, the answers to techni-

cal questions 2 and 3 regarding the detection of repeated software components or

services, remained inconclusive, most of the interviewees gave non answers due to

simply not using the model. The same unfortunate lack of time of use was observed

in the second interview round for the question 2 of the information sharing topic,

which lead to the interviewees not being able to answer the question again. The

model also lacked the feature of being able to use the same requirement artefact

across many projects as well as issues with name tags of the visual items. Having

4.6 CASE STUDY RESULTS 86

these features would have added value to the visual model.

It can be said with certainty that this research failed in it’s goal of answering

whether or not the visual model helps with detecting repeated software components

and increasing software product line thinking, but strongly suggests that the visual

model helps with information sharing.

5 Discussion

This study takes a look into reusability in software development, and a brief look

into the visual assistance of models for software product line development. The case

study takes a look into the minds of developers and project workers around different

software project and asks them, how does a visual model help them in their daily

work, and does the model help them identify structures associated with commonality

of requirements and components in projects.

The focus of the questions is simply around the concept of project members iden-

tifying individual components from the requirements structure. The main goal of

the research being to uncover if the visual model helps the identification of reusable

components, and as a consequence, to bring the organization of Luke slightly closer

to software product line thinking. The research also tries to map out how visual-

ization helps the daily work and inter-project communication of project workers in

ways that would be not inherently identifiable.

This research was definitely headed in the right direction, the model that had

been implemented, the interview questions, question structure, and the subjects that

were chosen were aligned with the current research environment. The reception for

the model that was implemented into views was positive, the workshop sessions

while using the view to plan requirements were very engaging and productive for

the participants, and during the interviews the interviewees attitudes towards the

model were positive.

CHAPTER 5. DISCUSSION 88

There were also very interesting findings related to offshoots of conversation

related to the topic: Interviewee z noting that the architecture work isn’t very

present in projects during the first interview round, and during the second interview

round, being delighted that his work could be brought visible on a requirements level,

while additionally being able to track project progress in real time. There was a

related conversation with interviewee 2 regarding the availability of information and

the mental threshold for having to check requirement status, as opposed to having

it readily in the space where work is done, best case of this being a physical flat

board at the office with requirements as post-it notes. The digital implementation of

similar concepts should remain clear and compact for readability and accessibility.

Another observation was that members of a certain project couldn’t read the

visual model view in their own project due to the project being too cluttered and the

way of writing requirements into the project had changed through it’s lifecycle. The

way of writing requirements should be streamlined in projects to increase readability,

which could lead to better information sharing both in a singular project, and across

many projects.

The model could have great benefits for the DIGI unit of Luke, as it would

help personnel understand the purpose of epics as well as user stories better and

streamline the way items are written into Jira, ultimately leading to benefits of

increased information sharing, like lessened repeated work, as well as opening the

door for the possibility of developing common components in the future.

The case study research did not achieve all of its goals, specifically with finding

out whether or not the visual model helped with finding repeated features or com-

ponents. Future research could be conducted with very similar methods, but with

improved research setting. The case study mainly had too little time for users to

use the model, and the Jira add-on used for the model could have more features.

CHAPTER 5. DISCUSSION 89

The study answers the main research question How can a high-level real-

time visual tracking model assist in bringing product line thinking and

increasing information sharing within an organization? by stating that the

results of the case study strongly suggest that the model does increase information

sharing within an organization by improving visual clarity of project requirement

items such as epics. This answer can be retrieved from the answers the sub questions.

The most dominant themes to the sub questions below were as follows:

In what ways can a visual Jira architecture model of high level abstraction

help software engineering?

The study strongly suggests that a visual architecture model of high level abstrac-

tion can help software engineering in terms of information sharing and in terms of

presentability and understandability of projects, which can lead to improvements in

information sharing across different projects and inside the projects themselves.

This answer is based in the answers to the interview questions 1 and 3 in the

category of information sharing having a very drastic change in answers, and them

being mostly positive towards the addition of the model.

Could a Jira architecture model of high abstraction level help in infor-

mation sharing for both a project and an organization?

The study suggests that a Jira architecture model can lead to improvements in

information sharing across different projects and inside the projects themselves as

the understandability and presentability of projects becomes easier.

This answer is based in the same answers as described in the sub question above.

The answers to the interview questions 1 and 3 in the category of information sharing

changed drastically in favour of the visual model.

CHAPTER 5. DISCUSSION 90

Could a repeatable Jira architecture model of high abstraction help with

developing repeated software components?

The study cannot answer this question, the answers to the technical section of the

study remained inconclusive, mostly due to the short time window of the study.

The add-on that was used for the case study, also lacked key features that could

have added technical value to the model, such as global epics and better epic name

representation.

To conclude, the subcategories and the goals of the main research question could

not all be answered, but further research can gain a lot from the results of this case

study. The results of the study strongly suggesting that the model can increase

information sharing within an organization are based on the answers of six people

related to the author. Because of both the author’s influence, the small sample size

of interviewees and the short time window of the study, it’s hard to generalize about

the results of the study. However, in the DIGI unit of Luke, the visual model was

received well and there are benefits to information sharing within certain projects.

6 Conclusion

In this study, a visual model for the tracking and presenting of agile epics is added

to the Jira view of the Natural Resources Institute Finland(Luke) DIGI unit.

The interview results from the answers of the participant developers and other

project workers from the Luke DIGI unit strongly suggests that a visual architecture

model of high level abstraction can help software engineering in terms of information

sharing and in terms of presentability and understandability of projects, which can

lead to improvements in information sharing across different projects and inside the

projects themselves.

The study could not answer how the model helps with technical software engi-

neering practices mostly due to the limited time window of the study. But provides

insight towards future research in how to assist project workers with graphical tools

in their daily work and shift an organization towards product line thinking.

The visual model seems to help with comprehensibility of projects in terms of

overall idea and technical structure, but it’s hard to say whether or not it helps

repetitive software development due to the model lacking some features, and the

study being hampered by a short time window for the interviewees’ use of the model.

In future research, if the model would mainly include cross-project epics, much

better results could be gained in medium and large organizations, and even in small

ones. The increased time window of at least one month instead of the two weeks for

model use would most likely greatly increase result quality. Another key takeaway

CHAPTER 6. CONCLUSION 92

would be to simply have a larger sample size of both developers as well as other

project workers with questions targeted to both groups separately.

Additionally the model could introduce dependency lines between different de-

pendent requirement items, as well as better epic name representation of epic name,

instead of the user story of the epic, to increase technical understandability and

overall readability, respectively.

Lastly, there could be more initiative to get projects to write their epics in a sim-

ilar manner across all projects of the organization, before conducting the research.

References

[1] C. W. Krueger, “Software reuse”, ACM Computing Surveys, vol. 24, no. 2,

pp. 131–183, 1992, issn: 0360-0300. doi: 10.1145/130844.130856. [Online].

Available: https://doi.org/10.1145/130844.130856.

[2] P. Freeman, “Reusable software engineering: Concepts and research direc-

tions”, in ITT Proceedings of the Workshop on Reusability in Programming,

vol. 129, 1983.

[3] T. Biggerstaff and C. Richter, “Reusability framework, assessment, and direc-

tions”, IEEE Software, vol. 4, no. 2, pp. 41–49, 1987. doi: 10.1109/MS.1987.

230095.

[4] I. Reinhartz-Berger, A. Sturm, C. T., S. C., and B. J., eng. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, isbn: 9783642366543.

[5] D. C. Schmidt, “Why software reuse has failed and how to make it work for

you”, C++ Report, vol. 11, no. 1, p. 1999, 1999.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements

of reusable object-oriented software. Reading MA: Addison-Wesley, 1994, p. 1.

[7] L. Northrop, P. Clements, F. Bachmann, et al., “A framework for software

product line practice, version 5.0”, in Software Engineering Institute, 2012.

[8] R. Capilla, T. Mikkonen, C. Carrillo, F. A. Fontana, I. Pigazzini, and V.

Lenarduzzi, “Impact of opportunistic reuse practices to technical debt”, in 2021

https://doi.org/10.1145/130844.130856
https://doi.org/10.1145/130844.130856
https://doi.org/10.1109/MS.1987.230095
https://doi.org/10.1109/MS.1987.230095

REFERENCES 94

IEEE/ACM International Conference on Technical Debt (TechDebt), IEEE,

2021, pp. 16–25. doi: 10.1109/TechDebt52882.2021.00011.

[9] N. Mäkitalo, A. Taivalsaari, A. Kiviluoto, T. Mikkonen, and R. Capilla, “On

opportunistic software reuse”, Computing, vol. 102, pp. 2385–2408, 2020.

[10] J. Sametinger, Software engineering with reusable components. Springer Sci-

ence & Business Media, 1997.

[11] A. W. Brown, Large-scale, component-based development. Prentice Hall PTR

Englewood Cliffs, 2000, vol. 1, pp. 70–73.

[12] C. Szyperski, D. Gruntz, and S. Murer, Component software: beyond object-

oriented programming. Pearson Education, 2002.

[13] I. Crnkovic, “Component-based software engineering - new challenges in soft-

ware development”, eng, in Proceedings of the 25th International Conference

on Information Technology Interfaces, 2003. ITI 2003, IEEE, 2003, pp. 9–18,

isbn: 9789539676962.

[14] M. Morisio, C. B. Seaman, A. T. Parra, V. R. Basili, S. E. Kraft, and S. E.

Condon, “Investigating and improving a cots-based software development”, in

Proceedings of the 22nd International Conference on Software Engineering,

ser. ICSE ’00, Limerick, Ireland: Association for Computing Machinery, 2000,

pp. 32–41, isbn: 1581132069. doi: 10.1145/337180.337186. [Online]. Avail-

able: https://doi.org/10.1145/337180.337186.

[15] I. Crnkovic, M. Chaudron, and S. Larsson, “Component-based development

process and component lifecycle”, in 2006 International Conference on Soft-

ware Engineering Advances (ICSEA’06), IEEE, 2005. doi: 10.1109/ICSEA.

2006.261300.

[16] M. Mrva, “Reuse factors in embedded systems design”, Computer, vol. 30,

no. 8, pp. 93–95, 1997.

https://doi.org/10.1109/TechDebt52882.2021.00011
https://doi.org/10.1145/337180.337186
https://doi.org/10.1145/337180.337186
https://doi.org/10.1109/ICSEA.2006.261300
https://doi.org/10.1109/ICSEA.2006.261300

REFERENCES 95

[17] K. Pohl, G. Böckle, and F. Van Der Linden, Software Product Line Engineer-

ing: Foundations, Principles and Techniques, eng. Berlin, Heidelberg: Springer

Nature, 2005, isbn: 3540289011.

[18] J. Axelsson, A. Kobetski, Z. Ni, S. Zhang, and E. Johansson, “Moped: A

mobile open platform for experimental design of cyber-physical systems”, in

2014 40th EUROMICRO Conference on Software Engineering and Advanced

Applications, IEEE, 2014, pp. 423–430. doi: 10.1109/SEAA.2014.38.

[19] C. Ebert, “Correspondence visualization techniques for analyzing and evaluat-

ing software measures”, English, IEEE Transactions on Software Engineering,

vol. 18, no. 11, pp. 1029–1034, Nov. 1992, Copyright - Copyright Institute of

Electrical and Electronics Engineers, Inc. (IEEE) Nov 1992; Last updated -

2022-11-11; CODEN - IESEDJ. [Online]. Available: https://www.proquest.

com/scholarly-journals/correspondence-visualization-techniques-

analyzing/docview/195562660/se-2.

[20] P. C. Wang, Graphical representation of multivariate data. Elsevier, 2014.

[21] E. R. Tufte, The visual display of quantitative information. Graphics press

Cheshire, CT, 2001, vol. 2.

[22] L. Linsbauer, E. R. Lopez-Herrejon, and A. Egyed, “Recovering traceability be-

tween features and code in product variants”, in Proceedings of the 17th Inter-

national Software Product Line Conference, ser. SPLC ’13, Tokyo, Japan: As-

sociation for Computing Machinery, 2013, pp. 131–140, isbn: 9781450319683.

doi: 10.1145/2491627.2491630. [Online]. Available: https://doi.org/10.

1145/2491627.2491630.

[23] S. Illescas, R. E. Lopez-Herrejon, and A. Egyed, “Towards visualization of fea-

ture interactions in software product lines”, in 2016 IEEE Working Conference

on Software Visualization (VISSOFT), IEEE, 2016, pp. 46–50.

https://doi.org/10.1109/SEAA.2014.38
https://www.proquest.com/scholarly-journals/correspondence-visualization-techniques-analyzing/docview/195562660/se-2
https://www.proquest.com/scholarly-journals/correspondence-visualization-techniques-analyzing/docview/195562660/se-2
https://www.proquest.com/scholarly-journals/correspondence-visualization-techniques-analyzing/docview/195562660/se-2
https://doi.org/10.1145/2491627.2491630
https://doi.org/10.1145/2491627.2491630
https://doi.org/10.1145/2491627.2491630

REFERENCES 96

[24] R. E. Lopez-Herrejon, S. Illescas, and A. Egyed, “A systematic mapping study

of information visualization for software product line engineering”, eng, Jour-

nal of software : evolution and process, vol. 30, no. 2, e1912–n/a, 2018, issn:

2047-7473.

[25] G. K. Hanssen and T. E. Fægri, “Process fusion: An industrial case study

on agile software product line engineering”, Journal of Systems and Software,

vol. 81, no. 6, pp. 843–854, 2008, Agile Product Line Engineering, issn: 0164-

1212. doi: https://doi.org/10.1016/j.jss.2007.10.025. [Online].

Available: https : / / www . sciencedirect . com / science / article / pii /

S0164121207002518.

[26] T. Vale, B. Cabral, L. Alvim, et al., “Splice: A lightweight software product

line development process for small and medium size projects”, in 2014 Eighth

Brazilian Symposium on Software Components, Architectures and Reuse, IEEE,

2014, pp. 42–52.

[27] P. Trinidad, D. Benavides, and A. Ruiz-Cortés, “Improving decision making

in software product lines product plan management”, in Proceedings of the V

ADIS 2004 Workshop on Decision Support in Software Engineering, University

of seville, vol. 120, ADIS, 4ª, 2004, Málaga, 2004.

[28] W. Tracz, “Domain-specific software architecture (dssa) frequently asked ques-

tions (faq)”, ACM SIGSOFT Software Engineering Notes, vol. 19, no. 2, pp. 52–

56, 1994.

[29] M. Harsu, A survey on domain engineering. Citeseer, 2002, vol. 12.

[30] K. Czarnecki, “Domain engineering”, in Encyclopedia of Software Engineer-

ing. John Wiley & Sons, Ltd, 2002, isbn: 9780471028956. eprint: https :

//onlinelibrary.wiley.com/doi/pdf/10.1002/0471028959.sof095.

https://doi.org/https://doi.org/10.1016/j.jss.2007.10.025
https://www.sciencedirect.com/science/article/pii/S0164121207002518
https://www.sciencedirect.com/science/article/pii/S0164121207002518
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471028959.sof095
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471028959.sof095

REFERENCES 97

[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/

0471028959.sof095.

[31] L. F. Capretz, M. A. Capretz, and D. Li, “Component-based software de-

velopment”, in IECON’01. 27th Annual Conference of the IEEE Industrial

Electronics Society (Cat. No. 37243), vol. 3, IEEE, 2001, pp. 1834–1837.

[32] M. Bertl, T. Klementi, G. Piho, P. Ross, and D. Draheim, “How domain engi-

neering can help to raise decision support system adoption rates in healthcare”,

in HEDA 2023: 3rd International Health Data Workshop, July 21st, 2023, Le-

icester, UK, CEUR Workshop Proceedings, 2023.

[33] R. Prieto-Dıaz, “Domain analysis: An introduction”, SIGSOFT Softw. Eng.

Notes, vol. 15, no. 2, pp. 47–54, 1990, issn: 0163-5948. doi: 10.1145/382296.

382703. [Online]. Available: https://doi.org/10.1145/382296.382703.

[34] W. Lam and J. A. McDermid, “A summary of domain analysis experience by

way of heuristics”, ACM SIGSOFT Software Engineering Notes, vol. 22, no. 3,

pp. 54–64, 1997.

[35] I. K. Bray, An introduction to requirements engineering. Pearson Education,

2002.

[36] J. Dick, Requirements engineering, eng, 4th ed. Cham: Springer, 2017, pp. 9–

10, isbn: 9783319610733.

[37] K. Czarnecki, K. Østerbye, and M. Völter, “Generative programming”, in

Object-Oriented Technology ECOOP 2002 Workshop Reader: ECOOP 2002

Workshops and Posters Málaga, Spain, June 10–14, 2002 Proceedings, Springer,

2002, pp. 15–29.

[38] G. Abowd, L. Bass, P. Clements, R. Kazman, and L. Northrop, “Recommended

best industrial practice for software architecture evaluation”, eng, Tech. Rep.,

1997.

https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof095
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof095
https://doi.org/10.1145/382296.382703
https://doi.org/10.1145/382296.382703
https://doi.org/10.1145/382296.382703

REFERENCES 98

[39] P. B. Kruchten, “The 4+ 1 view model of architecture”, IEEE software, vol. 12,

no. 6, pp. 42–50, 1995.

[40] R. K. Yin, Case study research : design and methods (Applied social research

methods series ; vol. 5), eng, 2nd ed. Newbury Park, CA: Sage Publications,

1994, isbn: 0-8039-5662-2.

[41] T. N. R. I. Finland. “Presentation of luke”. (2023), [Online]. Available: https:

//www.luke.fi/en/about-luke/presentation-of-luke (visited on 2023).

[42] J. Esquenazi. “The undervalued art of naming epics, releases, features, and user

stories”. (2022), [Online]. Available: https://bootcamp.uxdesign.cc/the-

undervalued- art- of- naming- epics- releases- features- and- user-

stories-343a5e444074 (visited on 2023).

[43] M. Rehkopf. “Stories, epics, and initiatives”. (2023), [Online]. Available: https:

//www.atlassian.com/agile/project- management/epics- stories-

themes (visited on 2023).

[44] Anna. “Jira issue links and dependencies management”, BigPicture. (2023),

[Online]. Available: https://community.atlassian.com/t5/Marketplace-

Apps-Integrations/Jira-Issue-Links-and-dependencies-management/

ba-p/2050756 (visited on 2023).

[45] C. Wohlin and A. Aurum, “Towards a decision-making structure for selecting

a research design in empirical software engineering”, Empirical software engi-

neering : an international journal, vol. 20, no. 6, pp. 1427–1455, 2014, issn:

1382-3256.

[46] J. F. Nunamaker Jr, M. Chen, and T. D. Purdin, “Systems development in

information systems research”, Journal of management information systems,

vol. 7, no. 3, pp. 89–106, 1990.

https://www.luke.fi/en/about-luke/presentation-of-luke
https://www.luke.fi/en/about-luke/presentation-of-luke
https://bootcamp.uxdesign.cc/the-undervalued-art-of-naming-epics-releases-features-and-user-stories-343a5e444074
https://bootcamp.uxdesign.cc/the-undervalued-art-of-naming-epics-releases-features-and-user-stories-343a5e444074
https://bootcamp.uxdesign.cc/the-undervalued-art-of-naming-epics-releases-features-and-user-stories-343a5e444074
https://www.atlassian.com/agile/project-management/epics-stories-themes
https://www.atlassian.com/agile/project-management/epics-stories-themes
https://www.atlassian.com/agile/project-management/epics-stories-themes
https://community.atlassian.com/t5/Marketplace-Apps-Integrations/Jira-Issue-Links-and-dependencies-management/ba-p/2050756
https://community.atlassian.com/t5/Marketplace-Apps-Integrations/Jira-Issue-Links-and-dependencies-management/ba-p/2050756
https://community.atlassian.com/t5/Marketplace-Apps-Integrations/Jira-Issue-Links-and-dependencies-management/ba-p/2050756

REFERENCES 99

[47] J. Collis, Business research: a practical guide for undergraduate and postgrad-

uate students, eng. Basingstoke: Macmillan, 1997, p. 13, isbn: 0-333-60704-X.

[48] R. W. Clower, “Economics as an inductive science”, Southern Economic Jour-

nal, pp. 805–809, 1994.

[49] J. Hawthorne, “Inductive logic”, 2004.

[50] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study

research in software engineering”, Empirical software engineering : an inter-

national journal, vol. 14, pp. 131–164, 2009, issn: 1382-3256.

[51] H. K. Klein and M. D. Myers, “A set of principles for conducting and evaluating

interpretive field studies in information systems”, eng, MIS quarterly, vol. 23,

no. 1, pp. 67–93, 1999, issn: 0276-7783.

[52] W. J. Orlikowski and J. J. Baroudi, “Studying information technology in or-

ganizations: Research approaches and assumptions”, eng, Information systems

research, vol. 2, no. 1, pp. 1–28, 1991, issn: 1047-7047.

[53] D. R. Hannah and B. A. Lautsch, “Counting in qualitative research: Why to

conduct it, when to avoid it, and when to closet it”, Journal of Management

Inquiry, vol. 20, no. 1, p. 17, 2011.

[54] I. Benbasat, D. K. Goldstein, and M. Mead, “The case research strategy in

studies of information systems”, MIS quarterly, pp. 369–386, 1987.

[55] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information

systems research”, Management Information Systems Quarterly, vol. 28, no. 1,

pp. 76–86, 2004.

[56] R. Davison, M. G. Martinsons, and N. Kock, “Principles of canonical action

research”, Information systems journal, vol. 14, no. 1, p. 82, 2004.

[57] A. Bhattacherjee, Social science research: Principles, methods, and practices.

Global Text Project, 2012, p. 113.

REFERENCES 100

[58] V. Braun and V. Clarke, “Using thematic analysis in psychology”, Qualitative

research in psychology, vol. 3, no. 2, pp. 77–101, 2006.

[59] D. Valdez, A. C. Pickett, and P. Goodson, “Topic modeling: Latent seman-

tic analysis for the social sciences”, Social Science Quarterly, vol. 99, no. 5,

pp. 1665–1679, 2018.

[60] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent se-

mantic analysis”, Discourse processes, vol. 25, no. 2-3, p. 261, 1998.

[61] J. Ritchie, J. Lewis, C. M. Nicholls, R. Ormston, et al., Qualitative research

practice: A guide for social science students and researchers. Sage Publications,

2013.

[62] T. S. BRUGHA, P. E. BEBBINGTON, and R. J NKINS, “A difference that

matters: Comparisons of structured and semi-structured psychiatric diagnostic

interviews in the general population”, Psychological Medicine, vol. 29, no. 5,

pp. 1013–1020, 1999. doi: 10.1017/S0033291799008880.

[63] N. J. Mathers, N. J. Fox, and A. Hunn, Using interviews in a research project.

NHS Executive, Trent, 1998, p. 2.

[64] A. Oatey, “The strengths and limitations of interviews as a research technique

for studying television viewers”, 1999.

[65] B. Byrne, “Qualitative interviewing”, Researching society and culture, vol. 2,

p. 212, 2004.

[66] W. Donsbach and M. W. Traugott, The SAGE Handbook of Public Opinion Re-

search, eng. London: SAGE Publications, Limited, 2008, isbn: 9781412911771.

[67] Herocoders. “Epics map for jira”. (2023), [Online]. Available: https://marketplace.

atlassian.com/apps/1220137/epics-map-for-jira (visited on 2023).

https://doi.org/10.1017/S0033291799008880
https://marketplace.atlassian.com/apps/1220137/epics-map-for-jira
https://marketplace.atlassian.com/apps/1220137/epics-map-for-jira

Appendix A The original interview

document in Finnish

TAUSTOITUS: (luodaan reilu tutkimusasetelma jotta Jiraa voidaan tarkastella osana kokonaisuutta)

Taustatiedot tutkimuksesta sekä toistuvasta ohjelmistokehityksestä:

Tervetuloa lopputyöni case-tutkimukseen aiheesta Toistuvan ohjelmistokehityksen tukeminen
reaaliaikaisen Jira seurantamallin avulla (Assisting product line thinking and information sharing using
a real-time Jira tracking model)

Tutkin sitä, miten visuaalinen eepoksien kautta koostettu Jira malli voi tukea informaation välittämistä
organisaatiossa, ohjelmistosuunnittelua sekä jokapäiväistä työtä.
Tarkastelemme myös tiedon jakamista Luonnonvarakeskuksessa

Erityispiirteenä tutkimuksessani on software product line ajattelun tuominen Lukelle, tutkimuksessa
tuotettujen Jira mallien kautta.
Tuotetulla Jira-mallilla pyritään myös selvittämään, voisiko se auttaa toistuvien
ohjelmistokomponenttien tunnistamista projektissa.

Software product line ajattelun keskiössä on ajatus siitä, että tunnistetaan tarvittavia
ohjelmistopohjaisia kokonaisuuksia eli tuotteita ja tehdään tältä pohjalta yhteisiä komponentteja
kaikkien näiden tuotteiden tarpeisiin. Lopuksi kootaan näistä tuotetuista komponenteista valmiita
tuotteita omine custom-osineen.
Eli aluksi tunnistetaan yhteiset komponentit ja sitten yhteisien komponenttien pohjalta tuotetaan
valmiita ohjelmistokokonaisuuksia eli tuotteita.
Esimerkiksi Lockheed Martinin Marinetime Systems and Sensors division käyttää software product
linea

Tutkimukseni keskittyy seuraaviin teemoihin:
Tiedon jakaminen
Ohjelmistoprojektin hahmottaminen
Tiedon jakaminen Lukella
Toistuvan ohjelmistokehityksen tunnistaminen
Software product line ajattelun lisääminen Lukella
Kehitystyön ja suunnittelutyön tukeminen

Kysymyksiin vastaamatta jättäminen on myös hyvä tapa vastata, eikä ole mitenkään väärin sanoa, ettei
vastaajalla ole näkemystä kysyttyyn kysymykseen
Haastattelut nauhoitetaan

Yleiset kysymykset:
Tehtävänimike Lukella ja työnkuvaus
Koulutustaso, viimeisimmän tutkinnon nimike
Kuinka kauan olet ollut lukella työsuhteessa?
Kuinka kauan koet olleesi teknologia-alalla töissä?

Millä alustoilla on projektin(ne?) tekniseen rakenteeseen liittyvä dokumentaatio?
Miten koette tiedon välittyvän Lukella suhteessa muihin ohjelmistoprojekteihin?

KYSYMYSPAREJA

Projekti-informaation välittyminen ja tiedon jakaminen;

1. Pari
Miten helposti koette ohjelmistoteknisen projektin kokonaiskuvan välittyvän Jiran kautta?
Koetteko että mallin toteuttamisen jälkeen, muiden ohjelmistoprojektien kokonaiskuvan
hahmottaminen olisi helpompaa Jiran kautta

(Jatkokysymys: Jos ei Jirasta, mistä?)

2. Pari
Jos olette tarkastellut muiden lukelaisten projekteja Jirassa; koetteko suurta eroa siinä, miten helppoa
teillä on hahmottaa oma projekti verrattuna jonkun muun Jira projektiin?
Entä mallin toteuttamisen jälkeen?

3. Pari
Jos käyttäisitte jiraa esitelläksenne projektianne, olisiko Jirasta apua projektinne rakenteen esittelyssä?
Entä mallin toteuttamisen jälkeen?

Toistuvan ohjelmistokehityksen hahmottaminen;
1. Pari
Auttaako Jira hahmottamaan teidän ohjelmistoprojektienne teknistä rakennetta?
Entä mallin toteuttamisen jälkeen?

2. Pari
Auttaako Jira hahmottamaan ohjelmistoprojekteissanne mahdollisten toistuvien komponenttien tai
palveluiden tunnistamista? Palvelut voivat toistua projektin sisällä tai tulevaisuudessa muissa sitä
seuraavissa projekteissa tai työssä.
Entä mallin toteuttamisen jälkeen?

3. Pari
Auttaako Jira tunnistamaan mitkä osat ohjelmistoprojektissa eivät olisi toistettavia?
Entä mallin toteuttamisen jälkeen?

4. Pari
Auttaako Jira tunnistamaan riippuvuuksia ohjelmistokomponenttien välillä?
Entä mallin toteuttamisen jälkeen?

	Introduction
	Conventional code reuse and software product line
	Fortuitous, small-grain reuse
	Component and service based development
	Software product line engineering
	Variability in software product lines
	The basics of SPL
	Visual assistance
	SPL and agile development

	Software product line activities
	Domain engineering and core assets development
	Domain engineering
	Domain analysis
	Domain design
	Domain implementation
	Core assets development
	Similarities of core asset development and domain engineering

	Product development and application engineering
	Management and organizational management

	Case study
	Backround
	Luonnonvarakeskus as an organization
	Jira

	Case description
	Methodology
	Research outline
	interview method and implementation

	Case implementation
	Interview results
	Background question answers
	Interview round 1
	Interview round 2
	Other disscussion during interviews
	To summarize

	Case study results

	Discussion
	Conclusion
	References
	The original interview document in Finnish

