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ABSTRACT 

This thesis work focused on a specialized plant metabolite group called hydrolysable 
tannins with the aim of expanding the knowledge on their hydrophobicity, 
interactions with lipid membranes and antibacterial capacity. Hydrolysable tannins 
are known to possess many nutritionally and pharmacologically beneficial 
properties, which is why it is important to find the effective structures and unravel 
the mechanisms behind these activities. 

Initially, the hydrophobicities of 47 chromatographically purified and 
spectrometrically characterized hydrolysable tannins were determined with 
octanol/water partitioning measurements. These results revealed that increased 
flexibility of the structure and larger molecular weight increased the hydrophobicity 
of the compounds while rigid substituent groups and macrocyclicity decreased it.  

In the second and third study, the lipid interactions of hydrolysable tannins were 
studied with nuclear magnetic resonance (NMR) spectroscopy and isothermal 
titration calorimetry (ITC) using a phospholipid extract of Escherichia coli. The 
NMR results revealed how some hydrolysable tannins were able to penetrate to lipid 
moieties that reside inside the lipid bilayer structures thus verifying that hydrolysable 
tannins are able to perturb surface structures of lipid bilayers. Again, the more 
flexible structures proved to be more effective but the larger tannins were not able 
to perturb deep into the lipid bilayers most probably due to their bulkier structures. 
The thermodynamic results obtained with ITC corroborated the NMR results by 
showing increased interaction from the same compounds. 

In the final part of this work, the antibacterial capacity of selected hydrolysable 
tannins was evaluated against Escherichia coli and Staphylococcus aureus cultures 
using an untargeted NMR metabolomics approach and plated inhibition results. All 
the tested hydrolysable tannins showed antibacterial activity and were able to 
influence the bacterial metabolome of the bacterial cultures. The altered bacterial 
metabolome results correleted with the plated inhibition results confirming that the 
NMR based method was able to reveal inhibition results directly from the culture 
medium. 

KEYWORDS: antibacterial, E. coli, hydrolysable tannin, hydrophobicity, lipid, S. 
aureus   
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TIIVISTELMÄ 

Tämä väitöskirjatyö keskittyi erikoistuneiden metaboliittien yhdisteryhmään 
nimeltään hydrolysoituvat tanniinit tavoitteena laajentaa tietämystä niiden 
hydrofobisuudesta, vuorovaikutuksista lipidikalvojen kanssa ja antibakteerisesta 
kapasiteesta. HT:lla tiedetään olevan useita ravitsemuksellisesti ja farmakologisesti 
hyödyllisiä ominaisuuksia, minkä vuoksi onkin tärkeää löytää tehokkaat rakenteet ja 
selvittää niiden aktiivisuuteen liittyvät mekanismit. 

Aluksi 47 kromatografisesti puhdistetun ja spektrometrisesti karakterisoidun 
hydrolysoituvan tanniinin hydrofobisuudet määritettiin oktanoli/vesi-jakaantumis-
kerroin mittauksilla. Nämä tulokset osoittivat lisääntyvän rakenteen joustavuuden ja 
suuremman molekyylipainon kasvattavan yhdisteen hydrofobisuutta, kun taas 
jäykkien substituenttiryhmien ja makrosyklisyyden havaittiin alentavan sitä.  

Työn toisessa ja kolmannessa osassa tutkittiin hydrolysoituvien tanniinien 
lipidivuorovaikutuksia ydinmagneettisen resonanssispektroskopian (NMR) ja 
isotermisen titrauskalorimetrian (ITC) avulla käyttäen Escherichia coli:sta eristettyä 
lipidiuutetta. NMR-tulokset paljastivat, miten jotkut hydrolysoituvat tanniinit 
pystyivät tunkeutumaan lipidikaksoiskalvojen sisäosiin siten varmistaen näiden 
yhdisteiden kyvyn häiritä lipidikaksoiskalvojen pintarakenteita. Jälleen jousta-
vammat hydrolysoituvat tanniinit osoittautuivat tehokkaiksi rakenteiksi, kun taas 
suuremmat tanniinit eivät kyenneet tunkeutumaan syvälle kaksoiskalvoon johtuen 
tilaavievistä rakenteistaan. ITC:n avulla saadut termodynaamiset tulokset tukivat 
NMR-tuloksia osoittaen vuorovaikutuksen kasvavan samoilla yhdisteillä. 

Lopuksi arvioimme valittujen hydrolysoituvien tanniinien antibakteerista kapa-
siteettia Escherichia coli ja Staphylococcus aureus -viljelmiä vastaan käyttäen 
kohdistamatonta NMR-metabolomiikkaa ja bakteerimaljausta. Kaikki testatut 
hydrolysoituvat tanniinit osoittivat antibakteerista aktiivisuutta ja kykenivät 
vaikuttamaan näiden bakteeriviljelmien metabolomiin. Muuttuneet bakteeri-
metabolomit korreloivat maljattujen inhibitiotulosten kanssa varmistaen NMR-
pohjaisen menetelmän pystyvän paljastamaan inhibition suoraan viljelmän elatus-
aineesta. 

ASIASANAT: antibakteerisuus, E. coli, hydrofobisuus, hydrolysoituvat tanniinit, 
lipidit, S. aureus  
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E. coli Escherichia coli 
ESI Electrospray ionization 
ET Ellagitannin 
GT Gallotannin 
HCD Higher-energy collisional dissociation 
HHDP Hexahydroxydiphenoyl 
HMBC Heteronuclear multiple bond correlation 
HPLC High-performance liquid chromatography 
H. pylori Helicobacter pylori 
HR-MAS High-resolution magic angle spinning 
HSQC Heteronuclear single quantum coherence 
HT Hydrolysable tannin 
ITC Isothermal titration calorimetry 
MRM Multiple reaction monitoring 
MS Mass spectrometry 
NHTP Nonahydroxytriphenoyl 
NMR Nuclear magnetic resonance 
NOESY Nuclear Overhauser effect spectroscopy 
PCA Principal component analysis 
PPC Protein precipitation capacity 
ROS Reactive oxygen species 
S. aureus Staphylococcus aureus 
TOCSY Total correlation spectroscopy 
UHPLC Ultrahigh-performance liquid chromatography   



8 

List of Original Publications 

This dissertation is based on the following original publications, which are referred 
to in the text by their Roman numerals: 

I Virtanen, V., Karonen, M. Partition Coefficients (logP) of Hydrolysable Tan-
nins. Molecules. 2020; 25: 3691. https://doi.org/10.3390/molecules25163691 

II Virtanen, V., Räikkönen, S., Puljula, E., Karonen, M. Ellagitannin–Lipid 
Interaction by HR-MAS NMR Spectroscopy. Molecules. 2021; 26: 373. 
https://doi.org/10.3390/molecules26020373 

III Virtanen, V., Green, R.J., Karonen, M. Interactions Between Hydrolysable 
Tannins and Lipid Vesicles from Escherichia coli with Isothermal Titration 
Calorimetry. Molecules. 2022; 27: 3204. 
https://doi.org/10.3390/molecules27103204 

IV Virtanen, V., Puljula, E., Walton, G., Woodward, M.J., Karonen, M. NMR 
Metabolomics and DNA sequencing of Escherichia coli and Staphylococcus 
aureus Cultures Treated with Hydrolysable Tannins. Metabolites. 2023; 13: 
320. https://doi.org/10.3390/metabo13030320 

Articles I-IV, copyright © 2023 MDPI, published under an open access Creative 
Commons Attribution (CC BY 4.0) license.   

https://doi.org/10.3390/molecules25163691
https://doi.org/10.3390/molecules26020373
https://doi.org/10.3390/molecules27103204
https://doi.org/10.3390/metabo13030320


 9 

List of Related Publications not Included 
in the Thesis 

Engström, M., Arvola, J., Nenonen, S., Virtanen, V., Leppä, M., Tähtinen, P., 
Salminen, J-P. Structural Features of Hydrolyzable Tannins Determine Their Ability 
to Form Insoluble Complexes with Bovine Serum Albumin. Journal of Agricultural 
and Food Chemistry. 2019; 67: 6798–6808. 
https://doi.org/10.1021/acs.jafc.9b02188 

Bello, A., Virtanen, V., Salminen, J-P., Leiviskä, T. Aminomethylation of Spruce 
Tannins and their Application as Coagulants for Water Clarification. Separation and 
Purification Technology. 2020; 242. https://doi.org/10.1016/j.seppur.2020.116765 

Grünewald, F., Punt, M. H., Jefferys, E. E., Vainikka, P. A., König, M., Virtanen, 
V., Meyer, T. A., Pezeshkian, W., Gormley, A. J., Karonen, M., Sansom, M. S. P., 
Souza, P. C. T., Marrink, S. J. Martini 3 Coarse-Grained Force Field for 
Carbohydrates. Journal of Chemical Theory and Computation. 2022; 18: 7555–
7569. https://doi.org/10.1021/acs.jctc.2c00757 

Engström, M. T., Virtanen, V., & Salminen, J. P. Influence of the Hydrolyzable 
Tannin Structure on the Characteristics of Insoluble Hydrolyzable Tannin-Protein 
Complexes. Journal of Agricultural and Food Chemistry. 2022; 70: 13036–13048. 
https://doi.org/10.1021/acs.jafc.2c01765 
 

https://doi.org/10.1021/acs.jafc.9b02188
https://doi.org/10.1016/j.seppur.2020.116765
https://doi.org/10.1021/acs.jctc.2c00757
https://doi.org/10.1021/acs.jafc.2c01765


 10 

1 Introduction 

Plants biosynthesize a plethora of metabolites for many different purposes be it for 
direct growth and development via primary metabolites like carbohydrates, proteins, 
lipids, vitamins, and nucleic acids or for defense and survival via specialized 
(formerly secondary) metabolites like terpenoids, phenolics, alkaloids, and sulfur 
containing compounds.  

Hydrolysable tannins (HTs) are a sub-group of phenolic metabolites that exhibit 
several beneficial activities such as antioxidative1–5, antimicrobial6–16, 
antitumoric4,17–20, and anti-inflammatory21,22 activities as isolated compounds but 
also in plant extracts.23,24 HTs are widely distributed across the plant kingdom17,25–28 
including many nutritionally important food items such as fruits, berries, nuts, and 
red wine.29 The nutritional and health benefits of consuming a diet that includes these 
polyphenol-rich foods and drinks have been known for a long time30–32 and these 
benefits have been partially linked to the antioxidant properties of their phenolic 
constituents.33,34 Phenolic compounds are able to relieve oxidative stress in the 
original plants as well as in humans when ingested by neutralizing reactive oxygen 
species (ROS) and by suppressing some oxidation reactions that would, if left 
uninhibited, produce ROS in excess.35–37 As the name suggests ROS readily react in 
cells with cell components such as proteins, nucleic acids, and lipids and can in so 
doing lead to several health problems.38 Among many active phenolic compounds, 
several HTs have been reported to have high antioxidative capacity1,5 even when 
compared to some flavonoids that are often attributed as the major source of 
antioxidants in fruits for example.39  

Another well-known property of HTs is to bind and crosslink with proteins in 
solution producing complexes that, with high enough concentration, will 
precipitate.40–44 This characteristic interaction of tannins has been studied 
extensively and detailed structure-activity patterns have been observed linking active 
structural features of individual HT structures to the overall activity of plant species 
containing them in abundance. Other HT-macromolecule interactions, such as fiber 
or lipid interactions45–47, have not been studied as comprehensively even though they 
might reveal insight into their notable antimicrobial activities.  
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This thesis focuses on studying a physicochemical property of HTs, which 
governs the transportation of compounds in biological processes, hydrophobicity, 
with additional focus on the interactions that HTs have with bacterial lipid 
membranes and the effect that HTs have to bacterial growth and the bacterial 
metabolome. 

1.1 Structures and classification of hydrolysable 
tannins 

Although some hydrolysable tannins have been purified and their structures 
characterized by Schmidt and Mayer already in 195648 the more detailed 
classification of this structurally very diverse metabolite group really gained 
momentum starting from the later characterization of geraniin from Geranium 
Thunbergii by Okuda et al., in 1977.49 The improved instrumentation and modern 
spectrometric techniques enabled the revision of old structures50,51 and the 
characterization of countless new structures ranging in size from small monomers 
all the way up to undecamers52,53 as well as the determination of absolute 
configurations of different HT substructures.54,55 With this enriched structural 
knowledge, the classification of HTs (Figure 1) based on their structural features 
with emphasis also on their suggested biosynthetic route was made possible26,56 but 
generally most HTs can be described as gallic acid/HHDP esters of a central polyol, 
most often glucose. 

Thus, HTs are divided into simple galloylglucoses, gallotannins (GTs), and 
ellagitannins (ETs). The simple galloylglucoses are, as per the name, gallic acid 
esters of glucose starting from monogalloylglucose all the way to 
pentagalloylglucose57. When additional galloyl groups are bound via meta-depside 
bonds to the galloyls directly bound to the polyol glucose these compounds are 
classified as GTs57. Both groups produce gallic acid when hydrolysed with acidic or 
alkaline conditions or via enzymatic (tannase or β-glucosidase) ways and produce 
characteristic fragment ions at m/z 169 and 125 in negative ionization mass 
spectrometry.58–60 

The third group, ETs, is structurally more diverse than the previous two and is 
thus further divided into subgroups such as HHDP esters, C-glycosidic ETs, 
dehydro-HHDP esters and other HHDP modifications, flavanoellagitannins, and 
oligomeric ETs. The biosynthetic precursor for all of these ETs is 
pentagalloylglucose. The initial structure that can be classified as an ET forms when 
the spatially adjacent O4 and O6 galloyls in pentagalloylglucose dehydrogenate to 
form the characteristic biaryl ET structure in tellimagrandin II (Figure 1), i.e., the 
hexahydroxydiphenoyl (HHDP) group.61,62 These structures are classified as HHDP 
esters. Further modifications of this initial structure include the dehydrogenation of 
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the O2 and O3 galloyls to form another HHDP group or the possible degalloylation 
of the glucose core.  

Figure 1. Hydrolysable tannin subgroups and example structures with arrows denoting confirmed 
and suggested (dashed) biosynthetic pathways.57,61–66 Characteristic structural features 
are shown with blue ellipses. *It is speculated, but unproven as of yet, whether DHHDP 
esters and HHDP esters can interconverse.  

The glucose core in most of the HHDP esters is in the energetically favourable 
4C1 chair conformation, which also defines the described possible positions (O2~O3 
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and O4~O6) for the HHDP groups. It is also noteworthy that the HHDP group in 
ETs with 4C1 glucose is most often in S configuration.54 Due to the HHDP group, 
most ETs produce ellagic acid when subjected to acidic or alkaline conditions or if 
hydrolysed enzymatically (tannase or β-glucosidase) and produce the characteristic 
fragment ion at m/z 301 in negative ionization mass spectrometry.59,60  

From here, the biosynthesis of ETs can go in two different directions. In the route 
towards C-glycosidic ETs, the galloyl in glucose O-1 is cleaved and the galloyls in 
O-2 and O-3 are oxidatively C-C coupled to form an HHDP-group. Subsequently, 
the glucopyranose ring opens and the O-5 (i.e., the ring oxygen) is galloylated 
leaving a reactive aldehyde function in the C-1 and producing the intermediate C-
glycosidic ET-structure of liquidambin.65 Next the HHDP that was formed in O-
2~O-3 reacts with the aldehyde function in glucose position C-1 to form the C-
glycosidic bond. This C-glycosidic bond forces the glucose to stay in the open chain 
(acyclic) form and locks the anomeric glucose position 1 to either α or β 
conformation. The free galloyl in glucose O-5 can in some cases bind to the 2,3-
HHDP to form a nonahydroxytriphenoyl (NHTP) group, which is characteristic to 
many C-glycosidic ETs.65 

The general consensus on the biosynthetic origin of dehydro-ETs is that they 
form directly from pentagalloylglucose64,66 but it has also been suggested that the 
DHHDP group would form from an already existing HHDP in the structure. There 
is strong evidence to support the former pathway as the glucose in dehydro-ETs is 
predominantly in the energetically unfavourable 1C4 chair conformation. And it 
might be more difficult for the glucose to adopt a conformation where it is also 
hindered by a rigid HHDP group (which in most HHDP esters are also attached in 
different positions of the glucose core than the DHHDP group in dehydro-ETs) 
rather than a conformation where the glucose is only substituted by freely rotating 
galloyls. However, interestingly in a recent study by Yamashita et al., 2021 they 
were able to show that the DHHDP group can be an intermediate towards the 
formation of an HHDP group (Figure 2).66 They also suggested that the formation of 
tellimagrandin II type HHDP esters, that Niemetz et al., in 2001 showed were formed 
from pentagalloylglucose, could flow through an intermediate DHHDP structure 
before reduction to the HHDP group.61 They rationalized that the strain from the 
formed macrocyclic structure depending on which glucose galloyls were 
participating in its formation could be the deciding factor if the process stops at the 
DHHDP group (O2~O4 or O3~O6) or proceeds through reduction to the HHDP 
group (O2~O3 or O4~O6). If these ETs with 1C4 glucose core have an HHDP group, 
it is often found in O3~O6 or sometimes even in O1~O6 positions and most often in 
R configuration but in rare cases also in S configuration.55,67 The DHHDP group can 
also further oxidize to form a chebuloyl group. 
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Figure 2. Possible biosynthetic pathway of the dehydrohexahydroxydiphenoyl (DHHDP) and 
hexahydroxydiphenoyl (HHDP) groups from galloyl groups. Adapted from Yamashita et 
al., 2021.66 

Plants often accumulate ETs with mainly one type of polyol glucose whether it 
be 4C1 cyclic, acyclic or 1C4 cyclic (Figure 1).34,68 Though some exceptions are also 
found as is the case with many plants in the genus Terminalia, which produce many 
1C4 based ETs but also one particular ET, punicalagin, with a 4C1 core.69,70 This ET 
is noteworthy also because it has the peculiar gallagyl group in its structure, which 
in practice is an ellagic acid moiety bound between the O4 and O6 galloyls. 

The described monomeric ETs can also oligomerize with different linkages 
further increasing the structural complexity. Possible links between the monomeric 
constituents include but are not limited to ones such as m-DOG (valoneoyl group), 
m-GOG (dehydrodigalloyl), and m-GOD (sanguisorboyl group) and are presented in 
Figure 1. It is common that oligomers are formed by adding consecutively the same 
or at least similar monomeric building blocks, but this is not always the case and 
even a few oligomers with monomeric units from different ET subgroups have been 
characterized.71 

1.2 Bioactivities of hydrolysable tannins 
The protein precipitation capacity (PPC)40,43,44,72–74 and antioxidant activity (AOA)1–

5,75  of HTs have been studied extensively with a comprehensive set of HT structures, 
which have enabled the discovery of nuanced structure-activity relationships. This 
vast knowledge has also led to the observation that these two HT activities are 
generally inversely related to each other, i.e., a structure that is very efficient in 
binding proteins, like pentagalloylglucose, is not very prone to oxidation and might 
thus not be a very efficient antioxidant. The opposite is also true, like in the case of 
C-glycosidic ETs like vescalagin, which has relatively low PPC but quite high 
capacity to oxidize. These studies have shown the importance of the different 
substituents (galloyl, HHDP, DHHDP, chebuloyl, gallagyl, NHTP, and others), the 
oligomeric linkage types, structural flexibility and the overall size (i.e., molecular 
weight) of the HT. For example, the effect of the galloyl group was efficiently 
demonstrated in 2011 by Salminen et al. with a series of galloyl glucoses where each 
subsequent galloylation of the glucose core decreased the compounds capability to 
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oxidize but at the same time increased its PPC (Figure 3).53 Similar trends have been 
reported regarding the more rigid substituent groups (e.g. HHDP and NHTP) where 
their presence in the ET structure has been observed to decrease PPC but increase 
their capability to oxidize. These groups decrease the structural flexibility thus 
decreasing the capability of the compound to bind with proteins with weak 
interactions such as hydrogen bonding and hydrophobic interactions, which have 
been reported as the main types of binding mechanisms in tannin-protein interactions 
in most conditions.40,76 Previously when the majority of tannin bioactivity research 
was focused on their PPC it rose into question what was the purpose for plants to 
evolve in a direction where they produced ETs with more oxidized groups that had 
much less capacity to bind proteins than the “less evolved” galloylglucoses and 
gallotannins. This view was however reversed when a new consensus was formed 
that the capacity of HTs to oxidize under various conditions could be a large source 
of the defensive capability they offer for the plant whether it be against UV radiation 
or herbivory insects. 

 
Figure 3. The oxidative activity (green) and protein precipitation capacity (black) of a series of 

galloyl glucoses displaying the opposite trend of these activities and the degree of 
galloylation. Activity values are shown as percentages of the most active compound. 
Adapted from Salminen et al., 2011.53 

Another way of observing the relationship between HT structures and the 
bioactivities (AOA and PPC) is through the determination of physico-chemical 
properties such as hydrophobicity.77 Hydrophobicity is often utilized in drug 
discovery and development, for example in quantitative structure-activity 
relationship (QSAR) models78, to ascertain if a particular compound of interest could 
be a candidate for further research.79,80 It is a useful indicator because potential 
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candidate drugs need to be hydrophobic enough to be transported to their target 
regions in biological systems, which often involve passing lipid membranes.  

Hydrophobicity is most reliably determined via experimental partitioning 
measurements (e.g. shake-flask method81,82) where the concentration of the 
compound in a two phase system (typically n-octanol/H2O or n-hexane/H2O) is 
determined in each phase with HPLC-UV (high-performance liguid 
chromatography-ultraviolet) or other suitable detection method.80 The acquired 
partition coefficient between the phases is then typically presented as the decadic 
logarithm (log Poctanol/water or log Phexane/water) to enable easier visual comparisons. 
Other alternatives include atomic and fragment-based prediction models which aim 
to divide the target compound into smaller pieces or functional groups, which have 
statistically and/or experimentally determined log P values which are then used to 
predict the log P of the entire structure. These methods (XLogP83–85, ALogP86, 
CLogP87, KOWWIN88,89, and other similar variations) give fairly accurate estimates 
for compounds that are structurally similar to the training set compounds that were 
used to validate the method, however for compounds that differ significantly from 
the training set compounds they offer mixed predictions at best. Another 
shortcoming of these methods is that they are unable to take into account the actual 
spatial structures of large molecules with many possible conformers (like HTs) 
where the weak intramolecular interactions like hydrogen bonding and hydrophobic 
effects play a significant role with the shape that they reside in solutions. Recently, 
a much quicker method than the classical shake-flask method was reported by 
Cumming and Rücker90, which involved an NMR spectroscopic determination of the 
analyte’s concentration directly from an NMR tube with appropriate 1-octanol-d18 
and D2O volumes to enable the excitation and measurement of only the D2O phase. 
This method therefore allows the determination of partition coefficients without the 
laborious work of separating the phases. Theoretically, one could achieve similar 
analytical results with LC-UV by injecting samples only from the height of 
corresponding water phase. However, there is a possibility of contamination if the 
injection needle has to pass through the upper octanol phase, and also, the passing of 
the needle then disturbs the settled phase equilibrium therefore increasing the 
unreliability of the measurement. 

Linking the physico-chemical property, hydrophobicity, to the actual HT-lipid 
interactions, and more specifically to the HT-phospholipid interactions, it has been 
suggested that more hydrophobic compounds should be more prone to interacting 
with lipid membranes as most hydrophobic compounds are highly lipophilic.80,91 
This, however, might not be a property that is unconditionally desired as there is also 
evidence which shows that highly hydrophobic compounds are not able to efficiently 
pass through cell membranes via diffusion as their high affinity towards the 
membrane itself hinders this transportation.92,93 Thus, it is probable that when 
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assessing the real-world roles of HT-lipid interactions, such as their antimicrobial 
activity, the tannins that display the strongest interaction with membrane lipids are 
not the best in inhibiting pathogens, and there is already evidence of this 
phenomenon.14 Now, similarities in the interactions and dominant structural features 
involved between the known HT-protein and the lesser known HT-lipid and HT-
fiber interactions could be hypothesized as they involve relatively small tannin 
molecules interacting with macromolecules (proteins, lipid vesicles, and fibers).45,46 
These interaction similarities can include aspects such as the fact that HT-protein 
interactions are primarily reversible surface phenomena where HTs interact via weak 
interactions with the outer surface or exposed binding pockets of the protein. And as 
phospholipids form globular vesicles in aqueous solutions their interactions with 
small molecules also take place initially via the exterior of the vesicles (polar lipid 
headgroups), but unlike with proteins, small molecules are also able to perturb and 
ultimately permeate the lipid bilayers.91 This perturbation of the originally ordered 
lipid bilayer structure limits the transportation and distribution of other molecules, 
including ROS, through the bilayer, and thus, reduces oxidative stress that would 
have occurred from the reaction of ROS and fatty acids.94  

1.3 Antimicrobial activities of hydrolysable tannins 
Many traditional medicinal plants68 that have been widely used as herbal remedies 
are now known to contain many different HTs in addition to other phenolics in high 
concentrations.17,34,95 Studies have shown that the HT compositions of these plants 
are full of compounds with high bioactivities and that they are efficient 
antimicrobials against several relevant pathogens such as Herpes simplex virus96,97, 
human immunodeficiency virus16,98, Staphylococcus aureus (S. aureus, including 
methicillin resistant and sensitive strains)14,15,99,100, Helicobacter pylori (H. 
pylori)9,101, and Escherichia coli (E. coli)14,102,103. There are also studies reporting 
synergistic effects between HTs and some antibiotics104,105 which offers ways of 
counteracting the evergrowing problem of antimicrobial resistant strains and their 
prevalence. 

The mechanisms and modes of action behind HTs antimicrobial activity has been 
suggested to mainly derive from their protein/peptide interactions and their capacity 
to reduce oxidative stress23,24,76 but the ability of HT molecules to perturb lipid 
membrane structures has also recently seen growing interest106,107. The full 
mechanism is not explained by any one interaction but rather a combination of all of 
them which explains how HTs with significantly different structures and 
bioactivities can inhibit pathogens with comparative efficiencies. 

As many antimicrobial studies have been performed with plant extracts or 
semipurified mixtures it makes it hard to differentiate the antimicrobial efficiencies 
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of different HTs. There are also studies using pure compounds9,14–16,96,97,99 that have 
already revealed the significance of several structural features; however, more 
knowledge is needed on the subject to uncover how and why these compounds 
display their demonstrated antimicrobial efficacy. 

1.4 Main aims of the thesis 
The main aims of this thesis can be divided into three categories where the next one 
is a direct continuation of the findings in the previous one. 

i. Determining the hydrophobicity of a wider range of different HT 
structures than previously reported (Article I). 

ii. Observing the interactions between bacterial lipid membranes and HTs 
(Articles II and III). 

iii. Studying the antibacterial capacity of HTs and how they affect bacterial 
metabolome during bacterial growth (Article IV). 

In Article I, the partition coefficients (log Poctanol/water) of 47 purified and 
characterized HTs were measured to determine and verify the effects that different 
structural features had on the hydrophobicities of the compounds. The knowledge 
acquired in the first study was then used to select a more focused group of HTs that 
had potential to move spatially close to and interact with lipid vesicles in aqueous 
solution. Specifically, more hydrophobic HTs were hypothesized to be better 
candidates for this as more hydrophobic compounds are known to better penetrate 
lipid bilayers.  

In Article II, we observed with NMR spectroscopy how deep within the lipid 
bilayer these selected HT structures were able to penetrate and uncover the possible 
orientation of these HT structures in the bilayers. Furthermore, in Article III, we 
studied the HT-lipid vesicle interaction thermodynamics with ITC and were able to 
determine that the same HTs that moved spatially close to the lipid vesicles in Article 
II also produced more heat of interaction with the lipids further demonstrating the 
efficiency of these compounds regarding their lipid-interactions. 

In Article IV, we observed directly from the culture media the bacterial 
metabolome changes that HT treatments caused to E. coli and S. aureus cultures with 
an untargeted NMR metabolomics approach. The metabolome changes were 
hypothesized to correlate with growth inhibition which was also investigated with 
plated bacterial inhibition measurements. Additionally, the impact of the HT 
treatments on S. aureus cultures with donor fecal samples included in the growth 
medium were assessed with DNA sequencing. 
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2 Materials and Methods 

2.1 General Instrumentation 

2.1.1 NMR Spectroscopy 
The NMR experiments of the study were performed using three different Bruker 
spectrometers: i) Bruker Avance-III spectrometer operating at 600.16 MHz for 1H 
and 150.90 MHz for 13C equipped with a Prodigy TCI inverse CryoProbe cooled 
with liquid nitrogen, ii) Bruker Avance-III spectrometer operating at 500.08 MHz 
for 1H and 125.76 MHz for 13C equipped with a broadband Smartprobe (Fällanden, 
Switzerland), iii) Bruker Avance-III spectrometer operating at 399.75 MHz for 1H 
and 100.52 MHz for 13C equipped with a high-resolution magic angle spinning (HR-
MAS) probe.  

Characterization measurements of the hydrolysable tannins were performed 
either with the 600 MHz or the 500 MHz instrument. Typical experiment set 
consisted of standard 1H and 13C spectra, DQF-COSY (double quantum filtered 
correlation spectroscopy), NOESY (nuclear Overhauser effect spectroscopy), 
multiplicity-edited HSQC (heteronuclear single quantum coherence), HMBC 
(heteronuclear multiple bond correlation), band-selective CT-HMBC (constant time) 
and selective 1D-TOCSY (total correlation spectroscopy) experiments. Spectra were 
recorded at 298.15 K in acetone-d6 and the residual solvent signal was used as 
chemical shift reference, δH = 2.05 ppm and δC = 29.92 ppm. 

The HR-MAS measurements of the lipid-hydrolysable tannin interactions in 
Article II were performed with the 400 MHz instrument. The MAS unit was 
operated at 9 kHz rotational speed with the temperature set at 298.15 K and samples 
were prepared in D2O. 1H spectra with water suppression by presaturation and 2D-
NOESY with 0.1 s and 0.3 s mixing times (d8) were recorded. As the residual solvent 
signal was suppressed the chemical shift of the methyl group (δH(CH3) =0.94 ppm) 
in the end of the fatty acid chain of the lipids was used as chemical shift reference. 
The methyl group resides “deepest” in the lipid bilayer structure (Figure 8) and its 
chemical shift is the least affected by the  possible spatial vicinity of the tannins. 

The metabolomics experiments in Article IV were performed with the 600 MHz 
instrument. All spectra in the metabolomics set were acquired with a water 
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suppressed 1D NOESY pulse sequence (Bruker’s pulse program noesygppr1dep) at 
298.15 K. All samples included 0.2 mM of TSP (3-(trimethylsilyl)propionic-2,2,3,3-
d4 acid) and 1.0 mM potassium phthalate for chemical shift calibration and 
metabolite quantitation, respectively. TSP was not used for quantitations as it has 
been shown to inconsistently bind to proteins thus rendering it not fit as a 
quantitation standard in this application. For the comprehensive description of the 
data preprocessing and sample preparation see Article IV. 

2.1.2 UHPLC-DAD–MS 
The UHPLC-DAD instrument used in all analyses was an Acquity UPLC system 
(Waters Corporation, Milford, MA, USA) which consisted of a binary solvent 
manager, a column, and a diode array detector. The used column was an Acquity 
BEH phenyl column (100 × 2.1 mm id., 1.7 µm; Waters Corporation, Wexford, 
Ireland). The mobile phase consisted of acetonitrile (A) and 0.1% aqueous formic 
acid (B) with the following elution profile: 0–0.5 min, 0.1% A in B (isocratic); 0.5–
5.0 min, 0.1–30% A in B (linear gradient); 5.0–6.0 min, 30–35% A in B; 6.0–9.5 
min; column wash and stabilisation. Colum temperature was 40 ℃. All samples were 
filtered (4 mm, 0.2 µm, PTFE; Thermo Fisher Scientific Inc., Waltham, MA, USA), 
injection volume was 5 µL and flow rate was 0.5 mL min–1. UV data was collected 
with a wavelength range of 190–500 nm. 

The UHPLC system was connected via an ESI (electrospray ionization) source 
to a Xevo TQ triple quadrupole (Waters Corporation, Milford, MA, USA) mass 
spectrometer. The mass spectrometer was operated with negative ionization and the 
source parameters were as follows: capillary voltage 1.8 kV, source temperature 150 
℃, desolvation gas temperature 650 ℃, desolvation and cone gas (N2) flow rates 
1000 and 100 L/h, respectively, and collision gas was argon. Full scan MS data was 
collected with an m/z range of 150–2000 as well as multiple specific MRMs 
(multiple reaction monitoring) developed by Engström et al., in 2014 and 2015.60,108 

An identical UHPLC system coupled to a Q Exactive hybrid quadrupole-
Orbitrap (Thermo Fisher Scientific GmbH, Bremen, Germany) mass spectrometer 
via a heated ESI source was also used. The mass spectrometer was operated in 
negative ion mode and the source parameters were as follows: spray voltage 2.5 kV, 
capillary temperature 380 ℃, auxiliary gas temperature 300 ℃, and sheath and 
auxiliary gas (N2) flow rates 60 and 20 arbitrary units, respectively. Orbitrap was 
calibrated with Pierce ESI Negative Ion Calibration Solution (Thermo Fischer 
Scientific Inc., Waltham, MA, USA). Full Scan MS data was collected with a mass 
range of m/z 150–2250, a resolution of 70 000 and automatic gain of 3 × 106. Product 
ion spectra were acquired using a data dependent acquisition method termed full scan 
ddMS2 (TopN) with a resolution of 35 000 and automatic gain of 1 × 105 using 
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normalized collision energies of 20, 50, and 80 eV in the higher energy collisional 
dissociation (HCD) cell. 

2.1.3 Partition coefficient measurements 
The partition coefficient (log Poctanol/water) measurements were performed with a 
shake-flask method.81,82 Briefly, the used n-octanol and water were saturated with 
each other and separated before the measurements. A known amount of analyte was 
dissolved into the saturated water phase. Then, the saturated octanol was added, and 
the mixture shaken for 120 min and centrifuged (15 000 g) for 10 minutes. The 
phases were then separated and analyte concentrations in both phases and in an 
unpartitioned reference sample were determined UV spectroscopically at 280 nm.  

2.1.4 HR-MAS NMR sample preparation 
The used lipid material was a commercial E. coli phospholipid extract (Avanti Polar 
Lipids, Alabaster, AL, USA). The extract comprised of L-α-
phosphatidylethanolamine (PE, 57.5 wt%), L-α-phosphatidylglycerol (PG, 15.1 
wt%), cardiolipin (CA, 9.8 wt%), and unidentified lipid (17.6 wt%) each with 
various chain lengths and degrees of unsaturation. The NMR sample preparation 
method was adapted from Grélard et al., 2010.109 Briefly, a known quantity of the 
lipid extract was hydrated with D2O and subsequently subjected to four cycles of 
freeze-thaw treatment where the sample was rapidly cooled with liquid nitrogen, 
heated in a warmed water bath, and shaken rigorously. The prepared lipid sample 
formed an emulsion, which prevented us from using traditional liquid NMR probes. 
However, the HR-MAS probe (see Section 2.1.1) enables the measurement of 
colloidal samples while still allowing typical liquid NMR experiments including 
solvent suppression and many 2D correlation experiments. 

2.1.5 Isothermal titration calorimetry 
The used isothermal titration calorimeter (ITC) was a MicroCal iTC200 (Malvern 
Panalytical, Malvern, UK). Calorimeters sample and reference cell volumes were 
200 µL. The reference cell was filled with ultrapure water in all measurements. 
Measurements were performed at 298.15 K, and they comprised of an initial 
injection of 0.4 µL followed by 19 injections of 2.0 µL. An equilibration period of 
120 s was employed between injections and the sample was stirred with 750 rpm 
during the measurement. 
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2.1.6 Dynamic light scattering 
Dynamic light scattering (DLS) measurements were performed with a Zetasizer 
Nano ZS (Malvern Panalytical, Malvern, UK) instrument. The He-Ne light source 
was operated at 633 nm and back scattered light was recorded at an angle of 173° at 
293.15 K. Final measurements consisted of 10 repetitions each with 13 size runs. 

2.2 Extraction, purification and characterization of 
hydrolysable tannins 

2.2.1 Extraction of plant material 
The studied hydrolysable tannins were extracted from the following 11 plant species: 
Norway maple (Acer platanoides) leaves, silverweed (Argentina anserina) leaves, 
willowherb (Chamaenerion angustifolium) leaves, meadowsweet (Filipendula 
ulmaria) flowers, herb Bennet (Geum urbanum) leaves, wood cranesbill (Geranium 
sylvaticum) leaves, sea buckthorn (Hippophaë rhamnoides) leaves, purple loosestrife 
(Lythrum salicaria) leaves, raspberry (Rubus idaeus) leaves, black myrabolan 
(Terminalia chebula) leaves, and English oak (Quercus robur) acorns. 1,2,3,4,6-
penta-O-galloyl-β-D-glucose was prepared from commercial tannic acid (J.T. Baker, 
Denventer, Holland) via methanolysis. 

The extraction and purification of the hydrolysable tannins followed our 
previously reported methods.43,44,52,110–112 Extraction of the collected plant material 
began with maceration in acetone at 4 ℃ for several days. The plant material was 
then repeatedly extracted using acetone/water (80/20, v/v) and the different extract 
batches were combined. Acetone was evaporated from the extracts and the remaining 
aqueous extracts were filtered and finally lyophilized. The extraction and each 
subsequent purification step were followed by UHPLC-DAD–MS to select fractions 
for the following purification steps and to ultimately verify the final product purity. 

2.2.2 Purification of hydrolysable tannins 
Hydrolysable tannin purification process consisted of four main steps: i) crude 
Sephadex LH-20 gel fractionation in a Büchner funnel, ii) column gel 
chromatography with Sephadex LH-20, iii) preparative HPLC fractionation, and iv) 
semipreparative HPLC fractionation. 
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2.2.2.1 Gel chromatography 

For the initial crude fractionation, dry extract (maximum 50 g) was dissolved in 
ultrapure water and mixed to slurry of Sephadex LH-20 gel (stabilised in water). The 
slurry was eluted with water, methanol/water (50/50, v/v), methanol, acetone/water 
(80/20, v/v) and acetone in a Büchner funnel (⌀ = 240 mm) with vacuum through a 
filter paper (Grade 3). Fractions were evaporated to water phase and then 
lyophilized. 

Approximately 6–10 g of the initial fractions were dissolved in ultrapure water, 
filtered (4 mm, 0.2 µm, PTFE; Thermo Fisher Scientific Inc., Waltham, MA, USA) 
and applied on top of a glass column (40 × 4.8 cm i.d.; Kimble-Chase Kontes 
Chromaflex), which was loaded with Sephadex LH-20 gel (stabilized in water). A 
stepwise gradient with a constant flow rate of 5 mL min–1 was used with water, 
aqueous methanol and aqueous acetone as the solvents. The elution profile was 
modified according to the targeted HT. 

2.2.2.2 Liquid chromatohraphy 

The preparative and semipreparative HPLC purifications were performed using 
a system consisting of a Waters 2535 Quaternary Gradient Module, a Waters 2998 
PDA Detector, and a Waters Fraction Collector III. For preparative purification, a 
column (327 × 33 mm i.d.) filled with LiChroprep RP-18 (40–63 µm, Merck KGaA, 
Darmstadt, Germany) material was used. Gradient elution with a constant flow rate 
of 8 mL min–1 using methanol (A) and 1% aqueous formic acid (B) with the 
following gradient was used: 0–5 min, 100% B (isocratic); 5–180 min, 0–40% A in 
B (linear gradient); 180–220 min, 40–60% A in B (linear gradient); 220–240 min, 
60–80% A in B (linear gradient), 240–300 min, column wash and stabilisation.  

For semipreparative purification, a Gemini 10 µ C18 110 Å column (150 × 21.2 
mm i.d., 10 µm; Phenomenex, CA, USA) was used with acetonitrile (A) and 0.1% 
aqueous formic acid (B). The used gradient profile was modified for different HTs 
but a typical gradient for a relatively hydrophilic HT was as follows: 0–5 min, 10% 
A in B (isocratic); 5–51 min, 10–35% A in B (linear gradient); 51–55 min, 35–70% 
A in B (linear gradient); 55–120 min, column wash and stabilisation.  

2.2.3 Characterization of hydrolysable tannins 
All 47 purified HTs (Figures 4 and 5) were characterised based on their measured 

UV, MS and NMR spectra and available literature. MS identifications, 1H-NMR 
assignations, and UV spectra of the HTs used in the thesis work can be found in the 
Appendix along with purity at 280 nm and plant origin. 
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*

 
Figure 4. Chemical structures of monomeric hydrolysable tannins studied in the thesis: (1) 1-O-

galloyl-β-D-glucose, (2) 1,6-di-O-galloyl-β-D-glucose, (3) corilagin, (4) isostrictinin, (5) 
strictinin, (6) 1,2,6-tri-O-galloyl-β-D-glucose, (7) chebulanin, (8) casuariin, (9) 
pedunculagin, (10) tellimagrandin I, (11) 1,2,-di-O-galloyl-4,6-HHDP-β-D-glucose, (12a) 
1,2,3,6-tetra-O-galloyl-β-D-glucose, (12b) 1,2,4,6-tetra-O-galloyl-β-D-glucose, (13) 
castalagin, (14) vescalagin, (15) casuarictin, (16) casuarinin, (17) stachyurin, (18) 
tellimagrandin II, (19) 1,2,3,4,6-penta-O-galloyl-β-D-glucose, (20) geraniin, (21) 
carpinusin, (22) chebulagic acid, (23) chebulinic acid, (24) grandinin, (25) punicalagin, 
(26) hexagalloylglucose, (27) castavaloninic acid, (28) vescavaloninic acid, (29) 
hippophaenin B, (30) hippophaenin C, (31) heptagalloylglucose, (32) 
octagalloylglucose, and (33) gallotannin mixture. DHHDP=dehydrohexahydroxy-
diphenoyl, A= gallic acid, G=galloyl, HHDP=hexahydroxydiphenoyl, L=lyxose, 
NHTP=nonahydroxytriphenoyl. *The location of the galloyl groups of compounds 26, 31, 
32 and 33 were tentatively confirmed. Figure adapted from Article I. 
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Figure 5. Chemical structures of oligomeric hydrolysable tannins studied in the thesis: (34) 
oenothein B, (35) roshenin C, (36) rugosin E, (37) cocciferin D2, (38) salicarinin A, (39) 
salicarinin B, (40) agrimoniin, (41) sanguiin H-6, (42) gemin A, (43) rugosin D, (44) 
oenothein A, (45) lambertianin C, and (46) rugosin G. See Figure 4 for the substituent 
details. Figure adapted from Article I. 
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2.3 Data analysis and statistical methods 
Data visualisations were done with Origin 2016 SR2 b9.3.2.303 (OriginLab, 
Northampton, MA, USA) and R (version 4.2.1)113 using RStudio (version 2022.02.0 
Build 443)114 with the following packages: “ggplot2”115, “ggpubr”116, and 
“mdatools”117. ChemDraw 20.1.0.110 (PerkinElmer, Waltham, MA, USA) was used 
for 2D molecular modelling and Blender118 was used for 3D molecular modelling. 
LC-MS data was acquired and processed with MassLynx software (version 4.2 
SCN982, WatersCorp., Milford, MA, USA) and Xcalibur software (version 4.1.31.9, 
ThermoFisher Scientific Inc., Waltham, MA, USA). NMR measurements and 
quantitations were done with TopSpin software (version 3.5 pl 7, Bruker, Billerica, 
MA, USA). NMR metabolomics data was processed with NMRProcFlow119 a 
dedicated NMR metabolomics platform for batch processing of 1D spectra. ITC data 
was processed with NanoAnalyze software (version 3.12.0, TA instruments, New 
Castle, DE, USA) and Origin 7 (version 7.0552, OriginLab, Northampton, MA, 
USA) with a MicroCal ITC add-on. DLS measurements were done with Zetasizer 
software (version 7.13). 
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3 Results and Discussion 

3.1 Partition coefficients (log Poctanol/water) of 
hydrolysable tannins 

The partition coefficients (log Poctanol/water) of 47 purified and characterized HTs 
(Figures 4 and 5) were determined with the shake-flask method.81,82 The selected 
HTs represented the entire HT class reasonably well, i.e., there were compounds 
from most of the different HT subgroups (see Section 1.1) which allowed us to make 
detailed observations into i) how the hydrophobicities of the different HT subgroups 
compare to one another and ii) how individual structural features of HTs have an 
effect to the hydrophobicities of the compounds. 

Figure 6 displays the experimentally determimed log P values as a function of 
the molecular weight of the HTs with different coloured series for different 
configurations of the polyol glucose with galloyl glucoses and gallotannins further 
separated from the 4C1 ETs.  

 
Figure 6. Experimentally determined log P values of 47 hydrolysable tannins (n=3, mean ± 

standard deviation). Numbering of tannins follows Figures 4 and 5. Galloyl glucoses and 
gallotannins are presented in black series and ellagitannins are divided into three groups 
based on the configuration of the polyol glucose: green = 4C1 chair, blue = 1C4 chair, and 
purple = acyclic. Figure Adapted from Article I. 
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This separation also mimicks the HT subgroups as the subgroups in most cases 
contain compounds with only one specific polyol configuration although there are 
some exceptions to this guideline. The general order of HT subgroups in the order 
of descending hydrophobicity is: i) galloylglucoses/gallotannins, ii) dehydro-ETs 
with 4C1 chair polyol, iii) HHDP-esters with 1C4 chair polyol, and iv) C-glycosidic 
ETs with acyclic polyol.  

When the structures, where the polyol glucose is only substituted with galloyl 
groups were compared to similar sized ETs (i.e., the polyols degree of substitution 
is the same) it was observed that all galloyl derivatives resulted in lowering the 
structures hydrophobicity (Figure 7) from their galloyl substituted counterparts. This 
decrease in hydrophobicity is a result of increased structural rigidity stemming from 
the biaryl and other flexibility restricting substituents as the substituents themselves 
are not more hydrophilic than gallic acid. As a comparison, the flexible five-pronged 
tridimensional structure of pentagalloylglucose (19) enables it to self-associate, i.e., 
it readily stacks with other pentagalloylglucose molecules in aqueous solution 
leading to exclusion of solvent molecules from its vicinity.77,120 This has been 
proposed as the reason for its low water solubility and tendency to form gels in higher 
concentrations in ambient temperature which is not unlike the self-assembly of 
phospholipid vesicles in aquoues media from hydrophobic effects to reduce solvent 
contacting surface area. However, if more galloyl groups are depsidically linked to 
the glucose bound galloyls these additions lower the hydrophobicity of the 
compound as seen with 26, 31, 32, and 33. 

Looking at the individual structural differences in the three “series” of similar 
sized HTs in Figure 7 more closely it can be seen that the inclusion of the first HHDP 
group (6  4 / 5; 12a  10; 19  18) lowers the log P significantly but the second 
HHDP group (10  9; 18  15) has an even larger decreasing effect. Interestingly 
the comparison of 4 and 5 also showed that the HHDP group in glucose O4~O6 
lowers the hydrophobicity more than in O2~O3. Similarly, the comparison of 20 and 
21 (see Figure 4 for structures) showed that 20, which has a free galloyl group in O1 
and and HHDP group in O3~O6, is more hydrophobic than 21, which which has a 
free galloyl group in O3 and and HHDP group in O1~O6. This comparison does not 
solely prove that the HHDP group bound to O1~O6 makes the structure more 
hydrophilic as the galloyl groups position also varies and the hydrophobicity 
increasing effect of the galloyl group in the anomeric position (like in 20) versus 
some other glucose positions has been previously reported by Tanaka et al., in 
1997.77 
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HTs 16, 29, and 30 were the only monomeric acyclic ETs for which a log P could 
be determined. Despite this high hydrophilicity, the notable observation for the ETs 
with acyclic sugar moieties was that the α anomer in the anomeric pairs of 16 (α) / 
17 (β) and 29 (α) / 30 (β) was the more hydrophobic one. Another interesting 
comparison can be made between 16 and 15 as both have one galloyl group and two 
HHDP groups as substituents where the former has an acyclic polyol and the latter a 
cyclic polyol. The pair effectively demonstrates that the cyclic one is significantly 
more hydrophobic than the acyclic one reinforcing what was earlier introduced as a 
general rule. 

Larger dimeric and trimeric HTs were observed to be less hydrophobic than their 
individual monomeric constituents.  This trend can be seen from the three oligomeric 
series that were a part of the studied compounds: i) HTs 10, 34, and 44; ii) HTs 15, 
41, 45; iii) HTs 18, 43, and 46 (Figure 6). The oligomers also showed similar trends 
that were observed with the monomeric HTs. Free galloyl groups increased the 
hydrophobicity whereas structural rigidity, for example in 10 due to its macrocyclic 
oligomer linkage, decreased the hydrophobicity among other factors. Unfortunately, 
as larger oligomers than trimers were not included in the study it cannot be 
unanimously stated whether or not larger oligomers could in fact be more 
hydrophobic than their monomeric constituents even though the trend in these 
oligomeric series seems to suggest an upward trajectory moving from the dimers to 
the trimers. 

3.2 Interactions of hydrolysable tannins with 
bacterial lipid membranes 

3.2.1 HR-MAS NMR measurements 
To probe the interactions between HTs and phospholipid membranes NMR 
spectroscopy was utilized to establish whether HTs are able to perturb and penetrate 
these membrane structures and if there are discernable differences between the 
different HT structures. The studied HTs were a focused group of compounds 
selected from the 47 HTs in Article I with emphasis on high hydrophobicity but still 
including some highly hydrophilic compounds to enable more comprehensive 
structural comparisons. The studied compounds were: 10, 14, 15, 18, 19, 20, 22, 23, 
25, 34, 41, 44, and 45 (Figures 4 and 5).  

Figure 8 displays an illustration of a phospholipid vesicle with magnification 
showing the typical phospholipid bilayered membrane structure with the hydrophilic 
headgroups directed outward and the hydrophobic fatty acid tails inside the bilayer. 
In this study the phospholipids were primarily present as bilayer sheets instead of a 
spherical vesicle. Based on research done by Scheidt et al., in 2004 and 2008 where 
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they showed that protons in different parts of some flavonoid aglycone structures 
displayed different rates of cross relaxation (calculated from NOESY NMR) with 
different lipid protons, we hypothesized that we would be able to find similar 
patterns with regards to different tannin substructures.121,122 The benefit of observing 
how the cross relaxation rates that different parts (protons) of the studied compound 
vary in magnitude along the length of the lipid is that one can deduce i) the probable 
orientation of the studied compound  in the perturbed bilayer and ii) how deep within 
the bilayer structure it is able to penetrate. 

 
Figure 8. Illustration of a phopspholipid vesicle with the magnification showing the structure of 

18:1 L-α-phosphatidylethanolamine (PE), which is the most abundant chain length, 
degree of unsaturation and lipid class of the commercial E. coli lipid extract with notable 
protons labeled. 

In addition to the possible NOE correlations that can be observed between a 
spatially close HTs aromatic protons and the lipid protons, the vicinity of the HT can 
also influence the observed 1H chemical shifts of the lipid protons via ring current 
effects of the HTs aromatic rings. This chemical shift change can also indicate how 
deep within the bilayer structure the different HTs are able to penetrate but 
unfortunately without the knowledge on the orientation of the perturbing HT. 

Figure 9 displays the chemical shift changes of the phospholipid protons in the 
presence of the studied HTs. The lipid protons HCH and HG2 unfortunately overlapped 
and showed a very broad signal with the achieved resolution of the utilized 400 MHz 
instrument, so, the possible change of the HG2 signal (residing in the head group) was 
masked by the non-shifted signals of the saturated chains HCH’s. As a general 
observation small flexible tannins like 10, 15, 18, and 19 were able to penetrate the 
membrane structure until the start of the fatty acid tail (HC2, Figure 8) to some degree 
but larger tannins, like 41 and 45, induced more relevant change only in the very 
polar head group (Hβ). This suggests that larger HTs are not able to penetrate deeply 
into the bilayer and even smaller HTs do not penetrate all the way along the fatty 
acid tail. 
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Figure 9. 1H-NMR chemical shift changes (Δδ(ppm), (A): n=4, mean ± standard error, (B): n=1) of 

the phospholipid protons from the presence of the studied HTs, which influenced A) 
relevant and B) minor changes. Lipid protons on the x-axis are arranged along the length 
of the lipid from the fatty acid tail towards the head group. Numbering of tannins follows 
Figures 4 and 5. Figure adapted from Article II. 

A surprising result was that the ETs 20, 22, and 23, which are rather hydrophobic, 
did not influence practically any chemical shift changes suggesting that their 
structure, hydrophobic as it may be, is otherwise not optimal for bilayer penetration 
perhaps from the overall structural rigidity or other undefined reasons. Another 
interesting observation was that oligomers 34 and 44 were able to influence the lipid 
Hβ’s to some extent suggesting surface level interaction with the lipid bilayer despite 
their rather bulky and rigid macrocyclic structures. 

NOESY experiments were performed with the six HTs that showed interaction 
based on the chemical shift changes of the lipid protons. The achieved resolution 
with the used experimental setup and the 400 MHz instrument did not allow us to 
measure individual cross relaxation rates for the different aromatic protons of all the 
HTs as they are located in a very narrow ppm range in the aromatic region due to the 
similarity of the aromatic groups. However, for 18 the signal separation was 
sufficient for most of the aromatic protons and the determined cross relaxation rates 
of different aromatic protons of 18 against lipid protons are shown in Figure 10.  
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Figure 10. Cross relaxation rates (n=4, mean ± standard error) of the aromatic protons of 

tellimagrandin II (18) against different lipid protons determined from a NOESY 
experiment with 0.3 s mixing time. Lipid protons (Figure 8) on the x-axis are arranged 
along the length of the lipid from the fatty acid tail towards the head group. Figure 
adapted from Article II. 

The cross relaxation rates verify the same general observation that was made 
based on the shifted 1H signals, i.e., 18 was able to penetrate the bilayer to the start 
of the fatty acid chain. The highest cross relaxation rate of 18, and also the other 
studied HTs (see Article II), was observed against HG1, which resides in the junction 
between the tail and head groups. The galloyl protons of 18 show higher cross 
relaxation rates against the “deeper” lipid protons HG1, HC2, and HC3 which indicates 
that the galloyl groups are spatially closer, i.e., 18 is most probably oriented with the 
galloyl groups facing the membrane and the HHDP group outward (Figure 11). 

 
Figure 11. Three-dimensional visualization (from the (A) side and (B) top-down) of the possible 

vicinity of a tellimagrandin II molecules (left, matte) galloyl groups and 18:1 L-α-
phosphatidylethanolamine molecules (right, metallic) head group. 
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3.2.2 ITC measurements 
After studying the HT-lipid interactions with NMR, we attempted to find a method 
which would enable more structural comparisons, i.e., a method with more 
sensitivity. Although the NMR method functioned excellently and gave quality 
results with the effective HTs it did not provide much “range” as even the signals 
from the effective tannins were relatively modest in magnitude. Additionally, the 
required measurement time to acquire adequate 2D-NOESY spectra with the used 
experimental conditions and instrument was quite long (approximately 13 hours each 
for one mixing time) so the new method would also have to be faster to enable more 
compounds to be included in the studies while still allowing repetitions. Previously, 
tannin-protein interactions have been studied with ITC successfully43,123, and as ITC 
is a reasonably fast technique and does not require very high concentrations or 
sample volumes, it was chosen for further HT-lipid interaction screening. 

The lipid interaction thermodynamics of a set of 24 HT structures were measured 
with ITC: 3–6, 9,10, 12, 14 ,15, 18–20, 22, 23, 25, 34, 36, 40–46. Figure 12 shows 
the molar enthalpy changes for a 2 µL injection of HT into the sample cell filled with 
lipid vesicle solution (for full ITC data see Article III). The studied HTs were 
divided into four groups according to the observed interaction magnitude and their 
oligomerization degree: A) monomers with weak interaction, B) monomers with 
strong interaction, C) dimers, and D) trimers. The HTs in group A produced minimal 
heats of interaction and their thermograms (see Article III for full thermograms) 
closely resembled their control measurements (HT titrated into buffer) indicating 
that only the heat of dilution from the consecutive injections was measured. A 
common structural feature with the more effective HTs in groups B–D (B: 18, 19; 
C: 36, 43; D: 45, 46) is that they contain more free falloyl groups and are thus 
structurally more flexible than the ones with more oxidized and dehydrogenated 
substituents. This was the most dominant structural feature but the other substituents 
do also have an interaction increasing effect e.g. if we compare HTs 6 and 18, which 
both have three galloyl groups but in 18  the glucose is also substituted with an 
HHDP group resulting in a much higher heat of interaction. 
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Figure 12. Observed molar enthalpy change (ΔHobs(kJ/mol of injectant), n=3, mean ± standard 

error) after the first real HT injection into the lipid solution. The HTs are divided into the 
following groups according to their degree of oligomerization and observed interaction 
magnitude: A) monomers with weak interaction, B) monomers with strong interaction, 
C) dimers, and D) trimers. Numbering of tannins follows Figures 4 and 5. 

Included in the group A were the relatively hydrophobic ETs 20, 22, and 23, 
which were observed in the NMR measurements to not penetrate lipid bilayers. Both 
observations suggest that these rigid structures with 1C4 glucose polyol do not 
interact with lipid vesicles in aqueous solution with high affinity. 

Another interesting observation was made from one of the control measurements 
(HT being titrated into buffer), where some of the HTs showed progressively 
decreasing endothermic (with few exothermic exceptions) heat rates, which is 
attributed to a deaggregation process (or aggregation with the exothermic 
exceptions).123,124 This process occurs when the HTs are titrated from a concentrated 
solution, where they can aggregate, to a less concentrated solution. The amount of 
deaggregation will diminish with each injection as the HT concentration starts to 
increase in the buffer solution.  

Figure 13 displays the fitted thermodynamic parameters of the control 
measurements into an aggregate dissociation model. It is worth noting that this model 
relies on the assumption that HT aggregates exist predominantly as dimers and larger 
aggregates are thus not well predicted. Notably the previously mentioned HTs 20, 
22, and 23 produced significant exothermic heat of deaggregation even though they 
produced close to no observable heat of interaction with the lipid vesicles. Also, 
dimer 43 and trimers 45 and 46 were found to heavily deaggregate in these control 
experiments. 
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Figure 13. Fitted values of HT to buffer control measurements with an aggregate dissociation 

model: (A) ΔH (kJ/mol), (B) Kd (µM), (C) ΔG (kJ/mol), and (D) ΔS (J/mol K). Numbering 
of tannins follows Figures 4 and 5. 

3.3 NMR metabolomics of bacterial cultures 
treated with hydrolysable tannins  

As the lipid interaction studies with NMR and ITC demonstrated that certain HTs 
have a tendency to penetrate and interact with lipid bilayers we next aimed to study 
these interactions in a more applied setting. HTs have been shown to inhibit several 
different strains of bacteria9,14,15,99–103 and as the membrane structures of many of 
these strains consist of similar phospholipids as we had been thus far experimenting 
with, we planned to study how different HTs have an effect to the bacterial 
metabolome and if the detected metabolome changes are linked to the inhibition 
efficiency of these different HTs. We utilized an untargeted NMR metabolomics 
approach to study how different HTs cause changes to the metabolome of E. coli and 
S. aureus cultures during culture growth. HTs utilized in this study were 5, 13, 18, 
19, 38, and 43. In addition to these two purely bacterial sets, the effect of HTs was 
also tested with a more complex system where donor fecal samples were included in 
the growth medium of an S. aureus culture. The NMR data of the three sets (E. coli, 
S. aureus, and fecal batch culture) were processed and then analyzed using principal 
component analysis (PCA).  

Figure 14 shows the PCA score plot of the E. coli culture set samples after 24 
hours of incubation displaying separation between the different groups, i.e., different 
HT treatments. For PCA plots of the full set (containing all the incubation timepoint 
samples), the different incubation times (0 h and 8 h), and the different bacterial sets 
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see Article IV. All of the selected HTs did cause observable changes to the E. coli 
metabolome when compared to the control cultures which were not inhibitied.  

 
Figure 14. PCA score plot (R2X(1) = 0.34, R2Y(2) = 0.16) from the NMR metabolomics data of E. 

coli culture samples treated with different hydrolysable tannins after 24 hours of 
incubation. Groups are colored according to hydrolysable tannin treatment and controls. 
Figure adapted from Article IV. 

The distance between the control sample cluster and the different HT clusters 
increases in the following order: 5, 13, 18, 19, and 43. This order was also confirmed 
to correlate with the plated bacterial inhibition experiments (see Article IV Figure 
11) and literature14 of these HTs, and thus, the PCA group separation was confirmed 
to produce valid and comparable “inhibition” data with no colony counting or other 
laborious procedures. The general observed order made sense considering the 
determined hydrophobicities of these tannins as well as the extent that they were 
observed to interact with lipids. Meaning that generally the more hydrophobic HTs 
induced more changes to the bacterial metabolome. However, it was interesting that 
pentagalloylglucose (19) was found to be less efficient in inhibiting E. coli than 
tellimagrandin II (18) and almost as inefficient as castalagin (13). This result cannot 
be explained purely by the determined hydrophobicities and strict aqueous lipid 
interactions as both 13 and 18 were more hydrophilic and interacted less with lipids 
than 19. It seems that the HHDP group (and possibly also the NHTP group in 13) is 
beneficial regarding bacterial inhibition either as a part of the intact tannin structure 
or as a fragmented and lactonized product like ellagic acid or its further metabolized 
products, urolithins.125 This observation supports a general theory that has been 
earlier proposed regarding tannin PPC (now possibly also lipid activity) and AOA 
activities where it had been noted that the most antimicrobially active tannins are not 
the most efficient ones in either PPC or AOA but are in the middle with the capability 
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to interact semi-efficiently with macromolecules but also act as semi-efficient radical 
scavengers.75,112,126,127 

The loadings of the PCA models revealed several significant metabolites from 
the E. coli sample set which were behind most of the explained variance in the 
constructed PCA models. Figure 15 displays the concentration changes of three 
selected metabolites (lactate, acetate, and succinate; see Article IV for the rest) and 
the growth mediums glucose. The increase of these three overflow metabolites128 is 
an indication that microbial growth is still taking place, but their levels stay below 
that of the control samples demonstrating inhibition. Same can be seen from the 
decrease of glucose as the microbial growth is using the supplemented glucose where 
the tannin treated cultures used the glucose slower than control culture.  

 
Figure 15. Statistically significant (P < 0.05) metabolite concentrations from the E. coli set at 0 h, 5 

h, and 24 h time points. Numbering of tannins follows Figures 4 and 5. P values of 
difference are from a paired t-test (n=6). Levels of significance: **** P < .0001; *** P < 
.001; ** P < .01; * P < .05; ns = non‑significant. Figure adapted from Article IV. 
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The metabolome changes of the S. aureus cultures induced by the different HT 
treatments were not as clearly separated in the PCA plot of the 24 hour time point 
samples (Figure 16) as with the E. coli set. All of the HT treatments were however 
well separated from the control culture cluster indicating that the HT treatments were 
able to alter the bacterial metabolome. The plated inhibition experiments confirmed 
that this separation from the control samples correlated with S. aureus inhibition (see 
Article IV Figure 12). The inhibition results also clarified why the separation 
between the different HT treatments in the PCA plot were not clear as all of the HTs 
were observed to inhibit S. aureus very effectively, which led to the HT treated 
cultures developing similar metabolite compositions. Minor separation can be seen 
with the bulk of the HT treated samples and the least efficient inhibitors, HTs 5 and 
13, suggesting that they were not quite as efficient S. aureus inhibitors as the other 
tested HTs. It is interesting to note that these cultures treated with 5 and 13 were 
more inhibited in the earlier 5 h (see Article IV) timepoint than in the 24 h timepoint 
suggesting that the inhibition capacity of these weaker inhibitors diminishes quicker 
than that of the stronger inhibitors.   

 
Figure 16. PCA score plot (R2X(1) = 0.47, R2Y(2) = 0.19) from the NMR metabolomics data of S. 

aureus culture samples treated with different hydrolysable tannins after 24 hours of 
incubation. Groups are colored according to hydrolysable tannin treatment and controls. 
Figure adapted from Article IV. 

The concentration changes of individual metabolites (Figure 17) in the S. aureus 
cultures verified the observations made from the PCA plot. The cultures treated with 
HTs 18, 19, and 43 produced minor amounts of lactate and acetate corroborating 
with efficient bacterial inhibition whereas the cultures treated with 5 and 13 started 
to produce these metabolites in the later 24 h time point indicating that microbial 
growth was emerging despite the earlier inhibition. The concentration of the growth 
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medium glucose also corroborates with this as the cultures treated with 5 and 13 
started to consume glucose in the 24 h time point.  

 
Figure 17. Statistically significant (p < 0.05) metabolite concentrations from the S. aureus set at 0 

h, 5 h, and 24 h time points. Numbering of tannins follows Figures 4 and 5. P values of 
difference are from a paired t-test (n=6). Levels of significance: **** P < .0001; *** P < 
.001; ** P < .01; * P < .05; ns = non‑significant. Figure adapted from Article IV. 

The S. aureus cultures, which were grown in a medium containing fecal donor 
samples, were also studied similarly as the previous bacterial sets. Unfortunately, 
some bacteria of Enterobacteriaceae family (see Article IV bacterial DNA 
sequencing section) originating from the donor fecal samples grew so forcibly that 
it made it difficult to assess the S. aureus cultures metabolome changes due to the 
HT treatments or if they correlated with bacterial inhibition.  
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4 Conclusions 

Studied HT structures ranged from highly hydrophilic to hydrophobic with evident 
structural reasons behind their determined hydrophobicities. HTs with more 
flexibility and freely rotating structures were determined to be more hydrophobic 
than rigid ones and increasing molecular weight was observed to increase the 
hydrophobicity of the structures. 

These more hydrophobic HTs were generally observed to interact with bacterial 
lipid vesicles and to penetrate to the exterior region of the lipid membranes bilayer 
structures. There were also some interesting exceptions to this where certain 
dehydro-ETs, which were determined to be rather hydrophobic, did not penetrate 
lipid vesicles in aqueous solution or interact with them observably. This observation 
confirmed that even though hydrophobicity is often considered to effectively predict 
lipophilicity and membrane permeability of compounds, it cannot be used as a sole 
definitive factor but should rather be used as a capable guideline. It was also 
observed that HTs with larger molecular weights, which was generally observed to 
increase the hydrophobicity, were not able to perturb the lipid bilayer structures 
deeply and interaction was observed only with the outermost parts of the polar lipid 
headgroups. This interaction, which was limited only to the surface level, was due 
to their bulky size. 

However, considering the antibacterial activities of HTs it was observed that the 
most effective HTs in inhibiting different bacterial strains were not the HTs with the 
most hydrophobic structures but rather compounds that had both hydrophobic (free 
galloyl groups) and hydrophilic regions (HHDP, NHTP, and other galloyl 
derivatives). This observation highlighted the importance of these hydrophilic 
structural moieties that are formed in the biosynthetically more evolved plants and 
partly reinforced the reason for these plants to produce these structures that have 
been shown to be less effective in protein interactions, which are generally thought 
to be one of the main mechanisms of HT antimicrobial activities. Although not 
proven one hypothesis for this is that the hydrophobic regions enable the HT to reach 
the area where their activity is required but then the hydrophilic regions are needed 
for the interactions that promote the bacterial inhibition mechanisms as part of the 
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intact HT molecule or as metabolism products such as ellagic acid or valoneic acid 
dilactone. 

The results of this thesis work expanded the knowledge of HT hydrophobicities 
and provided novel information on HT-lipid interactions. The generated chemical 
knowledge can be utilized multidisciplinarily and is valuable for future applications, 
for example in agriculture and animal and human nutrition. The obtained 
antibacterial results were in line with literature and although they offered insights 
into the structure-activity patterns behind these inhibitory activities they still leave 
room for future studies to use more structurally different compounds to enable even 
better comparisons. As a final point, it is remarkable how much the perception of 
compounds classified as tannins has shifted over the years from just simple 
leathermaking tools and ink ingredients to genuinely beneficial components of our 
diets that have the capacity to counter pathogens and reduce inflammation. 
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Appendix 

List of the hydrolysable tannins used in the thesis work with information on plant 
origin, purity measured by UPLC-DAD at 280 nm, ESI-MS identification 
(molecular and fragment ions) and 1H-NMR assignation with labeled chemical 
structure (left) and UV spectrum (right). Tannin numbering is presented accoring to 
Article I in the order of ascending molecular weight. 

 
1-O-galloyl-β-D-glucose (1) was isolated from Betula pubescens leaves; purity 
measured by UPLC-DAD at 280 nm 87.9%; ESI-MS identification: m/z at 
331.06765 ([M–H]–, error –1.8 ppm), 169.01502 ([gallic acid–H]–, error 4.6 ppm), 
125.02571 ([gallic acid–COOH–H]–, error 10.3 ppm); 1H-NMR (600 MHz, acetone-
d6, 298 K): δ 3.44–3.55 (m, 4H, Hglc-2,3,4,5), 3.69 (br dd, 1H, J=3.0, 12.0 Hz, Hglc-
6’), 3.82 (br d, 1H, J=11.5 Hz, Hglc-6), 5.67 (d, 1H, J=7.8 Hz, Hglc-1), 7.17 (s, 2H, 
HA-3,7).129  

 
1,6-di-O-galloyl-β-D-glucose (2) was isolated from Filipendula ulmaria flowers; 
purity measured by UPLC-DAD at 280 nm 99.9%; ESI-MS identification: m/z at 
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483.07850 ([M–H]–, error –1.0 ppm), 331.06772 ([M–galloyl–H]–, error 2.0 ppm), 
313.05674 ([M–gallic acid–H]–, error 0.8 ppm), 169.01516 ([gallic acid–H]–, error 
5.4 ppm), 125.02550 ([gallic acid–COOH–H]–, error 8.7 ppm); 1H-NMR (600 MHz, 
acetone-d6, 298 K): δ 3.54–3.64 (m, 3H, Hglc-2,3,4), 3.77 (ddd, 1H, J=2.0, 4.9, 9.2 
Hz, Hglc-5), 4.41 (dd, 1H, J=4.9, 12.1 Hz, Hglc-6’), 4.54 (dd, 1H, J=2.0, 12.1 Hz, Hglc-
6), 5.73 (d, 1H, J=7.7 Hz, Hglc-1), 7.13 (s, 2H, HB-3,7),7.16 (s, 2H, HA-3,7).130 

 
corilagin (3) was isolated from Terminalia chebula leaves; purity measured by 
UPLC-DAD at 280 nm 98.3%; ESI-MS identification: m/z at 633.07285 ([M–H]–, 
error –0.8 ppm), 463.05231 ([M–galloyl–H]–, error 1.1 ppm), 300.99889 ([ellagic 
acid–H]–, error –0.3 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 4.06 (br s, 1H, 
Hglc-2), 4.10 (dd, 1H, J=8.1, 11.0 Hz, Hglc-6’), 4.46 (br s, 1H, Hglc-6’), 4.52 (m, 1H, 
Hglc-5), 4.83 (br s, 1H, Hglc-3), 4.97 (t, 1H, J=11.0 Hz, Hglc-6), 6.37 (d, 1H, J=2.0 Hz, 
Hglc-1), 6.70 (s, 1H, J=2.0 Hz, HC-3), 6.84 (s, 1H, J=2.0 Hz, HB-3), 7.12 (s, 2H, HA-
3,7).131,132 

 
isostrictinin (4) was isolated from Hippophaë rhamnoides leaves; purity measured 
by UPLC-DAD at 280 nm 93.4%; ESI-MS identification: m/z at 633.07274 ([M–H]–

, error –0.9 ppm), 481.06225 ([M–galloyl–H]–, error –0.3 ppm), 463.05150 ([M–
gallic acid–H]–, error –0.7 ppm), 300.99875 ([ellagic acid–H]–, error –0.8 ppm); 1H-
NMR (500 MHz, acetone-d6, 298 K): δ 3.74 (ddd, 1H, J=1.9, 4.4, 9.4 Hz, Hglc-5), 
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3.81 (dd, 1H, J=4.6, 12.0 Hz, Hglc-6’), 3.91 (dd, 1H, J=1.8, 12.2 Hz, Hglc-6’), 3.95 (t, 
1H, J=9.5 Hz, Hglc-4), 5.00 (t, 1H, J=9.1 Hz, Hglc-2), 5.21 (t, 1H, J=9.5 Hz, Hglc-
3),6.12 (d, 1H, J=8.5 Hz, Hglc-1).133 

 
strictinin (5) was isolated from Hippophaë rhamnoides leaves; purity measured by 
UPLC-DAD at 280 nm 98.6%; ESI-MS identification: m/z at 633.07297 ([M–H]–, 
error –0.6 ppm), 463.05302 ([M–gallic acid–H]–, error 2.6 ppm), 300.99896 ([ellagic 
acid–H]–, error –0.1 ppm); 1H-NMR (500 MHz, acetone-d6, 298 K): δ 3.70 (t, 1H, 
J=8.5 Hz, Hglc-2), 3.78 (d, 1H, J=13.0 Hz, Hglc-6’), 3.83 (d, 1H, J=9.3 Hz, Hglc-3), 
4.11 (dd, 1H, J=5.7, 9.9 Hz, Hglc-5), 4.90 (t, 1H, J=9.8 Hz, Hglc-4), 5.21 (dd, 1H, 
J=6.4, 13.3 Hz, Hglc-6), 5.74 (d, 1H, J=8.1 Hz, Hglc-1), 6.60 (s, 1H, HC-3), 6.71 (s, 
1H, HB-3), 7.20 (s, 2H, HA-3,7).134,135 

 
1,2,6-tri-O-galloyl-β-D-glucose (6) was isolated from Hippophaë rhamnoides 
leaves; purity measured by UPLC-DAD at 280 nm 93.1%; ESI-MS identification: 
m/z at 635.08839 ([M–H]–, error –1.0 ppm), 465.06775 ([M–galloyl–H]–, error 0.6 
ppm), 313.05681 ([M–galloyl–gallic acid–H]–, error 1.0 ppm), 169.01514 ([M–
gallic acid–H]–, error 5.3 ppm), 125.02551 ([gallic acid–COOH–H]–, error 8.7 ppm); 
1H-NMR (500 MHz, acetone-d6, 298 K): δ 3.76 (t, 1H, J=9.3 Hz, Hglc-4), 3.92 (ddd, 
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1H, J=1.9, 4.6, 9.8 Hz, Hglc-5), 3.98 (t, 1H, J=9.2 Hz, Hglc-3), 4.48 (dd, 1H, J=4.6, 
12.1 Hz, Hglc-6’), 4.58 (dd, 1H, J=1.8, 12.1 Hz, Hglc-6), 5.25 (dd, 1H, J=8.6, 9.4 Hz, 
Hglc-2), 5.99 (d, 1H, J=8.4 Hz, Hglc-1), 7.07 (s, 2H, HA-3,7), 7.10 (s, 2H, HB-3,7), 
7.15 (s, 2H, HC-3,7).130,136 

 
chebulanin (7) was isolated from Terminalia chebula leaves; purity measured by 
UPLC-DAD at 280 nm 97.0%; ESI-MS identification: m/z at 651.08319 ([M–H]–, 
error –1.1 ppm), 481.06300 ([M–gallic acid–H]–, error 1.3 ppm), 337.01977 
([chebuloyl–H2O–H]–, error –1.0 ppm), 169.01320 ([gallic acid–H]–, error –6.2 
ppm), 125.02288 ([gallic acid–COOH–H]–, error –12.3 ppm); 1H-NMR (500 MHz, 
acetone-d6, 298 K): δ 2.19 (d, 1H, J=4.8 Hz, Hche-5’’), 2.20 (d, 1H, J=10.3 Hz, Hche-
5’), 3.90 (ddd, 1H, J=1.4, 4.9, 10.2 Hz, Hche-4’), 4.01 (dd, 1H, J=5.4, 11.1 Hz, Hglc-
6’), 4.15 (br t, 1H, J=8.2 Hz, Hglc-6), 4.31 (br t, 1H, J=6.0 Hz, Hglc-5), 4.83 (br s, 1H, 
Hglc-3), 4.89 (br d, 1H, J=3.4 Hz, Hglc-4), 4.94 (dd, 1H, J=3.9, 7.2 Hz, Hche-2’), 5.19 
(dd, 1H, J=1.4, 7.2 Hz, Hche-3’), 5.24 (br s, 1H, Hglc-2), 6.36 (br d, 1H, J=2.9 Hz, 
Hglc-1), 7.20 (s, 2H, HA-3,7), 7.50 (s, 1H, HB-3).137 
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casuariin (8) was isolated from Hippophaë rhamnoides leaves; purity measured by 
UPLC-DAD at 280 nm 92.0%; ESI-MS identification: m/z at 783.06786 ([M–H]–, 
error –1.0 ppm), 481.06161 ([M–HHDP–H]–, error –1.6 ppm), 300.99912 ([ellagic 
acid–H]–, error 0.4 ppm); 1H-NMR (500 MHz, acetone-d6, 298 K): δ 3.84 (d, 1H, 
J=12.2 Hz, Hglc-6’), 4.13 (dd, 1H, J=2.7, 8.7 Hz, Hglc-5), 4.63 (dd, 1H, J=3.2, 12.3 
Hz, Hglc-6), 4.73 (dd, 1H, J=2.3, 4.7 Hz, Hglc-2), 5.00 (dd, 1H, J=2.8, 8.6 Hz, Hglc-4), 
5.44 (br t, 1H, J=2.5 Hz, Hglc-3), 5.65 (d, 1H, J=4.8 Hz, Hglc-1), 6.43 (s, 1H, HB-3), 
6.52 (s, 1H, HC-3), 6.66 (s, 1H, HD-3).134,135 

 
pedunculagin (9) was isolated from Argentina anserina leaves; purity measured by 
UPLC-DAD at 280 nm 98.8%; ESI-MS identification: m/z at 783.06806 ([M–H]–, 
error –0.7 ppm), 481.06343 ([M–HHDP–H]–, error 2.2 ppm), 300.99902 ([ellagic 
acid–H]–, error 0.1 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K, α-anomer (58%)): 
δ 3.77 (dd, 1H, J=1.7, 12.8 Hz, Hglc-6’), 4.61 (ddd, 1H, J=1.7, 7.1, 10.0 Hz, Hglc-5), 
5.07 (dd, 1H, J=3.6, 9.5 Hz, Hglc-2), 5.089 (t, 1H, J=10.1 Hz, Hglc-4), 5.27 (dd, 1H, 
J=6.9, 12.8 Hz, Hglc-6), 5.467 (t, 1H, J=9.8 Hz, Hglc-3), 5.474 (br d, 1H, J=3.7 Hz, 
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Hglc-1), 6.329 (s, 1H, HB-3), 6.56 (s, 1H, HA-3), 6.60 (s, 1H, HC-3), 6.67 (s, 1H, HD-
3); 1H-NMR (600 MHz, acetone-d6, 298 K, β-anomer (42%)): δ 3.84 (dd, 1H, J=1.1, 
12.9 Hz, Hglc-6’), 4.22 (ddd, 1H, J=1.2, 6.8, 9.8 Hz, Hglc-5), 4.84 (dd, 1H, J=8.3, 9.0 
Hz, Hglc-2), 5.090 (dd, 1H, J=8.5, 10.1 Hz, Hglc-4), 5.23 (dd, 1H, J=9.3, 10.1 Hz, Hglc-
3), 5.30 (dd, 1H, J=6.7, 12.9 Hz, Hglc-6), 5.08 (d, 1H, J=8.5 Hz, Hglc-1), 6.325 (s, 1H, 
HB-3), 6.51 (s, 1H, HA-3), 6.59 (s, 1H, HC-3), 6.68 (s, 1H, HD-3).135,138,139 

 
tellimagrandin I (10) was isolated from Filipendula ulmaria flowers; purity 
measured by UPLC-DAD at 280 nm 94.8%; ESI-MS identification: m/z at 
785.08343 ([M–H]–, error –1.1 ppm), 483.07919 ([M–HHDP–H]–, error 2.4 ppm, 
300.99864 ([ellagic acid–H]–, error –1.2 ppm); 1H-NMR (600 MHz, acetone-d6, 298 
K, α-anomer (56%)): δ 3.78 (dd, 1H, J=1.4, 13.1 Hz, Hglc-6’), 4.68 (ddd, 1H, J=1.0, 
6.7, 10.2 Hz, Hglc-5), 5.120 (dd, 1H, J=3.9, 10.0 Hz, Hglc-2), 5.1205 (t, 1H, J=10.1 
Hz, Hglc-4), 5.29 (dd, 1H, J=6.8, 13.0 Hz, Hglc-6), 5.57 (br s, 1H, Hglc-1), 5.89 (t, 1H, 
J=10.0 Hz, Hglc-3), 6.48 (s, 1H, HC-3), 6.658 (s, 1H, HD-3), 6.99 (s, 2H, HB-3,7), 7.07 
(s, 2H, HA-3,7); 1H-NMR (600 MHz, acetone-d6, 298 K, β-anomer (44%)): δ 3.86 
(dd, 1H, J=0.7, 13.1 Hz, Hglc-6’), 4.28 (ddd, 1H, J=0.8, 6.6, 9.9 Hz, Hglc-5), 5.123 (t, 
1H, J=9.9 Hz, Hglc-4), 5.25 (dd, 1H, J=7.9, 9.6 Hz, Hglc-2), 5.62 (t, 1H, J=9.8, 10.1 
Hz, Hglc-3), 5.31 (dd, 1H, J=6.2, 13.1 Hz, Hglc-6), 5.107 (m, 1H, Hglc-1), 6.45 (s, 1H, 
HC-3), 6.663 (s, 1H, HD-3), 6.95 (s, 2H, HB-3,7), 7.06 (s, 2H, HA-3,7).140 
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1,2-di-O-galloyl-4,6-HHDP-β-D-glucose (11) was isolated from Filipendula 
ulmaria flowers; purity measured by UPLC-DAD at 280 nm 95.0%; ESI-MS 
identification: m/z at 785.08413 ([M–H]–, error –0.2 ppm), 615.06286 ([M–gallic 
acid–H]–, error 0.1 ppm ), 300.99900 ([ellagic acid–H]–, error 0.03 ppm); 1H-NMR 
(600 MHz, acetone-d6, 298 K): δ 3.84 (d, 1H, J=13.2 Hz, Hglc-6’), 4.22 (t, 1H, J=9.8 
Hz, Hglc-3), 4.28 (dd, 1H, J=6.2, 9.8 Hz, Hglc-5), 5.06 (t, 1H, J=9.8 Hz, Hglc-4), 5.27 
(dd, 1H, J=16.5, 13.3Hz, Hglc-6), 5.39 (t, 1H, J=8.8 Hz, Hglc-2), 5.99 (d, 1H, J=8.3 
Hz, Hglc-2),  6.62 (s, 1H, HD-3),  6.72 (s, 1H, HC-3),  7.09 (s, 2H, HB-3,7),  7.10 (s, 
1H, HA-3).141 

 
1,2,3,6-tetra-O-galloyl-β-D-glucose (12a) was isolated from Acer platanoides 
leaves; purity measured by UPLC-DAD at 280 nm 71.4% (largest impurity was a 
1,2,4,6-galloylated isomer); ESI-MS identification: m/z at 787.09991 ([M–H]–, error 
–0.05 ppm), 635.08896 ([M–galloyl–H]–, error –0.04 ppm), 617.07897 ([M–gallic 
acid–H]–, error 0.9 ppm), 573.08790 ([M–gallic acid–COOH–H]–, error –1.2 ppm), 
465.06807 ([M–gallic acid–galloyl–H]–, error 1.3 ppm), 447.06807 ([M–2gallic 
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acid–H]–, error –1.5 ppm), 313.05666 ([M–gallic acid–2galloyl–H]–, error 0.5 ppm), 
169.01312 ([gallic acid–H]–, error –6.7 ppm), 125.02285 ([gallic acid–COOH–H]–, 
error –12.5 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 4.11 (dd, 1H, J=5.6, 
9.0 Hz, Hglc-4),  4.15 (ddd, 1H, J=2.1, 4.1, 9.8 Hz, Hglc-5), 4.57 (dd, 1H, J=4.3, 12.2 
Hz, Hglc-6’), 4.61 (dd, 1H, J=2.0, 12.1 Hz, Hglc-6), 5.47 (dd, 1H, J=8.3, 9.9 Hz, Hglc-
2), 5.67 (dd, 1H, J=8.9, 9.8 Hz, Hglc-3), 6.18 (d, 1H, J=8.3 Hz, Hglc-1), 7.00 (s, 2H, 
HB-3,7), 7.08 (s, 2H, HC-3,7), 7.09 (s, 2H, HA-3,7), 7.18 (s, 2H, HD-3,7).130,142 

 
1,2,4,6-tetra-O-galloyl-β-D-glucose (12b) was isolated from Acer platanoides 
leaves; purity measured by UPLC-DAD at 280 nm 74.7% (largest impurity was a 
1,2,3,6-galloylated isomer); ESI-MS identification: m/z at 787.09988 ([M–H]–, error 
–0.1 ppm), 617.07919 ([M–gallic acid–H]–, error 1.2 ppm), 465.066858 ([M–gallic 
acid–galloyl–H]–, error 2.4 ppm), 313.05578 ([M–gallic acid–2galloyl–H]–, error –
2.3 ppm), 169.01318 ([gallic acid–H]–, error –6.3 ppm), 125.02290 ([gallic acid–
COOH–H]–, error –12.1 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 4.27 (dd, 
1H, J=4.8, 11.9 Hz, Hglc-6’), 4.30 (ddd, 1H, J=1.6, 5.0, 9.7 Hz, Hglc-5), 4.39 (t, 1H, 
9.4 Hz, Hglc-3), 4.50 (dd, 1H, J=1.4, 11.9 Hz, Hglc-6), 5.40 (dd, 1H, J=8.4, 9.5 Hz, 
Hglc-2), 5.41 (t, 1H, J=9.5 Hz, Hglc-4), 6.11 (d, 1H, J=8.4 Hz, Hglc-1), 7.09 (s, 2H, HA-
3,7), 7.11 (s, 2H, HB-3,7), 7.16 (s, 2H, HD-3,7), 7.17 (s, 2H, HC-3,7).130,131 
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castalagin (13) was isolated from Quercus robur acorns; purity measured by UPLC-
DAD at 280 nm 99.6%; ESI-MS identification: m/z at 933.06192 ([M–H]–, error –
2.2 ppm), 889.07151 ([M–COOH–H]–, error –2.9 ppm), 631.05763 ([M–HHDP–H]–

, error –0.1 ppm), 300.99838 ([ellagic acid–H]–, error –2.0 ppm); 1H-NMR (600 
MHz, acetone-d6, 298 K): δ 4.01 (d, 1H, J=12.5 Hz, Hglc-6’), 5.03 (m, 1H, Hglc-2), 
5.04 (m, 1H, Hglc-3), 5.10 (dd, 1H, J=2.6, 13.0 Hz, Hglc-6), 5.24 (t, 1H, J=7.3 Hz, 
Hglc-4), 5.61 (ddd, 1H, J=1.0, 2.5, 7.7 Hz, Hglc-5), 5.71 (d, 1H, J=4.4 Hz, Hglc-1), 6.63 
(s, 1H, HE-3), 6.77 (s, 2H, HC-3 & HD-3). 50,143 

 
vescalagin (14) was isolated from Quercus robur acorns; purity measured by UPLC-
DAD at 280 nm 97.0%; ESI-MS identification: m/z at 933.06361 ([M–H]–, error –
0.4 ppm), 915.05479 ([M–H2O–H]–, error 1.5 ppm), 871.06140 ([M–COOH–H2O–
H]–, error –2.5 ppm),  613.04664 ([M–HHDP–H2O–H]–, error –0.8 ppm), 300.99902 
([ellagic acid–H]–, error 1.5 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 4.01 
(d, 1H, J=12.4 Hz, Hglc-6’), 4.51 (ddd, 1H, J=0.9, 6.7, 9.9 Hz, Hglc-5), 4.57 (dd, 1H, 
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J=1.4, 6.9 Hz, Hglc-3), 4.89 (d, 1H, J=2.1 Hz, Hglc-1), 5.09 (dd, 1H, J=2.6, 13.1 Hz, 
Hglc-6), 5.17 (t, 1H, J=9.8 Hz, Hglc-4), 5.23 (t, 1H, J=1.6 Hz,  Hglc-2), 6.61 (s, 1H, HE-
3), 6.76 (s, 1H, HC-3), 6.77 (s, 1H, HD-3).50,143 

 
casuarictin (15) was isolated from Filipendula ulmaria flowers; purity measured by 
UPLC-DAD at 280 nm 97.5%; ESI-MS identification: m/z at 935.07924 ([M–H]–, 
error –0.4 ppm), 633.07380 ([M–HHDP–H]–, error 0.7 ppm), 300.99913 ([ellagic 
acid–H]–, error 0.5 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 3.88 (dd, 1H, 
J=0.9, 13.3 Hz, Hglc-6’), 4.51 (ddd, 1H, J=0.9, 6.7, 9.9 Hz, Hglc-5), 5.17 (t, 1H, J=9.8 
Hz, Hglc-4), 5.18 (t, 1H, J=8.9 Hz, Hglc-2), 5.36 (dd, 1H, J=6.7, 13.3 Hz, Hglc-6), 5.45 
(dd, 1H, J=9.2, 10.1 Hz, Hglc-3), 6.22 (d, 1H, J=8.6 Hz, Hglc-1), 6.36 (s, 1H, HC-3), 
6.46 (s, 1H, HB-3), 6.54 (s, 1H, HD-3), 6.68 (s, 1H, HE-3), 7.18 (s, 2H, HA-3,7).135 

 
casuarinin (16) was isolated from Hippophaë rhamnoides leaves; purity measured 
by UPLC-DAD at 280 nm 97.5%; ESI-MS identification: m/z at 935.07917 ([M–H]–
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, error –0.5 ppm), 783.06775 ([M–galloyl–H]–, error –1.1 ppm), 633.07343 ([M–
HHDP–H]–, error 0.1 ppm), 481.06372 ([M–HHDP–galloyl–H]–, error 2.8 ppm), 
300.99942 ([ellagic acid–H]–, error 1.4 ppm); 1H-NMR (600 MHz, acetone-d6, 298 
K): δ 4.07 (d, 1H, J=13.1 Hz, Hglc-6’), 4.69 (dd, 1H, J=2.1, 4.9 Hz, Hglc-2), 4.78 (dd, 
1H, J=3.4, 13.3 Hz, Hglc-6), 5.33 (dd, 1H, J=3.2, 9.7, Hglc-5), 5.391 (br t, 1H, J=2.0 
Hz, Hglc-3), 5.394 (dd, 1H, J=2.4, 9.7 Hz, Hglc-4), 5.64 (d, 1H, J=4.9 Hz, Hglc-1), 6.50 
(s, 1H, HB-3), 6.55 (s, 1H, HE-3), 6.75 (s, 1H, HC-3), 7.11 (s, 2H, HD-3,7).135 

 
stachyurin (17) was isolated from Hippophaë rhamnoides leaves; purity measured 
by UPLC-DAD at 280 nm 96.8%; ESI-MS identification: m/z at 935.07849 ([M–H]–

, error –1.2 ppm), 917.06580 ([M–H2O–H]–, error –3.5 ppm), 300.99893 ([ellagic 
acid–H]–, error –0.2 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 4.03 (d, 1H, 
J=12.9 Hz, Hglc-6’), 4.85 (dd, 1H, J=3.5, 13.2 Hz, Hglc-6), 4.86 (t, 1H, J=1.8 Hz, Hglc-
2), 4.93 (d, 1H, J=1.9 Hz, Hglc-1), 4.98 (br t, 1H, J=2.3 Hz, Hglc-3), 5.36 (dd, 1H, 
J=2.8, 8.7, Hglc-5), 5.67 (dd, 1H, J=2.8, 8.7 Hz, Hglc-4), 6.51 (s, 1H, HB-3), 6.55 (s, 
1H, HE-3), 6.84 (s, 1H, HC-3), 7.13 (s, 2H, HD-3,7).134,135 
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tellimagrandin II (18) was isolated from Filipdendula ulmaria flowers; purity 
measured by UPLC-DAD at 280 nm 90.2%; ESI-MS identification: m/z at 
937.09507 ([M–H]–, error –0.2 ppm), 767.07225 ([M–gallic acid–H]–, error –1.9 
ppm), 465.06785 ([M–gallic acid–HHDP–H]–, error 0.8 ppm), 300.99881 ([ellagic 
acid–H]–, error –0.6 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 3.89 (d, 1H, 
J=13.3 Hz, Hglc-6’), 4.55 (dd, 1H, J=6.6, 13.4 Hz, Hglc-5), 5.22 (t, 1H, J=10.0 Hz, 
Hglc-4), 5.37 (dd, 1H, J=6.6, 13.4 Hz, Hglc-6), 5.60 (dd, 1H, J=8.5, 9.4 Hz, Hglc-2), 
5.85 (t, 1H, J=9.8 Hz, Hglc-3), 6.21 (d, 1H, J=8.3 Hz, Hglc-1), 6.47 (s, 1H, HD-3), 6.66 
(s, 1H, HE-3), 6.98 (s, 2H, HC-3,7), 7.01 (s, 2H, HB-3,7), 7.12 (s, 2H, HA-3,7).140 

 
1,2,3,4,6-penta-O-galloyl-β-D-glucose (19) was prepared from tannic acid via 
methanolysis; purity measured by UPLC-DAD at 280 nm 98.6%; ESI-MS 
identification: m/z at 939.110111 ([M–H]–, error –0.8 ppm), 787.10032 ([M–
galloyl–H]–, error 0.5 ppm), 769.08890 ([M–gallic acid–H]–, error –0.6 ppm), 
617.07852 ([M–galloyl–gallic acid–H]–, error 0.2 ppm), 599.06766 ([M–2gallic 
acid–H]–, error –0.3 ppm), 447.05754 ([M–galloyl–2gallic acid–H]–, error 1.4 ppm), 
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313.05682 ([M–3galloyl–gallic acid–H]–, error 1.0 ppm), 169.01516 ([gallic acid–
H]–, error 5.4 ppm), 125.02547 ([gallic acid–COOH–H]–, error 8.4 ppm); 1H-NMR 
(600 MHz, acetone-d6, 298 K): δ 4.41 (dd, 1H, J=4.5, 12.5 Hz, Hglc-6’), 4.54 (dd, 
1H, J=1.5, 13.3 Hz, Hglc-6), 4.56 (ddd, 1H, J=1.6, 4.4, 9.9 Hz, Hglc-5), 5.61 (dd, 1H, 
J=8.3, 9.9 Hz, Hglc-2), 5.66 (t, 1H, J=9.7 Hz, Hglc-4), 6.01 (t, 1H, J=9.8 Hz, Hglc-3), 
6.34 (d, 1H, J=8.3 Hz, Hglc-1), 6.97 (s, 1H, HC-3,7), 7.01 (s, 1H, HB-3,7), 7.06 (s, 2H, 
HD-3,7), 7.11 (s, 2H, HA-3,7), 7.18 (s, 2H, HE-3,7).130,131 

 
geraniin (20) was isolated from Geranium sylvaticum leaves; purity measured by 
UPLC-DAD at 280 nm 84.8%; ESI-MS identification: m/z at 951.07360 ([M–H]–, 
error –1.0 ppm), 933.06500 ([M–H2O–H]–, error 1.1 ppm), 300.99878 ([ellagic acid–
H]–, error –0.7 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K, (major 6-ring 
tautomer)): δ 4.31 (dd, 1H, J=8.2, 10.8 Hz, Hglc-6’), 4.78 (dd, 1H, J=8.4, 9.9 Hz, Hglc-
5), 4.93 (t, 1H, J=10.6 Hz, Hglc-6), 5.17 (s, 1H, HD-1), 5.49 (br s, 1H, Hglc-3), 5.52 
(br s, 1H, Hglc-4), 5.56 (br s, 1H, Hglc-2), 6.56 (br s, 1H, Hglc-1), 6.53 (s, 1H, HD-3), 
6.66 (s, 1H, HE-3), 7.14 (s, 1H, HC-3), 7.199 (s, 1H, HB-3), 7.201 (s, 2H, HA-3,7).49,132  
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carpinusin (21) was isolated from Geranium sylvaticum leaves; purity measured by 
UPLC-DAD at 280 nm 98.3%; ESI-MS identification: m/z at 951.07228 ([M–H]–, 
error –2.4 ppm), 933.06206 ([M–H2O–H]–, error –2.0 ppm), 631.05605 ([M–H2O–
HHDP–H]–, error –2.6 ppm), 613.04549 ([M–2H2O–HHDP–H]–, error –2.7 ppm), 
300.99835 ([ellagic acid–H]–, error –2.1 ppm); 1H-NMR (600 MHz, acetone-d6, 298 
K, (6-ring, 73%)): δ 4.24 (dd, 1H, J=5.3, 11.7 Hz, Hglc-6’), 4.66 (dd, 1H, J=5.2, 12.9 
Hz, Hglc-5), 5.13 (br dd, 1H, J=0.8, 3.4 Hz, Hglc-2), 5.23 (s, 1H, HD-1’), 5.39 (br s, 
1H, Hglc-4), 5.44 (dd, 1H, J=11.9, 12.8 Hz, Hglc-6), 5.88 (m, 1H, Hglc-3), 6.20 (br s, 
1H, Hglc-1), 6.57 (s, 1H, HD-3’), 6.81 (s, 1H, HA-3), 6.89 (s, 1H, HE-3), 7.16 (s, 2H, 
HC-3,7), 7.27 (s, 1H, HB-3); 1H-NMR (600 MHz, acetone-d6, 298 K, (5-ring, 27%)): 
δ 4.16 (dd, 1H, J=5.2, 11.7 Hz, Hglc-6’), 4.70 (dd, 1H, J=5.2, 12.9 Hz, Hglc-5), 5.00 
(d, 1H, J=1.3 Hz, HD-1’), 5.05 (br dd, 1H, J=0.6, 3.4 Hz, Hglc-2), 5.47 (br s, 1H, Hglc-
4), 5.48 (dd, 1H, J=11.9, 12.7 Hz, Hglc-6), 6.08 (m, 1H, Hglc-3), 6.26 (d, 1H, J=1.3 
Hz, HD-3’), 6.27 (br s, 1H, Hglc-1), 6.88 (s, 1H, HA-3), 6.90 (s, 1H, HE-3), 7.18 (s, 
2H, HC-3,7), 7.29 (s, 1H, HB-3).67,144 
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chebulagic acid (22) was isolated from Terminalia chebula leaves; purity measured 
by UPLC-DAD at 280 nm 96.1%; ESI-MS identification: m/z at 953.08949 ([M–H]–

, error –0.7 ppm), 935.07807 ([M–H2O–H]–, error –1.6 ppm), 801.08036 ([M–
galloyl–H]–, error 1.4 ppm), 783.06696 ([M–gallic acid–H]–, error –2.1 ppm), 
633.07235 ([M–HHDP–H2O–H]–, error –1.6 ppm), 481.06275 ([M–HHDP-galloyl–
H]–, error 0.8 ppm), 463.05379 ([M–HHDP-gallic acid–H]–, error 4.3 ppm), 
337.02138 ([chebuloyl–H2O–H]–, error 3.7 ppm), 300.99890 ([ellagic acid–H]–, 
error –0.3 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 2.19 (d, 2H, J=7.8 Hz, 
Hche-5), 3.87 (td, 1H, J=1.5, 7.7 Hz, Hche-4), 4.40 (dd, 1H, J=6.4, 9.2 Hz, Hglc-6’), 
4.78 (d, 1H, J=9.5 Hz, Hglc-6), 4.80 (d, 1H, J=6.2 Hz, Hglc-5), 4.95 (d, 1H, J=7.3 Hz, 
Hche-2), 5.12 (dd, 1H, J= 1.5, 7.2 Hz, Hche-3), 5.22 (br d, 1H, J=3.7 Hz, Hglc-4), 5.51 
(br s, 1H, Hglc-2), 5.94 (br s, 1H, Hglc-3), 6.51 (br s, 1H, Hglc-1), 6.66 (s, 1H, HD-3), 
7.07 (s, 1H, HC-3), 7.18 (s, 2H, HA-3,7), 7.52 (s, 1H, HB-3).132,145 
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chebulinic acid (23) was isolated from Terminalia chebula leaves; purity measured 
by UPLC-DAD at 280 nm 88.3%; ESI-MS identification: m/z at 955.10484 ([M–H]–

, error –1.0 ppm), 937.09482 ([M–H2O–H]–, error –0.5 ppm), 911.11312 ([M–
COOH–H]–, error –3.1 ppm), 803.09645 ([M–galloyl–H]–, error 2.0 ppm), 
785.08389 ([M–gallic acid–H]–, error –0.5 ppm), 767.07387 ([M–gallic acid–H2O–
H]–, error 0.2 ppm), 741.09512 ([M–gallic acid–COOH–H]–, error 0.9 ppm), 
633.07239 ([M–galloyl–gallic acid–H]–, error –1.5 ppm), 617.07908 ([M–
dehydrated chebuloyl–H]–, error 1.1 ppm), 465.06725 ([M–dehydrated chebuloyl–
galloyl–H]–, error –0.5 ppm), 337.02035 ([chebuloyl–H2O–H]–, error 0.7 ppm), 
169.01494 ([chebuloyl–H2O–H]–, error 4.1 ppm), 125.02551 ([chebuloyl–H2O–H]–, 
error 8.7 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 2.26 (d, 1H, J=4.1 Hz, 
Hche-5’), 2.28 (d, 1H, J=11.2 Hz, Hche-5), 3.96 (ddd, 1H, J=1.5, 4.0, 11.2 Hz, Hche-4),  
4.72 (m, 1H, Hglc-5), 4.75 (m, 1H, Hglc-6’), 4.87 (dd, 1H, J=7.7, 11.1 Hz, Hglc-6), 4.96 
(d, 1H, J=7.1 Hz, Hche-2), 5.09 (br d, 1H, J=3.5 Hz, Hglc-4), 5.18 (dd, 1H, J= 1.6, 7.1 
Hz, Hche-3), 5.48 (br s, 1H, Hglc-2), 6.35 (br s, 1H, Hglc-3), 6.53 (br s, 1H, Hglc-1), 
7.06 (s, 2H, HD-3,7), 7.22 (s, 2H, HA-3,7), 7.29 (s, 2H, HC-3,7), 7.56 (s, 1H, HB-
3).145,146 
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grandinin (24) was received from collaborators (lyxose unit isomerises in acetone 
solution into pyranose (40.7%), furanose (34.1%), and an undefined isomer (25.2%) 
of possibly an open chain aldehyde form); purity measured by UPLC-DAD at 280 
nm 98.3%; ESI-MS identification: m/z at 1065.10279 ([M–H]–, error –2.2 ppm), 
931.07593 ([M–lyxose–H]–, error –8.2 ppm), 300.99794 ([ellagic acid–H]–, error 0.2 
ppm); 1H-NMR (500 MHz, acetone-d6, 298 K, (pyranose, 41%)): δ 3.55 (br s, 1H, 
Hglc-1), 3.81 (d, 1H, J=10.1 Hz, Hlyx-5’’), 3.86 (dd, 1H, J=5.6, 10.9 Hz, Hlyx-5’), 3.99 
(d, 1H, J=12.2 Hz, Hglc-6’), 4.08 (m, 1H, Hlyx-4’), 4.12 (td, 1H, J=3.4, 9.3 Hz, Hlyx-
3’), 4.42 (d, 1H, J=3.0 Hz, Hlyx-2’), 4.55 (br d, 1H, J=6.8 Hz, Hglc-3), 5.02 (dd, 1H, 
J=2.3, 12.9 Hz, Hglc-6), 5.26 (t, 1H, J=7.0 Hz, Hglc-4), 5.52 (br s, 1H, Hglc-2), 5.65 
(br d, 1H, J=7.1 Hz, Hglc-5), 6.58 (s, 1H, HE-3), 6.75 (s, 1H, HD-3), 7.47 (s, 1H, HC-
3). 1H-NMR (500 MHz, acetone-d6, 298 K, (furanose, 34%)): δ 3.33 (br s, 1H, Hglc-
1), 3.91 (d, 1H, J=5 Hz, Hlyx-5’’), 3.91 (dd, 1H, J=6.2 Hz, Hlyx-5’), 3.98 (d, 1H, 
J=12.5 Hz, Hglc-6’), 4.06 (d, 1H, J=4.5, Hlyx-4’), 4.24 (d, 1H, J=4.7 Hz, Hlyx-2’), 4.40 
(t, 1H, J=4.1 Hz, Hlyx-3’), 4.64 (br d, 1H, J=7.1 Hz, Hglc-3), 5.08 (dd, 1H, J=2.6, 13.0 
Hz, Hglc-6), 5.17 (t, 1H, J=7.5 Hz, Hglc-4), 5.61 (br d, 1H, J=7.8 Hz, Hglc-5), 5.68 (br 
s, 1H, Hglc-2), 6.62 (s, 1H, HE-3), 6.76 (s, 1H, HD-3), 7.00 (s, 1H, HC-3). 1H-NMR 
(500 MHz, acetone-d6, 298 K, (undefined isomer, 25%)): δ 3.55 (br s, 1H, Hglc-1), 
3.81 (d, 1H, J=10.1 Hz, Hlyx-5’’), 3.86 (dd, 1H, J=5.6, 10.9 Hz, Hlyx-5’), 3.99 (d, 1H, 
J=12.2 Hz, Hglc-6’), 4.08 (m, 1H, Hlyx-4’), 4.12 (td, 1H, J=3.4, 9.3 Hz, Hlyx-3’), 4.42 
(d, 1H, J=3.0 Hz, Hlyx-2’), 4.55 (br d, 1H, J=6.8 Hz, Hglc-3), 5.02 (dd, 1H, J=2.3, 12.9 
Hz, Hglc-6), 5.26 (t, 1H, J=7.0 Hz, Hglc-4), 5.52 (br s, 1H, Hglc-2), 5.65 (br d, 1H, 
J=7.1 Hz, Hglc-5), 6.58 (s, 1H, HE-3), 6.75 (s, 1H, HD-3), 7.47 (s, 1H, HC-3).147,148 
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punicalagin (25) was isolated from Terminalia chebula leaves; purity measured by 
UPLC-DAD at 280 nm 98.4%; ESI-MS identification: m/z at 1083.05849 ([M–H]–, 
error –0.7 ppm), 781.05230 ([M–HHDP–H]–, error –0.9 ppm), 600.99061 ([gallagyl 
group–2H2O–H]–, error 1.7 ppm), 300.99900 ([ellagic acid–H]–, error 0.03 ppm); 
1H-NMR (600 MHz, acetone-d6, 298 K, α-anomer (66%)): δ 2.10 (dd, 1H, J=1.3, 
11.0 Hz, Hglc-6’), 3.27 (dd, 1H, J=1.5, 10.2 Hz, Hglc-5), 4.20 (d, 1H, J=10.7 Hz, Hglc-
6), 4.76 (dd, 1H, J=9.3, 10.0 Hz, Hglc-4), 4.80 (dd, 1H, J=3.6, 9.7 Hz, Hglc-2), 5.11 
(br d, 1H, J= 3.4 Hz, Hglc-1), 5.21 (t, 1H, J=9.5 Hz, Hglc-3), 6.52 (s, 1H, HA-3), 6.583 
(s, 1H, HC-3), 6.588 (s, 1H, HB-3), 7.02 (s, 1H, HD-3). 1H-NMR (600 MHz, acetone-
d6, 298 K, β-anomer (34%)): δ 2.17 (dd, 1H, J=1.6, 11.2 Hz, Hglc-6’), 2.69 (td, 1H, 
J=1.6, 14.8 Hz, Hglc-5), 4.17 (d, 1H, J=10.6 Hz, Hglc-6), 4.64 (dd, 1H, J=8.1, 9.5 Hz, 
Hglc-2), 4.71 (d, 1H, J= 8.0 Hz, Hglc-1), 4.79 (t, 1H, J=9.2 Hz, Hglc-4), 4.87 (t, 1H, 
J=9.4 Hz, Hglc-3), 6.52 (s, 1H, HA-3), 6.60 (s, 1H, HB-3), 6.66 (s, 1H, HC-3), 7.02 (s, 
1H, HD-3).70,149 
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hexagalloylglucose (26) was isolated from Acer platanoides leaves; purity measured 
by UPLC-DAD at 280 nm 94.1%; ESI-MS identification: m/z at 1091.12073 ([M–
H]–, error –1.0 ppm), 939.11323 ([M–galloyl–H]–, error 2.5 ppm), 787.10096 ([M–
2galloyl––H]–, error 1.3 ppm), 769.08984 ([M–galloyl–gallic acid–H]–, error 0.6 
ppm), 617.07872 ([M–2galloyl–gallic acid–H]–, error 0.5 ppm), 465.06592 ([M–
3galloyl–gallic acid–H]–, error –3.3 ppm), 447.05851 ([M–2galloyl–2gallic acid–H]–

, error 3.6 ppm), 313.05631 ([M–4galloyl–gallic acid–H]–, error –0.6 ppm), 
169.01303 ([gallic acid–H]–, error –7.2 ppm), 125.02297 ([gallic acid–COOH–H]–, 
error –11.6 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K (aromatic assignations 
with an asterisk are not definitive)): δ 4.40 (dd, 1H, J=4.5, 12.5 Hz, Hglc-6’), 4.54 
(dd, 1H, J=1.8, 12.5 Hz, Hglc-6), 4.57 (ddd, 1H, J=2.1, 4.5, 10.2 Hz, Hglc-5), 5.64 (dd, 
1H, J=8.3, 9.7 Hz, Hglc-2), 5.67 (t, 1H, J=9.8 Hz, Hglc-4), 6.02 (t, 1H, J=9.7 Hz, Hglc-
3), 6.35 (d, 1H, J=8.3 Hz, Hglc-1), 7.02 (s, 2H, HB-3,7), 7.07 (s, 2H, HD-3,7),7.11 (s, 
2H, HA-3,7), 7.17 (s, 2H, HE-3,7), 7.24 (s, 2H, HF-3,7), 7.25 (m, 1H, HC-7*), 7.30 (d, 
1H, J=2.0 Hz, HC-3*).142,150 
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castavaloninic acid (27) was isolated from Quercus robur acorns; purity measured 
by UPLC-DAD at 280 nm 91.7%; ESI-MS identification: m/z at 1101.06605 ([M–
H]–, error –3.4 ppm), 1057.07935 ([M–COOH–H]–, error –0.6 ppm), 1039.06839 
([M–COOH–H2O–H]–, error –1.0 ppm), 933.05853 ([M–gallic acid–H]–, error –5.1 
ppm), 631.06044 ([M–valoneoyl group–H]–, error 4.4 ppm), 425.01432 ([valoneic 
acid dilactone–H2O–H]–, error –1.7 ppm), 300.99864 ([ellagic acid–H]–, error –1.2 
ppm ); 1H-NMR (500 MHz, acetone-d6, 298 K): δ 3.97 (d, 1H, J=12.8 Hz, Hglc-6’), 
4.73 (dd, 1H, J=1.4, 4.9 Hz, Hglc-2), 4.92 (t, 1H, J=7.2 Hz, Hglc-3), 5.11 (dd, 1H, 
J=2.9, 13.1 Hz, Hglc-6), 5.15 (t, 1H, J=7.2 Hz, Hglc-4), 5.47 (d, 1H, J=4.8 Hz, Hglc-1), 
5.53 (ddd, 1H, J=0.8, 2.9, 7.5 Hz, Hglc-5), 6.63 (s, 2H, HC-3 & HE-3), 6.77 (s, 1H, 
HD-3), 7.24 (s, 1H, HF-3).151 

 
vescavaloninic acid (28) was isolated from Quercus robur leaves; purity measured 
by UPLC-DAD at 280 nm 97.6%; ESI-MS identification: m/z at 1101.06694 ([M–
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H]–, error –2.6 ppm), 1083.06042 ([M–H2O–H]–, error 1.1 ppm), 1039.06982 ([M–
COOH–H2O–H]–, error 0.4 ppm), 915.05542 ([M–gallic acid–H2O–H]–, error 2.2 
ppm), 613.04584 ([M–valoneoyl group–H2O–H]–, error –2.1 ppm), 425.01169 
([valoneic acid dilactone–H2O–H]–, error 6.0 ppm), 300.99875 ([ellagic acid–H]–, 
error –0.8 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 4.02 (d, 1H, J=12.4 Hz, 
Hglc-6’), 4.62 (dd, 1H, J=1.3, 6.8 Hz, Hglc-3), 4.98 (d, 1H, J=2.1 Hz, Hglc-1), 5.05 (dd, 
1H, J=2.6, 13.1 Hz, Hglc-6), 5.18 (br t, 1H, J=1.7 Hz, Hglc-2), 5.22 (t, 1H, J=6.9 Hz, 
Hglc-4), 5.63 (ddd, 1H, J=1.3, 2.3, 7.1 Hz, Hglc-5), 6.61 (s, 1H, HE-3), 6.76 (s, 1H, 
HD-3), 7.05 (s, 1H, HC-3), 7.18 (s, 1H, HF-3). 

 
hippophaenin B (29) was isolated from Hippophaë rhamnoides leaves; purity 
measured by UPLC-DAD at 280 nm 99.9%; ESI-MS identification: m/z at 
1103.08271 ([M–H]–, error –2.5 ppm), 1059.09599 ([M–COOH–H]–, error 0.3 ppm), 
935.07666 ([M–gallic acid–H]–, error 3.1 ppm), 633.07186 ([M–valoneic acid 
dilactone–H]–, error –2.3 ppm), 481.06016 ([M–valoneic acid dilactone–galloyl–H]–

, error –4.6 ppm), 300.99829 ([ellagic acid–H]–, error –2.3 ppm), 169.01476 ([gallic 
acid–H]–, error 3.0 ppm), 125.02515 ([gallic acid–COOH–H]–, error 5.9 ppm); 1H-
NMR (500 MHz, acetone-d6, 298 K): δ 4.02 (d, 1H, J=13.2 Hz, Hglc-6’), 4.66 (dd, 
1H, J=2.3, 4.9 Hz, Hglc-2), 4.71 (dd, 1H, J=3.6, 13.4 Hz, Hglc-6), 5.27 (dd, 1H, J=3.2, 
9.3 Hz, Hglc-5), 5.35 (dd, 1H, J=2.4, 9.2 Hz, Hglc-4), 5.37 (br t, 1H, J=2.3 Hz, Hglc-
3), 5.64 (d, 1H, J=4.9 Hz, Hglc-1), 6.25 (s, 1H, HE-3), 6.47 (s, 1H, HB-3), 6.74 (s, 1H, 
HC-3), 7.04 (s, 2H, HD-3,7), 7.13 (s, 1H, HF-3).152,153 
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hippophaenin C (30) was isolated from Hippophaë rhamnoides leaves; purity 
measured by UPLC-DAD at 280 nm 96.2%; For the MS and NMR characterization 
of hippophaenin C see Suvanto et al., 2018.154 

 
heptagalloylglucose (31) was isolated from Acer platanoides leaves; purity 
measured by UPLC-DAD at 280 nm 97.2%; ESI-MS identification: m/z at 
1243.13075 ([M–H]–, error –1.7 ppm),  1091.11926 ([M–galloyl–H]–, error –2.4 
ppm), 939.11058 ([M–2galloyl–H]–, error –0.3 ppm), 787.10165 ([M–3galloyl––H]–
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, error –2.2 ppm), 769.09008 ([M–2galloyl–gallic acid–H]–, error 0.9 ppm), 
617.07895 ([M–3galloyl–gallic acid–H]–, error 0.6 ppm), 465.06737 ([M–4galloyl–
gallic acid–H]–, error –0.2 ppm), 313.05700 ([M–5galloyl–gallic acid–H]–, error 1.6 
ppm), 169.01316 ([gallic acid–H]–, error –6.4 ppm), 125.02290 ([gallic acid–
COOH–H]–, error –12.1 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K (aromatic 
assignations with an asterisk are not definitive)): δ 4.47 (dd, 1H, J=4.8, 12.5 Hz, Hglc-
6’), 4.54 (dd, 1H, J=2.2, 12.5 Hz, Hglc-6), 4.59 (ddd, 1H, J=2.3, 4.8, 10.0 Hz, Hglc-5), 
5.64 (dd, 1H, J=8.3, 9.8 Hz, Hglc-2), 5.67 (t, 1H, J=9.7 Hz, Hglc-4), 6.02 (t, 1H, J=9.6 
Hz, Hglc-3), 6.34 (d, 1H, J=8.3 Hz, Hglc-1), 7.01 (s, 2H, HB-3,7), 7.06 (s, 2H, HD-3,7), 
7.10 (s, 2H, HA-3,7), 7.24 (s, 3H, HF-3,7 & HC-7*), 7.29 (s, 2H, HG-3,7), 7.30 (d, 1H, 
J=2.0 Hz, HC-3*), 7.39 (d, 1H, J=2.0 Hz, HE-7*), 7.51 (d, 1H, J=2.0 Hz, HE-3*).142,150 

 
octagalloylglucose (32) was isolated from Acer platanoides leaves; purity measured 
by UPLC-DAD at 280 nm 97.2%; ESI-MS identification: m/z at 1395.14564 ([M–
H]–, error 1.3 ppm), 169.01319 ([gallic acid–H]–, error –6.2 ppm), 125.02290 ([gallic 
acid–COOH–H]–, error –12.1 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K 
(aromatic assignations with an asterisk are not definitive)): δ 4.48 (dd, 1H, J=4.5, 
12.3 Hz, Hglc-6’), 4.54 (dd, 1H, J=2.0, 12.2 Hz, Hglc-6), 4.60 (ddd, 1H, J=2.2, 4.4, 
10.0 Hz, Hglc-5), 5.65 (dd, 1H, J=8.3, 9.8 Hz, Hglc-2), 5.69 (t, 1H, J=9.8 Hz, Hglc-4), 
6.02 (t, 1H, J=9.6 Hz, Hglc-3), 6.36 (d, 1H, J=8.2 Hz, Hglc-1), 7.02 (s, 2H, HB-3,7), 
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7.06 (s, 2H, HD-3,7),7.24 (s, 3H, HF-3,7 & HC-7*),7.26 (s, 2H, HH-3,7),7.27 (s, 2H, 
HG-3,7),7.28–7.55 (m, 5H, HC-3*, HE-3*, HE-7*, HA-3* & HA-7*).142,150 

 
gallotannin mixture (33) was isolated from Acer platanoides leaves and contains 
hexa–hexadecagalloylglucoses; purity measured by UPLC-DAD at 280 nm 97.2%; 
ESI-MS identification: m/z at 1305.11113 ([hexadecagalloylglucose–2H]2–, error –
0.7 ppm), 1229.10762 ([pentadecagalloylglucose–2H]2–, error 0.8 ppm), 1153.10186 
([tetradecagalloylglucose–2H]2–, error 0.6 ppm), 1077.09562 ([tridecagalloyl-
glucose–2H]2–, error –0.03 ppm), 1001.08905 ([dodecagalloylglucose–2H]2–, error –
1.1 ppm), 925.08349 ([undecagalloylglucose–2H]2–, error –1.3 ppm), 849.07826 
([decagalloylglucose–2H]2–, error –1.1 ppm), 773.07236 ([nonagalloylglucose–
2H]2–, error –1.7 ppm), 697.06675 ([octagalloylglucose–2H]2–, error –2.2 ppm), 
621.06172 ([heptagalloylglucose–2H]2–, error –1.7 ppm), 545.05607 
([hexagalloylglucose–2H]2–, error –2.2 ppm), 169.01301 ([gallic acid–H]–, error –
7.4 ppm), 125.02291 ([gallic acid–COOH–H]–, error –12.1 ppm).  

 
oenothein B (34) was isolated from Chamaenerion angustifolium leaves; purity 
measured by UPLC-DAD at 280 nm 97.6%; ESI-MS identification: m/z at 
1567.14171 ([M–H]–, error –1.8 ppm), 935.07645 ([M–galloyl-HHDP-glucose–H]–

, error –3.3 ppm), 785.08270 ([M–digalloyl-HHDP-glucose–H]–, error –2.0 ppm), 
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783.06794 ([M–2H]2–, error –0.9 ppm), 765.05828 ([M–digalloyl-HHDP-glucose–
H2O–H]–, error 0.3 ppm), 300.99866 ([ellagic acid–H]–, error –1.1 ppm); 1H-NMR 
assignations could not be made reliably due to the two anomeric glucoses producing 
many isomers and furthermore due to the macrocyclic structure slowing down the 
broad signal producing interconversions.155 

 
roshenin C (35) was isolated from Rubus idaeus leaves; purity measured by UPLC-
DAD at 280 nm 94.2%; ESI-MS identification: m/z at 1567.14663 ([M–H]–, error 
2.1 ppm), 1235.07088 ([M–galloylglucose–H]–, error 0.7 ppm), 933.06674 ([M–
galloyl-HHDP-glucose–H]–, error 2.8 ppm), 783.06944 ([M–2H]2–, error 0.8 ppm),  
633.07306 ([M–galloyl-diHHDP-glucose–H]–, error –0.3 ppm), 300.99928 ([ellagic 
acid–H]–, error 0.3 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 3.47 (t, 1H, 
J=9.7 Hz, Hglc-5b), 3.69 (dd, 1H, J=4.2, 9.7 Hz, Hglc-2b), 3.72 (d, 1H, J=12.9 Hz, 
Hglc-6b’), 3.73 (m, 1H, Hglc-3b), 3.75 (d, 1H, J=13.1 Hz, Hglc-6a’), 4.21 (ddd, 1H, 
J=0.9, 6.9, 9.4 Hz, Hglc-5a), 4.65 (t, 1H, J=10.0 Hz, Hglc-4b), 5.09 (t, 1H, J=10.1 Hz, 
Hglc-4a), 5.21 (d, 1H, J=8.8 Hz, Hglc-2a), 5.24 (dd, 1H, J=6.8, 13.3 Hz, Hglc-6a), 5.29 
(dd, 1H, J=6.7, 13.3 Hz, Hglc-6b), 5.35 (dd, 1H, J=9.5, 10.0 Hz, Hglc-3a), 6.04 (d, 1H, 
J=8.4 Hz, Hglc-1a), 6.20 (d, 1H, J=4.0 Hz, Hglc-6b).156 
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rugosin E (36) was isolated from Filipdendula ulmaria flowers; purity measured by 
UPLC-DAD at 280 nm 91.2%; ESI-MS identification: m/z at 1721.17009 ([M–H]–, 
error –0.6 ppm), 937.09636 ([M–digalloyl-HHDP-glucose–H]–, error 1.2 ppm), 
860.08201 ([M–2H]2–, error 0.1 ppm), 785.08544 ([M–trigalloyl-HHDP-glucose–
H]–, error 1.5 ppm), 767.07242 ([M– trigalloyl-HHDP-glucose–H2O–H]–, error –1.7 
ppm), 300.99898 ([ellagic acid–H]–, error –0.03 ppm); 1H-NMR (600 MHz, acetone-
d6, 298 K, α-anomer (70%)): δ 3.67 (d, 1H, J=12.5 Hz, Hglc-6b’), 3.82 (d, 1H, J=13.0 
Hz, Hglc-6a’), 4.50 (dd, 1H, J=6.3, 10.1 Hz, Hglc-5a), 4.64 (dd, 1H, J=7.2, 9.6 Hz, 
Hglc-5b), 5.06 (t, 1H, J=10.1 Hz, Hglc-4b), 5.14 (dd, 1H, J=3.7, 10.1 Hz, Hglc-2b), 5.18 
(t, 1H, J=10.0 Hz, Hglc-4a), 5.22 (dd, 1H, J=6.6, 12.8 Hz, Hglc-6b), 5.32 (dd, 1H, 
J=6.6, 13.4 Hz, Hglc-6a), 5.55 (d, 1H, J=3.7 Hz, Hglc-1b), 5.56 (dd, 1H, J=8.8, 9.8 Hz, 
Hglc-2a), 5.80 (t, 1H, J=9.8 Hz, Hglc-3a), 5.87 (t, 1H, J=10.0 Hz, Hglc-3b), 6.15 (d, 1H, 
J=8.3 Hz, Hglc-1a), 6.24 (s, 1H, HI-3), 6.47 (s, 1H, HD-3), 6.49 (s, 1H, HH-3), 6.66 (s, 
1H, HE-3), 6.98 (s, 2H, HF-3,7), 7.021 (s, 2H, HG-3,7), 7.026 (s, 2H, HB-3,7), 7.16 
(s, 1H, HA-3).1H-NMR (600 MHz, acetone-d6, 298 K, β-anomer (30%)): δ 3.75 (d, 
1H, J=13.0 Hz, Hglc-6a’), 3.82 (d, 1H, J=13.2 Hz, Hglc-6b’), 4.24 (dd, 1H, J=6.5, 9.9 
Hz, Hglc-5b), 4.49 (dd, 1H, J=6.1, 10.2 Hz, Hglc-5a), 5.07 (t, 1H, J=10.1 Hz, Hglc-4b), 
5.08 (d, 1H, J=8.1 Hz, Hglc-1b), 5.18 (t, 1H, J=10.0 Hz, Hglc-4a), 5.24 (dd, 1H, J=6.6, 
12.6 Hz, Hglc-6b), 5.27 (dd, 1H, J=8.0, 9.5 Hz, Hglc-2b), 5.32 (dd, 1H, J=6.5, 12.2 
Hz, Hglc-6a), 5.55 (dd, 1H, J=7.8, 9.7 Hz, Hglc-2a), 5.61 (t, 1H, J=9.8 Hz, Hglc-3b), 
5.80 (t, 1H, J=9.8 Hz, Hglc-3a), 6.14 (d, 1H, J=8.3 Hz, Hglc-1a), 6.23 (s, 1H, HI-3), 
6.466 (s, 1H, HH-3), 6.471 (s, 1H, HD-3), 6.66 (s, 1H, HE-3), 6.98 (s, 2H, HG-3,7), 
7.07 (s, 2H, HF-3,7), 7.02 (s, 2H, HB-3,7), 7.08 (s, 2H, HC-3,7), 7.16 (s, 1H, HA-
3).157,158 
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cocciferin D2 (37) was isolated from Quercus robur acorns; purity measured by 
UPLC-DAD at 280 nm 93.0%; ESI-MS identification: m/z at 1867.12800 ([M–H]–, 
error –3.8 ppm), 1567.12757 ([M–HHDP–H]–, error –0.9 ppm), 1101.07569 ([M–
diHHDP-glucose–H]–, error 5.3 ppm), 1083.06439 ([M–diHHDP-glucose–H2O–H]–

, error 4.7 ppm), 933.06279 ([M–2H]2–, error –1.2 ppm), 933.06589 ([M–galloyl-
diHHDP-glucose–H]–, error 2.1 ppm), 915.05486 ([M–diHHDP-glucose–H2O–H]–, 
error 1.6 ppm), 783.06729 ([M–NHTP-valoneoyl-glucose–H]–, error –1.7 ppm), 
631.05688 ([M–diHHDP-valoneoyl-glucose–H]–, error –1.3 ppm), 300.99911 
([ellagic acid–H]–, error 0.4 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 3.86 
(d, 1H, J=12.8 Hz, Hglc-6b’), 3.98 (d, 1H, J=12.9 Hz, Hglc-6a’), 4.43 (ddd, 1H, J=0.9, 
6.9, 9.8 Hz, Hglc-5b), 4.77 (dd, 1H, J=1.2, 4.9 Hz, Hglc-2a), 4.91 (dd, 1H, J=1.1, 6.9 
Hz, Hglc-5), 5.12 (t, 1H, J=7.3 Hz, Hglc-4a), 5.13 (t, 1H, J=8.8 Hz, Hglc-2b), 5.14 (dd, 
1H, J=1.8, 12.8 Hz, Hglc-6a), 5.14 (t, 1H, J=10.1 Hz, Hglc-4b), 5.31 (dd, 1H, J=6.8, 
13.3 Hz, Hglc-6b), 5.38 (dd, 1H, J=9.4, 10.0 Hz, Hglc-3a), 5.41 (d, 1H, J=4.9 Hz, Hglc-
1a), 5.55 (dd, 1H, J=2.2, 7.4 Hz, Hglc-3b), 6.15 (d, 1H, J=8.6 Hz, Hglc-1b), 6.35 (s, 
1H, HH-3), 6.41 (s, 1H, HC-3), 6.49 (s, 1H, HG-3), 6.51 (s, 1H, HI-3), 6.59 (s, 1H, HE-
3), 6.68 (s, 1H, HJ-3), 6.78 (s, 1H, HD-3), 7.27 (s, 1H, HF-3).71 
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salicarinin A (38) was isolated from Lythrum salicaria leaves; purity measured by 
UPLC-DAD at 280 nm 96.0%; ESI-MS identification: m/z at 1867.13022 ([M–H]–, 
error –2.7 ppm), 1083.05526 ([M–diHHDP-glucose–H]–, error –3.7 ppm), 
933.06297 ([M–2H]2–, error –1.1 ppm), 933.06588 ([M–galloyl-diHHDP-glucose–
H]–, error 2.1 ppm), 924.05736 ([M–H2O–2H]2–, error –1.4 ppm), 915.05204 ([M–
2H2O–2H]2–, error –1.5 ppm), 915.05429 ([M–galloyl-diHHDP-glucose–H2O–H]–, 
error –2.7 ppm), 300.99885 ([ellagic acid–H]–, error -0.5 ppm); 1H-NMR (500 MHz, 
acetone-d6, 298 K): δ 3.89 (d, 1H, J=12.9 Hz, Hglc-6b’), 3.95 (d, 1H, J=12.5 Hz, Hglc-
6a’), 4.64 (dd, 1H, J=1.1, 6.7 Hz, Hglc-3a), 4.83 (m, 2H, Hglc-1b & Hglc-2b), 4.85 (dd, 
1H, J=3.5, 13.4 Hz, Hglc-6b), 4.927 (t, 1H, J=2.0 Hz, Hglc-3b), 4.929 (d, 1H, J=2.0 
Hz, Hglc-1a), 5.08 (dd, 1H, J=2.4, 13.1 Hz, Hglc-6a), 5.14 (br s, 1H, Hglc-2a), 5.19 (t, 
1H, J=6.8 Hz, Hglc-4a), 5.40 (dd, 1H, J=3.5, 13.4 Hz, Hglc-5b), 5.55 (dd, 1H, J=2.5, 
8.6 Hz, Hglc-4b), 5.63 (br d, 1H, J=6.8 Hz, Hglc-5a), 6.54 (s, 1H, HG-3), 6.59 (s, 1H, 
HE-3), 6.62 (s, 1H, HJ-3), 6.78 (s, 1H, HD-3), 6.83 (s, 1H, HC-3), 6.86 (s, 1H, HH-3), 
7.07 (s, 1H, HI-3).159 
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salicarinin B (39) was isolated from Lythrum salicaria leaves; purity measured by 
UPLC-DAD at 280 nm 75.2%; ESI-MS identification: m/z at 1867.12697 ([M–H]–, 
error –4.4 ppm), 935.08098 ([M–NHTP-HHDP-glucose–H]–, error 1.5 ppm), 
933.06568 ([M–2H]2–, error –1.5 ppm), 933.06588 ([M–galloyl-diHHDP-glucose–
H]–, error 1.9 ppm), 924.05744 ([M–H2O–2H]2–, error –1.3 ppm), 915.05408 ([M–
galloyl-diHHDP-glucose–H2O–H]–, error 0.8 ppm), 300.99897 ([ellagic acid–H]–, 
error –0.1 ppm); 1H-NMR (500 MHz, acetone-d6, 298 K): δ 4.04 (d, 1H, J=12.1 Hz, 
Hglc-6a’), 4.21 (d, 1H, J=13.3 Hz, Hglc-6b’), 4.51 (dd, 1H, J=2.1, 5.0 Hz, Hglc-2b), 
4.74 (dd, 1H, J=3.9, 13.4 Hz, Hglc-6b), 4.89 (dd, 1H, J=0.9, 6.7 Hz, Hglc-3a), 4.94 (br 
t, 1H, J=2.0 Hz, Hglc-3b), 5.11 (dd, 1H, J=2.3, 9.2 Hz, Hglc-4b), 5.15 (d, 1H, J=2.0 
Hz, Hglc-1a), 5.17 (dd, 1H, J=2.5, 13.4 Hz, Hglc-6a), 5.21 (m, 1H, Hglc-2a),  5.22 (t, 
1H, J=6.4 Hz, Hglc-4a), 5.32 (dd, 1H, J=3.6, 9.3 Hz, Hglc-5b), 5.47 (d, 1H, J=5.0 Hz, 
Hglc-1b), 5.69 (br d, 1H, J=5.8 Hz, Hglc-5a), 6.52 (s, 1H, HG-3), 6.72 (s, 1H, HJ-3), 
6.77 (s, 1H, HE-3), 6.78 (s, 1H, HH-3), 6.82 (s, 1H, HD-3), 6.94 (s, 1H, HI-3), 7.01 (s, 
1H, HC-3).159 
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agrimoniin (40) was isolated from Argentina anserina leaves; purity measured by 
UPLC-DAD at 280 nm 97.6%; ESI-MS identification: m/z at 1869.14605 ([M–H]–, 
error –2.6 ppm), 1085.07578 ([M–diHHDP-glucose–H]–, error 0.8 ppm), 935.07890 
([M–galloyl-diHHDP-glucose–H]–, error –0.8 ppm), 934.07168 ([M–2H]2–, error –
0.1 ppm), 915.05659 ([M–galloyl-diHHDP-glucose–H2O–H]–, error –0.8 ppm), 
783.006953 ([M–digalloyl-diHHDP-glucose–H2O–H]–, error 1.1 ppm), 631.07502 
([M–galloyl-diHHDP-glucose–HHDP–H]–, error 2.7 ppm), 300.99857 ([ellagic 
acid–H]–, error –1.4 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 3.69 (d, 1H, 
J=13.0 Hz, Hglc-6b’), 3.79 (d, 1H, J=12.8 Hz, Hglc-6a’), 4.49 (dd, 1H, J=6.5, 10.2 Hz, 
Hglc-5b), 4.65 (dd, 1H, J=6.5, 10.2 Hz, Hglc-5a), 5.16 (t, 1H, J=10.4 Hz, Hglc-4b), 5.20 
(t, 1H, J=10.3 Hz, Hglc-4a), 5.23 (dd, 1H, J=6.5, 13.2 Hz, Hglc-6a), 5.32 (dd, 1H, 
J=6.6, 13.4 Hz, Hglc-6b), 5.36 (dd, 1H, J=3.9, 9.5 Hz, Hglc-2b), 5.37 (dd, 1H, J=3.8, 
9.6 Hz, Hglc-2a), 5.49 (t, 1H, J=9.8 Hz, Hglc-3b), 5.55 (t, 1H, J=9.8 Hz, Hglc-3a), 6.34 
(s, 1H, HH-3), 6.35 (s, 1H, HC-3), 6.44 (s, 1H, HG-3), 6.54 (dd, 1H, J=4.0 Hz, Hglc-
1a), 6.55 (s, 1H, HB-3), 6.56 (dd, 1H, J=4.0 Hz, Hglc-1b), 6.60 (s, 1H, HD-3), 6.61 (s, 
1H, HI-3), 6.65 (s, 1H, HE-3), 6.66 (s, 1H, HJ-3), 6.94 (d, 1H, J=1.9 Hz, HA-7), 7.30 
(s, 1H, HF-3), 7.39 (d, 1H, J=1.9 Hz, HA-3).160 
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sanguiin H-6 (41) was isolated from Rubus idaeus leaves; purity measured by 
UPLC-DAD at 280 nm 97.1%; ESI-MS identification: m/z at 1869.14662 ([M–H]–, 
error –2.3 ppm), 1235.06944 ([M–diHHDP-glucose–H]–, error –0.6 ppm), 
935.07820 ([M–galloyl-diHHDP-glucose–H]–, error –1.5 ppm), 934.07153 ([M–
2H]2–, error –0.3 ppm), 633.07401 ([M–galloyl-diHHDP-glucose–HHDP–H]–, error 
1.1 ppm), 300.99875 ([ellagic acid–H]–, error –0.8 ppm); 1H-NMR (600 MHz, 
acetone-d6, 298 K): δ 3.79 (d, 1H, J=13.1 Hz, Hglc-6a’), 3.90 (d, 1H, J=12.9 Hz, Hglc-
6b’), 4.22 (br t, 1H, J=7.6 Hz, Hglc-5b), 4.36 (dd, 1H, J=7.0, 9.4 Hz, Hglc-5a), 5.02 
(br t, 1H, J=9.5 Hz, Hglc-4b), 5.07 (br t, 1H, J=7.6 Hz, Hglc-3b), 5.11 (t, 1H, J=10.1 
Hz, Hglc-4a), 5.20 (t, 1H, J=8.8 Hz, Hglc-2a), 5.24 (dd, 1H, J=6.6, 13.4 Hz, Hglc-6a), 
5.28 (dd, 1H, J=4.0, 9.4 Hz, Hglc-2b), 5.37 (dd, 1H, J=9.2, 10.2 Hz, Hglc-3a), 5.58 
(dd, 1H, J=6.5, 13.2 Hz, Hglc-6b), 6.17 (d, 1H, J=8.5 Hz, Hglc-1a), 6.300 (s, 1H, HH-
3), 6.303 (s, 1H, HC-3), 6.38 (s, 1H, HG-3), 6.47 (s, 1H, HB-3), 6.50 (s, 1H, HD-3), 
6.53 (d, 1H, J=4.0 Hz, Hglc-1b), 6.76 (s, 1H, HE-3), 6.78 (s, 1H, HJ-3), 7.10 (s, 2H, 
HF-3,7), 7.14 (d, 1H, J=1.9 Hz, HA-7), 7.28 (d, 1H, J=1.9 Hz, HA-3).138 
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gemin A (42) was isolated from Geum urbanum leaves; purity measured by UPLC-
DAD at 280 nm 96.9%; ESI-MS identification: m/z at 1871.16171 ([M–H]–, error –
2.6 ppm), 1087.08928 ([M–digalloyl-HHDP-glucose–H]–, error –1.2 ppm), 
937.09322 ([M–galloyl-diHHDP-glucose–H]–, error –2.1 ppm), 935.07873 ([M–
trigalloyl-HHDP-glucose–H]–, error –0.9 ppm), 935.07866 ([M–2H]2–, error –1.0 
ppm), 785.08147([M–digalloyl-diHHDP-glucose–H]–, error –3.6 ppm), 783.06924 
([M–tetragalloyl-HHDP-glucose–H]–, error 0.8 ppm), 633.07541 ([M–digalloyl-
diHHDP-glucose–galloyl–H]–, error 3.3 ppm), 300.99871 ([ellagic acid–H]–, error –
0.9 ppm); 1H-NMR (600 MHz, acetone-d6, 298 K): δ 3.64 (d, 1H, J=13.3 Hz, Hglc-
6b’), 3.75 (d, 1H, J=13.4 Hz, Hglc-6a’), 4.47 (dd, 1H, J=6.5, 10.2 Hz, Hglc-5b), 4.49 
(dd, 1H, J=6.7, 9.4 Hz, Hglc-5a), 5.15 (t, 1H, J=10.3 Hz, Hglc-4b), 5.18 (t, 1H, J=10.0 
Hz, Hglc-4a), 5.20 (dd, 1H, J=6.3, 12.9 Hz, Hglc-6a), 5.27 (dd, 1H, J=6.6, 13.4 Hz, 
Hglc-6b), 5.34 (dd, 1H, J=4.1, 9.3 Hz, Hglc-2b), 5.49 (t, 1H, J=9.8 Hz, Hglc-3b), 5.56 
(dd, 1H, J=8.4, 9.5 Hz, Hglc-2a), 5.81 (t, 1H, J=9.8 Hz, Hglc-3a), 6.13 (d, 1H, J=8.3 
Hz, Hglc-1a), 6.35 (s, 1H, HH-3), 6.44 (s, 1H, HG-3), 6.47 (s, 1H, HI-3), 6.51 (d, 1H, 
J=4.0 Hz, Hglc-1b), 6.61 (s, 1H, HD-3), 6.63 (s, 1H, HJ-3), 6.67 (s, 1H, HE-3), 6.84 (d, 
1H, J=1.9 Hz, HA-7), 6.96 (s, 2H, HC-3,7), 7.01 (s, 2H, HB-3,7), 7.27 (d, 1H, J=1.9 
Hz, HA-3), 7.31 (s, 1H, HF-3).161 
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rugosin D (43) was isolated from Filipendula ulmaria flowers; purity measured by 
UPLC-DAD at 280 nm 90.7%; ESI-MS identification: m/z at 1873.17804 ([M–H]–, 
error –2.2 ppm), 1087.08719 ([M–digalloyl-HHDP-glucose–H]–, error –3.1 ppm), 
937.09667 ([M–trigalloyl-HHDP-glucose–H]–, error 1.5 ppm), 936.08715 ([M–
2H]2–, error –0.3 ppm), 785.08567 ([M–trigalloyl-valoneoyl-glucose–H]–, error 1.8 
ppm), 300.99901 ([ellagic acid–H]–, error 0.1 ppm); 1H-NMR (600 MHz, acetone-
d6, 298 K): δ 3.82 (d, 1H, J=13.4 Hz, Hglc-6a'), 3.79 (d, 1H, J=13.4 Hz, Hglc-6b'), 4.48 
(dd, 1H, J=7.2, 10.0 Hz, Hglc-5a), 4.52 (dd, 1H, J=6.3, 10.0 Hz, Hglc-5b), 5.166 (t, 
1H, J=10.0 Hz, Hglc-4b), 5.167 (t, 1H, J=10.0 Hz, Hglc-4a), 5.31 (dd, 1H, J=6.5, 13.4 
Hz, Hglc-6b), 5.32 (dd, 1H, J=6.6, 13.5 Hz, Hglc-6a), 5.54 (dd, 1H, J=8.4, 9.5 Hz, Hglc-
2a), 5.61 (dd, 1H, J=8.3, 9.5 Hz, Hglc-2b), 5.79 (t, 1H, J=9.8 Hz, Hglc-3a), 5.84 (t, 1H, 
J=9.7 Hz, Hglc-3b), 6.13 (d, 1H, J=8.3 Hz, Hglc-1a), 6.19 (d, 1H, J=8.3 Hz, Hglc-1b), 
6.24 (s, 1H, HJ-3), 6.47 (s, 1H, HI-3), 6.49 (s, 1H, HD-3), 6.66 (s, 1H, HE-3), 6.98 (s, 
2H, HB-3,7), 7.008 (s, 2H, HG-3,7), 7.012 (s, 2H, HC-3,7), 7.02 (s, 2H, HH-3,7), 7.13 
(s, 1H, HF-3), 7.14 (s, 1H, HA-3).157,158 
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oenothein A (44) was isolated from Chamaenerion angustifolium leaves; purity 
measured by UPLC-DAD at 280 nm 84.5%; ESI-MS identification: m/z at 
1719.15215 ([M–galloyl-HHDP-glucose–H]–, error –2.0 ppm), 1567.14396 ([M–
digalloyl-HHDP-glucose–H]–, error –0.4 ppm), 1175.10645 ([M–2H]2–, error –0.1 
ppm), 935.07823 ([digalloyl-valonoeoyl-glucose–H]–, error –1.5 ppm), 785.08300 
([digalloyl-HHDP-glucose–H]–, error –1.7 ppm), 783.06889 ([M–3H]3–, error 0.3 
ppm), 633.07476 ([galloyl-HHDP-glucose–H]–, error 2.2 ppm), 300.99868 ([ellagic 
acid–H]–, error –1.0 ppm); 1H-NMR assignations could not be made reliably due to 
the three anomeric glucoses producing many isomers and furthermore due to the 
macrocyclic structure slowing down the broad signal producing interconversions.20 
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lambertianin C (45) was isolated from Rubus idaeus leaves; purity measured by 
UPLC-DAD at 280 nm 98.2%; ESI-MS identification: m/z at 1567.14103 ([M–
diHHDP-valoneoyl-glucose–H]–, error –2.3 ppm), 1401.10537 ([M–2H]2–, error –
1.4 ppm), 933.73523 ([M–3H]3–, error –0.7 ppm), 935.08023 ([galloyl-diHHDP-
glucose–H]–, error 0.7 ppm), 633.07526 ([galloyl-HHDP-glucose–H]–, error 3.0 
ppm), 300.99878 ([ellagic acid–H]–, error 0.7 ppm); 1H-NMR (600 MHz, acetone-
d6, 298 K): δ 3.83 (d, 1H, J=13.2 Hz, Hglc-6b'), 3.88 (d, 1H, J=13.3 Hz, Hglc-6c'), 3.90 
(d, 1H, J=13.3 Hz, Hglc-6a'), 4.03 (dd, 1H, J=6.1, 8.6 Hz, Hglc-5b), 4.17 (br t, 1H, 
J=7.2 Hz, Hglc-5c), 4.46 (ddd, 1H, J=1.0, 6.8, 9.8 Hz, Hglc-5a), 4.94 (m, 2H, Hglc-3b 
& Hglc-4b), 5.00 (t, 1H, J=10.2 Hz, Hglc-4c), 5.09 (t, 1H, J=8.8Hz, Hglc-3c), 5.11 (t, 
1H, J=8.9 Hz, Hglc-2b), 5.13 (t, 1H, J=10.1 Hz, Hglc-4a), 5.17 (t, 1H, J=8.9 Hz, Hglc-
2a), 5.27 (dd, 1H, J=4.0, 9.4 Hz, Hglc-2c), 5.35 (dd, 1H, J=6.7, 13.3 Hz, Hglc-6a), 5.44 
(dd, 1H, J=9.3, 10.1 Hz, Hglc-3a), 5.49 (dd, 1H, J=6.5, 13.2 Hz, Hglc-6c), 5.62 (dd, 
1H, J=6.4, 13.4 Hz, Hglc-6b), 5.98 (d, 1H, J=8.5 Hz, Hglc-1b), 6.17 (d, 1H, J=8.5 Hz, 
Hglc-1a), 6.26 (s, 1H, HM-3), 6.28 (s, 1H, HH-3), 6.34 (s, 2H, HC-3 & HD-3), 6.38 (s, 
1H, HL-3), 6.52 (d, 1H, J=3.9 Hz, Hglc-1c), 6.53 (s, 1H, HB-3 & HG-3), 6.68 (s, 1H, 
HE-3), 6.78 (s, 1H, HJ-3), 6.85 (s, 1H, HO-3), 7.06 (d, 1H, J=1.8 Hz, HF-7), 7.11 (s, 
2H, HK-3,7), 7.12 (d, 1H, J=2.0 Hz, HA-7), 7.16 (d, 1H, J=1.7 Hz, HA-3), 7.25 (d, 
1H, J=1.5 Hz, HF-3).138 
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rugosin G (46) was isolated from Filipendula ulmaria flowers; purity measured by 
UPLC-DAD at 280 nm 90.3%; ESI-MS identification: m/z at 1873.17850 ([M–
trigalloyl-HHDP-glucose–H]–, error –1.9 ppm), 1721.17145 ([M–trigalloyl-HHDP-
glucose–galloyl–H]–, error 0.2 ppm), 1404.12780 ([M–2H]2–, error –2.2 ppm), 
1087.09079 ([M–trigalloyl-HHDP-glucose–digalloyl-glucose–H]–, error 0.2 ppm), 
937.09732 ([M–2trigalloyl-HHDP-glucose–H]–, error 2.2 ppm), 935.75089 ([M–
3H]3–, error –0.6 ppm), 785.08538 ([M–2trigalloyl-HHDP-glucose–galloyl–H]–, 
error 1.4 ppm), 300.99869 ([ellagic acid–H]–, error –1.0 ppm); 1H-NMR (600 MHz, 
acetone-d6, 298 K): δ 3.71 (d, 1H, J=13.3 Hz, Hglc-6b'), 3.78 (d, 1H, J=13.3 Hz, Hglc-
6c'), 3.81 (d, 1H, J=13.3 Hz, Hglc-6a'), 4.43 (dd, 1H, J=6.8, 10.0 Hz, Hglc-5b), 4.47 
(dd, 1H, J=7.0, 9.7 Hz, Hglc-5a), 4.53 (dd, 1H, J=6.6, 10.1 Hz, Hglc-5c), 5.09 (t, 1H, 
J=10.0 Hz, Hglc-4b), 5.15 (t, 1H, J=9.9 Hz, Hglc-4a), 5.16 (t, 1H, J=10.0 Hz, Hglc-4c), 
5.233 (dd, 1H, J=6.6, 13.5 Hz, Hglc-6b), 5.281 (dd, 1H, J=6.6, 13.7 Hz, Hglc-6c), 5.31 
(dd, 1H, J=6.5, 13.4 Hz, Hglc-6a), 5.53 (dd, 2H, J=8.5, 9.5 Hz, Hglc-2a & Hglc-2b), 
5.62 (dd, 1H, J=8.4, 9.5 Hz, Hglc-2c), 5.77 (t, 1H, J=9.8 Hz, Hglc-3b), 5.78 (t, 1H, 
J=9.8 Hz, Hglc-3a), 5.84 (t, 1H, J=9.8 Hz, Hglc-3c), 6.09 (d, 1H, J=8.3 Hz, Hglc-1b), 
6.118 (d, 1H, J=8.3 Hz, Hglc-1a), 6.193 (d, 1H, J=8.3 Hz, Hglc-1c), 6.22/6.23 (s, 1H  
each,  HJ-3 & HO-3), 6.458 (s, 1H, HN-3), 6.462 (s, 1H, HI-3), 6.47 (s, 1H, HD-3), 
6.67 (s, 1H, HE-3), 6.97/6.99/7.00 (s, 2H each, HC-3,7 & HH-3,7 & HM-3,7), 
7.01/7.02/7.03 (s, 2H each, HB-3,7 & HG-3,7 & HL-3,7), 7.13 (s, 1H, HA-3), 7.150 (s, 
1H, HK-3), 7.154 (s, 1H, HF-3).157,158
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