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ABSTRACT 

Accurate electron density information is extremely important in positron emission 
tomography (PET) attenuation correction (AC) and radiotherapy (RT) treatment 
planning (RTP), especially in the head region, as many interesting brain regions are 
located near the skull. Achieving good electron density information for bone is not 
trivial when magnetic resonance imaging (MRI) is used as a source for the 
anatomical structures of the head, since many MRI sequences show bone in a similar 
fashion as air. Various atlas-based, emission-based, and segmentation-based 
methods have been explored to address this problem. In this PhD project, a pipeline 
for MRI-based substitute CT (sCT) creation is developed and novel ways are 
developed to further improve the quality of bone delineation in the head region.  

First, a robust sCT pipeline is developed and validated. This allows modular 
improvements of the various aspects of head sCT in later publications. The MRI 
image is segmented into different tissue classes and the final sCT image is 
constructed from these. The sCT images had good image quality with small non-
systematic error. The time-of-flight (TOF) information improves the accuracy of 
PET reconstruction. The effect of TOF with different AC maps is evaluated to 
substantiate the need for accurate AC maps for a TOF capable system. The 
evaluation is performed on both subject and brain region level. While TOF 
information is helpful, it cannot negate the effect of the AC map quality.  

The sinus region is problematic in MRI-based sCT creation, as it is easily 
segmented as bone. Two new methods for addressing AC in the sinus region are 
presented. One method tries to find the cuboid that covers the largest area of air tissue 
incorrectly assigned as bone and then correct the incorrect attenuation coefficient. 
Another method uses the sinus covering cuboid in the normalized space, from which 
it is converted back to each subject’s individual space, after which the attenuation 
coefficients are calculated. Both methods improve the alignment of sCT and CT 
images. Finally, the possibilities of improving the quality of the bone segmentation by 
utilizing a random forest (RF) machine learning process is explored. The RF model is 
used to estimate the bone likelihood. The likelihood is then used to enhance the bone 
segmentation and to model the attenuation coefficient. The machine learning model 
improves the bone segmentation and reduces the error between sCT and CT images. 

KEYWORDS: Magnetic resonance imaging, Computed tomography, attenuation 
correction, machine learning  
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TIIVISTELMÄ 

Tarkka elektronitiheystieto on hyvin tärkeää PET-kuvantamisen vaimenemis-
korjauksessa sekä sädehoidon suunnittelussa erityisesti pään alueella, sillä useat 
kiinnostavat aivoalueet ovat kallon lähellä. Hyvän elektronitiheystiedon laskeminen 
luulle ei ole yksinkertaista MRI-kuvantamisen pohjalta, sillä useat MRI-sekvenssit 
näyttävät luut samoin kuin ilman. Useita atlas-, emissio- ja segmentointipohjaisia 
metodeja on tutkittu tämän ongelman ratkaisemiseksi. Tässä työssä MRI-pohjainen 
luotiin menetelmä MRI-pohjaisten vaihtoehto-TT-kuvien (sCT) laskemiseksi, sekä 
kehitetään uusia tapoja parantaa luun MRI-pohjaista erottelukykyä pään alueella. 

Ensin kehitettiin ja validoitiin sCT-menetelmä. Tämä mahdollisti modulaaristen 
parannusten lisäämiseen sCT-menetelmään tutkimuksen myöhemmissä vaiheissa. 
MRI-kuva segmentoidaan eri kudosluokkiin, ja sCT-kuva lasketaan niiden pohjalta. 
Näin saaduissa sCT-kuvissa oli hyvä kuvanlaatu pienin epäsystemaattisin virhein. 
PET-kuvantamisessa fotonin lentoaikatieto (TOF) parantaa PET-rekonstruktion tark-
kuutta. Tämän parantumisen määrää tutkittiin eri vaimenemiskartoilla fotonin lento-
aikaa mittaavien PET-kameroiden vaimenemiskartan laatuvaatimuksien arvioimi-
seksi. TOF-tieto ei kokonaan pysty poistamaan vaimenemiskartan laadun vaikutusta. 

Sinusten alue on ongelmallinen MRI-pohjaisessa sCT-kuvan luomisessa, sillä 
segmentointimenetelmät määrittävät sen usein luuksi. Kaksi uutta menetelmää 
esiteltiin sinusten alueen PET-kuvantamisen vaimenemiskarttojen laskentaan. 
Ensim-mäinen menetelmä yrittää löytää sellaisen suorakulmaisen särmiön, joka 
kattaisi suu-rimman mahdollisen alueen ilmaa, joka on väärin segmentoitu luuksi, ja 
sitten korjata tämän alueen vaimenemiskertoimen. Toinen menetelmä asettaa 
suorakulmaisen sär-miön normalisoituun kuva-avaruuteen, josta se käännetään 
takaisin kunkin henkilön omaan yksilölliseen kuva-avaruuteen, minkä jälkeen 
vaimenemiskertoimet määrite-tään. Molemmat menetelmät parantavat TT-kuvien ja 
sCT-kuvien vastaavuutta. Lo-puksi tarkasteltiin mahdollisuuksia käyttää koneoppi-
mista ja satunnaismetsäalgo-ritmeja luun segmentoinnin parantamiseen. Satunnais-
metsäalgoritmia käytetään laskemaan ennusteita kunkin kuvapisteen luutodennäköi-
syydelle. Luutodennäköisyyk-siä käytetään luun segmentaation parantamiseen sekä 
luun tiheyden arviointiin. Kone-oppimispohjainen malli parantaa luun segmen-
toinnin laatua, sekä vähentää virheitä TT-kuvien ja sCT-kuvien välillä. 

ASIASANAT: MRI-kuvantaminen, tietokonetomografia, vaimenemiskorjaus, 
koneoppiminen 
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1 Introduction 

Often it is medically interesting or necessary to see what is under the skin of the 
patient. For a long time, the only way to see the inner anatomy of a patient was to 
perform an invasive explorative surgery. This changed in 1895 when Wilhelm 
Röntgen discovered X-rays (Röntgen, 1896; Rosenow, 1995; Nüsslin, 2020). Since 
then, the imaging field has expanded to encompass a large variety of different 
modalities. In particular, X-rays were discussed to have therapeutic effects and were 
used for radiotherapy (RT) as early as 1896 (Bowles, 1896; Grubbe, 1906; Grubbé, 
1933; Lederman, 1981; Holsti, 1995). 

1.1 CT and MRI 
While positron emission tomography (PET) measures the physiology of the subject, 
computed tomography (CT) and magnetic resonance imaging (MRI) are imaging 
modalities that are more focused on the anatomy of the subject. In CT, an X-ray tube 
and detectors are mounted on a gantry where they can rotate around the z-axis of the 
CT scanner (Bushberg et al., 2011, ch 10). This allows projection images to be taken 
from any angle around the patient. Modern CT scanners have the detector array 
arranged as an arc, so the fan of X-rays produced by the X-ray tube all hit the detector 
approximately orthogonally. When the patient has been imaged the photon 
intensities around the body in all table positions are ordered into projection 
distributions and then reconstructed into a tomographic image using computer 
algorithms.  

Since X-rays utilize ionizing radiation, each scan statistically increases the 
chances of a patient developing cancer. The usage of MRI avoids exposure to 
ionizing radiation and allows more flexibility in imaging various tissues. An MRI 
scanner has a large gantry which is magnetized with strong a magnetic field (1.5T 
and above) (Bushberg et al., 2011, ch 12).  

The magnetic field will align the atoms with non-zero spin, such as hydrogen 
atoms, in the patient’s body parallel to the magnetic field. Hydrogen atoms, or just 
protons, have the strongest magnetic moment, and are abundant in water and fat, 
which makes them the principal source of MRI signals. While most protons don’t 
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follow the direction of the magnetic field, enough do so that the difference in net 
magnetization is measurable. The protons do not align perfectly with the magnetic 
field but do have their rotational axis wobbling around the direction of the magnetic 
field; and the frequency of this precession is called Larmor frequency. The protons’ 
precession is out of phase with other protons but applying a Larmor frequency radio 
signal transversely to the direction of the magnetic field causes the protons’ 
rotational axis to align with each other. This creates transverse magnetization and 
depending on the angle of the radiofrequency pulse and flip angle, it reduces the 
longitudinal magnetization. When the protons’ precession is in sync, the rotation of 
the protons will induce a radiofrequency signal (free induction decay, FID) and as 
the dephasing occurs the FID is reduced. The FID signal intensity can be estimated 
from the equation (Serai, 2022) 

 𝑆𝑆(𝑇𝑇𝑒𝑒) = 𝑆𝑆0𝑒𝑒− 𝑇𝑇𝑒𝑒
𝑇𝑇2 (1) 

where 𝑆𝑆(𝑇𝑇𝑒𝑒) is the signal intensity, measured at echo time 𝑇𝑇𝑒𝑒, 𝑆𝑆0 is the initial signal 
intensity and 𝑇𝑇2 is a tissue specific value. 

The time for the FID to reach 1/e ≈ 37% of the original amplitude is called the 
T2 relaxation time and it varies between different tissue types. However, due to 
extrinsic variations in the magnetic field, or different susceptibility agents in the 
tissues, more rapid dephasing will occur. This is referred to as T2*.  

At the same time with the decline of transversal magnetization, the longitudinal 
magnetization is recovered when the protons spins are aligned again with the main 
magnetic field. The recovery of the magnetization can be estimated using equation 
(Serai, 2022) 

 𝑀𝑀(𝑡𝑡) = 𝑀𝑀0 �1 − 𝑒𝑒− 𝑡𝑡
𝑇𝑇1� (2) 

where 𝑀𝑀(𝑡𝑡) is the magnetization, measured at time 𝑡𝑡, 𝑀𝑀0 is the original 
magnetization, and 𝑇𝑇1 is a tissue specific value. 

This is called the T1 relaxation, and the time for the recovery of 1- 1/e ≈ 63% 
of the longitudinal magnetization is called the T1 time. Since different tissues have 
different T1 times, it is possible to produce different T1-weighted MRI images by 
applying the radiofrequency signals repeatedly. A radiofrequency signal that is 
antiparallel to the main magnetic field can be applied, which effectively reverses the 
longitudinal magnetization. Different tissues then start returning to the equilibrium 
at different paces, and if a transversal radiofrequency pulse is applied when the net 
longitudinal magnetization of some tissue is at zero that tissue does not produce any 
FID, creating MRI images with no signal from one tissue class. 
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The whole area of interest is not excited at once, as that would not yield any 
anatomical resolution. Instead, several gradients are applied to the patient to localize 
the signal spatially. First is the slice select gradient (SSG), and it changes the strength 
of the magnetic field along the cranial – caudal axis. Because the Larmor frequency 
is dependent on the strength of the field, SSG makes each radiofrequency pulse to 
affect only one slice of the patient. Steeper the SSG, thinner the resulting slices are. 
Next a frequency encode gradient (FEG) is applied perpendicularly to the SSG. The 
alignment of FEG sets the x-axis of the image. The FEG is applied around the time 
of echo signal, and it changes the frequency of the FID along the x-axis. Now the 
receiving antenna gets signals with slightly different frequencies, and the amplitude 
of each position along x-axis can be determined with signal processing. Finally, a 
phase encode gradient (PEG) is applied perpendicular to both SSG and FEG. PEG 
determines the position of the protons on y-axis. PEG is applied after the SSG but 
before the FEG. It will change the phase of the FID on different positions along the 
y-axis. 

The signals measured are saved on a matrix called k-space matrix. The middle 
of the k-space has the lowest frequency variation and produces the main shapes of 
the final image. Further from the centre are the higher frequency variations and they 
yield the finer details of the final image. The k-space is symmetric across the 
midpoint, so once half of the rows plus one row of the desired data is gathered, the 
other half can be synthesized (Bushberg et al., 2011, ch 13). Depending on the scan, 
the full k-space might not be filled, leaving part of it empty. Once k-space is filled 
sufficiently, an inverse Fourier-transform can be performed to take the frequency 
space image into the spatial space for viewing.  

1.2 PET and SPECT Imaging 
X-ray and CT imaging are mostly anatomical, while some functional applications 
exist. To get fully functional images, a different type of modality is needed. Nuclear 
medicine comprises two major imaging modalities known as single photon emission 
computed tomography (SPECT) and PET. Both of these use radioactive decay of 
certain elements to create a picture of the metabolism and functionality of a patient 
(Bushberg et al., 2011, ch. 18 and ch 19). In PET, atoms of radioactive isotopes are 
tagged into molecules that will, once injected into the patient, behave like similar 
molecules already existing within the body, or have otherwise useful metabolic or 
accumulative characteristics. The radionuclides used in PET imaging decay with 
positron emission. A positron will travel a short distance in the tissue, and once it has 
shed most of its kinetic energy it will interact with an electron annihilating both and 
generating two 511 keV gamma photons traveling to opposite directions (Figure 1). 
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Figure 1.  Diagram of PET imaging. A radiotracer molecule beta decays, and the resulting positron 

meets an electron (black dot). The annihilation gamma rays (purple) are detected by the 
photomultipliers and scintillators (red) on the scanner gantry (green). The line between 
the green detectors is called line-of-response. 

The gamma photons are then detected by the PET gantry almost simultaneously. 
Since the photons are traveling to opposite directions, the decay of the positron must 
have happened between the two detectors that detected the gamma photons. This line 
between the two detectors is called the line of response (LOR). When two of these 
signals are detected within a pre-set time window, it is considered a coincident event 
and logged. The time window depends on the specifications of the computer system 
and scanner. The shorter the time window, the less likely it is to log a random 
incident as a true incident. A random incident is a detection of a photon pair that is 
not a result of one annihilation along a LOR, but two annihilations from both of 
which only one photon is detected. After each detection, the detector needs to wait 
before it can detect another photon. This phenomenon sets the upper limit on the 
amount of dose that can be injected to the patient if radiological safety was not an 
issue. Alongside randomly detected and true incidents, the scanner can also detect 
scattered incidents. These happen when one or both gamma rays scatter, or change 
direction, when traveling through the tissues. This results in scattered incidents to be 
logged into an incorrect LOR. Therefore, they need to be corrected for using 
statistical methods. 

SPECT is a functional modality like PET, but instead of positron emitting 
isotopes, SPECT uses isotopes that emit gamma photons, such as Technetium-99m, 
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Iodine-123, or Thallium-201. These can also be tagged onto molecules to better 
mimic various metabolic processes. Whereas PET relies on the detection of the 
annihilation photons, which always have the energy of 511 keV, SPECT can use a 
combination of gamma emitting tracers simultaneously, provided that the photon 
energies are distinct enough that the system can separate them. 

SPECT system has one or multiple camera heads that rotate around the subject 
acquiring projection images over time. As SPECT uses single photons to record 
incidents, the camera heads include collimators that narrow the arc from which the 
incident photon can reach the camera, thus improving resolution. 

When enough photons, or photon pairs for PET, are detected an image of the 
underlying radioactivity distribution can be reconstructed. The incidents are 
organized into projection images, or sinograms, where each pixel of the image 
corresponds to a certain LOR. Before reconstruction, an attenuation correction needs 
to be applied. Because the gamma photons attenuate inside the patient passing 
through different tissues, the signal is weakened depending on the tissues through 
which the photons pass. Accounting for this is of the utmost importance, so that the 
exact activity in the source tissue can be quantified. 

The traditional way to estimate the attenuation in PET is to rotate a rod source 
of gamma rays around the patient and measure the attenuation with this transmission 
data. During early times with 2D PET imaging, the scattered photons were not a very 
large fraction of all detected photons, and this allowed for straightforward 
quantification of activity (Bailey and Willowson, 2013). These days it’s more 
common to estimate the attenuation with a CT or MRI scanner. This complicates 
quantification and causes PET imaging to face similar quantification issues SPECT 
has been facing since its inception. Often the PET and SPECT scanners are coupled 
physically with the CT scanner making it easier to co-register the emission data with 
the attenuation correction (AC) data. After the projection data has been corrected for 
attenuation, the image of the underlying radioactive distribution can be reconstructed 
using various algorithms. 

1.2.1 Development of PET scanners 
PET scanners have undergone significant developments since they were first 
introduced in the 1970s. In the beginning, PET was primarily used for research 
purposes, and the first human PET tomography was performed in 1974 (Nutt, 2002). 
Since the 1980s, PET imaging started to be used more widely for clinical purposes, 
and it was used to study a variety of medical conditions, including cancer, heart 
disease, and brain disorders (Nutt, 2002; Alauddin, 2012; Ahuja et al., 2020; Davis 
et al., 2020). 
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In the 1990s, PET imaging technology continued to improve, and the use of PET 
scans for diagnostic and therapeutic purposes became more widespread. Advances 
in computer technology also made it possible to more easily process and interpret 
the large amounts of data produced by PET scans, which further increased their 
usefulness in clinical practices. In the last couple decades, the hybrid modality 
scanners started to become more prevalent. PET scanners were combined with both 
CT (Townsend et al., 1999) and MRI (Shao et al., 1997). These hybrid scanners 
made it easier to combine anatomical information to the functional image produced 
by the PET scan.  

PET-CT devices can be particularly useful in cancer diagnosis and treatment, as 
it allows for the localization of abnormalities detected on the PET scan within 
specific structures within the body. In the meanwhile, PET-MRI devices are more 
effective, for example, in brain imaging, where the combination of PET and MRI 
can provide more detailed and complementary information about brain function and 
structure. In recent years, PET imaging has been used to guide the delivery of 
radiation therapy, helping doctors to target cancerous tumours while minimizing the 
risk of side effects more accurately to healthy tissues. 

The resolution of PET scanners has improved significantly over the years, as 
there has been advances in detector technology and image reconstruction algorithms. 
Early scanners had relatively low spatial resolution, which limited their ability to 
accurately depict small structures in the body, but the newer PET scanners’ improved 
resolution allows for more detailed images of the body's functions and metabolism. 
One field of improvement is time-of-flight (TOF) technology. Being able to locate 
the place of annihilation more accurately than any point between the two detectors 
that detected the incident would be beneficial for signal to noise ratio of the PET 
imaging (Wong et al., 1983; Vandenberghe and Karp, 2006; Conti, 2009). The first 
TOF PET scanners were developed in the 1980s (Surti and Karp, 2016). Since then, 
the time resolution of the TOF capable PET scanners have improved, and there are 
now scanners with time resolution near 200ps on the market (Van Sluis et al., 2019). 

1.2.2 Radioligands 
PET uses radioligands, also known as radiotracers or tracers, to produce images of 
the body's biochemical and physiological processes. Radioligands are molecules that 
are labelled with a radionuclide, a type of radioisotope that decays by emitting 
positrons. The radioisotope can be one of two kinds of isotopes. One being an isotope 
of the atom that is normally on the molecule, such as, Oxygen-15 in O2 or H2O (Clark 
et al., 1987). Otherwise, it would be an isotope of another atom that behaves 
similarly enough to be applicable, such as Fluoride-18 in fluorodeoxyglucose (FDG) 
(Alauddin, 2012).  
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Radioligands are used in PET to study a wide range of biological processes, 
including brain function, cancer metabolism, and heart function. They are also used 
to diagnose and monitor a variety of medical conditions, such as Alzheimer's disease, 
epilepsy, inflammation, and Parkinson's disease (Love and Palestro, 2004; Brooks, 
2010; Jack et al., 2010; Kumar and Chugani, 2013). 

There are many different radioligands used in PET, each with specific properties 
that make it suitable for different applications. For example, some radioligands are 
able to cross the blood-brain barrier and accumulate in the brain, making them useful 
for imaging brain function. Other radioligands are designed to bind to specific 
receptors or enzymes, enabling them to target specific tissues or organs.  

The tracer compounds used in PET scans have undergone significant 
development over time. Due to the initial stages of radioligand development, the 
early PET scanners had to use a relatively small selection of tracers, such as FDG 
(Ido et al., 1978), or some other Fluoride-18 and Carbon-11 labelled ligands like 
[11C] raclopride (Farde et al., 1985), [11C] methionine (Comar et al., 1976),  
[18F]Fluorodopa (Garnett, Firnau and Nahmias, 1983) and, [11C]Carfentanil (Frost et 
al., 1985). As radiochemistry has progressed, the more recent PET scanners have a 
wider range of tracer compounds to choose from, facilitating for more detailed and 
specific imaging. 

FDG is a sugar analogue that is commonly used in PET imaging to visualize 
glucose metabolism in the body. It is often used to detect and monitor cancer, as 
many types of cancer cells have high rates of glucose metabolism. Once the FDG 
enters the cell, it cannot be processed further until the radioactive decay, as it is 
missing a hydroxyl group. After the positron emission the fluoride atom becomes an 
Oxygen-18 ion, which quickly picks up a proton from its aqueous environment 
turning the molecule into a normal glucose that can then be metabolized normally. 

Myocardial perfusion PET uses a few radioligands to study the heart function. 
The half-lives of these are short, so their production must be arranged close to the 
imaging site, and scan times are short. Some ligands, such as radioactive water (using 
Oxygen-15) and ammonia (using Nitrogen-13) can be synthesized with the help of 
cyclotrons, while Rubidium-82 is produced by a Strontium-82/Rubidium-82 
generator.  

For neurological studies there are several groups of radioligands available. 
Dopamine transporter radioligands, such as [18F]CFT (Haaparanta et al., 1996) and 
[18F]FP-CIT (Goodman et al., 1997), are used to visualize the dopamine system in 
the brain, which is involved in reward and motivation. Serotonin transporter  
radioligands, like [11C]DASB (Wilson et al., 2000), are used to visualize the 
serotonin system in the brain, which is involved in mood and emotional regulation. 
GABA-A receptor radioligands, such as [18F]flumazenil (Ryzhikov et al., 2005) and 
[11C]flumazenil (Persson et al., 1985), are used to visualize the GABA-A receptors 
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in the brain, which are involved in anxiety and stress. Amyloid-beta (Aβ) 
radioligands, such as [18F]flutemetamol (Koole et al., 2009) and [11C]PIB, are used 
to visualize the accumulation of amyloid-beta in the brain, which is a hallmark of 
Alzheimer’s disease. 

Development of new tracers occurring constantly. Fortunately, the newer 
generation tracers often overcome certain problems of earlier tracers. These 
problems include protein binding, uptake in unintended organs, or too quick 
excretion through kidneys. 

1.2.3 PET reconstruction algorithms 
PET reconstruction can be done analytically or iteratively. In analytical algorithms, 
the image is back projected from the measured projections, but due to inherent noise 
in the physical measurements, using simple back projection creates a very blurry 
image. Instead, the projection data is transformed into Fourier space, where a filter 
is applied damping the high frequency parts of the signal. The filtered signal is 
transformed back to the projection space and then back projected to form the image. 
This algorithm is called filtered back projection (FPB) and it’s fast but has some 
artefacts since the projection angles are not infinitely close to each other. Iterative 
algorithms start from a guess for the image; a predetermined shape, a uniform field, 
or even result of the FPB. The image is then projected into the same projection angles 
as the measurement data is in, and the differences between projections are compared. 
The initial image is then adjusted, and a new projection data is calculated. This 
process is continued until a set threshold on the difference between image projection 
and measurement data has been reached, or a set number of iterations are completed. 
Iteratively calculated images are typically smoother, and the iterative algorithms can 
consider physical characteristics of the measurement in the projection phase. 
However, they take longer than FBP to calculate, but if quantitative accuracy is 
required, then fully converged iterative reconstruction, or analytical reconstruction, 
is the more appropriate choice (Reader and Zaidi, 2007). 

The algorithms in this study for PET reconstruction are ordered subsets 
expectation maximization (OSEM) and row-action maximum likelihood algorithm 
(RAMLA). Both algorithms are iterative and based on the maximum likelihood 
expectation maximization (ML-EM) algorithm (Shepp and Vardi, 1982): 

 
X𝑣𝑣

(𝑘𝑘) =
X𝑣𝑣

(𝑘𝑘−1)

∑ 𝑎𝑎𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

� 𝑎𝑎𝑖𝑖𝑖𝑖
𝑏𝑏𝑖𝑖

⟨𝐴𝐴𝑖𝑖 , 𝑋𝑋(𝑘𝑘−1)⟩
,

𝑛𝑛

𝑖𝑖=1

 (3) 

where 𝑋𝑋 is the image vector, 𝑘𝑘 is the iteration round, 𝑣𝑣 ∈ {1, … , 𝑚𝑚} is the index for 
all elements in 𝑋𝑋, 𝑎𝑎 is an element in the projection matrix 𝐴𝐴, 𝑖𝑖 ∈ {1, … , 𝑛𝑛} is the 
index for a LOR, and a column in the projection matrix 𝐴𝐴 with 𝑛𝑛 LORs and finally 
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𝑏𝑏𝑖𝑖 is an element in the measurement vector 𝑏𝑏. For now, the elements in the image 
vector are considered to be voxels, or non-overlapping cubes filling the image space. 

Since the ML-EM algorithm always uses voxel values from the previous iteration 
to calculate the voxel values for the next iteration. This means the convergence of 
the image vector towards the final image takes many iterations. The rate of 
convergence could be improved by updating the image vector several times within 
one iteration.  

Let now 𝑘𝑘 be the index for full iteration round, 𝑞𝑞 ∈ {1, … , 𝑝𝑝} be the index for sub 
cycle, and 𝑆𝑆𝑞𝑞 be the subset of LORs that belongs to sub cycle 𝑞𝑞. The sub cycles and 
iterations can be connected by the notations 𝑋𝑋(𝑘𝑘,0) = 𝑋𝑋𝑘𝑘−1 and 𝑋𝑋(𝑘𝑘,𝑝𝑝) = 𝑋𝑋𝑘𝑘. The 
algorithm completes one full iteration when all the sub cycles have been processed. 
A sum term 

 𝑐𝑐𝑞𝑞𝑞𝑞 = � 𝑎𝑎𝑙𝑙𝑙𝑙
𝑙𝑙∈𝑆𝑆𝑞𝑞

 (4) 

corresponds to the projection matrix column sum  
 

� 𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (5) 

used in the ML-EM algorithm. Now the ML-EM algorithm can be written in OSEM 
form (Hudson and Larkin, 1994) 

 
𝑋𝑋𝑗𝑗

(𝑘𝑘,𝑞𝑞) =
𝑋𝑋(𝑘𝑘,𝑞𝑞−1)𝑑𝑑𝑞𝑞𝑞𝑞

𝑐𝑐𝑞𝑞𝑞𝑞
 (6) 

where the term 
 𝑑𝑑𝑞𝑞𝑞𝑞 = �

𝑎𝑎𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙

⟨𝐴𝐴𝑙𝑙 , 𝑋𝑋𝑣𝑣
(𝑘𝑘,𝑞𝑞−1)⟩𝑙𝑙∈𝑆𝑆𝑞𝑞

 (7) 

for indices 𝑣𝑣 = 1, … , 𝑚𝑚 and 𝑞𝑞 = 1, … , 𝑝𝑝. The vector 𝐴𝐴𝑙𝑙 is a column in the projection 
matrix and the term 𝑏𝑏𝑙𝑙 is the measured value for LOR 𝑙𝑙. All the voxel values in the 
image vector are updated with each sub cycle 𝑞𝑞. The term 𝑑𝑑𝑞𝑞𝑞𝑞 remains the same for 
all elements within a sub cycle. 

The OSEM algorithm can be taken further by setting the number of sub cycles 
to be equal to the number of LORs. This, with some other adjustments, will become 
the RAMLA formula. Let 𝐴𝐴 be the projection matrix, and 𝑎𝑎𝑖𝑖𝑖𝑖 its elements. Let 𝑋𝑋0 >
0 be an initial guess for an image vector and relaxation parameter λ𝑘𝑘 > 0 so that 
λ𝑘𝑘𝑎𝑎𝑖𝑖𝑖𝑖 ≤ 1 for all 𝑖𝑖 ∈ {1, … , 𝑛𝑛} and 𝑗𝑗 ∈ {1, … , 𝑚𝑚}. The relaxation parameter 𝜆𝜆𝑘𝑘 
should satisfy the conditions. 
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⎨

⎧
lim

𝑘𝑘→∞
𝜆𝜆𝑘𝑘 = 0,

� 𝜆𝜆𝑘𝑘

∞

𝑘𝑘=1

= ∞.
 (8) 

In practice the calculations are stopped before infinity. Thus, a clear decrease in the 
value of 𝜆𝜆𝑘𝑘 is sufficient to reconstruct an image of a good quality. 

Like in OSEM case, let 𝑘𝑘 denote the full iteration round and 𝑖𝑖 ∈ {1, … 𝑛𝑛} index 
for the sub cycle, or LOR being processed. Again, the sub cycles and iterations are 
connected by the notations 𝑋𝑋(𝑘𝑘,0) = 𝑋𝑋𝑘𝑘−1 and 𝑋𝑋(𝑘𝑘,𝑛𝑛) = 𝑋𝑋𝑘𝑘. The algorithm will 
complete one full iteration when all the LORs have been processed. The RAMLA 
formula is derived from the OSEM formula by first setting the relaxation parameter 
λ𝑘𝑘

𝑖𝑖 = 1/𝑐𝑐𝑖𝑖𝑖𝑖 and increasing the sub cycle count to match the number of LORs. This 
will lead to formula  

 𝑋𝑋𝑗𝑗
(𝑘𝑘,𝑖𝑖) = 𝑋𝑋𝑗𝑗

(𝑘𝑘,𝑖𝑖−1)λ𝑘𝑘
𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖 (9) 

where  
 𝑑𝑑𝑖𝑖𝑖𝑖 =

𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖

⟨𝐴𝐴𝑖𝑖 , 𝑥𝑥(𝑘𝑘,𝑖𝑖−1)⟩
. (10) 

Now 1/𝑐𝑐𝑖𝑖𝑖𝑖 = 1/𝑎𝑎𝑖𝑖𝑖𝑖 = λ𝑘𝑘
𝑖𝑖  or equally �1 − 𝑎𝑎𝑖𝑖𝑖𝑖λ𝑘𝑘

𝑖𝑖 � = 0 so the previous formula 
can be written as  

 𝑋𝑋𝑗𝑗
(𝑘𝑘,𝑖𝑖) = 𝑋𝑋𝑗𝑗

(𝑘𝑘,𝑖𝑖−1)�1 − 𝑎𝑎𝑖𝑖𝑖𝑖λ𝑘𝑘
𝑖𝑖 � + 𝑋𝑋𝑗𝑗

(𝑘𝑘,𝑖𝑖−1)λ𝑘𝑘
𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖 (11) 

where 𝑑𝑑𝑖𝑖𝑖𝑖 is same as above. 
 
The first term, which still gets the value zero, is needed later so that all image vector 
values do not approach zero when the relaxation parameter 𝜆𝜆 approaches zero, when 
the number of iterations increases. Let the relaxation parameter 𝜆𝜆 be fixed as a 
constant for all sub cycles 𝑖𝑖 ∈ {1, … 𝑛𝑛} and match the conditions set earlier. This 
results in RAMLA formula  

 𝑋𝑋𝑗𝑗
(𝑘𝑘,𝑖𝑖) = 𝑋𝑋𝑗𝑗

(𝑘𝑘,𝑖𝑖−1)�1 − λ𝑘𝑘𝑎𝑎𝑖𝑖𝑖𝑖� + 𝑋𝑋𝑗𝑗
(𝑘𝑘,𝑖𝑖−1)λ𝑘𝑘𝑎𝑎𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖 (12) 

where similarly as in Eq. 8  
 𝑑𝑑𝑖𝑖 =

𝑏𝑏𝑖𝑖

⟨𝐴𝐴𝑖𝑖 , 𝑋𝑋(𝑘𝑘,𝑖𝑖−1)⟩
 (13) 

and 𝜆𝜆𝑘𝑘 remains a constant through all sub cycles 𝑖𝑖 ∈ {1, … 𝑛𝑛}. As the image vector 
is updated after each LOR, the order of LOR processing makes a difference to the 
end result if the image is not allowed to converge to infinity. The term 𝑑𝑑𝑖𝑖 depends 
only on the LOR, and not the voxel so term 𝑑𝑑𝑖𝑖 can be used for all voxels within the 
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sub cycle. This speeds up the calculations when compared to the earlier OSEM 
formula. 

In the original publication (Browne and De Pierru, 1996), the RAMLA formula 
was written in an equivalent form  

 
𝑋𝑋𝑗𝑗

(𝑘𝑘,𝑖𝑖) = 𝑋𝑋𝑗𝑗
(𝑘𝑘,𝑖𝑖−1) + λ𝑘𝑘𝑋𝑋𝑗𝑗

(𝑘𝑘,𝑖𝑖−1)𝑎𝑎𝑖𝑖𝑖𝑖 �
𝑏𝑏𝑖𝑖

⟨𝐴𝐴𝑖𝑖 , 𝑋𝑋(𝑘𝑘,𝑖𝑖−1)⟩
− 1�. (14) 

The part within the parenthesis remains constant for all the voxels in the image. And 
the formula shows the purpose of the RAMLA approach. The voxel value is the first 
term in the formula. Then the relative difference between the current estimate and 
the measured LOR value is calculated and scaled to the voxel in question using the 
factor 𝑎𝑎𝑖𝑖𝑖𝑖. Then this is multiplied with the voxel value to get the absolute difference. 
Now importantly, the relaxation parameter 𝜆𝜆𝑘𝑘 limits how much of the absolute 
difference between the actual LOR measurement and the current estimate is passed 
on to the voxels along the LOR. This allows for smoother development of the image 
when the reconstruction proceeds. Eventually when the relaxation parameter 𝜆𝜆𝑘𝑘 
approaches zero the convergence is achieved. 

Traditionally the image space is split into voxels that are cubes filling the space 
without any overlap. Any point in the image space belongs to exactly one voxel, so 
the center point of the voxel can be considered to represent all the other points within 
the voxel and connect to the value in the image vector. This also makes it 
straightforward to convert voxel image space to images or pictures for further 
calculation or expert viewing. However, the voxels are not necessarily the ideal base 
function for dividing the image space. The non-overlapping nature of the voxels can 
cause them to create large differences between neighboring voxels, or noise in the 
image. Additionally, as there can be no overlap, a cartesian grid is most feasible with 
cube voxels.  

One alternative for voxels is overlapping spherical volume elements, or blobs. 
Blobs have been studied for a long time (Lewitt, 1990, 1992; Matej and Lewitt, 1995, 
1996), and offer some interesting mathematical benefits at the cost of increased 
complexity of reconstruction. They are arranged in grids as well, but since there is 
overlap, they can be arranged differently, such as body-centered cubes or face-
centered cubes. One PET scanner used in this study uses blobs instead of voxels in 
the reconstruction algorithms. Unlike voxels that have base a function value of 0 or 
1, depending on whether the point in the image space is within the voxel or not, the 
blobs have a continuous value range between 0 and 1. The value of one is reached 
only in the middle of the blob, and value of 0 is reached at the edge of the blob and 
beyond. The blobs are defined as  
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𝑏𝑏𝑚𝑚,𝑎𝑎,α(𝑟𝑟) = �

1
 𝐼𝐼𝑚𝑚(𝛼𝛼) ��1 − (𝑟𝑟/𝑎𝑎)2�

𝑚𝑚
 𝐼𝐼𝑚𝑚 ��1 − (𝑟𝑟/𝑎𝑎)2� , 0 ≤ 𝑟𝑟 ≤ 𝑎𝑎

0, 𝑟𝑟 > 𝑎𝑎
 (15) 

where  𝐼𝐼𝑚𝑚 is the first type modified Bessel function of degree 𝑚𝑚, 𝑎𝑎 >  1 is the radius of 
the blob, 𝛼𝛼 is a parameter controlling the shape of the blob, and 𝑟𝑟 is the distance from 
the center of the blob. If 𝑚𝑚 =  0 then the blob is not continuous when 𝑟𝑟 = 𝑎𝑎. If 𝑚𝑚 > 0, 
then the blob has 𝑚𝑚 − 1 continuous differentials when 𝑟𝑟 = 𝑎𝑎. If the shape parameter 𝛼𝛼 
is small, then the value of the blob takes longer to decrease while large values of 
parameter 𝛼𝛼 result in blobs that decrease faster in value. Typically, the reasonable values 
of 𝛼𝛼 and 𝑎𝑎 depend on the characteristics of the image and data, but generally the radius 
𝑎𝑎 should be picked in a way that the full width at half maximum (FWHM) of the blobs 
does not exceed that of the PET scan. Breaking this criterion can lead to overestimation 
of contrast in high contrast areas and artefacts in the resulting image. 

There are combinations of parameters 𝛼𝛼 and 𝑎𝑎 that result in better quality images 
than some other combinations. The exact optimal parameters depend on the grid 
structure (Li, 2018). Using blobs as a base function for reconstruction allows for 
more dynamic selection of parameters affecting image quality. Different values for 
parameters 𝛼𝛼 and 𝑎𝑎 can be chosen based on the individual situation and imaging 
conditions. 

1.2.4 Time of Flight 
Originally, any two photons arriving at two detectors close enough to each other 
were marked as an incident on that specific LOR. It was not possible to estimate the 
point of annihilation along the LOR. When the timing resolution of the PET detectors 
increased, this changed. As the annihilation photons in PET travel at the speed of 
light, there is a time between the photons reaching the different detectors on either 
end of the LOR where the annihilation happened, if the annihilation did not occur 
precisely on the midpoint of the LOR. If the time difference between the photons 
arriving at the detectors can be measured, the location of the annihilation can be 
calculated (Bailey et al., 2005, ch 1).  

 
Figure 2.  Illustration of TOF measurement. X marks the point along the LOR where the 

annihilation happens, and the photons originate from. Photons are detected at detectors 
A and B. 
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The derivation of the calculation can be done based on Figure 2. Point 𝑋𝑋 marks 
the annihilation. If point 𝑋𝑋 was at the halfway of the distance 𝐷𝐷, then both photons 
would travel half the distance h until they reach the detector. Now that point 𝑋𝑋 is not 
at the halfway point, one photon travels the distance ℎ − 𝑑𝑑𝑥𝑥 and the other travels the 
distance ℎ + 𝑑𝑑𝑥𝑥 before reaching the detector. The extra distance 2𝑑𝑑𝑥𝑥 causes there to 
be a time difference 𝑡𝑡 between the arrival times at the detectors 𝐴𝐴 and 𝐵𝐵. The distance 
from the midpoint can then be calculated as 𝑑𝑑𝑥𝑥 = 𝑐𝑐𝑐𝑐/2, where 𝑐𝑐 is the speed of light. 
The accuracy of distance 𝑑𝑑𝑥𝑥 depends on the timing resolution of the PET system. 
Timing resolution at almost 200ps has been reported (Van Sluis et al., 2019) and that 
corresponds to an inaccuracy of around 6cm.  

Storing the TOF data is more complex than it is for non-TOF measurements due 
to the annihilation locations being variable. An intuitive approach is to store the 
measurements in list mode, but this can lead to slow processing times (Vandenberghe 
et al., 2016). Another approach is to use multiple sinograms, each for a different 
segment of the LORs between the start and end detectors.  

While performing image reconstruction, assigning the point of annihilation more 
accurately along the LOR allows for updating only the values of the voxels that are 
located on the segment of the LOR where the annihilation could have happened. This 
allows the reconstruction to converge faster (Mehranian and Zaidi, 2015b). 
Furthermore, as the cross dependencies between the voxels are reduced and the 
additional constraints brought by the more accurate location estimate of the 
annihilations, the reconstruction is less prone to errors in AC, and scatter correction 
(Conti, 2011; Conti and Bendriem, 2019). Additional benefits of TOF reconstruction 
are better contrast and signal-to-noise ratio (Conti, 2009), and reduced errors due to 
faulty PET detectors or various artefacts and implants (Davison et al., 2015; Delso 
et al., 2017; Svirydenka et al., 2017; ter Voert et al., 2017).  

To use TOF effectively, some adjustments need to be applied to the 
measurements (Vandenberghe et al., 2016). The first problem to correct is a timing 
offset that causes different detectors to detect the photons at slightly different times 
because of the detector and electronic setup of the system. Secondly, the probability 
distribution of the annihilation point, or the TOF kernel, needs to be estimated. 
Incorrect kernel can cause artefacts in the reconstructed image.  

TOF offers possibilities that were not as viable for scanners without the TOF 
functionality (Vandenberghe et al., 2016). As the TOF measurements are more 
accurate, the target regions of interest can be made much smaller than with non-TOF 
scanners. Also, radioisotopes where only a small share of decays lead to positron 
emission can become more viable to use, as TOF reconstruction is more sensitive 
than non-TOF reconstruction. Overall, if the TOF reconstruction is well calibrated, 
it can be expected to provide better contrast and signal-to-noise ratio than its non-
TOF counterpart. 
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1.3 Radiotherapy   
Radiotherapy (RT) works the opposite way to PET from outside in. Typically, a 
tumour is found within the subject, and it is decided that radiating the tumour, 
potentially alongside other treatment options, is a prudent course of action. A 
suitable dose is calculated, and the subject is subjected to radiation that penetrates 
through the tissue and damages the tumour. Again, as the radiation travels through 
the tissue, it is important to account for the different tissues it passes through, so that 
the tumour gets the correct amount of radiation. Too little might not achieve the 
treatment goals, and too much will inevitably damage more of the surrounding tissue. 

The use of radiation to treat disease dates to the late 19th century, when it was 
discovered that certain types of radiation could be used to kill cancer cells. X-rays 
were first used in radiotherapy, soon after their invention, in 1896 to treat carcinoma 
of the breast and lupus vulgaris (Lederman, 1981). Other early applications of 
radiotherapy were in the treatment of cancers on skin and body cavities such as the 
cervix with either X-rays or placing radium tubes in contact with the tumors directly. 
These earlier forms of radiotherapy had limited effectiveness and were associated 
with significant side effects. 

After early experiments, radiotherapy developed into more of a scientific 
technique along with the work of Regaud, Coutard and Hautant in 1920s and 30s 
(Holsti, 1995). In the mid-20th century, advances in physics and technology led to 
the development of more sophisticated forms of radiotherapy which are typically 
divided into three types. First of which is external beam radiotherapy, which uses 
linear accelerators to  deliver high-energy (4 to 25 MeV) radiation to the cancerous 
area from outside the body (Klein et al., 2009). The second is brachytherapy, which 
involves the insertion of small radioactive objects into the tumor, for example in the 
cervix (Nag et al., 2000). Lastly, systemic radioisotope therapy where the 
radioisotopes are given in therapeutic amounts by oral ingestion or infusion, for 
example for prostate cancer with bone metastasis (Sartor et al., 2017). 

Originally, treatment planning was done using two dimensional radiation therapy 
approach with an X-ray simulator (Purdy, 2008). Once CT became more widely 
available, it was applied also to RT, to help transition towards 3D planning. CT 
allowed for a much better understanding of the volume of the target tumour and, 
thusly, helped to increase the quality of treatment simulator software (Goitein and 
Abrams, 1983). CT also enabled the use of non-coplanar beam angulations. 
Although bringing great improvements in the treatment quality, CT is not always 
able to alone identify the gross tumour volume accurately so other modalities, like 
MRI, or nuclear medicine would be needed to assist in tumour size evaluation 
(Purdy, 2001). 

An important aspect of improved treatment planning is magnetic resonance 
radiotherapy (MR-RT). In MR-RT, MRI is combined with external beam 
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radiotherapy whereby a patient undergoes an MRI scan to create detailed images of 
the tumour and surrounding tissue. These images are then used to guide the delivery 
of external beam radiotherapy to the tumour. MR-RT can be used alongside other 
imaging modalities like CT, as MR alone might not be comprehensive enough to 
accurately plan the RT. MR-RT may also be more effective in treating certain types 
of tumours, such as those that are difficult to visualize on other types of imaging. 
While MR-RT is a relatively new technology, there has been extensive research on 
the usage of MRI-based treatment planning (Metcalfe et al., 2013; Owrangi, Greer 
and Glide-Hurst, 2018).  

There are also other applications of MRI used in conjunction with radiotherapy. 
In MRI-guided radiotherapy, MRI is used to guide the delivery of radiotherapy in 
real-time (Pollard et al., 2017). This can be particularly useful in cases where the 
tumour is located near sensitive structures or organs that are located in areas of the 
body which move, such as the lung or liver, as it enables the radiotherapy to be 
delivered more precisely. MRI-based dosimetry involves using MRI to measure the 
dose of radiation that is delivered to the tumour and surrounding tissues during 
radiotherapy. This can help to ensure that the desired dose of radiation is delivered, 
while minimizing exposure to healthy tissue. Overall, the use of MRI in conjunction 
with radiotherapy can help to improve the effectiveness and safety of the treatment 
and reduce possible side effects. 

1.4 Electron density information in PET and RT 
Electron density information is important in external beam radiotherapy because it 
determines how much radiation is absorbed by different tissues in the body. To 
deliver a precise and effective dose of radiation to the target, it is important to know 
the electron density of the tissue in the area being treated. This is because the density 
of the tissue affects the amount of radiation that is absorbed and the depth at which 
the radiation will penetrate. For example, denser tissues, such as bone and muscle, 
will absorb more radiation than less dense tissues, such as fat or air. Knowing the 
electron density of the tissue can help the medical team to adjust the dose and 
intensity of the radiation to ensure that the tumour receives the appropriate amount 
of radiation while minimizing the risk of side effects to healthy tissues. 

Similarly, AC of the bone is of extreme importance for the quantitative accuracy 
of PET, especially in the head region, where the bone surrounds the brain from all 
sides. The AC can be done in several ways. Utilizing a positron source, for example 
68Ge that electron captures into positron emitting 68Ga, rotating around the subject 
on a rod, is called transmission-based attenuation correction (TXAC). TXAC is 
considered as a “gold standard” method for AC, as it allows the measurement of the 
gamma attenuation coefficients for each line of response directly.  
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Using positron source in AC derivation gives accurate AC, as the attenuation 
coefficients 𝜇𝜇 depend on the material and the energy of the photons in equation  

 𝐼𝐼𝑥𝑥 = 𝐼𝐼0𝑒𝑒−𝜇𝜇𝜇𝜇 (16) 

where 𝐼𝐼0 is the intensity at source, 𝐼𝐼𝑥𝑥 is the intensity after the photons have passed 
through thickness of 𝑥𝑥 (Bailey et al., 2005, ch 2). For the equation to hold in PET, 
these attenuation coefficients 𝜇𝜇 need to be measured for each LOR with the same 
511 keV energy gamma rays as the PET scan itself generates. 

CT energies, however, are much lower, typically closer to the 80-150 keV range. 
As the attenuation coefficients 𝜇𝜇 increase while the photon energies decrease, a 
conversion from the attenuation coefficients measured with CT energies needs to be 
performed in order for them to be usable in PET. This causes the CT-based 
attenuation correction (CTAC) to be considered as a “silver standard” (Hitz et al., 
2014). 

In CT, the attenuation is typically measured in Hounsfield Units (HU) where 
water is given the value of 0 HU (Hounsfield, 1973). Although Hounsfield initially 
set air to be -500, it is usually set to be -1000 HU. As water is 0 HU and air is -1000 
HU at any X-ray photon energy, the HU values of other tissues change depending 
on the photon energy. This is because the ratio of attenuation coefficients 𝜇𝜇 of two 
different density materials changes when the photon energy changes (Hubbell, 
1969). More precisely  

 𝜇𝜇𝑑𝑑,ℎ

𝜇𝜇𝑠𝑠,ℎ
>

𝜇𝜇𝑑𝑑,𝑙𝑙

𝜇𝜇𝑠𝑠,𝑙𝑙 
 (17) 

where 𝑑𝑑 and 𝑠𝑠 denote dense and soft materials respectively, and ℎ and 𝑙𝑙 correspond 
to higher and lower photon energies. Yet, when the attenuation coefficients are close 
to each other, like in human tissues, the inequality in Eq. 15 is close to being an 
equality. Another source of error is the scattering of the X-ray photons that is 
different than the scattering of 511 keV annihilation photons due to the lower energy 
of the X-ray photons. These inaccuracies, contribute to the “silver standard” 
classification of CTAC. 

When the HU values and CT photon energies are known, it is possible to convert 
the HU values into 511 keV attenuation coefficients 𝜇𝜇. Several conversion methods 
have been presented in literature, some optimized for different tube currents than 
others (Kinahan et al., 1998; Burger et al., 2002; Bai et al., 2003; Carney et al., 2006; 
Ay et al., 2011; Abella et al., 2012), so the application of the attenuation coefficient 
conversion must be done carefully. Once the attenuation coefficients for each point 
along a LOR have been converted from HU values, the attenuation coefficient for 
the whole LOR can be calculated by integrating over the LOR 



Introduction 

 27 

 𝜇𝜇𝑧𝑧 = � 𝜇𝜇(𝑦𝑦)𝑑𝑑𝑑𝑑
𝑦𝑦

0
 (18) 

where 𝜇𝜇(𝑦𝑦) is the attenuation coefficient 𝜇𝜇 at point 𝑦𝑦 along the LOR 𝑧𝑧. Now finally, 
a measured incident count 𝐶𝐶𝑧𝑧 along LOR 𝑧𝑧 can be attenuation corrected using Eq. 
14 as a starting point 

 𝐶𝐶𝑧𝑧0 =  
𝐶𝐶𝑧𝑧

𝑒𝑒−𝜇𝜇𝑧𝑧
. (19) 

Choosing a proper HU to attenuation coefficient conversion method is critical 
for the quality of the CTAC. However, as these are well established, and as TXAC 
is becoming unavailable, CT can be used as a reference AC standard for PET 
imaging to which other modalities can be compared. Similarly, for RT treatment 
plans (RTP) the dose delivered to the clinical target area depends on the initial 
intensity of the radiation and the density of the tissues between the skin and the 
tumour. Being certain about the tissue density is important, so that the dose does not 
need to be increased in order to counter uncertainties, instead only the minimal dose 
is needed for the patient. In this study, the focus is on MRI based AC (MRAC), 
which seeks to convert the MRI images into attenuation maps, or more generally 
expressed as substitute, or synthetic CTs (sCT), which can be applied to MRAC and 
MR-RT alike. 

Using MRI instead of CT for PET imaging or for RT treatment planning is 
beneficial as it has better soft tissue contrast and no radiation dosage to the patient. 
On the downside, MRI images do not separate air from bone as well as CT images 
do, and this is problematic for PET or RT, especially in the head where the tissues 
of interest are typically located within the skull. The bone segment contributes 
strongly to the total, as it is the densest part of the head, but the accurate delineation 
of bone is difficult with conventional T1/T2-weighted MRI sequences. This is due 
to the short T2* relaxation time for bone. Various non-bone tissues have T2* 
relaxation times between 20 and 150ms (Bojorquez et al., 2017), but bone T2* 
relaxation time is as low as 1–3 ms (Mahar et al., 2018), which makes it difficult to 
distinguish from air. The resulting signal from bone is thus practically a void in the 
final MRI image. This problem arises from the differing physical phenomena 
captured by CT and MRI imaging. MRI images reflect the tissue relaxation and 
proton density whereas CT measures the X-ray attenuation which is related to the 
electron densities of the tissues. Moreover, the information MRI gathers is not simple 
to translate into electron density values. So, a model is needed to convert the MRI 
image into a sCT, which can then be used in the PET or RT pipeline.  

The conversion of MRI images to HU values or gamma attenuation coefficients 
is not a trivial endeavour and has resulted in extensive research and development of 
sCT methods for PET-MRI and MR-RT. Some important applications of the sCT 
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conversion models are neurological PET-MRI imaging and MR-RT of the head 
region. Because the quantitative accuracy of combined PET-MRI and the accuracy 
of treatment plans of MR-RT are affected by accuracy and quality of the sCT used 
for AC or RTP, these applications require highly accurate methodology.  

Several review articles have covered the AC in PET using a variety of different 
methods including methods for brain and whole-body imaging (Martinez-Möller and 
Nekolla, 2012; Berker and Li, 2016; Mehranian, Arabi and Zaidi, 2016a; Johnstone 
et al., 2018; Teuho et al., 2020). Recently, MRAC methods have been introduced, 
which achieve ±5% quantitative accuracy for PET images and less than 0.2% dose 
differences for RTP when compared with the CT-based approach (Andreasen et al., 
2015; Ladefoged et al., 2017; Kemppainen et al., 2019; Yu et al., 2021). A rough 
division of the methods into three are as followed: atlas-, emission-, and 
segmentation-based methods (Martinez-Möller and Nekolla, 2012; Berker and Li, 
2016; Mehranian, Arabi and Zaidi, 2016a; Johnstone et al., 2018; Teuho et al., 
2020). To summarize, the atlas- and template-based methods enable the calculation 
of sCT by co-registering a single CT image or a set of CT images to the individual 
anatomy space of a subject’s MRI image (Burgos et al., 2014, 2015; Demol et al., 
2016; Mérida et al., 2017). Moreover, several machine learning-based methods have 
been presented recently (Mecheter et al., 2020), and deep learning has gained a lot 
of attention in sCT derivation (Krokos et al., 2023). It is possible to use raw PET 
data to reconstruct the attenuation sinogram mathematically (Nuyts et al., 1999; 
Rezaei et al., 2012; Berker and Li, 2016; Mehranian, Zaidi and Reader, 2017). The 
PET-MRI systems capable of TOF may gain further improvements in quantitative 
accuracy (Conti, 2011; Mehranian and Zaidi, 2015b). There are also voxel-based 
methods that can be used to calculate the MRI intensity values of the voxel regardless 
of its spatial location, and hybrid methods are a combination of the voxel and atlas-
based methods (Edmund and Nyholm, 2017; Johnstone et al., 2018). Additionally, 
Bayesian probabilistic approaches, for head region bone modelling (Gudur et al., 
2014) and curve fitting with exponential and polynomial distributions for pelvic and 
head volumes (Kapanen and Tenhunen, 2013; Koivula, Wee and Korhonen, 2016) 
have been proposed. 

In segmentation-based methods, the MRI images are segmented into different 
tissue classes, and the attenuation correction is built on top of said segmented tissue 
classes. Accurate bone delineation becomes challenging when conventional T1/T2-
weighted MRI sequences are used, as the T2* relaxation time of bone is almost the 
same as air. Certain advanced methods for segmentation exist, such as probabilistic 
atlas-based segmentation (Chen et al., 2017), which help to alleviate this issue. 
Advances in segmentation-based methods have shown a good level of accuracy 
when they have been compared to atlas- and emission-based methods (Ladefoged et 
al., 2017). Outside the conventional MRI sequences, there are options, such as ultra-
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short echo time (UTE) sequences and zero echo time (ZTE) sequences, which enable 
the visualization and segmentation of the bone directly from MRI images (Aasheim 
et al., 2015; Delso et al., 2015).  

1.5 Machine learning methods 
Machine learning (ML) is a subfield of artificial intelligence that uses algorithms to 
automatically improve a learning model and make predictions without having 
received explicit instructions on how to do so (Jordan and Mitchell, 2015). ML can 
be used to automate and improve the accuracy of image segmentation in MRI. One 
approach is to use supervised learning, where the algorithm is trained on a dataset of 
labelled MRI images, with each pixel in the image assigned to a specific tissue type 
or structure. The algorithm learns to identify patterns and features in the images that 
are characteristic of different tissue types and uses this knowledge to classify each 
pixel in a new image.  

Another approach is to use unsupervised learning, where the algorithm is not 
provided with any labels or information about the tissue types in the images. Instead, 
it must learn to identify and segment different structures in the images based on their 
statistical properties and relationships with other pixels.  

Both supervised and unsupervised machine learning approaches have been 
applied to MRI image segmentation with promising results (Mecheter et al., 
2020).The choice of approach and specific ML algorithms will depend on the 
characteristics of the MRI data, the desired level of accuracy, and the computational 
resources available. Several review articles focusing only on the ML assisted AC or 
imaging modality conversions have been written recently (Chen and Liu, 2023; 
Confidence et al., 2023; McNaughton et al., 2023). 

Most studies have used full image data from which the ML algorithms find 
appropriate features and structures which then are regenerated for independent test 
images. Using whole images permits the usage of accurate deep learning neural 
networks. Deep learning networks are self-learning structures that can learn high 
level image features and model nonlinear connections between different image 
spaces (Lecun, Bengio and Hinton, 2015; Mecheter et al., 2020). Training these 
models can take a long time, but prediction times for independent images are quite 
fast. Some studies with lower level data, such as voxel level conversion, exist where 
the images are sampled for smaller patches of data to be converted, rather than using 
the full image directly (Valverde et al., 2017; Kläser et al., 2021; Martinez-Girones 
et al., 2021). 

In a random forest (RF) algorithm, multiple decision trees are trained on random 
subsets of the data, and the final prediction is made by taking the average prediction 
of all the individual trees. This can be done by taking the mean of the predictions, or 
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by voting, where each tree “votes” for a particular class and the class with the most 
votes is the final prediction (Breiman, 2001). Mathematically, a decision tree is a 
flowchart-like tree structure that makes decisions based on a series of binary splits. 
For example, in a decision tree for classifying animals, the tree might first split on 
the feature “has wings” with a “yes” branch leading to another split for the feature 
“can fly” and a “no” branch leading to another split for the feature “has fins”. This 
process continues until the tree reaches a leaf node, which represents a prediction. 

A distributed machine learning algorithm involves training many instances of 
the model in parallel and combining the learning process to help the final model 
converge faster (Zhou et al., 2017). Each sub model can be trained on a random 
subset of the data, which can alleviate data transfer problems, in case different 
computers are used. 

In a distributed random forest (DRF) algorithm, the training of the random forest 
is distributed across multiple processor cores, or computers, which can help to reduce 
the time it takes to train the model and make it more scalable. The training process 
is parallelized with each machine training a separate decision tree on a different 
subset of the data. The final prediction is made by aggregating the predictions of all 
the individual trees, just as in a regular random forest.  

The use of multiple decision trees and the random sampling of the data help to 
reduce overfitting. Meaning that a model fits the training data too well and does not 
generalize well to new data. When multiple decision trees are trained on different 
subsets of the data, the random forest can capture a wider range of patterns in the 
data and make more accurate predictions. 

A derivate of the DRF algorithm is called Extremely Randomized Trees (XRT) 
(Geurts, Ernst and Wehenkel, 2006). The novelty of the XRT algorithm is that the 
entire training dataset is sampled, and a tree is built for each observation, with 
varying set of features per tree. Furthermore, all splits are completely randomized, 
which should lower the variance and improve the computation time, as less time is 
needed to find the proper splits. The XRT method is also less susceptible to patterns 
in the training dataset, as no feature can be overrepresented.    

1.6 Summary 
Medical imaging is a tool to look inside a patient and learn about their anatomy and 
physiology. Scans done with some modalities like X-rays, and by extension CT, are 
somewhat straightforward in capturing images, while other modalities like MRI and 
PET require additional steps and need more complex mathematics in the process 
towards an accurate image result. MRI works by utilizing magnetic fields and 
radiofrequency signals to create detailed images of the body. PET on the other hand 
relies on radioactivity sources injected into the patient, so attenuation correction of 
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the measurement is essential. Tissue density estimation is also necessary for RT, so 
that the dose delivered to the target tissue is as accurate as possible. The tissue 
density estimation can be done in many ways, and in this study the focus is on MRI 
based methods and improving them. 

MRI has superior soft tissue contrast and doesn’t involve radiation exposure, and 
thus offers significant upsides for PET attenuation correction and electron density 
estimation for RT planning. However, distinguishing between different tissue 
densities, particularly bone and air, can be difficult for MRI. Conventional T1/T2-
weighted MRI sequences struggle to accurately delineate bone due to the short T2* 
relaxation time of bone, resulting in signal from the bone tissue being practically 
absent and inseparable from air in the final MRI image. Thus, models are needed to 
accurately convert MRI images into sCT images, which can then be used in PET or 
RT. The conversion of MRI images to HU or gamma attenuation coefficients is a 
complex task that has led to extensive research and development of sCT methods for 
PET-MRI and MR-RT. Achieving high accuracy and quality in sCT methodology is 
crucial for applications, such as neurological PET-MRI imaging and MR-RT of the 
head region. Lately, there has been efforts to utilize machine learning to assist with 
the creation of sCT images. In this study, the focus is on improving the sCT creation 
in the head by setting up a pipeline to create sCT images from MRI images, then 
inspecting the effect of TOF in reconstruction error. Next, a novel way to 
automatically isolate and handle sinus regions in MRI images is developed, and 
finally the skull bone handling is improved with aid of machine learning. 
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2 Aims 

The purpose of the study was to generate an offline attenuation correction pipeline 
for MRI images. Additionally, once the pipeline was established, the goal was to 
explore novel methods to improve different components of the pipeline. The study 
was split into four publications. The first task was to set the framework of the original 
pipeline, and the later studies focused on one aspect to improve or evaluated the 
performance of the initial pipeline. 

2.1 Publication I – Initial pipeline framework 
development 

In publication I (Teuho et al., 2016) the aim was to set up a robust pipeline for 
attenuation correction using clinical anatomical MRI imaging sequences. The 
pipeline should work with minimal manual assistance, relying on automation in all 
phases of the process.  

2.2 Publication II – TOF effect on reconstruction 
quality using different AC maps 

Publication II (Lindén, Teuho, Klén, et al., 2022) aimed to explore the effects of 
Time-of-Flight reconstruction using a variety of attenuation maps generated with the 
initial pipeline framework. The goal was to see how much time of flight improves 
the PET reconstruction accuracy even if the attenuation maps themselves had some 
inaccuracies. 

2.3 Publication III – Sinus segmentation method 
development 

The aim of publication III (Lindén, Teuho, Teräs, et al., 2022) was to find a way to 
automatically address the problem of segmentation in the sinuses. The goal was to 
present new methods to model the air/soft tissue mix of the sinus region accurately, 
and to not have overrepresentation of bone tissue in the region.  
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2.4 Publication IV – Machine learning assisted 
bone segmentation and HU assignment 

Publication IV aimed to replace the bulk probability assisted segmentation with a 
more accurate machine learning based approach. The goal was to use an RF 
algorithm to create an alternative bone probability to the one used previously in the 
sCT pipeline to assign the bone tissue more accurately, and test whether this output 
could be used to estimate the attenuation coefficient directly. Aim was also to use 
the machine learning on the voxel level to avoid artefacts of atlas-based conversion, 
and make sure even the smallest details of the subject’s anatomy were converted 
with high accuracy. 
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3 Materials and Methods 

3.1 Summary 
This section consists of a brief overall summary of the methodology in each 
publication. Some aspects of the study are defined in more detail in separate 
sections.  

3.1.1 Initial pipeline framework development  
The process of creating the attenuation maps starts by segmenting the MRI images 
gathered with 3D T1-weighted fast field echo sequence into six tissue class 
probability maps using the New Segment function of SPM8 in MATLAB. The 
probability maps for grey matter, white matter, and cerebrospinal fluid were ignored, 
and only the probability maps for bone, air and soft tissues were used for the rest of 
the pipeline. The probability maps were converted into binary masks using 0.25 
probability value as a threshold for each voxel. The soft tissue map was 
morphologically closed, and the closed mask was then used to create a mask for 
overall head shape. The bone mask was cleaned by finding the largest connected 
structure within the bone mask by connected component analysis. After some 
Gaussian filtering to remove any residual noise, the tissue masks were ready to be 
merged into one attenuation map. 

To create the attenuation map, first the soft tissue volume is assigned an 
attenuation factor of 0.096 cm-1 (Catana et al., 2010; Burgos et al., 2014). All voxels 
belonging to the skull mask were assigned a bone attenuation coefficient of either 
0.135 cm-1 or 0.145 cm-1 (Hofmann et al., 2009; Catana et al., 2010; Wagenknecht 
et al., 2013; Anazodo et al., 2015). The performance of different bone attenuation 
values was compared to the CTAC attenuation map. Tissue classes were finished by 
assigning all voxels that belong to the air mask with an attenuation coefficient of 
0.0 cm-1 (Catana et al., 2010; Burgos et al., 2014). Lastly, the combined µ-map was 
smoothed with 5mm FWHM Gaussian filtering (Schramm et al., 2013). 

Tissue probability-based AC (TPB-AC) and CTAC µ-maps were then co-
registered and resliced to the MRI image space. The PET reconstructions using TPB-
AC and CTAC µ-maps and clinical MRAC µ-map were done with LOR-RAMLA 
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algorithm with 3 iterations and 33 subsets, with 128×128×90 image matrix with a 
voxel size of 2×2×2 mm. The performance of each model was evaluated by visual 
inspection using volume of interest (VOI) analysis with mean and standard deviation 
calculation, as well as correlation analysis. Additionally, a 28-region automatic 
anatomical labelling atlas (AAL) atlas was fit to each subject’s images for brain 
region specific evaluations. 

3.1.2 TOF effect on reconstruction quality using different AC 
maps 

Three different attenuation maps were created and tested against CTAC attenuation 
maps. The first attenuation map, three-class model, was done using the same pipeline 
as earlier, with the soft tissue attenuation coefficient set to 0.096 cm-1 and the bone 
attenuation coefficient set to 0.151 cm-1, which was one of the values tested in the 
initial pipeline setup. The same 3D T1-weighted fast field echo sequence was used 
as previously. The second map, two-class model, had a uniform attenuation 
coefficient of 0.100 cm-1 assigned to all soft tissue and bone voxels of the three-class 
model attenuation map. The third map, two-class model without air, had all air 
cavities inside the head also assigned with the attenuation coefficient of 0.100 cm-1. 
The reference CTAC maps were created from a low-dose CT acquisition from which 
the HU values were transformed into linear attenuation coefficients using a bi-linear 
transformation (Burger et al., 2002). 

Both CTAC and MRAC maps were co-registered to non-attenuation corrected 
PET (NAC-PET) image space using SPM8 before the PET image reconstruction. 
The non-TOF PET and the TOF reconstructions were done with a line-of-response 
row expectation maximum algorithm (LOR-RAMLA), and ordered subset 
expectation maximum (TOF-OSEM) algorithm respectively. The results of the 
reconstructions were inspected visually and quantitatively. A quantitative analysis 
was done by using 35 cortical region VOIs from the AAL, after which the absolute 
differences between CTAC and MRAC reconstructed PET images were calculated 
for each VOI. The calculation was repeated for every MRAC method with the 
following equation: 

 𝛥𝛥% =
𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
∗ 100 %. (20) 

The images were also normalized by transforming them to the Montreal 
Neurological Institute (MNI) image space using SPM8. This was done to enable the 
calculation of the mean images.  
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3.1.3 Sinus segmentation method development 
The initial pipeline from Publication I was used with some modifications, to see if 
the sinus region could be modelled better with the given MRI sequence. The pipeline 
was migrated to SPM12 from SPM8, and brain tissue was given its own tissue class 
and attenuation coefficient of 0.0985 cm-1. The earlier tissue probability maps (TPM) 
based attenuation coefficient assignment was compared with a novel cuboid method 
and a template method, both of which use continuous attenuation coefficient 
assignment for the sinus region. CTAC maps were used as reference. 

The cuboid method attempts to fit a cuboid shaped mask to the individual 
anatomy of each subject by varying the size and shape of the cuboid and choosing 
the cuboid with the highest cuboid goodness score. In the template method, a cuboid 
shaped mask is placed into the sinus region of an image in the MNI space. Then that 
mask is converted into each subject’s individual space using the deformation vector 
fields given by the SPM normalization algorithm. 

Once a sinus mask is defined, all the voxels within the mask are converted to a 
mixture of air and soft tissue based on the MRI intensities of the voxel. A stepwise 
function is used for the conversion. To perform the PET reconstruction, the CTAC 
and MRAC images are first co-registered to NAC-PET images, after which the 
reconstruction is done using the co-registered attenuation maps. Both non-TOF and 
TOF reconstructions were done to also assess the differences between reconstruction 
types for each sinus model. 

The performance of the different models was evaluated with DICE analysis, 
bone region voxel correlation analysis, and sinus region attenuation coefficient 
analysis. A quantitative analysis was done by using the same AAL atlas as in the 
TOF/non-TOF evaluation and calculating VOI level differences. Finally, bias atlases 
were computed for visual inspection.  

3.1.4 Machine learning assisted bone segmentation and HU 
assignment 

The initial pipeline was used as a starting point for the ML method evaluation with 
minor modifications. The pipeline consisted of six tissue classes, each with their 
own attenuation coefficient. As the analysis for the ML method evaluation was 
done in HU scale, the bulk density attenuation coefficients were updated to have 
942 HU for bone, 41 HU for grey matter, 25 HU for white matter, 15 HU for 
cerebrospinal fluid, 0 HU for soft tissue, and -1000 HU for air. All processing was 
done in SPM12. 

A RF ML model was created with 8 subject training dataset and tested with a 10 
subject test dataset. The quality of the conversion was evaluated with DICE 
coefficients, F-scores, and receiver operating characteristics (ROC) related statistics 
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such as area under curve (AUC) and Youden’s J (Youden, 1950). The sinus 
conversion method based on sinus cuboids and MRI intensities was used for the sinus 
region. The RF probability was also used to estimate the bone HU values directly 
with a simple regression curve. This analysis was done with the leave-one-out 
method to utilize the limited sample size to maximum effectiveness.  

3.2 Datasets 
In total there were three subject datasets used in the study. The data for these studies 
was attained under the research permissions of Dnro T11/006/21, approval date: 19 
January 2021 and Dnro 116/1801/2017, approval date: 21 Nov 2017. 

3.2.1 Initial pipeline framework development  
The dataset for the initial pipeline development consisted of PET CT and MRI data 
of seven subjects who were suspected of having memory disorders. The median and 
range of age, dosage, and weight were 47 (26–74) years, 274 (199–299) MBq, and 
77 (47–80) kg, respectively. All subjects underwent a clinical PET-CT routine with 
either the Discovery VCT PET-CT (General Electric Healthcare, Milwaukee, US) or 
Discovery 690 PET-CT (General Electric Healthcare, Milwaukee, US). In addition 
to the PET-CT scans, PET and MRI acquisitions were performed with the Philips 
Ingenuity TF PET-MR. 

3.2.2 TOF effect and sinus segmentation methods 
Both TOF effect study and sinus segmentation method evaluation used the same 
dataset of subjects. The data consisted of 10 subjects (seven females, three males) 
who were suspected of having memory disorders. All subjects had undergone PET-
MRI and PET-CT scans, and their data was used retrospectively. Seven subjects had 
their PET-MRI and PET-CT performed during the same session, and three on 
different days. The mean and standard deviation of the subjects age, dose ([18F]-
FDG), and weight were 53 ± 14 years, 277 ± 47 MBq, and 73 ± 19 kg. For the 
subjects who had undergone both PET-CT and PET-MRI sessions in the same day, 
the mean and standard deviations of the scan start times were 80 ± 20 min after the 
injection. 
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3.2.3 Machine learning assisted bone segmentation and HU 
assignment 

The subject dataset was changed for the ML method evaluation. The dataset 
consisted of 18 RT subjects, nine of whom had brain metastases and nine had glioma. 
Ten were male and eight were female. The mean and standard deviation of age was 
66.0 ± 12.5. Same dataset with slight changes was used in an earlier study (Ranta et 
al., 2020). 

3.3 Image segmentation 
An MRI image segmentation algorithm divides the MRI images into several TPMs. 
Every map contains a voxel level probability to the tissue that the probability map 
corresponds to the algorithm used in this study was the New Segment function in 
SPM8 and SPM12 (Wellcome Trust Centre for Neuroimaging, University College 
London, UK). The pipeline setup, and TOF/non-TOF comparison, were done on 
SPM8 and the sinus, while the ML method evaluations were done with SPM12. The 
New Segment function combines affine registration to the International Consortium 
for Brain Mapping (ICBM) Tissue Probabilistic Atlas and image segmentation was 
based on the Unified Segmentation principle described in (Ashburner and Friston, 
2005). The result of the MRI image segmentation is a series of TPMs, where a voxel 
corresponds to a probability between 0 and 1 of a particular tissue class to exist 
(Ashburner and Friston, 2005). Probabilities are scaled between the TPMs so that 
the total sum of tissue probabilities in a voxel over all TPMs is always one 
(Ashburner and Friston, 2005). The TPMs given by the New Segment function 
correspond to grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), 
scalp, bone, and air. 

3.4 Reconstruction pipeline for sCT 
To initiate the sCT reconstruction, the DICOM data were exported to an off-line 
computer from PACS after which Nifti conversion was performed using DICOM 
import in SPM8 or SPM12. The MRI images were then segmented with the New 
Segment function in SPM. The New Segment function segmented the MRI images 
into six TPMs, which are WM, GM, CSF, scalp, bone, and air. For the sCT 
reconstruction in the initial pipeline, the TPMs for WM, GM, and CSF were not 
processed further, and the probability maps of the scalp, bone and air were used in 
the pipeline with MATLAB (2011a-2021b depending on the method). For the sinus 
and ML method evaluation, as well as the ignored three tissue classes, were 
processed further. Logical binary masks were created from these TPMs.  
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The scalp binary mask was the starting point to assign the total soft tissue 
volume. This was done with a slice-wise morphological closing and flood-fill 
operation. The result of this was a head volume mask that had the value 1 inside the 
head and the value 0 on the outside of the head.  

A connected component analysis with 3D 6-voxel regional connectivity 
analysis was then performed on the skull binary mask to find the largest connected 
structure, which was then assigned as the final skull volume. This final skull 
volume is again a binary mask, like the soft tissue mask earlier. Residual noise was 
reduced with a Gaussian filtering, after which the filtered masks were converted 
back to logical masks with a threshold value of 0.01. Ultimately, the determined 
µ-values were given to each tissue type when the masks were combined to form 
the final three-class sCT. For the sinus and ML method evaluation, the soft tissue 
part of the sCT was further refined by giving separate attenuation coefficients for 
the other brain tissue types. Additionally, the volume within the sinus mask was 
then reconverted and given a continuous attenuation coefficient based on the sinus 
conversion model. 

3.5 Time-of-Flight and PET reconstruction 
The Philips Ingenuity TF PET-MRI (Philips Healthcare, Cleveland, OH, USA) 
scanner was used in all PET studies, and can reach the time resolution of 525 ps. In 
this study, the TOF reconstructions were done using BLOB-OSEM-TF 
reconstruction algorithm with blob and reconstruction parameters of alpha = 4.1338, 
radius = 2.3, blob increment = 2.0375, and relaxation parameter = 1.00. 

3.6 Attenuation correction in sinus area 
The sinus area attenuation correction method was derived using an anatomical MRI 
T1-weighted 3D fast field echo sequence, and it was later successfully applied in the 
ML bone segmentation model pipeline with T1-weighted 3D mDIXON sequence 
with gadolinium contrast agent. 

To start the attenuation correction in the sinuses, an initial binary mask of the air 
inside the sinus cavity was created by taking the intersection of the air mask and the 
soft tissue mask (Figure 3). The mask was called inside air mask. This mask 
consisted of voxels that the segmentation considered to be partly air and partly soft 
tissue. This included the throat, large air cavities in the sinus, and noise outside the 
anatomical air cavities. To find the location of the largest air cavities, slice sums of 
the inside air mask were created and plotted. Based on comparisons of images and 
the slice sum plots, it was determined that most commonly the sinus regions were 
the local maximum of the slice sums right before the largest drop in the slice sums. 
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This is intuitive since above the sinuses there is not much air in the head. The slice 
after which the largest drop occurred was determined to be the slice 𝑖𝑖 that maximises 
the formula 

 𝐷𝐷 = 𝑆𝑆𝑖𝑖 − 𝑆𝑆𝑖𝑖+𝑑𝑑 (21) 

where 𝐷𝐷 denotes the size of the drop, 𝑆𝑆𝑖𝑖 is the slice sum of slice 𝑖𝑖 and 𝑑𝑑 was the 
length of the step. Values 𝑑𝑑 > 1 allow for some noise to be present in the slice sum 
plot, as sometimes the largest drop did not occur just between two consecutive slices. 
The length 𝑑𝑑 was set to be 10% of the number of slices, so that images with different 
slice counts would be treated similarly. Once slice 𝑖𝑖 was found, the local maximum 
was simply the slice in range {𝑖𝑖 − 𝑑𝑑, … , 𝑖𝑖 + 𝑑𝑑} that had the largest slice sum. This 
slice would be named the sinus starting slice.  

Once the sinus starting slice was found, the matching air mask for that slice 
was eroded by a disk with a radius of 2. This removes most of the noise within the 
slice. Centre-of-mass (COM) voxel was calculated for all remaining separate 
pocket of air. These COM voxels would mark the starting point for the sinus air 
cavity search. 

 
Figure 3.  Air cavity algorithm process flow. The air and soft TPMs are the inputs, and the air cavity 

mask is the output. (Lindén, Teuho, Teräs, et al., 2022), sinus method evaluation. 

Air segment

Soft tissue 
segment Inside Air mask

Sum of voxels on 
each slice

Find suitable peak, and 
isolate corresponding slice

Erode the sliceCalculate COM for 
remaining objects

Add COM points to 
inside air mask

Initiate region growth algorithm 
from COM each point

Save the results of the region 
growth algorithm, and add to 

final image as air



Materials and Methods 

 41 

3.6.1 Air cavity search 
From each COM point, a recursive region growing algorithm was initiated across the 
initial inside air mask image. A new mask was created with just the COM points 
marked as air. A recursive algorithm called CavityCreeper was started from those 
COM points. 

Summarised CavityCreeper in MATLAB: 

function out_im=Creeper(ref_im, in_im, Coords, layer, maxd) 
if out_im(Coords)==1 && layer<maxd 

neighbour=out_im(newCoord); 
        ref=ref_im(newCoord); 
        if neighbour==0 && ref == 1 
            out_im(newCoord)=1; 
       out_im=Creeper(// 

ref_im,out_im,newCoord,layer+1,maxd); 
        end 
    end 
end 

where out_im, ref_im and, in_im represent the output image, reference image, 
and input image respectively. Coords represent the initial COM point coordinates, 
and newCoord is always one of the three-dimensional 6-neighbourhood coordinates 
where exactly one of x, y, or z dimensions is altered by one. Although not depicted 
in in the summarized version of the algorithm above, each call of the recursion 
algorithm initiates six more recursive calls due to six possibilities for newCoord. Of 
course, some of those calls would not trigger more calls if they ended up in the 
previously handled voxels, or met only non-air voxels, and thus could not expand. 
The maxd parameter of 20 was added so that the recursion would eventually stop in 
case the recursion would end up in the air surrounding outside the head, or 
alternatively there was excessive noise in the image. The cavities found by the 
CavityCreeper would be set as air in the final image. 

3.6.2 Cuboid and Template methods 
To get a cuboid fitting the subject anatomically, a large set of cuboids were placed 
around the air cavities of the subject to find the cuboid with highest Cuboid 
Goodness (𝐶𝐶𝐶𝐶). Initially, a maximum size cuboid was automatically placed in the 
anterior part of the head, and the cuboid was set large enough to cover the air cavities. 
Following this, the possible sub-cuboids within the largest possible cuboid were 
placed into the image, and their 𝐶𝐶𝐶𝐶 was evaluated. The cuboid with largest 𝐶𝐶𝐶𝐶 was 
chosen for further processing, and there was a trade-off between the size of the 
cuboid and the amount of bone segment covered. The 𝐶𝐶𝐶𝐶 criterion is:  
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 𝐶𝐶𝐶𝐶 =
∑ 𝑝𝑝𝑖𝑖𝑖𝑖∊𝐶𝐶

�𝑐𝑐
4�

2 , 
(22) 

Where 𝐶𝐶𝐶𝐶 is the value of the cuboid goodness, 𝐶𝐶 is the cuboid being tested, 𝑐𝑐 is the 
perimeter of the cuboid, and 𝑝𝑝𝑖𝑖 is the bone segment probability value for the voxel 
𝑖𝑖. The 𝐶𝐶𝐶𝐶 value grows when voxels with values larger than 0 in the bone TPM are 
found within the tested cuboid. At the same time, growing the cuboid excessively is 
punished by the denominator that accounts for the perimeter of the cuboid. Perimeter 
was chosen instead of volume, as this favours more cube shaped cuboids. Whereas 
the volume denominator tended to create very flat cuboids, which did not cover 
enough of the bone TPM. 

The second method for finding the sinus region was converting a cuboid template 
in the normalised space to an individual anatomy by using the inverse transformation 
fields created by the segmentation process. This method started by manually drawing 
a cuboid covering the sinus region in the MNI space, like the regional masks used in 
(Ladefoged CN et al., 2015). As each subject was normalized with SPM12 during 
the segmentation, those inverse transformation fields were then used to transform 
the cuboid template back to the individual space of the subject. The mask that is 
generated by the inverse transform, is no longer a square cuboid, as different 
deformations are applied to the template because of the tilts and varying shapes 
present in individual subjects’ images. The inverse transformed cuboid was used as 
a basis for further processing for the template method. 

3.6.2.1 Cuboid search 

The starting point of the cuboid search was the average of the COM points described 
earlier. The cuboid search would iteratively make a larger cuboid and vary its 
position around the starting point. For any image, the dimensions of it can be stated 
by using constants 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 1, one of each dimension. The size and 
location matrix for a cuboid within the image is a three-dimensional binary matrix 
𝐶𝐶 = (𝐶𝐶)𝑖𝑖,𝑗𝑗,𝑘𝑘 with values 0 for most elements, and value 1 for the elements within 
cuboids that have indices in range 

 
�
𝑖𝑖 = 𝑥𝑥𝑠𝑠, 𝑥𝑥𝑠𝑠 + 1, … , 𝑥𝑥𝑒𝑒
𝑗𝑗 = 𝑦𝑦𝑠𝑠, 𝑦𝑦𝑠𝑠 + 1, … , 𝑦𝑦𝑒𝑒
𝑘𝑘 = 𝑧𝑧𝑠𝑠, 𝑧𝑧𝑠𝑠 + 1, … , 𝑧𝑧𝑒𝑒

 (23) 

where start and end indices for each dimension are constrained by 
 

�
1 ≤ 𝑥𝑥𝑠𝑠 ≤ 𝑥𝑥𝑒𝑒 ≤ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
1 ≤ 𝑦𝑦𝑠𝑠 ≤ 𝑦𝑦𝑒𝑒 ≤ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
1 ≤ 𝑧𝑧𝑠𝑠 ≤ 𝑧𝑧𝑒𝑒 ≤ 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 .

 (24) 
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There is also the bone probability image matrix 𝑃𝑃 that consist of elements 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘 
that denote the bone probabilities of voxels in coordinates 𝑖𝑖, 𝑗𝑗, 𝑘𝑘. Matrices 𝑃𝑃 and 𝐶𝐶 
have the same dimensions. The goodness criterion for the cuboid can now be 
expanded as: 

 
𝐶𝐶𝐶𝐶(𝐶𝐶) =

∑ ∑ ∑ 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑧𝑧𝑒𝑒
𝑘𝑘=𝑧𝑧𝑠𝑠

𝑦𝑦𝑒𝑒
𝑗𝑗=𝑦𝑦𝑠𝑠

𝑥𝑥𝑒𝑒
𝑖𝑖=𝑥𝑥𝑠𝑠

�𝑑𝑑(𝐶𝐶)
4 �

2 , (25) 

where 
 𝑑𝑑(𝐶𝐶) = 4�(𝑥𝑥𝑒𝑒 − 𝑥𝑥𝑠𝑠 + 1) + (𝑦𝑦𝑒𝑒 − 𝑦𝑦𝑠𝑠 + 1) + (𝑧𝑧𝑒𝑒 − 𝑧𝑧𝑠𝑠 + 1)�, (26) 

where 𝐶𝐶𝐶𝐶 is the value of the cuboid goodness, 𝐶𝐶 is the cuboid being tested, 𝑑𝑑(𝐶𝐶) is 
the perimeter of the cuboid 𝐶𝐶, and 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘 is the bone segment probability value for the 
voxel 𝑖𝑖, 𝑗𝑗, 𝑘𝑘.  

The square in the denominator further constrains the cuboid size, as it will grow 
fast when the perimeter grows. Perimeter instead of volume in the denominator 
favours more cube shaped cuboids than flat cuboids, since the cuboid volume for a 
given total perimeter is maximized with a cube. However, as the bone probabilities 
𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘 tend not to fall in an exact cube, the outcome cuboids were slightly flattened. 
Once all possible cuboids had been evaluated, the one with the highest 𝐶𝐶𝐶𝐶 was 
chosen as the final sinus cuboid. Based on image assessment, a rule was put in the 
algorithm that extended the final cuboid slightly forward and upwards, in order to 
capture the edges of the sinuses and nose. 

3.6.2.2 Computationally efficient integral images 

The computational demands for 𝐶𝐶𝐶𝐶 calculations are high, as the fitting area contains 
many possible cuboids, and each individual cuboid can contain thousands of voxels. 
To help alleviate these computational demands, a method to reduce the complexity 
was implemented. The method is similar to the formulae previously published in an 
earlier study (Tapia, 2011). The purpose of the improved method is to replace the 
repeated calls to probability matrix 𝑃𝑃 with an iteratively grown sum matrix. 

The calculation order is important to help the faster calculation process. Let the 
cuboid set Γ𝑀𝑀 include all the cuboids 𝐶𝐶1, … , 𝐶𝐶𝑚𝑚 that can fit inside the largest possible 
sinus cuboid 𝐶𝐶𝑚𝑚. A cuboid 𝐶𝐶𝜔𝜔 ∈ Γ𝑀𝑀 can be defined by the coordinates of two of its 
opposite corners 𝑥𝑥𝜔𝜔

𝑠𝑠 , 𝑥𝑥𝜔𝜔
𝑒𝑒 , 𝑦𝑦𝜔𝜔

𝑠𝑠 , 𝑦𝑦𝜔𝜔
𝑒𝑒 , 𝑧𝑧𝜔𝜔

𝑠𝑠 , 𝑧𝑧𝜔𝜔
𝑒𝑒 , where 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 are the voxels corresponding to 

the dimensions in the cartesian coordinate system, 𝑠𝑠, 𝑒𝑒 notate the points for the start, 
and the end corners of the cuboid respectively. For each 𝜔𝜔 ∈  {1,2, … , 𝑚𝑚}, the 
following inequalities hold: 
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�

𝑥𝑥𝑚𝑚
𝑠𝑠 ≤ 𝑥𝑥𝜔𝜔

𝑠𝑠 ≤ 𝑥𝑥𝜔𝜔 ≤ 𝑥𝑥𝜔𝜔
𝑒𝑒 ≤ 𝑥𝑥𝑚𝑚

𝑒𝑒

𝑦𝑦𝑚𝑚
𝑠𝑠 ≤ 𝑦𝑦𝜔𝜔

𝑠𝑠 ≤ 𝑦𝑦𝜔𝜔 ≤ 𝑦𝑦𝜔𝜔
𝑒𝑒 ≤ 𝑦𝑦𝑚𝑚

𝑒𝑒

𝑧𝑧𝑚𝑚
𝑠𝑠 ≤ 𝑧𝑧𝜔𝜔

𝑠𝑠 ≤ 𝑧𝑧𝜔𝜔 ≤ 𝑧𝑧𝜔𝜔
𝑒𝑒 ≤ 𝑧𝑧𝑚𝑚

𝑒𝑒 .
 (27) 

For the 𝐶𝐶𝐶𝐶 numerator, the sum 𝜎𝜎𝜔𝜔 of all elements 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘 ∈ 𝑃𝑃 that are located 
within the cuboid 𝐶𝐶𝜔𝜔 needs to be calculated. 

 
𝜎𝜎𝜔𝜔 = � � � 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑧𝑧𝜔𝜔
𝑒𝑒

𝑘𝑘=𝑧𝑧𝜔𝜔
𝑠𝑠

𝑦𝑦𝜔𝜔
𝑒𝑒

𝑗𝑗=𝑦𝑦𝜔𝜔
𝑠𝑠

.
𝑥𝑥𝜔𝜔

𝑒𝑒

𝑖𝑖=𝑥𝑥𝜔𝜔
𝑠𝑠

 (28) 

The three nested sums require many calls to matrix 𝑃𝑃. This corresponds to long 
data access and processing times when the number of cuboids 𝑚𝑚 is large. It is also 
evident that the sums 𝜎𝜎𝜔𝜔 share a lot of elements to 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘. Therefore, a large time 
savings can be achieved, if elements 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘 are not accessed multiple times. 

Consider now matrix 𝑀𝑀𝑟𝑟, which consists of all the sums 𝜎𝜎𝑟𝑟 , that are calculated 
from cuboids 𝐶𝐶𝑟𝑟  ∈ Γ𝑟𝑟 ⊂ Γ𝑀𝑀. The set Γ𝑟𝑟 is defined as the set of all the cuboids 𝐶𝐶𝑟𝑟, 
which share the starting corner 𝑥𝑥𝑟𝑟

𝑠𝑠, 𝑦𝑦𝑟𝑟
𝑠𝑠, 𝑧𝑧𝑟𝑟

𝑠𝑠. Because of this shared starting corner, the 
set Γ𝑟𝑟 is a strict subset of the set Γ𝑀𝑀 , which has cuboids with varying start and end 
corners.  

Each cuboid 𝐶𝐶𝑟𝑟 has a different opposing end corner. The relative location of the 
opposite end corner of a cuboid 𝐶𝐶𝑟𝑟 to the starting corner 𝑥𝑥𝑟𝑟

𝑠𝑠, 𝑦𝑦𝑟𝑟
𝑠𝑠, 𝑧𝑧𝑟𝑟

𝑠𝑠 will correspond 
to the location of the sum 𝜎𝜎𝑟𝑟 in the matrix 𝑀𝑀𝑟𝑟. The matrix 𝑀𝑀𝑟𝑟 only covers the space 
of the largest cuboid within Γ𝑟𝑟 and is thus smaller than matrix 𝑃𝑃 that spans the whole 
image space. Due to the different sizes of matrices of 𝑀𝑀𝑟𝑟 and 𝑃𝑃, a new sub matrix 
𝐷𝐷𝑟𝑟 is defined to ease the notation later. The matrix 𝐷𝐷𝑟𝑟 has the same size as matrix 
𝑀𝑀𝑟𝑟, and consists of elements of matrix 𝑃𝑃 in a way that 𝐷𝐷𝑟𝑟(1,1,1) = 𝑃𝑃�𝑟𝑟𝑥𝑥 , 𝑟𝑟𝑦𝑦, 𝑟𝑟𝑧𝑧�, 
where the indices 𝑟𝑟 denote the start corner of the cuboids 𝐶𝐶𝑟𝑟:  𝑟𝑟𝑥𝑥 = 𝑥𝑥𝑟𝑟

𝑠𝑠, 𝑟𝑟𝑦𝑦 = 𝑦𝑦𝑟𝑟
𝑠𝑠, 𝑟𝑟𝑧𝑧 =

𝑧𝑧𝑟𝑟
𝑠𝑠. Due to the simplicity of the first sum, it is trivial that 𝑀𝑀𝑟𝑟(1,1,1) = 𝑃𝑃�𝑟𝑟𝑥𝑥 , 𝑟𝑟𝑦𝑦, 𝑟𝑟𝑧𝑧� =

 𝑝𝑝𝑟𝑟𝑥𝑥,𝑟𝑟𝑦𝑦,𝑟𝑟𝑧𝑧 = 𝐷𝐷𝑟𝑟(1,1,1). 
If one of the indices is incremented by one, this includes one more element from 

𝐷𝐷𝑟𝑟 to the sum 𝑀𝑀𝑟𝑟(2,1,1) = 𝐷𝐷𝑟𝑟(1,1,1) + 𝐷𝐷𝑟𝑟(2,1,1). Since it was already established 
that 𝑀𝑀𝑟𝑟(1,1,1) = 𝐷𝐷𝑟𝑟(1,1,1), the previous equation can be written as 𝑀𝑀𝑟𝑟(2,1,1) =
𝑀𝑀𝑟𝑟(1,1,1) + 𝐷𝐷𝑟𝑟(2,1,1). This recursive behaviour generalizes into one dimensional 
recursion equations along the 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 axes: 

 
�

𝑀𝑀𝑟𝑟(𝑖𝑖, 1,1) = 𝑀𝑀𝑟𝑟(𝑖𝑖 − 1,1,1) + 𝐷𝐷𝑟𝑟(𝑖𝑖, 1,1)     
𝑀𝑀𝑟𝑟(1, 𝑗𝑗, 1) = 𝑀𝑀𝑟𝑟(1, 𝑗𝑗 − 1,1) + 𝐷𝐷𝑟𝑟(1, 𝑗𝑗, 1)  
𝑀𝑀𝑟𝑟(1,1, 𝑘𝑘) = 𝑀𝑀𝑟𝑟(1,1, 𝑘𝑘 − 1) + 𝐷𝐷𝑟𝑟(1,1, 𝑘𝑘).

 (29) 

After the matrix 𝑀𝑀𝑟𝑟 is populated with all of the elements along the axes, two 
dimensional equations can be reached. The sum 𝑀𝑀𝑟𝑟(2,2,1) can now be calculated as 
𝑀𝑀𝑟𝑟(2,2,1) = 𝐷𝐷𝑟𝑟(1,1,1) + 𝐷𝐷𝑟𝑟(2,1,1) +  𝐷𝐷𝑟𝑟(1,2,1) +  𝐷𝐷𝑟𝑟(2,2,1), if term 𝐷𝐷𝑟𝑟(1,1,1) is 
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added and subtracted to the previous equation, and terms from matrix 𝑀𝑀𝑟𝑟 are 
substituted in, the following equation is reached  

 𝑀𝑀𝑟𝑟(2,2,1) = 𝑀𝑀𝑟𝑟(2,1,1) + 𝑀𝑀𝑟𝑟(1,2,1) −  𝑀𝑀𝑟𝑟(1,1,1) + 𝐷𝐷𝑟𝑟(2,2,1). (30) 

Again, the recursive equation remains symmetric along any two-axis 
combination. Thus, the general two-dimensional recursion equations can be written 
as follows: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑀𝑀𝑟𝑟(𝑖𝑖, 𝑗𝑗, 1) = 𝑀𝑀𝑟𝑟(𝑖𝑖 − 1, 𝑗𝑗, 1) + 𝑀𝑀𝑟𝑟(𝑖𝑖, 𝑗𝑗 − 1,1)
                            −𝑀𝑀𝑟𝑟(𝑖𝑖 − 1, 𝑗𝑗 − 1,1) + 𝐷𝐷𝑟𝑟(𝑖𝑖, 𝑗𝑗, 1)       

𝑀𝑀𝑟𝑟(𝑖𝑖, 1, 𝑘𝑘) = 𝑀𝑀𝑟𝑟(𝑖𝑖 − 1,1, 𝑘𝑘) + 𝑀𝑀𝑟𝑟(𝑖𝑖, 1, 𝑘𝑘 − 1)
                       −𝑀𝑀𝑟𝑟(𝑖𝑖 − 1,1, 𝑘𝑘 − 1) + 𝐷𝐷𝑟𝑟(𝑖𝑖, 1, 𝑘𝑘)   
𝑀𝑀𝑟𝑟(1, 𝑗𝑗, 𝑘𝑘) = 𝑀𝑀𝑟𝑟(1, 𝑗𝑗 − 1, 𝑘𝑘) + 𝑀𝑀𝑟𝑟(1, 𝑗𝑗, 𝑘𝑘 − 1)
                    −𝑀𝑀𝑟𝑟(1, 𝑗𝑗 − 1, 𝑘𝑘 − 1) + 𝐷𝐷𝑟𝑟(1, 𝑗𝑗, 𝑘𝑘).

 (31) 

After the two-dimensional elements to the matrix 𝑀𝑀𝑟𝑟 have been calculated, the 
three-dimensional equations can be formulated. Consider now element 𝑀𝑀𝑟𝑟(2,2,2). It 
can be calculated directly as a sum of elements in 𝐷𝐷𝑟𝑟 as  

 𝑀𝑀𝑟𝑟(2,2,2) = 𝐷𝐷𝑟𝑟(1,1,1) + 𝐷𝐷𝑟𝑟(2,1,1) + 𝐷𝐷𝑟𝑟(1,2,1) + 𝐷𝐷𝑟𝑟(1,1,2) 
                      +𝐷𝐷𝑟𝑟(2,2,1) + 𝐷𝐷𝑟𝑟(2,1,2) + 𝐷𝐷𝑟𝑟(1,2,2) + 𝐷𝐷𝑟𝑟(2,2,2) 

(32) 

By adding and subtracting terms from matrix 𝐷𝐷𝑟𝑟 and then substituting in suitable 
terms from the matrix 𝑀𝑀𝑟𝑟, the Equation 30 can be written as 

 𝑀𝑀𝑟𝑟(2,2,2) = 𝑀𝑀𝑟𝑟(1,2,2) + 𝑀𝑀𝑟𝑟(2,1,2) + 𝑀𝑀𝑟𝑟(2,2,1) − 𝑀𝑀𝑟𝑟(1,1,2)          
                         −𝑀𝑀𝑟𝑟(1,1,2) − 𝑀𝑀𝑟𝑟(1,2,1) − 𝑀𝑀𝑟𝑟(2,1,1) + 𝑀𝑀𝑟𝑟(1,1,1)

+ 𝐷𝐷𝑟𝑟(2,2,2).   

(33) 

 
This equation can be written in general form as: 

 𝑀𝑀𝑟𝑟(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 𝑀𝑀𝑟𝑟(𝑖𝑖 − 1, 𝑗𝑗, 𝑘𝑘) + 𝑀𝑀𝑟𝑟(𝑖𝑖, 𝑗𝑗 − 1, 𝑘𝑘) + 𝑀𝑀𝑟𝑟(𝑖𝑖, 𝑗𝑗, 𝑘𝑘 − 1)   
                              −𝑀𝑀𝑟𝑟(𝑖𝑖 − 1, 𝑗𝑗 − 1, 𝑘𝑘) − 𝑀𝑀𝑟𝑟(𝑖𝑖 − 1, 𝑗𝑗, 𝑘𝑘 − 1)

− 𝑀𝑀𝑟𝑟(𝑖𝑖, 𝑗𝑗 − 1, 𝑘𝑘 − 1)  + 𝑀𝑀𝑟𝑟(𝑖𝑖 − 1, 𝑗𝑗 − 1, 𝑘𝑘 − 1) 
            +𝐷𝐷𝑟𝑟(𝑖𝑖, 𝑗𝑗, 𝑘𝑘).                                                 

(34) 

Note that the simpler one- and two-dimensional recursion equations can be derived 
from the last three-dimensional Equation 32, by setting a combination of the indices 
𝑖𝑖, 𝑗𝑗, 𝑘𝑘 to value 1 and then removing all terms from the three-dimensional equation 
that has any index with value of zero. To calculate an element in the matrix 𝑀𝑀𝑟𝑟, only 
up to seven calls needs to be made to matrix 𝑀𝑀𝑟𝑟 and one to matrix 𝐷𝐷𝑟𝑟, compared to 
potentially thousands of calls to the matrix 𝑃𝑃 in the earlier sum formula for 𝜎𝜎𝜔𝜔.  

Albeit fast, there are still limitations on the order of calculation. Due to each new 
element requiring specific earlier elements to be calculated beforehand, parallel 
processing of these calculations is difficult, as computations need to be synchronised 
carefully. However, the already existing sum matrix 𝑀𝑀𝑟𝑟 can be used to calculate sum 
matrixes 𝑀𝑀𝑜𝑜, which corresponds to the set of cuboids 𝐶𝐶𝑜𝑜  ∈ Γ𝑜𝑜 ⊂ Γ𝑀𝑀 that share a 
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starting corner 𝑥𝑥𝑜𝑜
𝑠𝑠, 𝑦𝑦𝑜𝑜

𝑠𝑠, 𝑧𝑧𝑜𝑜
𝑠𝑠 in a way that all the indices of the start corner are at least 

as large as the starting corner for the previously calculated set Γ𝑟𝑟 
 𝑥𝑥𝑟𝑟

𝑠𝑠 ≤ 𝑥𝑥𝑜𝑜
𝑠𝑠, 𝑦𝑦𝑟𝑟

𝑠𝑠 ≤ 𝑦𝑦𝑜𝑜
𝑠𝑠, 𝑧𝑧𝑟𝑟

𝑠𝑠 ≤ 𝑧𝑧𝑜𝑜
𝑠𝑠. (35) 

If 𝑥𝑥𝑟𝑟
𝑠𝑠 = 𝑥𝑥𝑜𝑜

𝑠𝑠, 𝑦𝑦𝑟𝑟
𝑠𝑠 = 𝑦𝑦𝑜𝑜

𝑠𝑠, 𝑧𝑧𝑟𝑟
𝑠𝑠 = 𝑧𝑧𝑜𝑜

𝑠𝑠, then trivially 𝑀𝑀𝑟𝑟 = 𝑀𝑀𝑜𝑜. Therefore, it may be 
assumed that at least one of the inequalities is strict. If exactly one of the starting 
corner indices is different, then the element in matrix 𝑀𝑀𝑜𝑜 can be calculated by 
subtracting the sum of the probability elements  𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘 from the element in matrix 𝑀𝑀𝑟𝑟, 
that are outside the cuboid limited by the starting corner 𝑥𝑥𝑜𝑜

𝑠𝑠, 𝑦𝑦𝑜𝑜
𝑠𝑠, 𝑧𝑧𝑜𝑜

𝑠𝑠. Practically, this 
can be done by utilizing index shift number 𝑡𝑡 = 𝑥𝑥𝑜𝑜

𝑠𝑠 − 𝑥𝑥𝑟𝑟
𝑠𝑠, or similar for 𝑦𝑦, 𝑧𝑧 

dimensions, to denote the part of matrix 𝑀𝑀𝑟𝑟 that needs to be subtracted. The resulting 
equation for the subtraction is  

 𝑀𝑀𝑜𝑜(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 𝑀𝑀𝑟𝑟(𝑖𝑖 + 𝑡𝑡, 𝑗𝑗, 𝑘𝑘) − 𝑀𝑀𝑟𝑟(𝑡𝑡, 𝑗𝑗, 𝑘𝑘). (36) 

The equation is very similar if it is written along the other two axes: 
 �

𝑀𝑀𝑜𝑜(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 𝑀𝑀𝑟𝑟(𝑖𝑖, 𝑗𝑗 + 𝑢𝑢, 𝑘𝑘) − 𝑀𝑀𝑟𝑟(𝑡𝑡, 𝑗𝑗, 𝑘𝑘)
𝑀𝑀𝑜𝑜(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 𝑀𝑀𝑟𝑟(𝑖𝑖, 𝑗𝑗, 𝑘𝑘 + 𝑣𝑣) − 𝑀𝑀𝑟𝑟(𝑡𝑡, 𝑗𝑗, 𝑘𝑘), (37) 

where 𝑢𝑢 = 𝑦𝑦𝑜𝑜
𝑠𝑠 − 𝑦𝑦𝑟𝑟

𝑠𝑠 and 𝑣𝑣 = 𝑧𝑧𝑜𝑜
𝑠𝑠 − 𝑧𝑧𝑟𝑟

𝑠𝑠. 
For the two-dimensional situation, similar subtraction happens, but due to the 

two subtracted elements from matrix 𝑀𝑀𝑟𝑟 containing several same probability 
elements 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘, this intersect needs to be added back to the equation. The equation 
then becomes:  

 𝑀𝑀𝑜𝑜(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 𝑀𝑀𝑟𝑟(𝑖𝑖 + 𝑡𝑡, 𝑗𝑗 + 𝑢𝑢, 𝑘𝑘) − 𝑀𝑀𝑟𝑟(𝑖𝑖 + 𝑡𝑡, 𝑢𝑢, 𝑘𝑘) − 𝑀𝑀𝑟𝑟(𝑡𝑡, 𝑗𝑗 + 𝑢𝑢, 𝑘𝑘)

+ 𝑀𝑀𝑟𝑟(𝑡𝑡, 𝑢𝑢, 𝑘𝑘), 
(38) 

and similar equations may be written for other two-axis combinations. Finally, in the 
three-dimensional case, where all three indices differ, the intersects of the three 
subtracted two-dimensional elements that are added back to the equation intersect 
with each other. This additional intersection term needs to be removed from the final 
formula. Thus, the final equation is as follows: 

 𝑀𝑀𝑜𝑜(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 𝑀𝑀𝑟𝑟(𝑖𝑖 + 𝑡𝑡, 𝑗𝑗 + 𝑢𝑢, 𝑘𝑘 + 𝑣𝑣)                                                        
                             −𝑀𝑀𝑟𝑟(𝑖𝑖 + 𝑡𝑡, 𝑗𝑗 + 𝑢𝑢, 𝑣𝑣) − 𝑀𝑀𝑟𝑟(𝑖𝑖 + 𝑡𝑡, 𝑢𝑢, 𝑘𝑘 + 𝑣𝑣)

− 𝑀𝑀𝑟𝑟(𝑡𝑡, 𝑗𝑗 + 𝑢𝑢, 𝑘𝑘 + 𝑣𝑣) + 𝑀𝑀𝑟𝑟(𝑖𝑖 + 𝑡𝑡, 𝑢𝑢, 𝑣𝑣)                     
                          +𝑀𝑀𝑟𝑟(𝑡𝑡, 𝑗𝑗 + 𝑢𝑢, 𝑣𝑣) + 𝑀𝑀𝑟𝑟(𝑡𝑡, 𝑢𝑢, 𝑘𝑘 + 𝑣𝑣) − 𝑀𝑀𝑟𝑟(𝑡𝑡, 𝑢𝑢, 𝑣𝑣). 

(39) 

Like earlier, the one- and two-dimensional equations can be reached from the 
last three-dimensional ones, by setting any of the index shift numbers 𝑡𝑡, 𝑢𝑢, 𝑣𝑣 as zero 
and eliminating the terms where any of the indices go to zero. 

If the set Γ𝑟𝑟 from which the matrix 𝑀𝑀𝑟𝑟 was calculated included the call to the 
cuboids that had the same starting corner as cuboid 𝐶𝐶𝑚𝑚, then the matrix 𝑀𝑀𝑟𝑟 includes 
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the sum 𝜎𝜎𝑚𝑚, which is the sum of all the elements in the largest possible cuboid 𝐶𝐶𝑚𝑚. 
Any cuboid 𝐶𝐶𝜔𝜔 ∈ Γ𝑀𝑀 has a starting corner that is at least as large as the starting corner 
of the cuboid 𝐶𝐶𝑚𝑚, meaning  𝑥𝑥𝑚𝑚

𝑠𝑠 ≤ 𝑥𝑥𝜔𝜔
𝑠𝑠 , 𝑦𝑦𝑚𝑚

𝑠𝑠 ≤ 𝑦𝑦𝜔𝜔
𝑠𝑠 , 𝑧𝑧𝑚𝑚

𝑠𝑠 ≤ 𝑧𝑧𝜔𝜔
𝑠𝑠 . This means that if the 

cuboid 𝐶𝐶𝑚𝑚 belongs to the set Γ𝑟𝑟, then the all sum matrices 𝑀𝑀𝑜𝑜 corresponding to all 
sets Γ𝑜𝑜 ⊂ Γ𝑀𝑀 can be calculated from the sum matrix 𝑀𝑀𝑟𝑟. The calculation process for 
the sum matrices can start by first calculating the matrix 𝑀𝑀𝑟𝑟 for a set Γ𝑟𝑟 that contains 
the largest possible cuboid 𝐶𝐶𝑚𝑚. After this, every other sum matrix 𝑀𝑀𝑜𝑜 can be 
calculated in parallel utilizing the already calculated matrix 𝑀𝑀𝑟𝑟. Once an arbitrary 
sum matrix 𝑀𝑀𝜔𝜔  pertaining to the set Γ𝜔𝜔, is completed the 𝐶𝐶𝐶𝐶 value for all associated 
cuboids can be calculated simply by using the sum matrix in the simplified version 
of the Equation 23, 𝐶𝐶𝐶𝐶 formula 

 
𝐶𝐶𝐶𝐶 �Γ𝜔𝜔𝑖𝑖,𝑗𝑗,𝑘𝑘� =

𝑀𝑀𝜔𝜔(𝑖𝑖, 𝑗𝑗, 𝑘𝑘)
(𝑖𝑖 + 𝑗𝑗 + 𝑘𝑘)2, (40) 

where 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 are the coordinates of the end corner relative to the starting corner. The 
denominator 𝑑𝑑(𝐶𝐶)

4
 is simplified, as all the starting points can now be set to value 1 as 

the indices 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 equal to the differences in the full version of the equation.  
This time the parallelization can be mostly unsynchronized, as each set Γ𝜔𝜔 can 

keep calling the already calculated matrix 𝑀𝑀𝑟𝑟, and only needs to store the start and 
end corner values of the cuboid with highest 𝐶𝐶𝐶𝐶 value and the 𝐶𝐶𝐶𝐶 value itself. For 
example, a thread can be given to each set Γ𝜔𝜔, and then compute the matrices 𝑀𝑀𝜔𝜔 
sequentially to avoid I/O conflicts. Comparing the ultimate set outputs and finding 
the cuboid with the globally highest 𝐶𝐶𝐶𝐶, once all the sets Γ𝜔𝜔 have been completed, 
is computationally fast. Unfortunately, true parallelization was not possible for the 
server setup used in the sinus method evaluation, so the backwards stepping part of 
the calculation process was not implemented. 

3.6.3 Sinus area voxel conversion 
When the cuboid location was found with either the sinus cuboid or cuboid template 
method, the voxels within it needed to be assigned HU values. This was done with 
an MRI-CT conversion model that converts the voxels into air, soft tissue, or a mix 
of the two. The data scatter plot (Figure 4) of the MRI intensity and CT HU values 
voxels within the cuboid masks showed a concentration of data at -1000 HU and 0 
HU. Typically, the -1000 HU concentration point was applicable for the smaller MRI 
intensity values, whereas the 0 HU concentration point was present throughout the 
MRI intensity range. There is also a substantial number of voxels between -1000 HU 
and 0 HU concentration lines.  

A tri-linear conversion function was created. The function first had a horizontal 
line matching air with -1000 HU until MRI intensity 𝑎𝑎. This was followed by a 
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diagonal line that starts at -1000 HU at MRI intensity 𝑎𝑎, and continued to 0 HU at MRI 
intensity 𝑏𝑏. This diagonal part represented the soft tissue – air mix within the sinuses. 
Lastly, another horizontal line at 0 HU started from MRI intensity 𝑏𝑏, and continued to 
maximum MRI intensity. The MRI intensities 𝑎𝑎 and 𝑏𝑏 that define the model were 
points were estimated from the data. The process was a bootstrap style sampling of 
100 voxels from each subject’s sinus mask, resulting in 1000 pairs of MRI intensities 
and HU values. All reasonable combinations of start and end values for the horizontal 
lines and the diagonal were tried. The one that gave rise to the smallest square sum of 
distances (SSD) of voxels to the conversion curve was chosen for that sample.  

 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑚𝑚𝑚𝑚𝑚𝑚 �

⎩
⎪
⎨

⎪
⎧ �𝑦𝑦𝑗𝑗 − 1000�2, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑗𝑗 < 𝑎𝑎

𝑑𝑑 ��𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗�, 𝑦𝑦 =
1000
𝑏𝑏 − 𝑎𝑎

(𝑥𝑥 − 𝑏𝑏)�
2

, 𝑖𝑖𝑖𝑖 𝑎𝑎 < 𝑥𝑥𝑗𝑗 < 𝑏𝑏

𝑦𝑦𝑗𝑗
2, 𝑖𝑖𝑖𝑖 𝑥𝑥𝑗𝑗 > 𝑏𝑏

,
𝑛𝑛

𝑗𝑗=1

 (41) 

where a and b are the MRI intensities at start and end x-coordinates for the diagonal 
part, and parameters to adjust to minimize the SSD, and 𝑑𝑑(𝑥𝑥) is the distance formula 
for point �𝑥𝑥𝑗𝑗𝑦𝑦𝑗𝑗� and the diagonal line segment in two-point form. 

The sampling and estimation were repeated for 100 times, after which the 
average start and end points 𝑎𝑎 and 𝑏𝑏 were chosen as the final start and end points for 
the changes in the conversion function. 

 
Figure 4.  Summary of the data points of all MRI-CT sinus conversion samples. The voxels that 

are considered as bone based on their HU-values cannot be identified using their MRI 
intensity alone. (Lindén, Teuho, Teräs, et al., 2022), sinus method evaluation.  
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3.7 Machine learning methods 
In the last part of the study, the goal was to improve the segmentation of the bone 
from the simple thresholding method originally implemented in the beginning. It was 
chosen to use machine learning methods to help with the segmentation. There were 
two MRI images available for each subject, called in-phase and out-phase images. 
These were both segmented into six tissue class probability maps, resulting in a total 
of 14 images for each subject.  

It was also decided to not use an atlas-based approach to try to convert the whole 
image using the machine learning algorithms, but instead only gather data from the 
nearest environment of each voxel. This structured data approach supported a more 
limited cohort of test subjects to be used, as each subject can be sampled for millions 
of data points, if necessary. Ultimately, the dataset needs to be large enough to 
capture enough subject-to-subject variance to prevent overfitting and be more 
representative for independent test datasets. 

Each subject was sampled for 30,000 voxels. Any voxels that were outside a 
simply drawn head mask were discarded, and new voxels were sampled until the set 
of 30,000 was reached. To provide the data some environment information, the 
average tissue probabilities, and MRI intensities from the 7×7×7 and 21×21×21 
voxel environments of each data point were sampled. Together, with the sinus cuboid 
information, this leaves 43 data points for each voxel. 

An RF machine learning algorithm, XRT, within open-source machine learning 
platform H2O was used. To begin, the 18-subject dataset was split into two groups. 
Set A had eight subjects, while set B had ten. The RF algorithm was used to classify 
whether a given voxel is bone or not by using 157 HU as the bone threshold. This 
was trained with Set A, and the resulting model was used to estimate the bone 
probabilities 𝑝𝑝1 for Set B. Using a suitable 𝑝𝑝1 threshold, removes most of the non-
bone tissue, assigning better bone segmentation than the original one.  

The bone probabilities 𝑝𝑝1 and corresponding CT HU values in the Set B were 
also used to fit a simple 2nd degree polynomial regression curve between the RF 
model classifier probability and CT HU value: 

 
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑎𝑎 𝑝𝑝1

2 + 𝑏𝑏 𝑝𝑝1 + 𝑐𝑐, (42) 

where 𝑠𝑠𝑠𝑠𝑠𝑠 is the sCT HU value and 𝑝𝑝1 is the RF classifier probability. The 
parameters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 were chosen so that the sum of residuals is minimized: 

 
min

 
��(𝐻𝐻𝐻𝐻 − 𝑠𝑠𝑠𝑠𝑠𝑠)2�, (43) 
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where 𝐻𝐻𝐻𝐻 and 𝑠𝑠𝑠𝑠𝑠𝑠 are the HU values for CT and sCT, respectively. This was done 
by leave-one-out method to generate 10 different conversion curves, one for each 
subject. The fitting was done similarly to an earlier study (Ladefoged CN et al., 
2015), and the HU values were averaged for each classifier probability (0, 0.01, 0.02, 
…, 0.99, 1.00) before fitting the regression curve.  

3.8 Image quality assessment 
The resulting images and distributions from all evaluations were assessed with a 
variety of different measurements, chosen for their applicability for each specific 
situation.  

3.8.1 Descriptive tests 
Descriptive tests were used to assess the overall agreement between images or 
distributions. These include arithmetic mean and median, standard deviation, and 
quartile range, as well as maximum / minimum values. Additionally, various graphs, 
such as scatter and Bland-Altman plots, were used to illustrate the differences 
between distributions. Mean average error (MAE) values (Eq. 42) were calculated 
as well when the ML based segmentation was evaluated  

 
𝑀𝑀𝑀𝑀𝑀𝑀 =

∑ |𝐶𝐶𝐶𝐶𝑖𝑖 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
, (44) 

where 𝐶𝐶𝐶𝐶𝑖𝑖 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 are the HU values for voxels within the inspected mask for CT 
and sCT images, respectively. The mask includes 𝑛𝑛 voxels. 

3.8.2 DICE coefficient 
DICE coefficients were evaluated for the sCT-CT overlap in the sinus method and 
ML based segmentation evaluations to estimate the quality of the bone delineation 
in the attenuation maps. DICE coefficients for CT (A) and sCT (B) were calculated 
using Equation 43 (Dice, 1945):  

 
 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =

2 |(𝐴𝐴 ⋂ 𝐵𝐵)|
|𝐴𝐴| + |𝐵𝐵| , (45) 

Where the function |X| denotes the number of voxels in an arbitrary binary mask X. 
Voxels, where 𝐻𝐻𝐻𝐻 >  157, were included in the masks. A binary mask is an image 
which only get values of 0 and 1, or False and True, and are used to select a desired 
subsections of other images by multiplying the images with the binary masks. Binary 
masks can also be used to count voxels, as done above. DICE coefficient can vary 
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between 0 and 1, where coefficient of 0 means no overlap between the considered 
images, and 1 means perfect overlap or equivalently, that the intersection mask of 
the two images is the same as the union mask of those two images. 

An HU threshold was fixed to 157 HU throughout the study when DICE 
coefficients were assessed. This is equivalent to the attenuation coefficient of 
0.105  cm-1, which is below the attenuation coefficient limit of spongy bone, 
reportedly to be at 0.11 cm-1 (Mehranian, Arabi and Zaidi, 2016b). The attenuation 
coefficient is still higher than soft tissue, so it would separate the bone and non-bone 
tissues well. The choice to choose this value was supported by its previous use as a 
threshold between bone and non-bone tissue (Son et al., 2010).   

3.8.3 Attenuation coefficient and HU value analysis 
The attenuation coefficient or HU values were investigated in every part of the study 
in various forms. Since improving the modelling of the attenuation maps was the 
main purpose of the study, the attenuation coefficients need to be investigated to 
properly assess the accuracy of the model. In the sinus model evaluation, the 
attenuation coefficients were assessed with a leave-one-out method, where the sinus 
conversion curve estimates were created without one of the ten subjects, and the 
resulting estimate was then used for the left-out subject. This was repeated with each 
subject. 

3.8.4 VOI level analysis 
As TOF effect and sinus model evaluations included in the PET data, it was 
reasonable to investigate the performance of the models on VOI level. VOI level 
analysis was generally done by examining the average values within the VOI using 
arithmetic means of the voxels within the VOI. 

3.8.5 Bias Atlases 
In the sinus model evaluation, the Atlas PET images were calculated. The Atlas 
images represented the mean and standard deviation of PET uptake (kBq/mL) across 
the subject group. The images were calculated for all evaluated CTAC and MRAC 
methods. To assess the global bias distribution, mean bias atlas images were 
calculated as described by (Ouyang et al., 2013; Teuho et al., 2017). Before 
inspection, the atlas images were masked with a binary brain mask.   
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3.8.6 ROC, AUC, and Youden’s J 
In the ML based segmentation evaluation, different classifiers were evaluated and 
compared against each other. ROC, AUC, and Youden’s J were used to quantify the 
performance of the classifiers. ROC is a curve that connects the sensitivity and 
specificity of a classifier together. For each probability 𝑝𝑝1 of the classifier both 
sensitivity and specificity are measured, and these pairs are plotted and connected 
for each value of 𝑝𝑝1 ∈ [0,1]. A perfect classifier would have sensitivity that goes 
immediately to 1, and specificity that remains at 1 for all 𝑝𝑝1. For plotting purposes, 
ROC is typically plotted with sensitivity on y-axis and 1-specificity on the x-axis. 
Thus, good classifier ROCs tend to get close to the top left corner, while bad ones 
remain close to the diagonal. 

AUC refers to the area under the ROC curve. For perfect classifier AUC is 1, 
and for a perfectly random classifier, the AUC value is 0.5, as the ROC curve is a 
diagonal thereby making AUC effectively a triangle. Youden’s J is the largest gap 
along the y-axis between the ROC and the diagonal line. The best possible Youden’s 
J is 1, if the ROC jumps immediately to coordinates (0,1) while the diagonal is still 
at coordinates (0,0). A random classifier following the diagonal line would have 
Youden’s J of 0. 

 



 53 

4 Results 

Chapter 4 summarizes the key results from the study. The initial pipeline 
development focuses on the choosing of appropriate attenuation coefficients for the 
sCT pipeline. The results indicate that the presented pipeline can generate usable 
sCT images for further applications. TOF effect evaluation explores the accuracy of 
PET reconstruction when the attenuation map is worsened, and how that accuracy 
changes when TOF or non-TOF reconstruction is applied. Generally, the TOF 
reconstruction reduces the error in the images as expected, and the error reduction is 
larger when the attenuation maps are of worse quality.  

The sinus model evaluation assesses the performance of the new sinus methods 
by comparing DICE values, sinus area attenuation coefficients, and PET 
reconstruction accuracy between methods. The new sinus handling methods generate 
higher DICE coefficients and yield smaller errors in attenuation coefficient and show 
improved PET VOI level results with TOF reconstruction. The ML assisted 
segmentation assessment validates the quality of the ML RF model by DICE 
coefficients, MAE values, and classifier ROC performance metrics. The RF model 
shows improved DICE coefficients and reduced MAE values with continuous HU 
assignment. The RF classifier is also better when measured with the AUC and 
Youden’s J. 

4.1 Findings – Initial pipeline framework 
development  

The SPM8 probability maps showed a reasonable segmentation, albeit some noise 
was present in the probability maps, and the sinus regions had too much volume in 
the bone TPM. An example set of anatomical MRI (atMRI) images can be seen in 
Figure 5. The resulting attenuation maps can be seen in Figure 6. Unlike the clinical 
attenuation map, the TPB-AC map had skull and air cavities, although the sinuses 
and mastoids had some issues.  

The head level VOI analysis showed that the difference of mean µ-values 
ranged from -4.5% to +0.4% for the CTAC and TPB-AC when the attenuation 
coefficient of 0.145 cm-1 was used. There was more underestimation with 
0.135 cm-1 as bone attenuation coefficient. The R2 value for the whole head ranged 
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from 0.84 to 0.92 when the bone attenuation coefficient of 0.145 cm-1 was used. 
With the other tested attenuation coefficient (0.135 cm-1) for bone, the results 
were slightly worse.  

 
Figure 5.  Example atMRI pictures, (Teuho et al., 2016), initial pipeline setup. Top row is 

anatomical MR data. Second, third, and fourth row is non-processed tissue probability 
maps for bone, scalp and air respectively. © 2016 IEEE. 
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There were smaller differences between the attenuation maps for the soft tissue 
parts of the image. The differences ranged from -1.4% to 2% when using a higher 
attenuation coefficient for bone. The subject-wise errors were larger in the skull VOI. 
The better performing three subjects had errors of -4.1%, -6.6% and -8.2%, while 
the errors of the others ranged from -9.8% to -11.6% when the bone attenuation 
coefficient of 0.145 cm-1 was used. Like earlier, the underestimation was more 
severe with a lower attenuation coefficient.  

 
Figure 6.  Example of attenuation maps. (Teuho et al., 2016), initial pipeline setup. From top to 

bottom, CTAC, TPB-AC, and clinical MRAC. © 2016 IEEE. 

A visual evaluation of bias images from PET data reconstructed with attenuation 
maps of varying bone attenuation coefficients showed differences between 
reconstructions (Figure 7). The attenuation coefficient of 0.145 cm-1 produced the 
most balanced error distribution. The lower attenuation coefficient was 
underestimating the activity in most areas, and the higher coefficients were 
overestimating the activity across the brain. In particular, the 0.171 cm-1 attenuation 
coefficient overestimated the activity almost everywhere. The same pattern was seen 
in the actual PET images, where clinical attenuation map had the lowest activity, due 
to no increased attenuation for bone. The attenuation map reconstructed with a 
0.135 cm-1 bone attenuation coefficient had then higher activity than the clinical 
attenuation map, while the CTAC had the highest activity.  
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Figure 7.  Example of Bias when different attenuation coefficients are used. (Teuho et al., 2016), 

initial pipeline setup. Bias is calculated for different bone density TPB-AC reconstructed 
PET images against CTAC reconstructed PET images. © 2016 IEEE. 

Subject level VOI analysis kept the same order, and clinical attenuation maps 
yielded most PET activity underestimation, while the 0.135 cm-1 and 0.145 cm-1 
attenuation maps were quite close to each other and CTAC. When the VOIs were 
averaged across the subjects and evaluated on VOI level, a similar pattern was 
detected. The clinical attenuation maps caused most underestimation, and the 
0.135 cm-1 and 0.145 cm-1 attenuation maps were quite close together. With the clinical 
attenuation maps, 10 out of 28 regions showed at least 10% underestimation on 
average across the subjects. With the 0.135 cm-1 and 0.145 cm-1 attenuation maps, no 
region was on average more than 4% off. The 0.145 cm-1 attenuation coefficient map 
had slightly better overall mean error than the 0.135 cm-1 attenuation coefficient map. 

 
Figure 8.  Scatter plots for the fit. Clinical (Left) and 0.145 cm-1 (right) models. The 0.135 cm-1 

attenuation map is not shown but is closely similar to the 0.145 cm-1 attenuation map. 
(Teuho et al., 2016), initial pipeline setup © 2016 IEEE. 
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When looking at the scatter plots in Figure 8, the plot created from the clinical 
attenuation map produced visible underestimation, especially in the high activity 
voxels. Of the attenuation maps with separate bone tissue, this effect was not seen to 
the same extent. There were no clear differences in the scatter plots when different 
attenuation coefficients were tried for the bone tissue.  

In summary, the study presented a clinically viable pipeline for MR-based 
attenuation correction. Different attenuation coefficients were tried, and the most 
suitable was selected for future studies. The created attenuation maps were 
computationally reasonable, and produced no systematic bias across the whole head, 
even though some local biases remained.  

4.2 Findings – TOF effect on reconstruction quality 
using different AC maps  

The results showed that using TOF improves the accuracy of the reconstruction in 
most cases. The effect was smaller when the attenuation map was more accurate. 
Subject level analysis showed that for all attenuation maps at least seven out of ten 
subjects showed reduced bias when TOF reconstruction was applied. 

When all subjects were analysed together, the three class MRAC showed no clear 
improvement, while the two class MRACs both showed clear improvement (Figure 
9). The linear regression fitting parameters are shown in Table 1. There, the R2 values 
show good improvement for the two class MRAC methods. The Bland-Altman plots 
showed similar results, with decreased error when TOF was applied, and a generally 
larger effect with less accurate attenuation maps. 

Table 1.  Selected fitting coefficients for linear regression and R2 values from the correlation 
analysis (Lindén, Teuho, Klén, et al., 2022), TOF effect evaluation.  

Method a b b  
p-value a 95% CI b 95% CI R2 

3-class MRAC 
TOF 0.966 89.1 0.142 [0.9595, 0.9717] [−30.06, 208.32] 0.996 
non-TOF 0.960 134 0.030 [0.9544, 0.9656] [12.77, 254.80] 0.997 

2-class MRAC 
TOF 0.938 152 0.115 [0.9286, 0.9479] [−37.25, 341.09] 0.991 
non-TOF 0.932 256 0.022 [0.9216, 0.9418] [37.25, 474.32] 0.990 

2-class MRAC 
(no air cavities) 

TOF 0.943 211 0.027 [0.9336, 0.9527] [23.59, 398.48] 0.991 
non-TOF 0.934 320 0.003 [0.9241, 0.9439] [104.95, 534.89] 0.990 
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Figure 9.  Regression plots of non-TOF (marked as blue ‘o’ symbol) and TOF (marked as red ‘x’ 

symbol) reconstructed activity values with different MRAC methods versus CTAC 
reconstructed PET. A) 3-class MRAC, B) 2-class MRAC, C) 2-class MRAC without air 
cavities (Lindén, Teuho, Klén, et al., 2022), TOF effect evaluation. 
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The mean PET images showed some local improvements when TOF 
reconstruction was applied. Due to small absolute changes in activity, those 
improvements were easier to observe with mean bias atlas images, presented in 
Figure 10. The bias atlas images showed improvements near sinuses where 
overestimation was reduced or turned into underestimation. This could be seen 
regardless of the attenuation map method. The two class attenuation maps had 
underestimation near the skull, which was to be expected when no bone class was in 
the model. At the same time, the middle of the brain was largely overestimated. 
Applying TOF reconstruction clearly helped to alleviate the biases for both the 
cortical and middle parts of the brain. The three-class method had more a subtle 
effect with slight reduction of underestimation outside of the sinus areas. In the bias 
standard deviation images, the cortical areas showed largest decrease of deviation 
for the two class methods, while the three-class method had more even reduction of 
deviation across the brain. 

 
Figure 10. Mean bias atlas images from non-TOF and TOF reconstructed PET. A clear reduction 

of bias is seen in the TOF reconstructed images across the brain compared to non-TOF 
reconstructed PET. A/D) 3-class MRAC, B/E) 2-class MRAC, C/F) 2-class MRAC 
without air cavities using non-TOF (Left) and TOF (Right) reconstruction. (Lindén, 
Teuho, Klén, et al., 2022), TOF effect evaluation. 

Finally, the VOI level results showed that almost two thirds of VOIs have their 
average bias reduced when TOF is applied with all of the two class attenuation maps. 
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The three-class attenuation map had a few more VOIs showing reduced bias. When 
the significance of the change of the median across all VOIs was tested, two out of 
three improvements were considered statistically significant (Table 2). 

Table 2.  Results of the Wilcoxon’s signed rank test. Median difference denotes the median of 
average VOI errors in TOF vs. non-TOF reconstructions. The significance thresholds of 
the Benjamini–Hochberg method are given, and statistically significant p-values are 
denoted with *. (Lindén, Teuho, Klén, et al., 2022), TOF effect evaluation. 

Method Median Difference 
(TOF vs. Non-TOF) 

p-Value  
(Two-Tailed) 

Benjamini–Hochberg 
Significance 
Threshold 

3-class MRAC −2.9% vs. −3.3% <0.001 * 0.0166 
2-class MRAC −5.7% vs. −5.9% 0.224 0.0500 
2-class MRAC 
(no air cavities)  −4.7% vs. −5.4% 0.018 * 0.0333 

In summary, applying TOF reconstruction improved the accuracy of the resulting PET images. The 
improvement was larger when the attenuation maps were less accurate. Improvement was seen in the 
majority of subjects and regions. However, some regions showed increased bias when TOF was applied.  

4.3 Findings – Sinus segmentation method 
development 

The results were overall favourable towards the proposed sinus methods. Visually, 
the air pathways and regions with mixed air and soft tissue were better delineated 
with both the cuboid and template methods. Using the earlier bulk density method, 
leaves a large amount of incorrectly assigned bone in the region. This can lead to 
overestimated attenuation. The mean and standard deviation PET atlas images did 
not show any large changes between the two new methods and old bulk density 
method. Some slight changes could be seen visually in occipital and parietal lobes, 
as well as in the cerebellum. 

The DICE results of the slices containing the sinuses are presented in the Table 
3. The DICE values grow over 2.5% on average, so the fit between MRAC and 
CTAC attenuation maps improves slightly. Of note, is that not a single subject got a 
worse DICE value with the new sinus methods. This indicates that the presented 
sinus methods remove more incorrectly assigned bone than actual bone when 
compared to the reference bulk density method. The correlation analysis supports 
the increase in DICE values, as both new sinus methods get higher bone tissue 
correlation factors than the bulk reference method. The DICE values alone are not 
sufficient, as removing actual bone can lead to too low of an attenuation correction 
in the region. However, the leave-one-out attenuation coefficient analysis showed 
that both sinus methods, together with the three-step conversion method, reduces the 
error of the sinus region attenuation coefficient (Figure 11). 
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Table 3.  DICE coefficients between different methods for slices 50-70 with percentage difference 
to the reference. (Lindén, Teuho, Teräs, et al., 2022), sinus method evaluation. 

Subject 
Number Bulk Cuboid Template Difference Cuboid–- 

Bulk 
Difference Template–- 

Bulk 

1 0.845 0.852 0.856 0.88% 1.37% 
2 0.826 0.853 0.853 3.26% 3.24% 
3 0.843 0.872 0.872 3.43% 3.49% 
4 0.725 0.771 0.768 6.32% 5.99% 
5 0.820 0.856 0.846 4.47% 3.26% 
6 0.737 0.748 0.751 1.49% 1.79% 
7 0.751 0.771 0.766 2.74% 2.05% 
8 0.868 0.882 0.882 1.59% 1.57% 
9 0.823 0.859 0.853 4.31% 3.56% 
10 0.825 0.832 0.829 0.92% 0.52% 
Median 0.824 0.853 0.849 3.00% 2.65% 

 
The template method reduces the error in all ten subjects. The sinus cuboid method 

reduces the error in all nine subjects out of ten, but overall, the error reduction is larger 
than with the template method. The raw attenuation coefficient data showed 
overestimation for each subject with the bulk density method, whereas the sinus cuboid 
and template method yielded lower attenuation coefficients. While they are still in 
general higher than the ones in CTAC attenuation maps, a couple subjects get slightly 
lower attenuation coefficient with the new sinus methods than with the CTAC. 

 
Figure 11. Absolute relative difference of the attenuation coefficients between CTAC and MRAC in 

the sinus region per subject. The values for the cuboid and template methods are 
calculated using leave-one-out method. Smaller numbers indicate a better match between 
MRAC and CTAC. (Lindén, Teuho, Teräs, et al., 2022), sinus method evaluation. 
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The PET image VOI analysis showed moderately diverging results. When TOF 
was not used, the bias for half of the VOIs improved, while the bias for the other half 
worsened, when compared to the Bulk density model. However, the absolute 
changes were small. When TOF was applied, 80% of the VOIs showed 
improvement. Thus, in TOF it can be said that the presented sinus methods reduce 
the bias across various brain regions on average. It is notable that for both TOF and 
non-TOF the cerebellum area became underestimated. The reason for the effect seen 
in the cerebellum is partly caused by the change of bias seen in the bias atlas images 
(Figure 12). The cerebellum area has spots of large overestimation along with some 
underestimation in the bulk density images. The presented sinus methods removed 
the overestimation, bringing the cerebellum to a more uniform underestimation. The 
sinus methods had an effect also outside the cerebellum. For both non-TOF and TOF 
reconstructions there was a reduction of error in the middle parts of the brain and 
near the sinuses. 

In summary, the presented sinus methods yielded attenuation maps that have 
better resemblance to those created from CT images than the attenuation maps 
created with the previous bulk density method had achieved. This can be seen both 
with bone tissue delineation and the attenuation coefficient in the whole sinus area. 
The resulting PET images do not show conclusive VOI level changes with non-TOF 
reconstruction, but the vast majority of VOIs improved with TOF reconstruction. In 
the bias images, reduction of error can be seen in many areas, while the cerebellum 
remains problematic, with systemic but more uniform underestimation. 

 
Figure 12. Bias atlas images showing the voxel-by-voxel relative difference between MRAC and 

CTAC based PET images in non-TOF and TOF reconstruction. Non-TOF 
reconstructions are represented with a) CTAC, c) bulk, e) cuboid and g) template 
method. TOF reconstructions are represented with b) CTAC, d) bulk, f) cuboid and h) 
template method. Local overestimations are seen with the bulk method whereas 
overestimations are reduced with the proposed methods and with TOF. (Lindén, Teuho, 
Teräs, et al., 2022), sinus method evaluation. 
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4.4 Findings – Machine learning assisted bone 
segmentation and HU assignment 

The focus of the ML segmentation evaluation was to show that the RF method can 
yield better segmentation than the original SPM bone probability-based 
segmentation. This can be seen in the sCT comparison (Figure 13), where the 
continuous HU assignment RF method shows a better match with the CT. 

 
Figure 13. Comparison of the sCT images, a) original SPM12 based bulk density assignment sCT 

image. b) RF based bulk density assigned sCT image c) RF based continuous HU value 
assignment sCT d) CT. The RF sCT images are better at creating the spine and neck 
area, and RF continuous is also good at converting the skull bones. 

The numerical results indicate that the random forest classifier is more accurate 
at separating bone tissue from non-bone tissue than the SPM New Segment bone 
probability thresholding method. The SPM Bone probability thresholding created 
more Type I and Type II errors than the RF based methods. This led to the random 
forest classifier having larger F-scores / DICE coefficients than the SPM bone 
probability thresholding (Table 4). Increasing the bone probability threshold would 
further reduce the F-scores of the bone probability thresholding model. 

Table 4.  Assignment score table for bone segment probability at 25% threshold (SPM Model) 
and for the continuous bone model together with Random Forest classifier at 27.5% 
threshold (RF Model). The table shows True and False rates, as well as the F-
score/DICE coefficient for the classifier. 

SPM Model Actual  RF Model Actual 

Prediction <157 HU >157 HU  Prediction <157 HU >157 HU 
<157 HU 80.79 % 6.34 %  <157 HU 78.81 % 2.60 % 
>157 HU 3.76 % 9.10 %  >157 HU 5.74 % 12.85 % 
F-score DICE 64.3 %   F-score DICE 75.5 %  
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The RF based method had similar MAE values with bulk assignment than the 
SPM method, but when the continuous bone was implemented, the RF method 
became the superior method (Table 5).  

Table 5. MAE values for entire image / bone tissue per subject and method. RF Continous has 
the smallest MAE in all comparisons. 

Subject SPM12 RF Bulk RF Continuous 
1 169 / 646 182 / 644 144 / 446 
2 177 / 394 196 / 426 151 / 274 
3 168 / 555 184 / 572 146 / 401 
4 181 / 535 198 / 559 167 / 416 
5 189 / 472 190 / 454 173 / 364 
6 189 / 631 187 / 554 166 / 455 
7 241 / 705 232 / 597 212 / 518 
8 186 / 619 192 / 621 153 / 444 
9 154 / 619 183 / 617 136 / 404 
10 185 / 678 199 / 649 160 / 484 
Average  184 / 585 194 / 569 161 / 421 

 
The ROC further showed the superiority of the RF model (Figure 14). The 

sensitivity of the RF model was constantly superior to the older bone probability 
thresholding method. The AUCs were 72% for SPM bone probability thresholding, 
and 95% for the RF classifier. Youden’s J is also better for RF segmentation (0.79) 
than for SPM12 segmentation (0.68). 

 
Figure 14. Receiver operating characteristics curves for RF classifier and SPM bone probability 

classifier. The reference SPM Bone segment probability threshold has worse 
performance than the new method. 
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In summary, the usage of machine learning techniques at the voxel level with the 
immediate environment as input, allowed a clear increase in the quality of the bone 
tissue segmentation, as well as HU assignment over the reference method. The 
machine learning methods had better F-scores, ROC estimates, and had smaller 
overall error in average HU on dataset level.  

4.5 Findings – Summary 
In the first part of the study, a clinically viable pipeline for MR-based attenuation 
correction was presented and tested. The pipeline was made modular enough to allow 
several of its components to be developed further. The performance changes brought 
by the usage of TOF were evaluated, and while overall TOF improves the 
performance of the reconstruction, it is not seen in all regions. When the two sinus 
models were presented, they both improved several aspects of the attenuation 
correction in the sinus area. The sinus cuboid method was overall the better 
performing model and performed well, especially together with TOF reconstruction. 
The cerebellum remained a difficult area with visible underestimation. During the 
ML based segmentation evaluation, the focus was shifted towards the skull and neck 
bones and replacing the bulk density assignment with a more dynamic model. The 
segmentation of bone was addressed with the use of machine learning techniques in 
the voxel level. The methods managed to improve the segmentation quality over the 
previous bone probability thresholding and provided reasonable HU values for the 
segmented bone tissue.  
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5 Discussion 

This chapter discusses the findings of each part of the study separately while 
presenting the relevant implications between different parts of the study raised by 
the results. 

5.1 Initial pipeline framework development 
Initially, a tissue probability-based attenuation correction pipelines was successfully 
developed and validated for brain PET-MR. The pipeline facilitated a 
computationally fast and modular starting point for further improvements of 
attenuation correction in brain PET-MRI and MR-RT. The pipeline offered better 
MRAC quality than the system default, and decent accuracy when compared to 
similar methods in the literature at the time of the study (Navalpakkam et al., 2013; 
Izquierdo-Garcia et al., 2014; Anazodo et al., 2015). Since then, some improvements 
have been made (Sousa et al., 2020; Hamdi et al., 2023). 

The default settings of the New Segment functionality in SPM8 were used, and 
those were sufficient for this small subject group. In the pipeline, bone threshold 
value of 0.25 was used, which was much lower than 0.8 used in a previous study 
(Anazodo et al., 2015). The higher value was too high in the dataset used, but there 
might be some system specific or post processing related reasons that affect the 
optimal value.  

The attenuation maps generated by the pipeline match the general anatomy of 
the whole head and soft tissues. There are some differences in the mastoid and sinus 
regions, which have been problematic for MRI-based methods (Navalpakkam et al., 
2013). Maximum likelihood reconstruction of attenuation and activity methods 
could have some advantages over the methods used in these regions (Mehranian and 
Zaidi, 2015a, 2015c). Choosing the attenuation coefficient for bone is a trade-off 
between the average bias and variance. In an earlier study (Catana et al., 2010), it 
was found that a high attenuation coefficient (0.171cm-1) gave the lowest bias, but 
had the highest variance. Meanwhile, a lower attenuation coefficient (0.135cm-1) was 
the opposite. Thus, an attenuation coefficient in the middle should be a good trade-
off, and the attenuation coefficient deemed best (0.145cm-1) falls into this trade-off 
range.  
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Adding the bone into the attenuation map reduced the error in reconstruction. 
With the clinical attenuation maps, the activity levels of the whole head were 
underestimated by 3% to 10% with 8% as a median. When the bone was added, the 
errors ranged from -5% to +4%. The medians were 0% and 1% for 0.135cm-1 and 
0.145cm-1 bone attenuation coefficients, respectively. On the VOI level, the clinical 
attenuation map had strong underestimation in most VOIs, and this was reduced 
clearly when the bone tissue was added to the attenuation maps. It was speculated 
that the usage of TOF would further reduce the error, and this was addressed by 
looking at the TOF effect specifically. One outlier subject went from -3% 
underestimation to +4% overestimation when the clinical attenuation map was 
changed to a one with bone. This was considered to be caused by difficulties in 
creating the attenuation map in sinus regions, which was addressed later in the study.  

During the time of writing, the presented pipeline was rather unique, as it did not 
require additional CT scans or specialized MRI sequences, such as UTE or ZTE, nor 
did it use CR or MRI atlases for more than segmenting the images. The pipeline 
would not require TOF data to complete the attenuation maps either. At the same 
time the pipeline produced attenuation maps that were of comparable quality with 
previous methods (Navalpakkam et al., 2013; Dickson, O’Meara and Barnes, 2014; 
Izquierdo-Garcia et al., 2014; Anazodo et al., 2015). The pipeline was aimed to be 
quick to compute and modular enough so further developments can easily be added. 
As such, the initial pipeline created a good starting point with an already very capable 
model.  

5.2 TOF effect on reconstruction quality using 
different AC maps 

It was shown that the use of TOF reconstruction reduces the visual and quantitative 
errors in MRAC in the head region. At times, though, the effects were quite small. 
The effect was seen across most of the head region and with all three tested 
attenuation maps. Of those three, two improvements were statistically significant. 
The usage of TOF reduced both over and underestimation compared to the 
reconstructions without TOF information.  

The improvement was not universal, however. In approximately a third of the 
investigated VOIs, the absolute bias increased when TOF was used. However, the 
improvements were generally larger than the increases of error. At the same time, 
the use of TOF increased the standard deviation of the error in practically all of the 
brain region. 

When the reconstructed activity values were compared between a CTAC 
reconstruction and the TOF and non-TOF reconstructions, the TOF reconstructions 
typically had slightly better performance. The TOF reconstruction had slightly lower 
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variance of activity. Since the analysis is about the match between the MRAC and 
CTAC reconstructions, an ideal regression curve 𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 would have a slope 
coefficient 𝑎𝑎 of 1 and intersect coefficient 𝑏𝑏 of 0. The TOF reconstruction slightly 
increased the slope coefficients towards 1 and decreased the intersect parameters 
towards zero. Two out of three intersect parameters 𝑏𝑏 changed from statistically 
significant to non-significant when TOF reconstruction was introduced. Although 
the changes were small, the TOF reconstructions slightly improved the activity 
modelling of the PET images. The Bland-Altman graphs showed the same tendency 
of error reduction with TOF reconstructions. The non-TOF data has a wider error 
distributions and larger average bias. 

The TOF reconstruction has lower maximum uptake than the non-TOF 
reconstruction. This might be because of the TOF suppressing image noise more, 
which reduces the prevalence of extreme values in the images. The TOF reduces the 
local over and underestimations, and the TOF images are more aligned with the 
reference CTAC images, even if the effect is difficult to detect visually due to the 
small magnitude of the changes. The assessment of bias images confirms the pattern, 
as the bias can be seen decreasing across the head. Both over and underestimations 
are reduced in magnitude. The TOF reconstruction helped with the overestimation 
near the sinus regions, that was also spotted with one outlier subject when the 
pipeline was first developed. The effect near the sinuses was further investigated 
later in the study. The findings are consistent with some earlier whole-body studies 
(Mehranian and Zaidi, 2015b; ter Voert et al., 2017) and a head study (Khalifé et al., 
2017). The Khalifé study used a scanner that was capable to sub 400ps timing 
resolution (Grant et al., 2016), whereas the scanner in this study could do 525ps, and 
this indicates that the TOF effect can be seen in various timing resolutions and 
systems, not just in one. Commonly, a better timing resolution has been seen to 
improve overall image quality (Conti and Bendriem, 2019). 

Although not every region gains improvements, on average, the results improved 
when TOF is used. While there is some regional variation, and to minimize the error 
potential, a good attenuation map remains a prerequisite for an accurate PET scan, 
even if the TOF information can improve the results. This was recommended by an 
earlier study (Emond et al., 2020).  

5.3 Sinus segmentation method development 
Two new methods were introduced as a proof-of-concept for improved accuracy in 
the delineation and modelling of the attenuation coefficients in the sinus region. The 
effects were evaluated with a PET-MRI system, with and without TOF information. 
The reference method was the attenuation maps created by the original pipeline. 
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All subjects saw gains in accuracy when the new methods were used over the 
reference method. The improvement was seen in a majority of the brain region, and 
this became even more evident when TOF information was added. Although the 
model did not assign any voxels onto the bone tissue, the bone delineation was 
improved due to the removal of some false positives. The attenuation coefficients in 
the sinus region, as well as the quantitative accuracy in PET were improved. 

The two methods were different from each other, and both had their own 
advantages and disadvantages. The cuboid method took more processing power, as 
an optimal cuboid is fitted to each subject’s individual anatomy. In the published 
version of the method, computation time was saved by eliminating all tilts, so if the 
MRI image is sufficiently deviated from the assumption of an ideal head position, 
the fitting might not result in a good cuboid. However, as each subject’s individual 
anatomy is considered, any anatomical deviations that might be difficult to handle in 
normalized space, are better accounted for. 

The template method was computationally easy, as it only used the deformation 
fields that were generated during the segmentation process by default. Tilts and 
positional shifts were considered due to the normalization process. But as the 
individual anatomy was not considered in detail, anatomically deviant subjects, or 
those with poor template registration, might get a suboptimal sinus placement.  
 Both the cuboid and template method increased the DICE values in the nasal 
sinus region by 3% and had higher head level correlations with CTAC when 
compared to the reference method. Although the effect was small, every subject saw 
improvement. Effect can also be expected to show differences concentrated in the 
sinus region, as it is only a small part of the image, and the other regions are not 
changing from the reference method. This is supported by the almost similar whole 
head DICE coefficient values. There were some improvements by changing the SPM 
version from 8 to 12, as the reference model improved its DICE coefficients in the 
whole head skull tissue from 0.76±0.05 in the original to 0.85±0.04 during the sinus 
model evaluation. 

In the attenuation coefficient analysis, the reference model performed worst, 
with an average error of 5.4% when cuboid method and template method yielded 
2.6% and 3.2% error, respectively. While both methods were superior to the 
reference method, the sinus cuboid method performed better, since it potentially 
accounted for the individual anatomy of the subject better. The connection between 
the MRI intensity and CT HU values was possible to determine for the sequence 
used in this study. The data for any different sequence should be evaluated carefully, 
as the connection might not be derivable for all MRI sequences. There is a large 
amount of air – soft tissue borders in the sinus region which might not be adequately 
separable for all MRI sequences and might contain susceptibility artefacts. 
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When the PET reconstruction results were assessed on the VOI level, the error 
levels were generally small. The error levels for reference model were slightly better 
than when the pipeline was originally developed, likely due to the change to SPM12. 
The error level was close to those reported in the literature (Ouyang et al., 2013; 
Teuho et al., 2020). The best performing regions were the olfactory bulb, Heschl's 
gyri, lingual gyrus, and cerebellar vermis, and these regions especially benefited 
from a separate tissue class for the nasal sinus region. When looking at the bias atlas 
images, the areas near the sinuses were clearly overestimated in the reference model, 
and this overestimation was reduced with the new sinus modelling methods. 

There were some issues in cerebellum when the cuboid and template methods 
were used for attenuation correction. The underestimation that was present in the 
VOI analysis for the reference method increased with the new methods. In bias atlas 
images, the reference method had overestimation in the frontal parts of the 
cerebellum and underestimation in the back, similarly to the earlier bias atlas images. 
When the new sinus methods were implemented, the frontal overestimation 
disappears, and the whole region was underestimated. Potentially, the thick bone 
near the cerebellum (Ladefoged CN et al., 2015) caused problems for the attenuation 
maps and that lead to general underestimation of the cerebellum. There was also 
underestimation across the head near the skull, and this might have been caused by 
the bulk density assignment. In another study (Yang et al., 2017), the cerebellum 
area improved when the sinus region attenuation was addressed, but that study used 
continuous coefficients for skull bone. The skull delineation was then investigated 
further with ML methods where a continuous model was developed.  

Overall, the improvements of sinus modelling were modest, as hypothesized in 
another study (Sousa et al., 2020). However, as some regions gained larger 
improvements, further developing the sinus region attenuation based on the presented 
methods should be beneficial for the overall performance of the brain-PET imaging. 

5.4 Machine learning assisted bone segmentation 
and HU assignment 

Earlier, there were signs that the SPM bone probability based bulk density 
assignment of bone tissue HU values was not optimal. This was improved by 
utilizing a larger amount of subject data with the help of ML techniques. As there 
was a large number of measurements, in the form of TPMs, available for each 
subject, it was natural to try machine learning methods to assist with the modelling. 
Each subject had two MRI sequences, in-phase, and out-phase, available, as well as 
CT to be used as the target variable. When those MRI images were segmented, there 
were also six tissue class probability maps for each image, totalling two 
measurements for MRI intensity and 12 tissue probabilities per subject. Finally, the 
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sinus cuboid information created using the process described earlier, was added as 
the 43rd feature. For better generalizability, it was decided to create voxel level 
models, rather than whole image level models. 

First the RF classifier was used to perform the segmentation of bone and non-bone 
tissue. The RF classifier performed better than the SPM bone probability thresholding, 
as it had lower false positive and false negative rates, while maintaining a slightly 
higher true positive rate. A balance of false positives and negatives is useful, as the 
total volume of bone tissue in sCT images then remains close to the actual bone tissue 
volume. However, the false negatives are always located at the site of actual bone 
tissue, creating thinner than real bones. Meanwhile the false positives can be anywhere 
in the head. This means too little bone tissue near the cortical areas can lead to large 
biases in the PET AC or RTP. The RF segmentation gave a wide range of RF classifier 
probabilities that corresponded to near maximum DICE coefficient (Figure 15), so the 
threshold probability could be chosen quite freely without reducing the DICE 
coefficient. This was in contrast to the SPM based segmentation, where maximum 
DICE coefficient values were reached in very low classifier probabilities, and the 
DICE coefficient values declined after that (Figure 15). 

In this study, the RF classifier threshold was set to 27.5%. Lowering the 
threshold would make the data contain more false positives, but at the same time less 
false negatives would incur. The value chosen as it was between the RF probability 
that gives the maximum DICE value and the RF probability that gives the maximum 
Youden’s J value. This threshold was then used to create the sCT images with bulk 
density assignment.   

 
Figure 15. DICE coefficients by RF (Green) and SPM (Purple) classifier probability. 
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Thresholding was not an issue with the continuous HU assignment, as each voxel 
would get a HU value based on its classifier probability. The continuous HU values 
were modelling the actual HU distribution quite well. The MAE levels for the entire 
head and bone were clearly reduced when the RF continuous bone HU assignment 
was used, and the bulk density assignment method gave similar MAE values for both 
SPM and RF based segmentation. The whole head MAE values were comparable 
with those in the literature (Johansson, Karlsson and Nyholm, 2011; Gudur et al., 
2014; Demol et al., 2016; Han, 2017), but there has as well been studies with lower 
MAE levels (Martinez-Girones et al., 2021). Whole head MAE is always dependant 
on the amount of air outside the head in the compared CT and sCT images. Assuming 
the air outside the head gets segmented equally for CT and sCT, more air in the 
image, the lower the MAE is going to be. In this study, the head mask was drawn 
close to the skull, making the entire head MAE higher than it could be with a larger 
mask. The bone region MAE values between 150 and 490 have been reported by one 
group (Lei et al., 2018; Yang et al., 2019) using RF algorithms in the brain region. 

The visual inspection showed typically better bone delineation for the RF 
methods Whereas the SPM method sCT showed bone underestimation, which is to 
be expected due to higher false negative rate. Due to the averaging of the RF 
probability to HU conversion function, the highest HU values of the CT images were 
not reached in the RF continuous sCT images, but the range was still substantially 
better than with the bulk density assignment.  

Overall, the voxel-based machine learning methods were able to improve the 
accuracy of the bone segmentation, as well as provide another possible method to 
estimate the continuous HU value for the bone voxels. These updates to the 
segmentation should address many of the issues that arose in earlier parts of the 
study.  

The process uses structured data with very limited sampling of the training 
dataset. This bypasses the typical problem with ML methods of requiring large 
datasets. The results were achieved with only eight subjects in the training datasets, 
whereas an earlier study (Ladefoged et al., 2020) recommended cohort sizes of 100 
to reduce the outlier effects. Some studies have used sub images in the training 
dataset (Andreasen et al., 2015; Kläser et al., 2021; Martinez-Girones et al., 2021), 
but these sub images are still considerably larger than the sampling used in this study.  

5.5 Study limitations and future outlook 
Like other methods based on MRI image segmentation, the original pipeline is likely 
going to suffer when the subject anatomy is deformed, or there are void areas caused 
by metal implants in the MRI images. The ML segmentation showed reasonable 
performance of the bone modelling for subjects with some anatomical deviations, 
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but larger cohort studies with clinical data could help further assess the performance 
of the model in these situations. Additionally, as the pipeline should give a similar 
attenuation map for the same subject, even if the scans are separated by a period of 
time, it would also be good to assess this aspect with a test-retest study. Another 
limitation of the pipeline is that the processing is done externally and not on the 
scanner, which adds extra steps in completing the reconstruction process. One future 
development avenue would be to implement the pipeline into the reconstruction 
system, which would require support from the vendor. 

It was not possible to compare the TOF and non-TOF reconstructions perfectly 
in this study, because of the issues reported in an earlier study (Maus et al., 2015). 
Also, the quantitative comparison of the TOF and non-TOF reconstructions is 
difficult due to the differences in the reconstruction algorithms and parameters. Thus, 
the comparisons could only be done as TOF CTAC vs. TOF MRAC and non-TOF 
CTAC vs. non-TOF MRAC. Should there be a way to develop the unity between 
TOF and non-TOF reconstruction algorithms, the results could be revisited in a later 
study.  

The results for TOF effect were gathered with 525ps timing resolution. There are 
scanners with better timing resolution (Zaidi et al., 2011; Grant et al., 2016; Van 
Sluis et al., 2019; Chen et al., 2021; Lee et al., 2021; Schaart et al., 2021), so larger 
improvements could be achieved by using TOF reconstructions on those scanners 
(Mehranian and Zaidi, 2015b). Further studies could confirm this hypothesis. 

The cuboid conversion methods had some limitations. Especially as the cuboid 
method is reliant on the accurate segmentation of the MRI images, so that the sinus 
region can be located. On the other hand, the template method might struggle with 
changes in the individual anatomy that are not properly translated into the 
normalized space. It could be of interest to combine the sinus attenuation coefficient 
handling methods with the segmentation method similar to the ML-based approach 
used for the bone HU values. The process did not use RF probabilities to find the 
sinuses, but the SPM12 bone probabilities, like presented earlier. Another limitation 
is that the sinus area conversion method converts all the voxels within the sinuses to 
either soft tissue, air, or a mix of those two. There are some bone voxels within the 
sinus cuboids, they just could not be isolated with the MRI intensity-based approach 
that was used in the study. This was also seen with the MRI sequence used with the 
ML method evaluation, where the bone voxels were more prevalent than when the 
sinus methods were evaluated. Although the lack of bone voxels was not a large 
cause for error, adding a potential ML-based approach tissue probability-based 
handling to the sinus conversion curves could help to identify those bone voxels 
within the soft tissue and air mix and further improve the model. 

As the sinus handling utilizes the TPMs, there are minimum requirements for the 
quality of the segmentation. In another study (Ranta et al., 2020), the original 
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pipeline with some modifications was assessed with a different MRI sequence, and 
the segmentation worked sufficiently there. Regardless, this would need to be 
verified with each new sequence. Another sequence specific aspect of the sinus 
models was the conversion of the voxels into air and soft tissue. The conversion 
curve is MRI intensity based, so it needs to be re-estimated for each new MRI 
sequence. But after the estimation is complete, the conversion curve should work 
well for other subjects scanned with the same sequence, as was seen in the leave-
one-out analysis of the conversion curves. Currently, the applicability of the method 
can be assumed to be good, but it would be interesting to try the method with some 
different MRI sequences. 

The ML based procedure does not use complicated MRI sequences and does not 
make any spatial assumptions of the underlying images. This is a clear advantage, as 
any anatomical MRI compatible with SPM segmentation engine can be used. This 
should make it more adaptable to anatomically extremely different subjects than 
methods that rely on image or sub image level pattern recognition. The procedure 
should be applicable to different MRI sequences if the other sequences allow for a 
sufficient amount of data to be generated from the scan, and the segmentation works 
sufficiently well to make the quality of the data good enough for the machine 
learning models. The ML model was built using an RF algorithm. The model 
pipeline could be tested also with different algorithms, like XGBoost, or various 
neural networks to evaluate the accuracy of different methodology.  

Current version of the pipeline works by moving the sampled data points to and 
from the statistical software R via comma separated values -files and requires some 
manual work with timing the sequential scripts on different platforms. Further work 
has been started to convert the pipeline into Python, allowing more streamlined 
pipeline. High-resolution images create large datasets, so resolution downscaling by 
splitting images into interleaving data files is needed when full images were 
converted from MRI to HU space. In this study, only the bone segment was 
considered. Similar studies could be performed for other tissue types, and then to 
create a final model that merges the different tissues together to form an sCT image, 
like done in the original pipeline.  

These issues need to be addressed before clinical applications could be 
considered. When the ML model was evaluated, there were no RT plans, and the 
clinical performance of the improved segmentation was left for future studies. Along 
with a clinical evaluation, a larger cohort size should be sought, to see if there are 
any outlier cases where the model performance is degraded. For example, a 
systematic study of the effects of implants causing voids in the MRI images, could 
be done to assess their impact on the ML model. 

Both the sinus and ML models could also be tested with a larger cohort 
undergoing PET imaging. Additionally, different PET-MRI devices and MRI 
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sequences could yield different results, and these could be tested to further assess the 
generalizability of the models.  

Finally, the scope could be expanded to different AC methods, body parts, or 
removing the dependency of the SPM templates. One way to circumvent the need of 
an SPM segmentation could be to create a secondary model that tries to estimate the 
bone probability generated by the RF model using only the MRI images without the 
segmentation. If it was possible to do this with high enough accuracy, it would be 
possible to remove the SPM segmentation from the pipeline.  

Currently, the training data uses MRI images segmented with SPM, but it might 
be of interest to use non attenuation corrected PET images. The ML model might be 
able to use the PET information to improve bone estimation or use that information 
entirely. 

These advancements. could allow applications for example within PET insert 
MRI scans, and using the model in body parts for which SPM compatible templates 
are not available. It would be interesting to see if the trained multi-tissue ML model 
could be used as is in different body parts given the MRI sequence matches the one 
with which the model was trained. 

Ultimately, all the improvements proposed in this study could be combined into 
one improved version of the original pipeline with as much automatization between 
steps as possible to enable clinical applicability in PET imaging and RT evaluation. 
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6 Conclusions 

A tissue probability-based attenuation correction pipeline for PET-MRI was 
developed and validated with a patient study. The pipeline uses soft tissue, air, and 
bone tissue classes, using the New Segment functionality in SPM8. The pipeline is 
simple to use, modular, and quick to compute. The results indicate that the accuracy 
of the created attenuation correction maps was comparable to existing literature at 
the time of the study. 

TOF reconstruction reduces the quantitative errors in the head, regardless of the 
quality of the MRAC. The gain from TOF reconstruction is largest when the quality 
of the attenuation map is low. Majority of the regions showed reduced bias with TOF 
information applied, but some regions show slight increase in bias. The newest 
scanners with time resolution around 200ps could yield larger effects than the 525ps 
capable one used in the TOF effect evaluation.  

Two methods were introduced for improved sinus area modelling, and they 
provided a solid basis for further work in the sinus region attenuation correction. 
Both methods showed improved attenuation correction quality in the sinus region 
and provided an improvement to the bias near the sinus region. The usage of TOF 
further reduced the error in the images. 

Machine learning methods were used to provide high quality separation of bone 
from non-bone tissues without using any specialized MRI sequences. The RF 
probabilities yield reasonably accurate estimates for the bone voxel HU values.  

In summary, the study created a modular pipeline for MR-based attenuation 
correction that is usable for both MR-PET and MR-RT. In later parts of the study, a 
variety of improvements were studied and implemented in the pipeline. The final 
pipeline is easily generalizable to different MRI sequences with small additional 
effort. The study provides a good starting point for any future development in the 
area of MR-based attenuation correction in the head and neck region. 
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