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The thesis explores the utilization of mechanocardiography (MCG) as a novel ap-
proach to assess and quantify improvements in systolic cardiac function resulting
from cardiac resynchronization therapy (CRT). The study focuses on patients with
heart failure and reduced ejection fraction (HFrEF), a population commonly treated
with CRT. The primary objective is to investigate the differences in MCG waveforms
during CRT and single-chamber atrial (AAI) pacing, specifically comparing wave-
form characteristics. 10 patients with heart failure and previously implanted CRT
pacemakers were included in the study. The MCG and ECG signals are recorded
using accelerometers, gyroscopes, and Holter measurement unit placed on the lower
chest and used in the analysis. ECG and MCG recordings were obtained during
both CRT and AAI pacing at a consistent heart rate of 80 beats per minute. The
analysis involved considering six MCG axes and three MCG vectors across vari-
ous frequency ranges to derive key waveform characteristics such as energy, vertical
range, electromechanical systole (QS2), and left ventricular ejection time (LVET).
The results revealed significant differences between CRT and AAI pacing, with CRT
consistently exhibiting higher energy and vertical range during systole across multi-
ple axes. Notably, the study identified optimal differences in SCG-Y, GCG-X, and
GCG-Y axes within the 6–90 Hz frequency range. However, any difference in QS2,
LVET and waveform characteristics around aortic valve closure was not identified
between the pacing modes.
The findings suggest that MCG waveforms can serve as indicators of improved me-
chanical cardiac function during CRT. The use of accelerometers and gyroscopes
may contribute to the development of a non-invasive and potentially predictive
tool for optimizing CRT settings. The promising results underscore the need for
further research to explore the differences in signal characteristics between respon-
ders and nonresponders to CRT. The overall aim is to enhance the clinical applica-
tion of MCG, leveraging wearable technology and micro-electromechanical systems
(MEMS), and ultimately improve the optimization and efficacy of CRT in heart
failure (HF) management.

Keywords: accelerometer, gyroscope, heart failure, resynchronization therapy, smart-
phone
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1 Introduction

Cardiovascular disease (CVD) poses a common and complex public health challenge,

with a prevalence of 48.6% in adults aged 20 years and older and impacting 127.9

million individuals in 2020 in United States only [1], [2]. This prevalence rises

with age in both males and females, and it includes conditions such as coronary

heart disease (CHD), heart failure (HF), stroke, and hypertension [3]. Excluding

hypertension, the overall CVD prevalence is 9.9% [2]. Significantly, long-term fatal

CVD risks are associated with male gender, older age, and smoking, based on current

literature [4].

Heart Failure (HF) is a complex clinical syndrome characterized by the inability

of the heart to pump blood efficiently and leads to insufficient oxygen supply to meet

the body’s needs [5]. According to data from NHANES (2017-2020), approximately

6.7 million Americans aged 20 and above had HF, with a projected increase to over

8 million by 2030 [2]. The prevalence of HF is expected to rise by 46% from 2012

to 2030 in the population, including individuals aged 18 and above [6].

Various factors contribute to the development of HF, including cardiometabolic

factors such as CHD, hypertension, diabetes, obesity, and smoking [7]. The lifetime

risk of HF increases with age [8]. The mortality associated with HF has improved,

primarily due to evidence-based treatments for HF with reduced ejection fraction

(HFrEF) [9]. HF causes a significant economic burden, with high rates of hospital-

izations, emergency department visits, and resulting costs [6]. Improving risk factor
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management and following evidence-based treatments are crucial in addressing the

growing burden of HF.

Cardiac resynchronization therapy (CRT) devices can be used to manage HF

[5], [10], [11]. They are connected to the heart with three wires. They aim to

enhance ventricular activation, detect heart irregularities, and correct them with

electrical pulses, resulting in improved cardiac function [11], [12]. Supported by

extensive clinical trials, CRT is beneficial for moderately and severely symptomatic

HF patients.

In individuals with sinus rhythm, low ejection fraction (EF ≤ 35%), and QRS

duration of ≥ 120 ms (preferably with left bundle branch block morphology), CRT is

recommended for those who are expected to survive with good functional status for

over a year and aims to reduce the risk of HF hospitalization and premature death

[13]–[15]. It has been shown that it is effective in improving symptoms, quality of

life, and ventricular function and is a valuable option in the management of heart

failure.

Clinical trials evaluating CRT effectiveness in diverse patient groups have shown

significant recovery and reverse remodeling in the majority of heart failure (HF)

patients, but about one-third do not respond positively [16]. Accordingly, the CRT

management process involves crucial follow-up stages to identify factors predicting

positive outcomes and address non-responders [17]. Assessing CRT response in-

cludes measures like left ventricle volumetric changes, quality of life assessments,

and functional capacity evaluations [17]–[19].

Seismocardiography (SCG) was first introduced by Salerno et al. in 1990 as a

noninvasive displacement cardiography technique [20]. SCG is a technique based

on 3-axis accelerometers placed on the sternum, and it aims to capture vibrations

resulted by cardiac contraction, hemodynamic activity, and valve movements [21].

Gyrocardiography (GCG) is another technique invented by Meriheinä et al. [22]
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and uses a gyroscope to capture three-dimensional angular velocity on the sternum,

providing information about cardiac vibrations [23]. Mechanocardiogram (MCG) is

a methodology that includes both SCG and GCG complementarily to acquire 6-axis

information regarding heart vibrations [24].

The increasing popularity of smart mobile devices, equipped with 3-axis ac-

celerometers and gyroscopes, has made SCG and GCG promising monitoring tech-

niques. Together, they form MCG, which can be gathered in home settings, offering

a potential avenue for remote monitoring of individuals with cardiological conditions.

Literature demonstrates that these vibrations contain crucial information about car-

diac time intervals, cardiac performance, hemodynamic variables, and heart diseases

[25]–[28].

Existing studies have showed the potential usefulness of MCG in identifying

atrial fibrillation, aortic stenosis, and evaluating conditions associated with cardiac

resynchronization therapy, heart failure, and myocardial infarction [26], [29]–[33]. In-

creasing evidence supporting the utility of MCG for heart monitoring holds promise

for its application in patient selection, optimization, and follow-up procedures for

CRT.

1.1 Research questions

This study focuses on the effect of CRT on MCG waveforms by comparing waveform

features during AAI (single chamber) and CRT (dual chamber) pacing. We aim to

address the following research questions in evaluating the waveform characteristics

during CRT and AAI pacing using MCG signals:

• Are there differences in MCG waveform characteristics that are consistently

observable between CRT and AAI pacing modes in patients with HFrEF?

• Which cardiac events show differences following the initialization of CRT
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mode?

• Do specific MCG axes and frequency ranges provide differentiation between

CRT and AAI pacing?

• Are there any significant changes in timing parameters, including electrome-

chanical systole (QS2) and left ventricular ejection time (LVET), between CRT

and AAI pacing?

• How do different synchronization methods, such as R-peak and AO point syn-

chronization, impact the analysis of MCG signals in assessing mechanical car-

diac function during CRT and AAI pacing?

The results of this study contribute to understanding the potential of MCG in

detecting and assessing improvements in cardiac mechanical function during CRT.

The findings may have implications for predicting clinical response to CRT and

optimizing pacing settings for patients with HFrEF.

1.2 Contributions

In this study, we present a comprehensive investigation of the waveform character-

istics during CRT and AAI pacing using MCG signals in patients with HFrEF. The

primary contributions of this study are as follows:

• A detailed analysis of waveform features, focusing on energy and vertical range

during systole and early diastole was conducted. It is shown that energy and

range during systole significantly differ between CRT and AAI pacing, reflect-

ing improved systolic performance caused by resynchronization of ventricles.

• QS2 and LVET during CRT and AAI pacing were extracted to compare the

timing parameters associated with these pacing modes.
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• Specific MCG axes and frequency ranges that exhibit optimal differences be-

tween CRT and AAI pacing modes were identified. These findings contribute

to understanding which parameters are most informative in reflecting the im-

provements.

• The impact of different synchronization methods, including R-peak and AO

point synchronization, on the analysis of MCG signals was evaluated. This

provided valuable insights into the robustness and consistency of MCG analysis

under varying synchronization conditions.

• Analysis of the MCG signals while also incorporating the SCG, GCG, and

MCG vectors was conducted. A new algorithm for MCG vector extraction,

accounting for potential range variations between SCG and GCG measurement

units was introduced.

• To address the constraints of a limited patient cohort and account for time-

dependent differences in the analysis, a specialized data analysis algorithm is

introduced.

In summary, this study provides a novel way for mechanical cardiac function

assessment during different pacing modes and offers new insights for future investi-

gations in optimizing CRT for patients with HFrEF. This thesis is connected to the

accepted publication [34].

1.3 Thesis content summary

Later sections of the thesis are structured as follows: Chapter 2 offers the back-

ground, covering topics such as heart failure (HF), cardiac resynchronization ther-

apy (CRT), mechanocardiography (MCG), electrocardiogram (ECG), and statistical

hypothesis testing. Chapter 3 delves into related work, exploring filtering of MCG
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signals, fiducial point detection on MCG signals, and assessment of cardiac function

with MCG signals. Chapter 4 provides information on the MECHANO-HF dataset,

while Chapter 5 outlines our proposed method in detail, including signal processing,

feature extraction, and statistical tests. Chapter 6 presents the results and Chapter

7 provides a thorough discussion of the findings. Finally, Chapter 8 concludes the

thesis.



2 Background

2.1 Heart Failure (HF)

Heart failure (HF) is a leading cause of death worldwide and is a syndrome in

which the heart loses its ability to maintain ventricular filling and expulsion of

blood at the level required for metabolic needs [5]. HF causes physical symptoms

like shortness of breath, fatique, edema and chest pain [35], [36]. The decrease

in the cardiac performance is related with the loss of functional myocardial cells

and etiology of the loss can be various [37]. The severeness of loss in the cardiac

output is important information that affects to the prognosis and treatment of heart

failure patients which are classified according to their left ventricular ejection fraction

(LVEF) as HFrEF, HFimpEF, HFmrEF, HFpEF (from the highest loss to lowest loss)

[5]. Patients with HFrEF have 40% or lower LVEF which means heart is capable to

eject only 40% or less of the blood filled during diastole to the ventricles [38].

In addition to the classification based on LVEF, it is essential to consider the

underlying causes of heart failure for a comprehensive treatment approach. The

etiology of heart failure can be diverse, including ischemic heart disease, hyper-

tension, valvular disorders, and inflammatory cardiomyopathies, among others [37].

Tailoring treatment to address the specific underlying cause is crucial for optimiz-

ing patient outcomes. Furthermore, the presence of accompanying cardiac abnor-

malities, such as mechanical and electrical dyssynchrony, necessitates specialized
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interventions. In cases where dyssynchrony is identified, implantable devices for

synchronization and pacing, such as cardiac resynchronization therapy (CRT) de-

vices, may be employed to improve the coordination of ventricular contractions and

enhance overall cardiac function [5]. Thus, a thorough understanding of both the

classification based on LVEF and the underlying etiology allows healthcare profes-

sionals to formulate personalized treatment strategies for heart failure patients. The

treatment of HFpEF usually considers managing the underlying diseases behind it.

2.1.1 Cardiac Resynchronization Therapy (CRT)

Left ventricular (LV) dyssynchrony is a common pattern observed with HF and ap-

proximately one third of HF patients have left bundle branch block (LBBB) which

causes electrical and mechanical delay between left and right ventricular contrac-

tion [39]–[41]. This impaired contraction decreases the efficiency of contraction and

cardiac output [11]. Cardiac resynchronization therapy (CRT) is an established

strategy that is based on implantable devices and used to deal with HF cases with

impaired cardiac function during the last decades [5], [10], [11].

CRT devices are small devices that are connected to the heart with three wires

and modify the impaired activation of ventricles, sense anomalies in contractions,

and correct irregular patterns by radiating necessary electrical pulses [11], [12]. Re-

versal of heart irregularities provides efficient contraction and improvements in car-

diac function [42].

The effectiveness of CRT on different patient groups has been evaluated in differ-

ent clinical trials [43]–[46]. In these trials, the majority of HF patients have experi-

enced significant recovery and reverse modeling. However, approximately one-third

of patients could not utilize the CRT and achieve a positive response [47].

The CRT management process encompasses a crucial follow-up stage designed

to identify factors predicting positive clinical outcomes and develop approaches for
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addressing non-responders. This includes selecting suitable patients, implementing

effective implantation strategies, and optimizing therapy benefits through program-

ming. However, there is a lack of consensus about the prevalence of non-response

and treatment strategies for CRT non-responders.

In assessing CRT response, various measures are utilized, including volumetric

changes of the left ventricle, quality of life (QOL) assessments, and functional capac-

ity evaluations [17]–[19]. Clinical trials and real-world practices often use different

criteria to evaluate responses, with trials emphasizing event-driven endpoints like

heart failure hospitalizations and mortality, while real-life situations prioritize the

overall well-being of patients [17]. Event-driven endpoints such as heart failure hos-

pitalization are crucial in large-scale trials [13], [48], but may not be as meaningful

in individual clinical practice [17].

2.2 Mechanocardiography (MCG)

Seismocardiography (SCG) is a method that uses accelerometers placed on the chest

to track the linear acceleration sourced by cardiac vibrations, whereas gyrocardio-

graphy (GCG) refers to the use of gyroscopes to track angular acceleration [21],

[23]. Mechanocardiography (MCG) is a joint concept that includes both SCG and

GCG to acquire a 6-axis representation of the mechanical activity on sternum with

combining mutually orthogonal signal sources [24], [49]. The acquired vibrations

thorough these sensors are sourced by contraction of the heart muscles, activies of

heart valves, and the ejection of the blood and it is shown that these vibrations com-

prises information about hemodynamic variables, timing of different cardiac events,

physiological and pathological state of heart in various different aspects [23], [26],

[28], [50], [51]. An example for SCG waveform is represented in Figure 2.1.

In the literature, the waveform annotations on SCG and GCG signals are stud-

ied through simultaneous recordings of these modalities with echocardiography and
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Figure 2.1: Example SCG signal from MECHANO-HF database (Z axis).

electrocardiography. Studies inferred that SCG and MCG show special correlations

with intra-cardiac events and annotated the fiducial points that refer to mitral valve

opening (MO) and closure (MC), aortic valve opening (AO) and closure (AC), rapid

ejection (RE), and isovolumetric contraction (IVC) [20], [23], [52]–[55]. Annotation

of these points enabled the inference for timing of cardiac event and further anal-

ysis of hemodynamics. Left ventricular ejection time (LVET), pre-ejection period

(PEP), isovolumetric contraction time (IVCT) and isovolumetric relaxation time

(IVRT) are some timing properties derived from SCG and GCG in the literature

[23], [54], [56], [57]. These cardiac time intervals are important clinical markers for

the analysis of systolic and diastolic function and therefore the detection of cardiac

abnormalities [58], [59].

In addition to cardiac time intervals, fiducial points provide an opportunity to

analyze the morphological changes in MCG focusing on the cardiac phase/intracar-

diac event of interest. Smaller analysis windows focused on different fiducial points

have been used in the literature for representation of systolic and diastolic features

separately. Some of the common features in the morphologic analysis are kinetic
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energy, vertical range, i.e. difference between maximum amplitude and minimum

amplitude, mean, median, and maximum amplitude in a selected window. The cor-

relation between these features and cardiac contractility was analyzed in different

settings [26], [29], [60].

MCG signals are affected by different additional sources like motion artifacts,

environmental effects and sensor interference, and this source of artifacts can lead

to errors in the feature calculation and further analysis [61], [62]. Thus, automatic

annotation of fiducial points and temporal analysis requires a well-designed prepro-

cessing pipeline. In the literature, the SCG components below 1 Hz were found to be

correlated with respiration-related movements, while components between 1-20 Hz

and above 20 Hz were correlated with vibrational and acoustic effects resulted from

cardiac activity, respectively [63]–[65]. Also, it has been indicated that S1 and S2

heart sounds occur between 50 and 500 Hz, and S3 sounds lie at lower frequencies,

between 20 and 200 Hz [66]. The available information regarding different frequency

components can be used in the design of the preprocessing pipeline according to the

interested characteristics and activity in the MCG signals.

2.3 Electrocardiogram (ECG)

The electrocardiogram (ECG) is a diagnostic method that displays changes in the

bio-electrical activity of the heart over time [12]. It involves a non-invasive measure-

ment technique, which includes placing electrodes on the patient’s skin to capture

electrical impulses [67]. Depolarization and repolarization events that occur in the

heart chambers manifest with distinct morphologies over time, and the visual as-

sessment of these events is crucial for evaluating and diagnosing cardiac conditions

[68]. In clinical settings, ECGs are crucial for the detection of myocardial infarction,

cardiac ischemia, heart failure, arrhythmias, and a wide range of cardiac conditions

and diseases [69], [70].
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Figure 2.2: Example ECG signal from MECHANO-HF database.

ECG signals are utilized by visually evaluating the important morphological

structures they contain in a clinical setting. Electrical activity in the heart muscles

generates the PQRST morphology in ECG recordings (Figure 2.2). The P wave

occurs with the initiation of an electrical impulse in the atria, signifying atrial de-

polarization and contraction. It is followed by the QRS complex, which indicates

ventricular depolarization, leading to ventricular contraction. The T wave represents

ventricular repolarization, showing the recovery phase when the electrical balance

returns to its initial state [68]. Evaluating these waveforms can help clinicians ex-

tract information about the rhythmic, structural, and inflammatory aspects of the

heart’s condition [70].

ECG signals are also employed to extract significant time points in heart ac-

tivity, supporting diverse analysis pipelines. The R peaks in ECG recordings are

extensively used in biomedical signal processing applications to segment the signals

coming from different sources into individual heartbeats [55]. In addition, R peaks

are utilized to measure pulse transition time (PTT) in photoplethysmography appli-

cations [71]. The detection and analysis of Q waves are also essential, as they show
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the initiation of ventricular systole and are used to calculate QS2 (electromechanical

systole) duration. Various methods for automatically detecting PQRST waveforms

are proposed in the literature [72]–[74].

2.4 Statistical Hypothesis Testing

Statistical hypothesis testing is a fundamental method employed in research and

data analysis to assess the validity of a hypothesis. In this process, researchers

formulate two hypotheses: the null hypothesis (H0) and the alternative hypothesis

(H1). The null hypothesis represents the default assumption and often states the

absence of an effect or no difference, while the alternative hypothesis defines the

desired outcome or the presence of a specific effect. The aim is to determine if there

is enough evidence in the sample data to reject the null hypothesis in favor of the

alternative hypothesis. To make this decision, a p-value is calculated using various

statistical formulas tailored to the specific characteristics of the sample data. The

p-value is then compared to a predetermined significance level (α), usually set at

0.05, to determine statistical significance. If the p-value is less than or equal to α,

the null hypothesis is rejected; otherwise, it is accepted [75], [76]. Statistical tests

can be broadly categorized into two groups based on the assumptions they rely on:

parametric tests and non-parametric tests.

2.4.1 Parametric Tests

Parametric tests are based on the assumption that the given data follows a specific

probability distribution, typically the normal distribution. This assumed distribu-

tion is employed in the calculation of data statistics, such as mean and variance,

and, consequently, the test’s power and precision depend on the accuracy of this

assumption. It is important to note that a violation of the assumption of normality
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can effect the validity of parametric tests, and in cases where the data deviates sig-

nificantly from a normal distribution, alternative non-parametric tests may be more

appropriate. Common examples of parametric tests include the t-test and linear

regression [77], [78].

2.4.2 Nonparametric Tests

Nonparametric tests (distribution-free tests) utilize less or no assumption about the

distribution of data. They are used on data that does not meet the assumptions

emerging during the use of parametric tests or has ordinal characteristics. In such

situations, nonparametric tests provide reliable and valid results.

Another key feature of nonparametric tests is their ease of application to small

sample sizes, where parametric tests might be less reliable. This makes them valu-

able in situations where limited data is available or when strict experimental con-

ditions restrict the sample size. Furthermore, nonparametric tests are less sensitive

to the shape of the distribution and, therefore, more robust in scenarios where the

underlying data distribution is unknown. For this reason, they are valuable and

robust, even though they may have less statistical power compared to parametric

tests. Some examples of non-parametric tests are the Mann-Whitney U test, the

Wilcoxon signed-rank test, and the Kruskal-Wallis test [79]–[81].

Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test is a non-parametric statistical test used to determine

whether the distribution of differences between paired samples is symmetric about

a specified median and assess whether there is a significant shift in the distribution

of differences [80]. This test is particularly useful when analyzing paired data, when

each pair of observations is related in some way (e.g., before-and-after measurements

or control-treatment pairs), parametric assumptions are not met, or data does not
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follow a normal distribution.

The test involves ranking the absolute differences between each pair of observa-

tions, considering their signs, and then summing the ranks of the differences. The

test statistics formula for Wilcoxon signed-rank test is W =
∑︁Nr

i=1[sgn(x2,i−x1,i·Ri))]

where W is the test statistic, Nr is the sample size, sgn is the sign function, x2,i, x1,i

are corresponding pairs from two distributions, and Ri is the rank.



3 Related Work

3.1 Filtering of MCG Signals

Filtering of the MCG signals is fundamental for the analysis and interpretation of

the cardiac vibrations. In this chapter, we introduce different filtering methodologies

applied to MCG signals in the literature.

3.1.1 Frequency Filters

Frequency filters play a crucial role in altering the content of signals in electron-

ics and signal processing. Low-pass filters allow lower frequencies to pass through

while reducing higher ones, making them useful for eliminating noise or focusing on

fundamental signal elements. High-pass filters, in contrast, allow higher frequen-

cies to pass while diminishing lower ones, finding application in situations where

low-frequency elements are undesirable. Band-pass filters are designed to enable a

specific range of frequencies to pass through, excluding those outside the designated

band. These filters are useful for isolating desired frequency components. Band-stop

filters, on the other hand, target and reduce a narrow band of frequencies, useful for

removing interference or specific unwanted components [82].

Butterworth, Chebyshev, and elliptic (Cauer) filters are among the most popular

types of filters, each offering distinct advantages. The Butterworth filter provides a

maximally flat frequency response in the passband, making it suitable for applica-
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tions where a consistent gain across frequencies is crucial. Chebyshev filters, on the

other hand, allow for a steeper roll-off at the expense of some ripple in either the

passband (Chebyshev Type I) or the stopband (Chebyshev Type II). This flexibility

makes them ideal for scenarios where a sharper transition between the passband and

stopband is required. Elliptic filters offer the steepest roll-off among these filters.

In MCG, filtering methodology and the selected passband depend on the specific

research or diagnostic goals. In seismocardiogram analysis, components below 1 Hz

are associated with respiration-related movements, those between 1-20 Hz and above

20 Hz are linked to vibrational and acoustic effects from cardiac activity, and specific

heart sounds such as S1 and S2 occur between 50-500 Hz, while S3 sounds lie in lower

frequencies between 20-200 Hz [63]–[66]. Based on the desired component to analyze,

different frequency filters can be designed with the corresponding frequency range

and properties. For instance, in [32], it is proposed that most information regarding

cardiac vibration exists above 1 Hz and a bandpass filter with a pass band of 1-45

Hz was used. In [23], a 4th-order Butterworth filter with passbands of 1–20 Hz and

4–45 Hz were used for GCG and SCG, respectively. In [55], a 0.05 Hz highpass

and 90 Hz lowpass filter were used for extracting the mean heartbeat and analyzing

SCG morphology, while a 50–500 Hz bandpass filter was used in the same study

for analyzing heart sounds. For focusing on the mean heart beat morphology, the

baseline and frequency components higher than 90 Hz were eliminated. However,

heart sounds occur in the higher components so that the high-frequency components

were preserved for heart sound analysis.

Moreover, different filtering options can be used in the same analysis pipeline to

reveal the effects of different SCG components. In [62], six different filtering options

(0-1 Hz, 0-20 Hz, 0-40 Hz, 1-20 Hz, 1-40 Hz, 20-40 Hz) on SCG signals were used and

machine learning models were trained for the prediction of the metabolic equivalent

of task (MET) scores using one of the defined filtering options. Analyzing the model
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performances, the informativeness of different SCG components in the estimation

was discussed and it is found that respiration-related SCG components are critical

for MET estimation.

3.1.2 Wavelet Transform Approach

Wavelet transform is a technique employed in signal and image processing for various

purposes such as denoising, compression, and feature extraction [83]–[85]. Utilizing

small basis functions known as wavelet, the wavelet transform decomposes the signal

into representations that shows different frequency components at different resolu-

tions [84], [86]. This transformative approach is advantageous, especially in heart

sound detection, as it allows a focused examination of distinct frequency compo-

nents, thereby enhancing the clarity of heart sounds while mitigating the impact of

high-pitched noises in MCG signals [87]. Earliest studies [88] applied wavelet trans-

form to phonocardiogram signals, and the literature presents diverse methods for

leveraging wavelet transform in fiducial point detection and heart sound extraction

on SCG signals [89]–[91].

The primary application of wavelet transform involves extracting different de-

tail and approximation waveforms of the MCG signals at various levels and utilizing

these waveforms. The signal processing pipeline preceding and following the wavelet

decomposition stage varies across different studies. Additionally, the wavelet de-

composition step may differ based on the choice of the mother wavelet used in the

decomposition process. In the literature, Morlet wavelet and Daubechies wavelet

families were mostly utilized and proposed as the mother wavelets for especially

heart sound analysis [92]–[95].
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3.1.3 Synchronized Averaging Approach

Synchronized averaging is a signal processing technique designed to enhance the clar-

ity of cardiac vibrations observed in MCG measurements. Synchronized averaging

includes the synchronization of heart beats with the detected reference points and

the averaging of MCG signals over multiple cardiac cycles [64], [65]. One primary

benefit is noise reduction, since the technique reduces the impact of random noise

and motion artifacts in recordings. By highlighting consistent components across

multiple cycles, synchronized averaging increases the signal-to-noise ratio and pro-

vides a cleaner representation of the cardiac vibrations.

3.2 Fiducial Point Detection on MCG Signals

Various cardiac events lead to distinct waveform morphologies at different MCG

axes. Detecting the time points of these cardiac events helps in analyzing the spe-

cific cardiac event and identifying various timing features applicable to cardiac health

assessment. Despite fiducial points being annotated on SCG and GCG signals in

the literature, and approximate morphologies around these events being known,

the presence of noise due to motion artifacts, deviations caused by respiration, or

intersubject variability resulting from body mass distribution, gender, and age dif-

ferences may create differences in these morphologies [32], [96], [97]. Therefore,

detecting fiducial points can be challenging and prone to errors. Various approaches

are proposed in the literature to facilitate the identification of fiducial points on

MCG signals.

3.2.1 Search Windows

This approach is grounded in restricting the search area where the detection al-

gorithm operates. The cardiac time intervals for various events are already docu-
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mented in the literature for both healthy subjects and those with different cardiac

conditions [98]–[101]. These timings can be leveraged during the search for fiducial

points, allowing the search to focus solely on the signal segment known to contain

the fiducial point of interest. This method helps eliminate misleading and similar

morphologies occurring in the heartbeat, ensuring that the detected point is within

the corresponding search window. Once the search window is defined, the detection

algorithm specific to the interested morphology can be executed only for the seg-

ment within the search window. However, it is important to note that this method

necessitates reference points to delineate the search window.

For example, in [102], a 90 ms search window was established to identify aortic

valve opening points on SCG signals, based on the detected R-peaks on the ECG

signals. In [103], AO on SCG was determined as the maxima occurring after 45

ms and before 125 ms following the detected Q wave in the ECG. For aortic valve

closing (AC), AO was utilized as a reference and AC was defined as the maxima

within the interval [AO + 240 ms, AO + 350 ms]. Similarly, in [104], a 250-ms-long

search window was employed starting from 200 ms after S1 and S2 was defined as

the minimum wave in the search window.

3.2.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is a dynamic programming-based algorithm used to

align two sequences that may have different lengths [105]. The aim is to find an opti-

mal alignment between the samples of the sequences that matches one sample from

the first sequence to the other. This matching may not be necessarily one-to-one due

to the possible length differences between sequences. The dynamic programming is

utilized to minimize the pre-defined distance metric that qualifies the quality of align-

ment, and the algorithm aims to find optimal alignment between these sequences

based on specified constraints. These constraints may include monotonicity, conti-
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nuity, boundary, warping window, and slope [106], [107]. DTW is generally used for

aligning sequences that are morphologically similar but occur at different paces, e.g.,

speech recordings contain identical content but are pronounced at different paces.

DTW includes the construction of a cost matrix that includes the cost of align-

ment for each possible sample pair [105]. Dynamic programming recursively finds

a warping path that minimizes the total cost and aligns the sequences according to

the constraints. The cost function may be simply defined as the Euclidean distance

of samples; however, new cost functions can be defined and utilized [108]–[110].

In [111], DTW was applied for fiducial point detection on SCG signals. They

utilized an intermediary reference signal pair consisting of ECG and SCG signals

with a specific RR interval. They proposed a hybrid cost function for DTW that

considers differences in signal values, neighborhood shifting level, signal slope, and

concavity and provided a flexible and adaptable approach for accurate fiducial point

detection. The fiducial point, such as the aortic valve closing event, is detected in

the reference SCG signal and then projected to the nonreference SCG signal using

DTW-based quasi-synchronous alignment.

3.2.3 Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical model used to represent an evolving

system whose state is not directly observable but can be inferred from observed data.

It consists of a set of hidden states, observable outputs, and transition probabilities

between states. The probability of observable outputs depends on the underlying

state chain, and based on observable outputs, the underlying state transition prob-

abilities can be estimated [112].

In the literature, the HMM method is applied to seismocardiogram signals to

estimate heart rate, heart rate variability, and cardiac time intervals [113]. In [113],

SCG heartbeats were defined with N hidden states and modeled a sequential tran-
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sition between states. The value of N was determined based on the heart rate of

the corresponding subject. Following the modeling, they employed the Baum-Welch

algorithm to estimate the parameters of the defined statistical model and identified

the state of each sampling instance. For detecting cardiac events, they utilized one

manual annotation of the cardiac events for each subject and labeled the states

corresponding to the fiducial points. Using the time points of the same states in

the subsequent cycles, they detected the fiducial points of the following cycles and

measured cardiac time intervals.

3.3 Assessment of Cardiac Function with MCG Sig-

nals

3.3.1 Cardiac Performance

To analyze and measure changes in cardiac function using MCG signals, understand-

ing the correlation between the time and frequency domain properties of MCG and

underlying physiological variables is crucial. Various time and frequency domain

features have been generated and analyzed in the literature concerning the known

pathological effects of different diseases. To acquire information about the overall

trend of magnitude, certain features are defined:

• Amplitude: A = x(t) [29], [60].

• Maximum Amplitude: Amax = max
t

x(t) [114], [115].

• Minimum Amplitude: Amin = min
t

x(t) [114].

• Vertical Range: R = maxt x(t)−mint x(t) [29], [114].

• Power: P =
∑︁N

t=1 x(t)
2 [115].
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• Root Mean Square Power: Prms =
√︂

1
N

∑︁N
i=1 x

2
i [24], [60], [114], [115].

• Linear Kinetic Energy: KLin(t) = 1
2
m(v2x(t) + v2y(t) + v2z(t)) where vx(t),

vy(t), and vz(t) are the velocities in the x, y, and z directions, respectively

[26].

• Rotational Kinetic Energy: KRot(t) = 1
2
(Ixxω

2
x(t) + Iyyω

2
y(t) + Izzω

2
zz(t))

where Ixx, Iyy, and Izz are the moments of inertia and ωx(t), ωy(t), and ωzz(t)

are the angular velocities in the x, y, and z directions, respectively [26].

These features are associated with the cardiac performance of the heart in dif-

ferent studies. For instance, in [26], it is found that kinetic energy calculated from

MCG measurements is related to cardiac contractility. Similarly, in [29], an increase

in the vertical range was reported when the pacemaker was turned on, indicating

better left ventricular function. In [116], a relationship between left ventricular

contractility and the maximum magnitudes acquired from an accelerometer sensor

placed on the chest of minipigs was proposed. In line with these findings, the mag-

nitudes observed in MCG measurements can be related to the strength of heart

contraction, reflecting the performance of cardiac function.

3.3.2 Cardiac Time Intervals

Cardiac time intervals are crucial parameters for assessing heart function and di-

agnosing cardiovascular disorders. These intervals include left ventricular ejection

time (LVET), pre-ejection period (PEP), and total electromechanical systole period

(QS2). After detecting fiducial points on MCG and ECG signals, these cardiac time

intervals can be measured by calculating the time difference between the fiducial

points of interest. In the literature, these time intervals were derived from MCG

signals and defined as follows:

• PEP: Time difference between the Q wave and AO [28], [117].
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• LVET: Time difference between AO and AC points [28], [54], [56], [57], [118].

• QS2: Time difference between the Q wave and AC [118].

In the literature, variations in LVET have been proposed to be associated with

conditions such as heart failure [99], [119], [120], hypertension [121], and ischaemic

heart disease [122]. The PEP could serve as an indicator of increased sympathetic

nervous system activity or impaired ventricular contractility [123], [124], while ab-

normalities in the QS2 may suggest an increased risk of mortality, particularly in

cases of coronary artery disease [125]. Therefore, these time intervals are crucial and

important as they allow us to analyze the cardiac health of patients.



4 MECHANO-HF Dataset

MECHANO-HF dataset was collected at Turku University Hospital (TYKS) and it

contains data from 10 CRT patients. All patients were diagnosed as HFrEF and

had previously obtained a CRT pacemaker. Inclusion criteria required participants

to be

• at least 18 years old

• capable of understanding and consenting by signing an informed consent form

• in stable clinical condition without significant valve disease, rhythm irregular-

ities, or significant clinical instability.

Variable
Age (year) Mean (±SD) 73.98 (±7.52)
Sex Males, n 8

Females, n 2
Height (cm) Mean (±SD) 172.20 (±6.97)
Weight (kg) Mean (±SD) 92.80 (±22.95)
BMI (kg/m²) Mean (±SD) 31.00 (±5.59)
Left ventricular ejection

fraction (%)*
Mean (±SD) 39.90 (±8.77)

NYHA class I, n 1
II, n 4
III, n 4
IV, n 1

Table 4.1: Baseline characteristics of patients included in the study. (*After intro-
duction of optimal medical treatment and CRT)
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Figure 4.1: The device is positioned on the lower part of the patient’s chest, recording
3-axis acceleration, 3-axis rotation, and a single-lead ECG while the patient is in a
supine position. This illustration has been adapted from the original figure featured
in the article [24] under the license CC-BY 4.0.

The study’s baseline demographics are detailed in Table 4.1, and ethics approval was

obtained from the Ethics Committee of the Hospital District of Southwest Finland,

aligning with the 2002 Declaration of Helsinki. All participants provided written

informed consent.

A custom-designed device, incorporating a 3-axis accelerometer (ADXL355, Ana-

log Devices Inc., Wilmington, MA, USA), a 3-axis gyroscope (LSM6DS3, STMicro-

electronics, Geneva, Switzerland), and a single-lead ECG, was used for data collec-

tion. The device had accelerometer and gyroscope measurement ranges of ±2 g and

±250 dps, respectively. The accelerometer’s noise density was 25µg/
√
Hz, and the

gyroscope’s rate noise density was 7mdps/
√
Hz. The sensor was placed on the lower

chest (Figure 4.1). Each measurement included signals from one accelerometer and

one gyroscope for each of the three axes, along with a single-lead ECG. Simultaneous

recording of MCG and ECG was conducted.

Recordings took place with patients in a supine position after a 15-minute rest
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in a quiet environment. Patients were instructed to breathe normally, avoid talk-

ing, and minimize unnecessary movements. The pacemaker was randomly set to

AAI or CRT mode, with a heart rate of 80 bpm to maintain a consistent heart

rate throughout measurements. In AAI mode, only the atrium is paced, result-

ing in dyssynchronous ventricular function, while the optimized CRT mode aims to

resynchronize ventricular contraction.



5 Proposed Method

5.1 Signal Processing

Respiratory-related variations and baseline measurements are evident in the lower

frequency components of the MCG signal, potentially causing significant fluctua-

tions [126]. Conversely, high-frequency components can introduce ambiguity in the

fiducial point detection process, even though their impact on the waveform is less

pronounced than that of low-frequency artifacts. To enhance the analysis of cardiac

activity, signal processing plays a crucial role in MCG analysis. In this section, we

introduce our signal processing pipeline.

5.1.1 Signal Resampling

The dataset contains ECG and MCG measurements recorded simultaneously for a

duration ranging from 8 minutes to 12 minutes. Before further processing, ECG and

MCG signals of the corresponding measurement were synchronized and resampled

to 400 Hz.

5.1.2 Noise Removal

Initially, segments with high motion interference and low signal quality were manu-

ally excluded. Thirty-second-long segments were chosen from each MCG measure-

ment for analysis. Subsequently, a forward-backward filtering operation was applied
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Figure 5.1: Example SCG-Z signal from MECHANO-HF database before filtering
(left) and after filtering (right).

to SCG-Z signals. A Butterworth bandpass filter with a 20-90 Hz passband was

selected for its desirable characteristics, which include a maximally flat frequency

response within the passband and a smooth roll-off. The application of this filter aids

in refining the MCG waveform. Figure 5.1 illustrates the SCG-Z signal both before

and after the application of the filtering process. Finally, the 30-second segments

were further divided into 10-second segments for the rest of the analysis.

5.1.3 R Peak and Q Wave Detection

Hamilton’s algorithm, as outlined in [72], was utilized for R-peak detection in ECG

signals. The process involves preprocessing to reduce noise, the application of a

band-pass filter to isolate the QRS complex, and the use of techniques such as

differentiation and squaring to identify and enhance the R-peaks. The algorithm

establishes a threshold to select peaks above a certain height, providing accurate

timing for when the heart’s ventricles depolarize in ECG readings. Additionally,

the detection of Q waves in the ECG signals was performed using the wavelet-

based delineation algorithm available in the NeuroKit2 toolbox [127]. Example

ECG recordings with annotated R peaks and Q waves are represented in Figure 5.2.
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Figure 5.2: Example ECG signal with detected Q waves and R peaks in a heart
failure patient undergoing CRT pacing (left panel) and AAI pacing mode (right
panel).

5.1.4 Aortic Valve Opening & Closing Detection

Following the detection of R-peaks, each individual heartbeat has been successfully

identified. To annotate the aortic valve opening (AO) and aortic valve closing (AC)

points, a search window approach was employed. For each heartbeat, the aortic

valve opening point was determined as the maximum peak point of the SCG-Z axis

within the first 125-ms interval after the corresponding R peak.

The left ventricular ejection time (LVET) represents the duration between the

opening and closing of the aortic valve during each cardiac cycle. The search window

for aortic valve closing (AC) was defined based on reported LVET and left ventricular

ejection time index (LVETI) in the literature [99], [128], utilizing the detected AO

points as reference.

Consequently, a 60-ms long window was positioned 240 ms after the correspond-

ing AO, and AC was identified as the maximum peak within the interval between

240-300 ms after the AO. AO and AC detection operations were exclusively con-
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ducted on the SCG-Z signals, with the same locations employed on other axes from

the same segment and synchronized with the same reference as the corresponding

SCG-Z signal.

5.1.5 Filtering

Various frequency components in the MCG measurements were suggested to be

linked to different sources of information. Specifically, SCG components between 1

and 20 Hz are associated with mechanical vibrations, while those above 20 Hz are

linked to acoustic effects caused by cardiac activity [64], [65]. To analyze the effect

of CRT on these components separately, we designed four distinct first-order Butter-

worth filters with a passband chosen from the following options: 20-90 Hz, 6-90 Hz,

1-20 Hz, and >1 Hz (highpass). Each axis of the SCG and GCG in measurements

was initially filtered with these specific filters and subsequently analyzed.

5.1.6 Vector Creation

To represent the total movement of the SCG and GCG sensors, SCG and GCG

vectors were constructed. For SCG and GCG vectors, all three axes of the respective

sensor were combined using the Euclidean formula. Furthermore, MCG vectors were

created for each frequency range (>1 Hz, 20-90 Hz, 6-90 Hz, 1-20 Hz) by combining

SCG and GCG vectors. However, as the GCG and SCG sensors have different

measurement units and ranges, combining them required scaling these measurement

units between [0,1] to ensure a comparable contribution from both sensors before

their combination. To address this range issue, SCG and GCG vectors were scaled

to fall within the [0,1] range. This scaling was achieved by utilizing the maximum

and minimum values calculated for all vectors in the corresponding frequency ranges

from the corresponding measurement units.

Firstly, all SCG and GCG vectors were extracted by filtering the signals with the
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Listing 1 MCG Vector Creation
1: for frequency range in [> 1 Hz, 20-90 Hz, 6-90 Hz, 1-20 Hz] do
2: for measurement unit in [SCG, GCG] do
3: Create vectors
4: Find the maximum and minimum value of all created vectors (1 max and

min value for the whole set)
5: Scale all vectors according to the maximum and minimum value
6: end for
7: Create MCG vectors
8: end for

selected pass band. Then, we identified the minimum and maximum values of the

vectors coming from the sensors. All SCG and GCG vectors were scaled within [0,1]

using the identified maximum and minimum values of the SCG and GCG vectors,

respectively. The operation was applied each pass band option separately. The

pseudocode for extraction of MCG vectors is presented in Listing 1.

5.1.7 Synchronized Averaging

For every signal in a 10-second segment, two mean heartbeats were generated. This

process involved synchronized averaging using both the R peak and AO point as

reference points. Synchronized averaging entails extracting individual heartbeats,

aligning them based on their reference points, and averaging the heartbeats in rela-

tion to this alignment. Two examples for mean SCG vector beats are shown in Fig.

5.3. At the conclusion of this step, there were 72 average cycles for each 10-second

segment, representing each of the 6 axes and 3 vectors (SCG, GCG, and MCG)

filtered with the 4 filtering options, and 2 mean cycles for each.

5.2 Feature Extraction

In this section, we outline how features were generated from the processed MCG

signals to support the comparison of waveform characteristics between CRT and
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Figure 5.3: Example mean beat of SCG vector in a heart failure patient undergoing
CRT pacing (left panel) and AAI pacing mode (right panel) based on AO averaging.

AAI modes.

5.2.1 Morphological Features

To extract features related to systolic and early diastolic characteristics, we initially

identified the systolic and early diastolic regions in the signals by locating AO and

AC points on SCG-Z averages. For each average cycle, two windows of 150 ms

duration were created. One window centered on the detected AO, and the other

window was placed immediately after AC to focus on the early diastolic region.

These windows were termed systolic and early diastolic windows, respectively.

Subsequent to the creation of systolic and early diastolic windows, morphological

features were extracted from these windows. These features included energy (Ex)

and vertical range (Rx), and they were defined as follows:

Ex =
∞∑︂

n=−∞

x[n]2
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Rx = maxx[n]−minx[n]

Example average cycles and extracted features are shown in Figure 5.4.

5.2.2 Timing Features

LVET and electromechanical systole (QS2) time intervals were also extracted as

features. We determined the left ventricular ejection time (LVET) and electrome-

chanical systole (QS2) by calculating the time duration between the identified AO

and AC, and between the Q wave and AC, respectively.

5.3 Statistical Tests

Our goal was not only to identify potential differences between CRT and AAI modes

but also to explore specific MCG components that exhibit the most significant dis-

tinctions, providing valuable insights into the optimal features for detecting differ-

ences. Accordingly, in the previous section, we extracted features from various mean

cycles of MCG measurements differing in terms of frequency, axis, and synchronized

averaging method. In this section, we will introduce the statistical analysis method

that we employed in the study.

In our analyses into the differences between CRT and AAI modes in MCG wave-

forms, we conducted paired statistical tests on features extracted from various mean

cycles. These cycles were obtained for all three 10-second segments that belong

to the same measurements, allowing us to analyze distinct segments of the MCG

recordings. Each experiment focused on one frequency component, axis, and syn-

chronized averaging method combination and compared the corresponding MCG

cycles in CRT and AAI modes.
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Figure 5.4: Definitions of extracted features in a heart failure patient undergoing
CRT pacing (upper panel) and AAI pacing mode (lower panel) based on AO averaged
SCG-Z cycle. This illustration has been altered from the original figure in the article
[34] and is being utilized with explicit permission.
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Figure 5.5: The distribution of segments to various sets involves putting the features
of the first, second, and third segments of the corresponding mode into sets 1, 2,
and 3, respectively, for each subject. The illustration presented here is a modified
version of the original figure depicted in the article [34], used with permission.

The features from the first, second, and third segments were put into set-1, set-

2, and set-3, respectively, creating three individual sets representing separate and

non-overlapping parts of the recordings (Fig. 5.5). To enhance the robustness of

our findings, we applied paired tests to each set, effectively creating a double-check

mechanism and minimizing the risk of type I errors.

For each experiment, statistical comparisons were performed using the Wilcoxon

signed-rank test, with a significance threshold of p < 0.05. We considered differences

between pacing modes as significant only when the null hypothesis was rejected in

all three paired tests conducted on set-1, set-2, and set-3. If any of the tests did

not result in the rejection of the null hypothesis, we did not accept and report the

alternative hypothesis, ensuring a rigorous evaluation of the observed differences

between CRT and AAI modes (Fig. 5.6).
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Figure 5.6: Algorithm for data analysis. Each individual paired set underwent a
statistical test, and the null hypothesis was rejected if all parallel tests rejected the
null hypothesis. The illustration shown here has been adjusted from the original
figure in the article [34] and is being employed with permission.



6 Results

6.1 Morphological Features

In this chapter, we report the results of the statistical comparisons of morphological

features extracted from measurements during CRT and AAI mode.

6.1.1 Systolic Features

Vertical range (Rx) and energy (Ex) in the systolic window exhibited statistical dif-

ferences between the two pacing modes. During CRT pacing, systolic features were

higher than those in AAI mode. The changes in systolic energy, vertical range for

each axis, frequency range, and synchronization method were examined during the

transition from CRT to AAI pacemaker mode and represented in Fig. 6.1. Statis-

tically significant differences between the modes were denoted by colored squares.

The percentage within the squares indicates the mean energy and vertical range

change after initiating AAI pacing, relative to the values observed in CRT mode.

The color gradients within each box illustrate the descending order of differences

between all CRT-AAI segment pairs in the corresponding experimental settings.

Every SCG & GCG axis exhibited statistically significant differences in vertical

range across at least one frequency range, resulting in p<0.05 for all three parallel

statistical tests (Fig. 6.1). Additionally, SCG, GCG, and MCG vectors exhibited

differences in systolic range between the two pacing modes. Differences were visible
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Figure 6.1: Changes in systolic energy and vertical range for each axis, filtering
frequency and synchronization method. Adapted from the original figure featured
in the article [34], this illustration has been modified and is utilized with permission.
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AAI : Mean (SD) CRT : Mean (SD) Difference
QS2 428 ms (± 35) 405 ms (± 46) Not significant
LVET 273 ms (± 14) 269 ms (± 15) Not significant

Table 6.1: Mean and standard deviation of QS2 and LVET during CRT and AAI
mode.

in all frequency components, with the most noticeable changes occurring within the

6-90 Hz frequency range, remaining significant with the extension of the frequency

range. AO Point and R peak synchronization yielded comparable results and showed

differences in a slightly different experiment set. However, significant differences in

the systolic range of the GCG-Z axis were observed in R-peak synchronization, while

the difference in SCG-X was noteworthy only when synchronized with the AO point.

The increase in systolic energy when pacing mode changed from AAI to CRT was

significant in the SCG-Y, SCG-Z, GCG-X, and GCG-Y axes, as well as in the SCG,

GCG, and MCG vectors. Differences in systolic energy were more concordant in the

GCG axes and GCG vector. Moreover, observable differences in systolic energy were

present in the ranges that included higher frequency components, with the difference

not being significant in 1–20 Hz. Systolic energy and vertical range changes in the

GCG-X axis for each subject are shown in Figure 6.2.

6.1.2 Early Diastolic Features

Despite the differences found in systolic features, there were no significant differences

observed in early diastolic features.

6.2 Timing Features

Table 6.1 presents the mean and standard deviation concerning measured QS2 and

LVET during CRT and AAI pacing modes. The analysis revealed no notable differ-

ences in QS2 and LVET when comparing CRT and AAI modes.
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Figure 6.2: Mean systolic energy and range among subject during CRT and AAI
mode extracted with AO point synchronization method in the 20-90 Hz range. This
illustration originates from the original figure featured in the article [34] and is being
used with permission.



7 Discussion

With the introduction of CRT pacing, significant changes around the systolic win-

dow were observed in all axes and frequency ranges. During CRT pacing mode,

MCG waveforms in the systolic window exhibited higher energy and vertical range.

Changes in the waveform were more remarkable in the higher frequency components,

with the most concordant differences observed in the 6-90 Hz range. Vertical range

variances were clearer than energy differences, specifically; the differences detected

in the vertical range were significant in a wider range of frequency ranges and axes.

The best axes for observing differences were SCG-Y, GCG-X, and GCG-Y, and the

GCG vector outperformed the SCG vector in showing differences. As shown in Fig.

6.2, all heart failure patients showed a consistent increase in vertical range and en-

ergy when the pacing mode changed to CRT from AAI. R-peak synchronization and

AO point synchronization methods produced similar results while showing differ-

ences in a slightly different experiment set. However, no consistent differences were

observed in the vertical range and energy around the early diastolic window after the

introduction of resynchronization pacing, and there were no significant differences

in the LVET and QS2 parameters measured during CRT and AAI mode.

Cardiac resynchronization therapy (CRT) can enhance cardiac function by syn-

chronizing ventricular contraction, resulting in an elevated left ventricular ejection

fraction, cardiac index, rapid rate of pressure rise, and decreased left ventricular

end-systolic volume index [13], [14], [129]–[132]. Through reverse modeling, CRT
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has been shown to reduce the rate of death and hospitalization in selected heart fail-

ure with reduced ejection fraction (HFrEF) patients [132]–[134]. Existing literature

indicates that CRT pacing mode leads to better cardiac function than AAI pacing

mode [135]. Additionally, signals such as seismocardiography (SCG) and gyrocardio-

graphy (GCG) have been demonstrated to encompass information regarding cardiac

performance. MCG waveforms, specifically, are proposed to reflect left ventricular

contractility, left ventricular stroke volume, and improved cardiac performance [26],

[29], [65], [116], [136], [137].

Building upon methodologies used to analyze SCG and GCG measurements and

the proposed relationships between MCG features and cardiac contractility in the

literature, energy (Ex) and vertical range (Rx) features were defined to reflect con-

traction characteristics in the systolic and early diastolic phases. Consistently, in

the three sets of CRT-AAI segments, energy and vertical range around the systolic

window showed a statistically significant increase in our patient cohort when the

pacemaker mode changed from AAI to CRT. Based on the established relationship

between MCG magnitude characteristics and cardiac contractility, as well as the

link between CRT pacing and improved cardiac function, it can be proposed that

the observed increase in vertical range and energy is related to the improvement of

ventricular function resulting from CRT pacing. This suggests a potential applica-

tion of MCG signals for the assessment and prediction of CRT response in heart

failure patients.

Heart sounds offer crucial insights into heart function and contribute to the di-

agnosis of diverse cardiac conditions [60], [138]–[142]. Specifically, the intensity of

the first heart sound (S1) correlates with cardiac contractility and cardiac reserve,

and a diminished S1 sound serves as a clinical marker for heart failure [143]–[146].

Acoustic vibrations related to heart sounds emerge in the higher frequency compo-

nents of MCG signals, and in our study, the most concordant changes were observed
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by including higher frequency components.

Observed changes in systolic features when pacemaker mode changed to CRT

mode were most prominent in the GCG axes and GCG vector. This is consistent with

the previous observations, which proposed that GCG signals exhibit lower sensitivity

to both inter-subject and intra-subject variations compared to SCG, particularly in

the GCG-X and GCG-Y axes [23], [25], [32], [147], [148]. GCG-Z axis, however,

generally has lower signal quality than other GCG axes and showed less salient

results in our analysis [23]. Among the SCG axes, the SCG-Y axis showed the

most concordant results, including vibrations in the foot-to-head direction of blood

movements.

The vertical range feature exhibited statistical differences in a broader range of

experiments compared to the energy feature. It is important to note that the vertical

range calculation employs only extrema points within the selected window, whereas

the energy calculation encompasses every point, as depicted in Figure 5.4. Utilizing

every sample in the window may render the energy feature more susceptible to noise

and alterations in values. Conversely, the vertical range calculation considers only

extrema points that shows distinctive morphologies and potentially offers greater

reliability.

Synchronized averaging includes the alignment of all heart beats according to

the selected reference and getting the average of the heart beats with respect to this

alignment. Different axes of the MCG measurements follow special shapes (peaks

and valleys) for various hemodynamic events, and these waveform morphologies are

annotated and defined in the literature [23], [55]. It is important to note that the

reference point may have an effect on the extracted mean beat and the analysis by

enhancing some of these shapes or distorting them. This effect of the reference point

on the morphology of the interested fiducial point depends on the variability of the

time difference between these points. In Figure 7.1, mean GCG-X beats extracted
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Figure 7.1: Mean GCG-X beats extracted with R peak and AO point synchroniza-
tion for CRT (left column) and AAI (right column) mode with all individual beats.
Individual beats are shown with the lighter colors.
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with R peak and AO point synchronization for one subject during CRT and AAI

mode are presented with all individual beats, and you can see the differences in

the alignment of individual beats and the waveform differences between the resulted

mean beats. Also, the effect of the selected reference on SCG waveform analysis is

shown in the literature [55]. For this reason, in this study, we employed two different

reference points for synchronized averaging and applied the same analysis pipeline

using both of them. While their results are generally comparable and consistent,

only one of these reference points resulted in significant differences in the SCG-X

and GCG-Z axes.

No statistical difference was observed in the early diastolic features when pacing

mode was changed from AAI to CRT, in contrast with systolic features. In the

literature, it is shown that MCG waveforms can reveal various alterations in cardiac

functions and detect abnormalities like heart failure and myocardial infarction [26],

[149]–[152]. In addition, it was found that patients with ST elevation myocardial

infarction (STEMI) show lower signal strength features in the systolic window than

control patients, consistent with our results and machine learning approaches were

utilized to detect STEMI [60]. On the other hand, the diagnostic precision of these

methodologies is still limited due to inter-subject variability that can be caused by

differences in heart orientation and body mass distribution. These variations consid-

erably effect the separability of the healthy controls and patient groups. However,

comparing the subject with oneself and detecting the changes with a self-similarity-

based approach may be a better approach for detecting abnormalities [24], [26], [153].

Elevated left ventricular filling pressure can be reliably identified with a louder S3

sound [154], and the change in the ventricular filling pressure due to the progression

of heart failure is most concordant in the early diastolic waveforms [155]–[158]. In

our study, early diastolic features did not change significantly after the resychro-

nization started because more time is needed to see compensatory changes in filling
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pressures.

In the literature, it is shown that LVET is shorter in HFrEF patients than in

controls, and extended LVET is observed when the pacemaker mode is switched

from AAI to CRT [128], [159]. On the other hand, the mean difference between

these pacemaker modes was only 6 ms, and this difference was only observable

with impedance cardiography but not with echocardiography [128]. In contrast

to the reported difference, we could not identify any differences in LVET and QS2

between the two modes. Based on the variations in results acquired through different

measurement methods, it is important to analyze our measurement unit. Firstly,

the sampling rate of our sensors was 400 Hz, and a limited sampling rate could be

a potential obstacle for sensitive measurement of timing parameters and detecting

differences in LVET and QS2, considering the low mean difference between the two

groups. Furthermore, studies using SCG at 2000 Hz and 5000 Hz reported that there

is no significant difference in LVET between the CRT on-off settings and CRT–AAI

pacing [29], [160]. Therefore, even though the impact of the CRT mode on systolic

performance is evident in MCG, its influence on timing parameters remains unclear

and necessitates further examination.

The study faced a significant constraint due to the restricted number of patients.

Initially, we had to employ various statistical analyses on the same patient group,

a process typically necessitating p-value correction [161]. However, the limitation

in the number of subjects also constrains the obtained p-values, potentially leading

to a attenuation of the observed differences when applying p-value correction. To

address this issue, we developed a data analysis algorithm that iterates the same

test on three pairs acquired from different time points. The alternative hypothesis

was accepted only if all three pairs exhibited statistically significant results. This

method introduced a double-check mechanism to our tests, effectively mitigating

time-dependent false-positive results.
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Sympathetic activity pertains to the activation of the sympathetic nervous sys-

tem, leading to heightened physiological responses, including an elevated heart rate,

increased blood pressure, enhanced release of adrenaline, and increased alertness.

Variations in sympathetic activity within clinical settings may induce changes in

the features computed from SCG and GCG, influencing the observed findings [162].

Additionally, these effects might introduce alterations even in healthy subjects, and

it is important to distinguish them from the effects of CRT and validate our re-

sults. Therefore, future studies should focus on comparing these variations between

healthy controls and HFrEF patients.

In our study, 1-channel ECG measurements recorded simultaneously with MCG

were utilized to detect individual heartbeats and enhance the accuracy of fiducial

point detection. Although the waveform annotations for aortic valve opening and

closing on SCG and GCG signals were defined in the literature [23], [55], the mor-

phology of MCG measurements can undergo significant alterations due to inter-

personal variabilities, subject motion, or environmental artifacts [55]. These changes

can easily impede the accurate detection of these fiducial points. However, the detec-

tion of the R-peak was more convenient because of the distinctive morphology of the

R-peak, which differentiates itself with a much higher magnitude and steeper slope

from other peaks, and the lower possibility of artifacts in our experimental setting.

In our study, it was crucial to properly detect fiducial points for an accurate evalu-

ation of the systolic and early diastolic regions, and we utilized ECG measurements

for fiducial point detection. On the other hand, for the implementation of wearable

systems that only rely on MCG measurements, it is crucial to develop algorithms

that perform fiducial point detection without depending on ECG.

One strength of our study was maintaining a consistent heart rate of 80 bpm

throughout the MCG recordings. This constancy was important, particularly in the

comparison of LVET and QS2, as changes in heart rate could potentially impact
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these parameters [99]. Additionally, the experimental design incorporated stable

and undisturbed conditions, with quiet breathing, and aimed to minimize signal

interference caused by respiratory sounds and other variations that could potentially

affect the accuracy of hypothesis testing.



8 Conclusion

In this thesis, we conducted an analysis of MCG waveforms in HFrEF patients

undergoing CRT pacing mode and AAI pacing. CRT pacing, involving ventricular

synchronization, demonstrated significantly higher energy and vertical range features

compared to AAI pacing and indicated improved mechanical cardiac function. No

significant differences were found in waveform features around the early diastolic

window, LVET, and QS2 between pacing modes.

Our results suggest that mechanical signals measured on the lower chest wall

through accelerometers and gyroscopes show substantial changes during CRT pacing

and reflects an enhancement in mechanical cardiac function due to resynchronization

therapy.

The advancements in Micro Electro Mechanical Systems (MEMS) have led to

the development of capable wearable devices, such as MCG, based on MEMS ac-

celerometers and gyroscopes. The widespread availability of smart devices with

MEMS units and growing evidence of MCG’s potential utilities make it a promising

technology for clinical applications.

The thesis demonstrates the capability of MCG waveforms in showing improve-

ments in cardiac function and offers promise for predicting clinical responses to

CRT, optimizing CRT procedures, and facilitating post-implementation follow-ups.

However, the study’s limitation in the number of subjects necessitates larger patient

cohorts for validation and a more comprehensive exploration of MCG’s utility for
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heart failure patients.

Furthermore, future studies can focus on MCG signals collected via smartphones,

developing analysis pipelines for these devices to contribute to the advancement of

health monitoring applications in home settings.
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