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ABSTRACT 

This dissertation investigates the complex factors shaping the future of 
manufacturing, focusing on innovation, competitiveness, and employment trends 
within the European context. Leveraging the extensive 2022 European 
Manufacturing Survey dataset, it models relationships between critical technological 
and organizational variables impacting manufacturing resilience using cross-lagged 
panel path analysis. Against the 2019–2021 economic and environmental backdrop, 
the research examines manufacturers’ integral survival strategies derived from 
challenges faced. Factors like business innovation models, organizational concepts, 
key technologies, and relocation approaches are assessed for performance. The study 
reveals competitive standards: automation, robotics, additive manufacturing, access-
based business models, maintenance services, and production organization. These 
discoveries have profound implications for enabling the transition to next-generation 
sustainable manufacturing through technology integration frameworks. The research 
marks the need for investments in cross-sectoral research coordination. As climate 
change intensifies, reimagining manufacturing is critical. While acknowledging 
limitations like sample size and scope, the dissertation offers a detailed 
understanding of the manufacturing system’s components and the relationships of 
success, forward strategies, and human-technology-environment interlinkages. This 
multidimensional perspective provides insight to catalyze the creation of integrated 
manufacturing ecosystems worldwide. 

KEYWORDS: manufacturing, technology, organizations, strategic relocation, 
conceptual model philosophy, experimental structural equation modeling  
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TIIVISTELMÄ 

Tässä väitöskirjassa tutkitaan valmistusteollisuuden tulevaisuutta muokkaavia 
monitahoisia tekijöitä keskittyen innovaatioihin, kilpailukykyyn ja työllisyyden 
kehityssuuntauksiin eurooppalaisessa kontekstissa. Siinä hyödynnetään laajaa 
vuoden 2022 European Manufacturing Survey -aineistoa ja mallinnetaan valmistus-
teollisuuden joustavuuteen vaikuttavien kriittisten teknologisten ja organisatoristen 
muuttujien välisiä suhteita käyttämällä ristiin viivästettyä paneelipolkuanalyysiä. 
Vuosien 2019–2021 talous- ja ympäristökehitystä vasten tutkimuksessa tarkastellaan 
valmistajien kokonaisvaltaisia selviytymisstrategioita, jotka on johdettu kohdatuista 
haasteista. Suorituskyvyn kannalta arvioidaan sellaisia tekijöitä kuin liiketoiminnan 
innovaatiomallit, organisaatiokonseptit, avainteknologiat ja siirtämistavat. Tutkimus 
paljastaa automaation, robotiikan, lisäainevalmistuksen, pääsyyn perustuvat liike-
toimintamallit, kunnossapitopalvelut ja tuotannon organisoinnin kilpailustandar-
deiksi. Näillä löydöksillä on syvällisiä vaikutuksia seuraavan sukupolven kestävään 
valmistukseen siirtymisen mahdollistamiseen teknologian integrointikehysten 
avulla. Tutkimus osoittaa, että tarvitaan investointeja tutkimuksen monialaiseen 
koordinointiin. Ilmastonmuutoksen kiihtyessä valmistusteollisuuden uudelleen-
käsittely on ratkaisevan tärkeää. Väitöskirja tarjoaa yksityiskohtaisen käsityksen 
valmistusjärjestelmän osatekijöistä ja menestyksen, edistysstrategioiden ja ihmisen, 
teknologian ja ympäristön välisten yhteyksien välisistä suhteista, vaikka siinä 
tunnustetaankin otoksen koon ja laajuuden kaltaiset rajoitukset. Tämä moni-
ulotteinen näkökulma tarjoaa näkemyksiä, joiden avulla voidaan edistää 
integroitujen valmistusekosysteemien luomista maailmanlaajuisesti. 

ASIASANAT: valmistus, teknologia, organisaatiot, strateginen toimipaikan muutos, 
käsitteellinen mallifilosofia, kokeellinen rakenneyhtälömallinnus 
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1 Introduction 

Innovation models and digital services require prominent research features to clarify 
digital vision objectives for industry development. Current research necessitates 
deep analysis with theoretical support to develop industry structure, partially for 
business safety and confidentiality reasons, as business secrets are more difficult to 
disclose in collaborative research reliant on vital functions (Hautala-Kankaanpää, 
2023; Hyvönen et al., 2023). Research distribution across time domains should 
emphasize contributions, not exacerbating manufacturing competitiveness or supply 
chain gaps. This dissertation combines the European Manufacturing Survey (EMS) 
2022 exploratory studies to contribute to Finnish manufacturing’s global innovation 
competitiveness forefront. Exploratory data analysis processed for journal writing 
showcases sample entries with theory-driven hypotheses based on exploratory 
results, perhaps visibility-latent, granting corporations a competitive advantage to 
create beneficial customer-cost activities with technology (Manthey et al., 2022). 
There are ways to investigate technological innovation, success factors for adopting 
brilliant manufacturing transformations measure hindering production innovation on 
intelligent systems, information management systems, and in-house versus 
outsourcing considerations (Jung et al., 2023; Won & Park, 2020). Information 
management systems signify substantial investment decisions with benefits. Smart 
manufacturing data-information-knowledge innovativeness cannot be understated, 
as it directly shapes strategies (Kim et al., 2023) through organizational structures 
determining digital technology integration depths into industrial processes.   

This thesis focuses on EMS-collected innovation and technology management 
implications to understand industry sector competitiveness and employment 
development. Rare data availability rationalizes investigating management advanced 
manufacturing innovation investments—publication-level technological 
measurement positions into a Fraunhofer Institute for Systems and Innovation 
Research Finland project. Online CEO-distributed, organization-reflective EMS data 
per a Consortium for European Manufacturing Survey 2022 (EMS22) coordinated 
by the Institute for Systems and Innovation Research assembled the survey to 
comprehensively capture 2019-2021 manufacturing organizational states (Heilala, 
2023a).   
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Combining EMS22 respondent structural element inputs formed a multifaceted 
investigation. This thesis supports an integrated industry perspective in assessing 
factors contributing to ongoing Industry 4.0 discourse value from research 
professionals to business owners. Key focus areas have included digitalization 
strategy integration into Industry 4.0 for light generalization sample saturation since 
competitiveness and investment potential decreases seen since the 2009 economic 
crisis recovery—unique EMS pandemic measurement interval comparisons 
evidence business sustainability as a discussion topic. Industry 4.0 strategy changes 
signal future transformations (Kaivo-oja et al., 2018). Improved from 2009 EMS, 
EMS22 focuses on innovation with cybersecurity, connectivity, autonomous and 
computer vision production management, emphasizing high technology efficiency 
(Heilala et al., 2023a). University and research laboratory collaborations 
concentrating on energy, reliability engineering, and logistics improve returns 
(Kaivo-oja et al., 2018). In turn public-private partnerships across sectors focusing 
on efficient energy technologies present high-technology adoption opportunities 
(Pinilla-De La Cruz et al., 2022). 

The EMS sample increasingly focused on responding to their sustainable 
practices for improved manufacturing efficiency, which could be seen from techno-
organizational greenhouse gas emission reduction and efficiency improvements 
from a sustainability perspective (Mattila, 2021). Global customer considerations 
drive firms' advanced manufacturing repositioning potential within additive 
manufacturing, strengthening supply chain resilience programming currently 
supports the resilience framework. Inspiring public-private partnership programs 
could serve labor productivity gains as manufacturing outages decline. Competitive 
investing companies undergo productive transitions, upholding Finnish 
responsibilities during traditional manufacturing decline. Intergenerational lifecycle 
thinking sustainable development goals lead to governmental efforts to improve 
traditional manufacturing (PMO, 2020).    

This EMS22-studied book provides a traditional manufacturing counterpart with 
a sustainable development angle, offering strategies and action plans to progress 
beyond Industry 4.0. Recommended patterns of employee migration to manufacturer 
characteristics in Finland rely heavily on quantitative measures like employee 
numbers and turnover in defining SMEs. Critical consideration of qualitative 
industry-specific growth and managerial capacity factors enables a more accurate 
understanding of SMEs (Stat, 2023). 

Structured content progression begins with an introduction of each component 
of EMS22, encompassing theoretical frameworks through hypothesis formulation, 
and transitions methodology from employed methods to data processing techniques. 
Analysis modeling and interpretation set the stage to examine recommendations for 
a randomly selected study sample regarding digital transformation-necessitated 
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future organizational and managerial adaptations. Crafted segments underscore the 
importance of interdisciplinary collaboration, exemplified in standardized customer 
relationship management development within Manufacturing-as-a-Service (MaaS) 
contexts (Pessot et al., 2021). MaaS links to evolving operations management 
responsibilities.  

Operations management recommendations include scrutinizing bankruptcy 
costs, tax shields, order integrity, and agency/signaling roles within international 
trade classification-level capital structure decisions. This incorporates the Heilala et 
al. (2023d)-cited Heilala and Krolas (2023)’s set sustainability standard. Other 
adaptations from Norton (1990) include investments for managerial discipline, 
ownership, and equity investment-product manufacturing-sales operations dynamics 
analyses. 

Among other firms, manufacturers were a “scarce resource” in some regional 
industry horizontals, potentially affecting more horizontal research needs 
(Hogeforster & Wildt, 2021). European SME numbers were 228,562 in 2019; new 
companies fulfill ~75% of demand, more significant in different areas, justifying 
horizontal movement (Hogeforster & Wildt, 2021). Figure 1 shows the demand for 
SME cross-Europe business development roles. 

 
Figure 1.  Depicts yearly techno-organizational firm transfers in Europe, highlighting Poland and 

Germany's significant potential due to their large firm counts (Hogeforster & Wildt 2021). 
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Transfers of techno-organizational capabilities between firms have significant 
potential to facilitate economic stability and growth in European countries 
(Hogeforster & Wildt, 2021). As Hogeforster and Wildt (2021) show, countries like 
Poland and Germany demonstrate high levels of potential for such transfers, with large 
numbers of firms (p. 1–32). These transfers help maintain regional competitiveness, 
while strategic management of transfer processes also affects business sustainability. 
Key metrics include the proportion of SMEs in each country, contributing innovation, 
and measurements of total demand for entrepreneurs compared to the proportion 
fulfilled by firm transfers (Hogeforster & Wildt, 2021). Though not a direct measure, 
the EMS22 provides a useful proxy indicator of potential techno-organizational 
development through firm transfers dominated by manufacturing. It points to 
substantial unfulfilled transfer needs, suggesting a technology vacuum necessitating 
strategic business response (Hogeforster & Wildt, 2021; Varanka et al., 2021). 

The industry has shifted significantly during the global pandemic, bringing new 
challenges and opportunities for firm transfers and adopting updated, sustainable 
competencies (Hogeforster & Wildt, 2021; Heilala et al., 2023c). The financial sector 
has also adjusted, improving resilience in response to crises and reforms (CGFS, 
2018). Modeling by Heilala et al. (2023c) predicts that controlling the pandemic's 
progression has more significant economic benefits than the costs of restrictive 
policies in Western countries. Investments have had some direct positive 
competitiveness impacts. Careful statistical noise management in the EMS22 avoids 
uncontrolled escalation of epidemic impacts, minimizing negative consequences 
(Varanka et al., 2021). EMS22 demonstrates intense statistical rigor under 
examination, with thorough meta-level and residual analysis (Draper & Smith, 1998; 
Kutner et al., 2004; Weisberg, 2014; Fox, 2016). 

Specifically, the pandemic initially caused order decline and disrupted supply 
chains across industries like manufacturing (Malgorzata, 2021; Heilala et al., 2023c). 
However, it also conditioned expanded adaptability, shifting firms towards resilience 
for circular economy (Heilala et al., 2023c). SMEs similarly demonstrated 
adaptability amidst the challenges of maintaining costs while refocusing business 
direction (Wiardi & Saputra, 2022). Circular economy approaches have also drawn 
increasing interest as a sustainability strategy since 2019 (Tura et al., 2019). 

The policy has responded through renewable energy subsidies and infrastructure 
investment tenders, helping achieve Western decarbonization targets, like carbon 
neutrality, by 2035 (Businee Finland, 2023). Sustainable manufacturing and circular 
economies are crucial for waste-driven industry transformation towards these goals 
(Urbinati et al., 2020). While scaling sustainable manufacturing has had technical, 
integration, design, capability, and financial barriers, most businesses must now 
pursue decarbonization within ten years (Deloitte, 2019; Accenture, 2023). Artificial 
intelligence is expected to assist the urgent transition (Accenture, 2023). 
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1.1 Research purpose 
This study provides comprehensive illumination of the impacts of techno-
organizational practice, focusing specifically on crucial manufacturing technology 
enablers within the EMS scope. As the view narrows between competitiveness, 
employment situations, enabling key technologies, organizational concepts, and 
relocation activities across the European Finnish territory, the dissertation objectives 
were to determine the complete structural validity of techno-organizational 
relocation practices; Strategic advantages of technology development on offshoring 
manufacturing; Firms’ opportunities to embrace advanced engineering design 
research (Heilala, Krolas & Gomes de Freitas 2023). To this end, a framework was 
obtained from Scopus. Ensuring academic thoroughness, this dissertation 
incorporates inspirational insights from various scholarly interpretations. Generally, 
scoping reviews showed growth in popular research domains, while Scopus-
literature analysis demonstrated expanding studies across enabling sectors, 
facilitating rigorous integration (see Figure 2). 

 
Figure 2. Manufacturing technologies applications increasing trends in logarithmic scale with 

given keywords to the Scopus database. (2013–2023). 
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The research framework needs to be centered on manufacturing technologies at 
the depth of the engineering variables provided. The scope of the EMS is political, 
while the research scope of politics and business to ensure academic thoroughness 
purpose for future manufacturers' education, coded in the EMS (2022) domain, as 
improved within the dissertation context. Content links through journal articles 
(JA1-3), a book chapter (BC), and conferences (C1-6), delineating the scope per 
Figure 3.  

 
Figure 3. Shows supply chain contract networks, centered on Heilala's 2022 global management 

strategy. It connects various topics: competitiveness (C2), organizational concepts (C3), 
relocation (C4), and manufacturing management (C5, C6), along with other journal 
articles. 

1.2 Research questions 
The manufacturing sector remains a critical driver of the global economy, witnessing 
rapid technology adoption and evolving organizational practices that enhance 
competitiveness and drive employment growth. This has given rise to a 
"manufacturing metaverse" - an integrated digital ecosystem enabling unprecedented 
innovation, collaboration, and growth opportunities (Heilala, 2023d; Heilala & 
Singh, 2023). 

Developing research questions (RQs) to model the complex relationships within 
this metaverse formed the foundation of this study. The aim was to examine the links 
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between key technological factors, organizational concepts, and their impact on 
competitiveness and employment trajectories. Given the transformative and rapidly 
evolving nature of digital age manufacturing, modeling these technology-
organization-performance connections is indispensable. 

The RQs were framed against a backdrop of innovation, with a focus on 
emerging digital process control and advanced production technologies. Ensuring 
resilience through robust cybersecurity, efficient production management, and 
strategic relocation capabilities was a prime consideration in this dynamic 
manufacturing landscape. 

The central RQ examined: What technological integrations and firm 
characteristics influence competitiveness and employment growth within the 2019-
2021 Finnish manufacturing sample studied? 

Subsequent analysis by Heilala et al. (2023a, 2023b, 2023d) on study validity 
raised points regarding the findings' usability, which can be explored through the 
following specific RQs: 

RQ1: 

• What are the critical technological enablers for improving factory floor 
operations, and how do different technologies like automation, robotics, 
production control systems, and additive manufacturing impact 
manufacturing performance? (Based on Heilala, 2022; responsively 
Heilala et al., 2022a). 

RQ2.1–2: 

• How do the organization of production processes and investments in 
training/competency development influence a firm's competitiveness and 
employment levels? (Based on Heilala, 2022; responsively Heilala et al. 
2023a) 

• What is the role of decision-making related to manufacturing 
education/training in areas like automation and robotics? (Linking to 
RQ1) 

RQ3: 

• How can firms position themselves at the frontier of intelligent 
manufacturing through strategic investments in R&D, ecosystem 
collaboration, multi-material capabilities, and data-driven additive 
manufacturing technologies? (Based on Heilala et al. 2023bc responsively 
Heilala, Krolas, and Gomes de Freitas 2023d;) 

RQs delineate a network of connections from a supply chain contract 
perspective. Conference proceeding C1 on deploying competitive techno-
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organizational global supply chain management (Heilala, 2022) to the complete 
thesis broad show example preliminary framework to C2 exploring developing 
competitiveness and employment situations regarding key manufacturing 
technologies at whole depth (Heilala et al., 2022a). C3 examines manufacturing 
organizational concepts similarly (Heilala et al., 2022b), while C4 discusses 
relocation activities (Heilala et al., 2022c) with (Heilala et al., 2023d) as of search 
for technologies for advanced manufacturing capabilities should foster mitigation of 
sea level rise (Heilala et al., 2024). The complete lifecycle manufacturability of 
complex platforms, in turn, investigates the manufacturing management of C5 in 
terms of climate change issues (Heilala & Krolas, 2023; Heilala et al., 2023d), and 
C6 examines integrating additive manufacturing systems on Heilala Parchegani 
Chosaki & Piili (2023) supporting the research. These conferences provided 
foundational inspiration for several original publications. These dissertation JAs 
(journal articles) include JA1 on complete view of digital competitive advantage in 
Industry 4.0 (Heilala et al., 2023a), JA2 analyzing supply chain (Heilala et al., 
2023b), JA3 examining technology, organizational concepts, and training on 
performance (Heilala et al., 2023c), and BC (book chapter) on advanced engineering 
management challenges interconnected to product classification shoring trends were 
introduced closely (Heilala et al., 2023d). Due to industry limitations, adaptability is 
essential (Philbeck & Davis, 2018). This monumental manufacturing technological 
growth period makes this research both timely and crucial. 

1.3 Research approach 
In this chapter, empirical research investigating an integrated theory of sustainable 
manufacturing is presented. The comprehensive approach analyzes how various 
digitalization factors and key techno-organizational enablers contribute to 
sustainability within the manufacturing sector. A space of fundamental questions is 
employed with an a priori model, the Development of Competitiveness and 
Employment (DCES) model, to measure the impact of manufacturing digitalization 
for RQ1 performance, RQ2 education and RQ3. The DCES model incorporates 
several critical elements from the European Manufacturing Survey (EMS), including 
key enabling technologies (KETs), organizational concepts (OCs) for relocation 
activities, digital services (DSs), and cybersecurity practices (CPs). These elements 
are evaluated through the lenses of supply chain contracts (SCCs) and human 
resources (HR). By examining these factors, the driving forces behind 
competitiveness and employment in specific areas are elucidated, ultimately emitting 
light on their influence on the overall sustainability of manufacturing systems. Figure 
4 visually represents this integrated theory of sustainable manufacturing, modeling 
how the digitalization variables and key techno-organizational enablers contribute to 
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sustainability. The figure provides a comprehensive overview of the intricate 
relationships and dynamics radiating within the theoretical framework. 

 
Figure 4.  A priori DCES model links manufacturing digitalization, relocation, digital services, 

cybersecurity, to competitiveness and employment. (Heilala et al., 2023a.). 

Following a digital manufacturability strategy with distributed systems has taken 
higher frequency (Teece, 2018) toward African solicitation tendering. Recent 
research found associated concepts permeating organizations revolving around the 
digital revolution (Thun et al., 2019). Figure 4 symbolizes a revolution of factors, 
with a priori forms expecting the benefits of selective sustainable manufacturing 
practices. Sustainability search significantly enables competitiveness and 
employment interdependently within firms, subject to development in validation 
(Heilala et al., 2023a). This a priori framework focuses on modeling the sustainable 
development of competitiveness and employment. Broader theoretical exploration 
also suggests investigating sustainability lifecycle manufacturing interactions for 
improving manufacturing conditions (Casamayor et al., 2023; Fatais & Karwowski, 
2023 (Heilala (2023d) cited Heilala & Singh (2023).). 

Perspective aligns with embedded systems operations (O3D, 2022), qualitatively 
assessing technology, practices, and resilience. The explicit technological role in past 
research regarding technologies for supply optimization is under investigation 
(Alsolbi et al., 2023). Additive innovation opportunities can provide environmental, 
financial, and social benefits supporting circular economies and fossil freedom 
(Brauers & Oei, 2020). Techno-organizational forming (Li et al., 2018; Reig, 2023), 
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data security (Alsolbi et al., 2023; Bayat et al., 2023), and employee capital 
utilization (Tofail et al., 2018; Burnside, 1995) continuously in place for updated 
scope for research. Key manufacturing technologies can positively influence 
competitiveness and employment (Heilala et al., 2023ac). 

Introduced business adaptability, aligning with Industry 4.0 reconfiguration 
(Philbeck & Davis, 2018), which aligns with the implementation of the 
manufacturing research, is essential. The hypothesis tests the dependence between 
competitiveness, employment, and factors like contracts, resources, technologies, 
concepts, activities, practices, services, and innovation models. At the same time, 
this dissertation evaluates the visible validateable spectral wavelengths of how 
configurable the manufacturers' perspicuity is (Heilala et al., 2023ac). 

1.4 Historical studies and the study 
Historical studies show the details of manufacturing economic turbulence (Kinkel et 
al., 2015). By 2019, multifaceted events triggered urgent sustainability imperatives: 
the EU's declared climate crisis and pandemic mobility restrictions severely 
disrupted operations and insolvencies (OECD, 2021). Amidst the 2019-2021 
socioeconomic vortex, what strategies did resilient manufacturers use to withstand 
challenges? Impacts differed, requiring decoding success factors within this 
horizontal. Given Finland's digitalization leadership, exploring manufacturer 
perspectives is needed to gain depth in particularly digitized manufacturing.  

The manufacturing sector contends with increasing global competition and rapid 
technological change, necessitating continuous innovation for competitiveness. 
Thus, this study leverages EMS22 data encompassing supply chain, human 
resources, innovation models, and other quantified concepts to model industry 
development and competitiveness (EMS, 2022). The focus is on innovatively 
integrating and aligning literature concepts with these unexplored research avenues.   

Competitiveness impacts differ regarding capital utilization, with employment 
connections seeing only partial productivity spectrum sensitivity (De Lima et al., 
2023). Sustainability necessitates lifecycle production analysis for growth and is a 
cornerstone for sustainability facets (Machek & Machek, 2014). Rising efficiency 
reliance heightens this assessment's criticality amidst efficiency requirements 
(European Commission, 2019). Innovative systems change management requires 
financial support for intelligent systems development (Brzezinski & Wyrwicka, 
2022). Western 2030 strategic pollution and 2050 resilience targets require the 
participation of the private sector to reach zero emissions (European Commission, 
2022a; Business Finland, 2022). Discussing intelligent manufacturing solutions for 
raising efficiency and energy savings aligns with these goals. The global crisis 
creates opportunities for efficiency rethinking. 
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1.5 Positioning the establishment of framework 
Empirical investigations found that digitalization has not directly decreased 
corporate employment; automation costs pose challenges requiring innovative job 
creation. Studies show digital systems shaping daily lives and employment through 
new organizational structures (Jäger et al., 2015, 2016). Digital transformation 
enables real-time communication to enhance responsiveness and reduce latency, 
sparking organizational learning innovation using intrinsic and extrinsic 
performance-linked resources (Roco & Bainbridge, 2003; Eke et al., 2020). 
Automating virtual systems increases profitability over manual process costs and 
yields. Innovation also drives offshoring when domestic resource costs are higher, 
though growth companies often start locally (Jäger, 2016; Teece, 2018). Strategies 
for reliable competitiveness and employment measurement have significant 
historical model leadership for innovation (European Commission et al., 1994). 

Outsourced innovation allows for acquiring competitive assets externally as a 
secondary entity (Faullant & Knudsen, 2019). The innovation process involves 
ideation, brainstorming, opportunity identification, refinement, and implementation 
based on work orders and objectives (Apilo & Taskinen, 2006) that can be fully 
automated with generative artificial intelligence set open and transparent boundaries. 
This forms space for sustainable development within Industry 4.0, governing metrics 
to transition towards environmental protection and post-industrial green society 
(Morelli et al., 2022). Similar protocols improve traditional business operations and 
delivery (Kallonen et al., 2021). Pillars ensuring profitability through transactions, 
incentives, and investments also indicate innovation sustainability (IAEA, 2008). 

1.6 Manufacturing efficiency target variables 
research design 

Production, outcomes, control variables, and information interact deductively and 
mutually (Subramaniam, 2020). These integrate efficiency planning for EU 2030 
competitiveness, innovation, prevention, security, and research targets (TEM, 2019). 
Technological innovations enable renewable, efficient, cost-reduced profitability 
without subsidies through solution viability expansions (Glenk & Reichelstein, 
2022), supporting organizational, technological, and manufacturing sustainability. 
Adopting Industry 4.0 introduces time series-dependent global competitiveness 
challenges, requiring functioning design discovery from samples. Acknowledging 
dependencies, component modeling reviews interrelationships, enabling knowledge 
creation through partial cross-lagged panel structural equation modeling (Hair et al., 
2010; Muthen & Asparouhov, 2022). This firm leveraging method uses 2019-2021 
partial SEM, evidencing process efficiency (Brisebois et al., 2017; Muthen & 
Asparouhov, 2022). Non-normality indicates the new normal. Meta-analyses 
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searched Scopus for concepts and methods, with document counts representing 
query relevance (Figure 5). Literature covers Industry 4.0 supply chains, production 
management, and additive manufacturing specialties. Research must view 
manufacturing expansion trends toward metaverse performance (Osterwalder & 
Euchner, 2019; Knott, 2015). Considering agile, ecologically sustainable business 
aspirations, the thesis investigates global sustainable technology utilization 
implications, following expansion methodologies (Takeuchi & Nonaka, 1986; BF, 
2021). 

 
Figure 5.  This illustrates the document count trends over the years with used keywords examined. 

(Source: Scopus, as of 26.6.2023). 
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2 Advanced Manufacturing Key 
Variables 

2.1 Competitiveness and employment 
The study examines the development of competitiveness and employment in the 
assets of advanced engineering through critical metrics established by Heilala et al. 
(2023abc). These metrics include the number of employees, annual turnover, 
manufacturing capacity utilization, return on sales, and annual payroll as a 
percentage of annual turnover and established factory years (Heilala et al., 2023ac). 
The sustainable downsizing in the number of employees is proportional to the 
sector's performance and morale (Drzensky & Heinz, 2016). The labor turnover, 
including the changing rate of employees, has implications for a sector facing 
stagnation (Collins, 2014). The capital utilization combination of manufacturing 
capacity utilization and return on sales reflects operational efficiency and 
profitability, respectively. Given the sector's digital transformation, understanding 
and improving these factors affect efficiency and productivity. The capital utilization 
metrics are a vital target (Ukaidi, 2016). The controversial metric in every domain is 
the annual payroll, representing the total salaries paid to employees. Annual payroll 
is essential to the sector's sustainability, with ethical business practices linked to fair 
payment structures and any significant changes in the annual payroll (Grosch & Rau 
2020). This merely maintains capital utilization in employee utilization, regardless 
of the impact of supply chain changes. Factors such as production capacity shocks, 
private saving and pent-up demand, labor market conditions, and expectations 
contribute to supply chain disruption in the sector's operation (IMF, 2023). A 
positive counterpart of disruptive innovation influences society's structures on 
productivity to expand engineering growth. Studies have marked the positive impact 
of annual payroll on increasing productivity in a controlled environment (Harrington 
& Emanuel, 2023; Lollo, 2020). The global trends indicate an overall increase in 
annual payroll for the sector to deal with industry-specific challenges (HRM, 2023). 
Competitiveness drives innovation in transactions to the foundation for employment 
to drive change. For example, this company resource utilization evaluation is shown 
against the functions and models in practice in establishing the Schumpeterian 
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Hypothesis, which posits a correlation between firm and innovative activities (Acs 
& Audretsch, 1988). 

The critical metrics established by Heilala et al. (2023abc) provide a framework 
for examining the development of competitiveness and employment in the 
manufacturing of advanced engineering assets. The sustainable management of 
employees, capital utilization, and annual payroll are vital factors influencing the 
sector's performance, productivity, and sustainability. Disruptive innovation and 
global trends shape the dynamics of competitiveness and employment, driving the 
need for innovative transactions and resource utilization strategies. The evaluation 
of company resources against established models and hypotheses, such as the 
Schumpeterian Hypothesis, highlights the correlation between firm activities and 
innovation, further emphasizing the importance of competitiveness in driving 
employment and overall sector growth. 

2.2 Supply chain contracts 
In the manufacturing of advanced engineering assets, the supply chain contract 
structure and the roles of involved parties, including the manufacturer, supplier, and 
contract manufacturer, were distinctly outlined in structural and in-detail 
investigations by Heilala et al. (2023ac). The supply chain contract entity's depthless 
regional size describes an agreement where the manufacturer is charged with 
producing for sale, while the supplier provides the resources and refines contract 
integrity accordingly to new resources for the manufacturer (Chopra & Meindl, 
2016). This area of supply chain contract research is not clear-stroke, longing for 
further investigation in the technology domain competitiveness. In assessing and 
certifying the quality of manufacturing organizations, suppliers with functioning 
horizontal services have been identified as dominant entities with high standards 
(Mishra et al., 2003). The contract manufacturer is diverse in standards, with contract 
integration decentralizing production risks. Specific models result in better returns 
with consensus on design within the industry ecosystem, benefiting the entire supply 
chain and motivated to create an environment conducive to quality production (Cai 
et al., 2023). This always requires a quality management systems perspective, which 
will be discussed in later chapters. 

The horizontal integration of the supplier on the commerce horizontal redefines 
cooperation strategies (Zhang et al., 2023). High-ranked partner negotiation, for 
example, forms suppliers' decision-making for a competitive batch price for profit. 
The diversity of live-streaming to the revenue-sharing agreement is a risk group 
between manufacturers (Lin et al., 2023). The traditional or e-commerce-based 
difference in situations will benefit all supply chain members. The Industry 4.0 
horizontal integration shows the emergence of intelligent manufacturers that uphold 
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the standards. When formulating contracts, the supplier assesses these 
manufacturers' production capabilities and technological gaps. The provider is then 
sorted using an algorithmic genetic procedure to optimize collaboration in fulfilling 
the requirements for production and delivery (Zhou et al., 2023). The technological 
scope defines the digital transformation's production and contract (Harata & Odake, 
2023). Overall, the manufacturers producing and supplying manufacturing systems 
are marking. The power between suppliers and customers transforms orders, mainly 
when the latter leverages the former's capabilities for market expansion. A success-
sharing contract extension negotiation must be implemented to avoid product recalls. 
These contracts provide a well-designed supply chain's nature (Chakraborty et al., 
2023). Profit-sharing contracts offer advantages and some risks for manufacturers, 
but both traditional and e-commerce models benefit all members. Industry 4.0's 
intelligent manufacturing may only maintain high standards if it follows the steering 
entry. Suppliers assess their capabilities and technological gaps in metagenetic 
algorithms to improve cooperation. This technological advancement significantly 
impacts the digital transformation of production and contracts. The dynamics 
between suppliers and customers evolve, particularly when customers leverage 
suppliers' strengths for broader reach. This framework contributes to success-sharing 
with contracts, which is becoming more crucial to prevent product recalls and 
requires reconfigurability for total commitment. The organizational psychology 
design and project contracts have to be safeguarded from the inherent uncertainty of 
the stakeholders impacting balance (Berg et al., 2003). 

2.3 Human resources management 
In the manufacturing of advanced engineering assets, small and medium-sized 
enterprises (SMEs) face threats of capital shortage, lack of skilled specialists, and 
higher staff preparation costs in terms of human resources (Ulewicz et al., 2019). 
Human resource challenges, opportunities for enhancing productivity, and 
responsiveness to user demands and changes persist. Strategies suggested to 
counteract knowledge management for human resource sustainability include closer 
industry and institution collaborations, the need for development and revision of 
external training programs, upskilling and retraining of teachers and staff, as well as 
promoting the technology industry to school leavers and graduates, and developing 
digital strategies (Arias et al., 2020). 

Further refinement of strategies achieves analysis including occupational and 
academic aspects, such as opportunistic migration flow patterns and resonate to 
knowledge management gaps with the occupation of migrated workers (Hogeforster 
& Wildt, 2021, 139-142). The nature of human resources, categorized for simplicity, 
is categorized as university/college graduates for a technically skilled workforce, the 
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workforce trained in technical/industrial or commercial sectors, semi-skilled and 
unskilled workers, and trainees in technical/industrial or commercial sectors, given 
descriptive from higher to lower decile in the study context categorized for human 
resources for the study variables (Heilala et al., 2023a). Applying mathematical 
human resource characterization to the manufacturing sector characterizes firm 
structure along sustainability strategies, directly explaining competitiveness and 
employment. Beginning from intersectional factors, the characteristics of sustainable 
firms address disruptive innovation. A significant challenge is the need for more 
professionals adept in technologies in replacement or supplement to subtractive 
energy loss in a domain for specialist technicians for more generalists. Hence, there 
is a requirement for educational initiatives and training programs for skilled and 
adaptable human resources able to facilitate the different materials and design 
process requirements (Deloitte, 2019, 22). Helping fully adopt and implement 
technologies, lacking integrated trainee programs with continuing education in the 
current system, except for facilitating work for experienced specialists rather than 
training new experts, results in a gap in the deployment of technologies (Deloitte, 
2019, 22). Techniques are increasingly adopted beyond prototyping and tooling, 
particularly in end and spare part production. Challenges include technological 
issues related to materials, process implementation, post-processing, quality 
assurance, the need for standards, and a need for well-trained technicians (Deloitte, 
2019, 27). 

In the manufacturing of advanced engineering assets, human resource 
management is crucial, with SMEs facing threats of capital shortage, lack of skilled 
specialists, and higher staff preparation costs. Strategies to counteract these 
challenges and enhance productivity, responsiveness, and knowledge management 
sustainability include closer industry-institution collaborations, development and 
revision of external training programs, upskilling and retraining of staff, promoting 
the technology industry to students and graduates, and developing digital strategies. 
Further refinement of strategies involves analyzing occupational and academic 
aspects, such as migration flow patterns and addressing knowledge management 
gaps with migrated workers. The nature of human resources is categorized as 
university/college graduates, the workforce trained in technical/industrial or 
commercial sectors, semi-skilled and unskilled workers, and trainees in 
technical/industrial or commercial sectors. Applying mathematical human resource 
characterization to the manufacturing sector aids in understanding the interaction and 
impact of firm structure in developing sustainability strategies. Addressing 
disruptive innovation, a significant challenge is the need for more professionals 
adept in technologies to replace or supplement specialist technicians with generalists. 
This necessitates educational initiatives and training programs for skilled and 
adaptable human resources to facilitate different materials and design process 
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requirements. Gaps in technology deployment arise from the lack of integrated 
trainee programs with continuing education in the current system, except for 
facilitating work for experienced specialists rather than training new experts. 
Challenges also include technological issues related to materials, process 
implementation, post-processing, quality assurance, the need for standards, and the 
need for well-trained technicians, particularly in end and spare part production. 

2.4 Business innovation models 
In the manufacturing of advanced engineering assets, the concept of business 
innovation models encapsulates numerous innovative business strategies named 
descriptively covering distribution, access, maintenance service-based, high-
performance computing, on-demand, sharing, performance, and turnkey innovative 
in the study context (Heilala et al., 2023a; Heilala 2022). This repertoire of studies 
on business innovation models should represent more than sustainable and 
responsive business modes to the applicability of the study. Economies transaction 
management is steering the private business growth with the future of the digital 
market. The scope of the business innovation model is a critical decision for firms 
dependent on products (Timmers, 1998), particularly in the context of the rapidly 
evolving digital horizontal. This marks the value of the digital content market 
(Swatman et al., 2006). 

To optimize the performance of business models, strategies decentralizing to 
meet environmental advantage, reflecting cash flow objectives, and investing in 
lifecycle opportunities are recommended (ACCA, 2023; EY, 2023; Teece, 2018; 
Boon, 2022). Business innovation models focusing on slowing consumption, based 
on design, waste, platform, service, and nature, are integral for a circular economy 
(Henry et al., 2019). The endogenous shocks force flexibility into business 
innovation models (Wiardi et al., 2022). This representation fosters the business 
innovation model, addressing service challenges in specific sectors where customer 
perception often lags toward the transition (European Commission 2023a), or vice 
versa. The changing business models offer sustainable innovation, providing a 
framework for creating sustainability (Boons et al., 2013). Examples include the 
artificial evolution of business models in accommodating the asset share needs 
(Perboli et al., 2017). Firms align objectives, for example, to form broader 
production and consumption systems through various business innovation models. 

In the manufacturing of advanced engineering assets, business innovation 
models encompass a range of innovative strategies, including distribution, access, 
maintenance service-based, high-performance computing, on-demand, sharing, 
performance, and turnkey innovative approaches. The studies on these business 
innovation models represent not only sustainable and responsive business modes but 
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also their popularity within the research domain. Economic transaction management 
is driving private business growth and shaping the future of the digital market. The 
scope of the business innovation model is a critical decision for product-dependent 
firms, marking the value of the market. To optimize business model performance, 
models focusing on slowing consumption, based on design, waste, platform, service, 
and nature, are integral to a circular economy. Endogenous shocks necessitate 
flexibility in business innovation models. These models address service challenges 
in specific sectors where customer perception may lag or lead the transition. The 
changing business models offer sustainable innovation, providing a framework for 
creating sustainability. Examples include the artificial evolution of business models 
to accommodate asset sharing needs. Firms align objectives to form broader 
production and consumption systems through various business innovation models. 

2.5 Organizational concepts 
Organizational innovation practices establish the foundation for understanding 
organizational concepts related to production organization, production management, 
and control (Heilala et al., 2023ac). The detailed aspects encompass integrating 
various tasks, planning, and operational roles at the operator level, implementing 
customer or product-focused lines/cells within the manufacturing facility, and other 
factors facilitating efficient production (Heilala et al., 2023ab). Training and 
competency development should focus on task-specific and cross-functional creative 
training for employees in areas like machine maintenance, project management, and 
data security, indicating the importance of a creative training approach for enhancing 
productivity (Heilala et al., 2023b; Heilala et al., 2023).  

Virtual reality enhances learning capabilities for organizational concept 
management in academic and industrial settings (Radianti et al., 2020). VR serves 
as a tool for production control, integratable with specific assets (Choi et al., 2015; 
Räikkönen et al., 2020). Considerations for bioethical privacy, intellectual property 
rights, and cybersecurity carry weight (Burk, 2002). Aligning with government 
recovery and resilience plan initiatives underlines compliance with certified 
environmental management systems is priority (TEM, 2021). The governing board 
should commit to transitioning to a circular economy for global sustainability (Barón 
et al., 2020; 2022; EPA, 2023). The shift toward adopting environmental 
management systems and reasons for CE (Conformite Europeenne)-compliant 
manufacturing, although challenging, reduces waste and environmental hazards 
(Jensen, 2022; Rajesh et al., 2022). 

The efficiency of Enterprise Resource Planning (ERP) systems within 
manufacturing companies forms a competitive edge (Mulvenna, 2023). 
Manufacturing efficiency leadership impacts organizational concepts, 
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transformation, supply chain management, and strategic planning against disruptions 
(Mattila BF, 2020). Goal management boosts employee morale, which 
manufacturers can internally influence and promote failures for innovation (Jouany 
& Martic, 2023). Improving economic creativity and failure-oriented thinking 
enables innovation (Walsh, 2022). The system's application of innovative energy-
saving technologies and strategies in manufacturing underscores the need to cultivate 
the energy culture (ACER 2021; Pons Pairó, 2020). Startups facilitate a safety role 
in transforming energy across industries, with efficiency being a cultural focus rather 
than a strategy (Marine Digital, 2023). Quality management and control investigate 
the challenge of meeting required quality specifications, depending on what will be 
manufactured (Deloitte, 2019). The recyclability and the development of a new 
resource added into visual stream development deliver the process (Deloitte, 2019), 
is not enough. The concerted effort addresses challenges for sustainable and efficient 
production processes following high-performance work system for implementation 
and revenue designed to enhance acquisition and labor correspondence (Boxall 
2012) to new market entry.  

2.6 Key enablers in technology 
The European manufacturing survey highlights key enabling technologies in the 
manufacturing sector – production control, automation, robotics, efficiency 
technologies, simulation data analysis, and additive manufacturing (Heilala et al., 
2023a). Advanced manufacturing technologies integrate into sustaining 
responsibility for a competitive environment, forming part of the bright factory 
concept (Heilala et al., 2023a; De Lima et al., 2023; Kamyab et al., 2020; Palcic et 
al., 2022). Intelligent systems within production control, automation, robotics, 
efficient technologies, and augmentation technologies underscore technologies like 
virtual reality, robots, industrial internet of things (IIoT), and artificial intelligence 
in promoting smart manufacturing (Heilala et al., 2023a; Heilala et al., 2023d cited 
Heilala & Krolas 2023; IDC, 2022).  

Emphasis is placed on waste recovery and developing energy-efficient 
techniques for gas emission capture concerning efficiency technologies and 
manufacturing processes (Kinnunen, 2022; Kajolinna, 2022). Current 
advancements, energy-saving technologies, process management innovation, and 
different companies provide unique solutions (Pons Pairó, 2020; ABB, 2023; Knutt, 
2020; Motiva, 2020). While additive manufacturing is promising for design and 
manufacturing processes, it currently has limitations for mass production (Baumers 
& Holweg, 2019; Deloitte, 2019). Technology adoption includes a shift in 
organizational culture, implementing comprehensive training programs to integrate 
a safe techno-organizational culture (Deloitte, 2019, 29; 30; Heilala 2022). 
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Theoretical business frameworks provide a retrospective agile business 
development perspective for manufacturing sector startups (Osterwalder & Euchner, 
2019; Knott, 2015; Rastogi & Trivedi, 2016; Johnson, 2020; Markopoulos et al., 
2020). The economic sector's ethical implications for adopting new technology mark 
the industry's low responsibility for high greenhouse gas production, necessitating a 
clean and dematerialized methodology (Patrignani & Kavathatzopoulos, 2011; Deng 
et al., 2017). The usability and transfer of new technology have transformative 
potential (Deloitte, 2019, 33). Studies encourage a comprehensive and strategic 
approach to applying additive manufacturing to support businesses in navigating and 
leveraging disruption to redefine the future of manufacturing advanced assets. 

2.7 Relocation practices 
Transferring, reproducing, and operating new business or supportive technology 
necessitates focusing on reshoring R&D (Heilala et al., 2023a). As the global 
economic landscape evolves, relocation strategies become more complex. 
Offshoring manufacturing has been a common strategy, relocating production to 
regions with reduced labor costs, indicating expectations for significant changes in 
annual turnover growth rates for manufacturing firms (Hurley et al., 2017; Milberg 
& Winkler, 2011).  

The shift of R&D activities to eastern regions has sparked debates, particularly 
in understanding uncertainties in relocated product manufacturing processes. This 
relocation can lead to reduced concurrent engineering practices, although flexible 
working arrangements may arise in some instances (Genlott et al., 2019). Relocating 
R&D notably affects manufacturing performance, evidenced by reduced 
innovativeness, competitiveness, and revenue from innovative products. 
Historically, the geographical aspect of relocating manufacturing activities, 
especially to eastern regions, was significant (Kyöstilä & Cardwell, 2005). 

Economic crises have led companies to reconsider and often reverse offshoring 
strategies, bringing foreign manufacturing and R&D back to their home countries 
for cost savings and domestic growth (Kinkel et al., 2015). This reassessment of 
offshoring encourages exploring strategies to gain environmental benefits in 
manufacturing (OECD, 2021). Recent research highlights the reasons behind 
backshoring trends in countries like Finland, with the relocation of manufacturing to 
the East influenced by various external and internal shocks (UKP, 2022). Financial 
downturns associated with these shocks often devalue offshored manufacturing 
assets, adversely affecting nationalizing entities (HS, 2022; Reuters, 2022). 
Pandemic-induced bankruptcies have severely affected domestically-owned, 
offshored manufacturing operations, leading to substantial job and office losses in 
the affected regions (Claisnitzher, 2022; Kinkel et al., 2015). Suggestions include 
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diversifying outsourcing to maintain inventory and capacity during disruptions and 
managing supply chains affected by wars impacting offshored factory prices 
(Kilpatrick, 2022). 

The success of relocation activities suggests a need for strategic reassessment, 
indicating potential areas to contribute to successful relocation management and 
competitiveness for manufacturing advanced engineering assets (Kinkel & Maloca, 
2009). Understanding the implications of relocation activities on manufacturing and 
R&D performance is crucial for navigating the space of global economy. 

2.8 Cybersecurity practices 
The cybersecurity management framework sets nationwide global leadership for 
cyber threat preparedness, fostering public-private collaboration (Government of 
Finland 2013). This strategic leadership has been refined over the years against 
arising cyber threats (Lehto & Limnéll, 2021). The framework outlines critical areas 
focusing on cybersecurity practices in manufacturing – data security awareness, 
conscientious software use, secure hardware solutions, and holistic organizational 
measures (Heilala et al., 2023a). These practices are essential responses to the 
contemporary digital ecosystem's increasing data security and privacy challenges 
(Eke et al., 2020). 

Vulnerabilities require continuous training, aligning regulatorily with the 
system's design for the connected organization's security measure, complying with 
the radio equipment directive (National et al., 2021, 15). The system includes all 
technologies, and each sector's strategy sets the vision for 2030, forming the standard 
practice in agreement with most cybersecurity-interested ecosystems, universities, 
enterprises, cities, and research organizations budgeted for highly effective functions 
(Lehto et al. 2019; Heilala et al., 2023). New organizational structures and 
management approaches reliant on effective communication substantially impact 
business productivity, creativity, technological evolution, and product 
competitiveness (Roco & Bainbridge, 2003, 6; Eke et al., 2020). A shift towards 
these network-based organizations is already evident globally in adopting 
management principles (Roco & Bainbridge, 2003, 18). 

Integrating appropriate cybersecurity with strategies tackling the horizontal of 
digital threats involves solutions from operational protocols (Coutinho et al., 2023). 
Risk assessments consider developing customized, secure systems, countering 
emerging threats, and issuing public reliefs. Implementing continuous monitoring 
while fully adapting to computerized systems to respond to threats is a process 
(Coutinho et al., 2023). The 5G to 6G transition shows a business innovation model 
based on safety and security over transactions management (Heilala et al., 2023; 
Gomes et al., 2018). Regarding integrated safety-critical manufacturing processes, 
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mainly additive manufacturing, potential damages from intrusive third parties are 
warned (Beckwith et al., 2022). The popularity of additive manufacturing increases 
the sector's vulnerability, requiring protective measures like auto-encoded 
authentication and continuous monitoring (Shi et al., 2023). Specific statistical 
modeling and machine learning methods are recommended for continuous 
investigation against threats (Beckwith et al., 2022). This necessitates a leadership 
transition toward more virtual models in advanced manufacturing of advanced assets 
(Tripathi et al., 2023), adhering to ISO/SAE21434:2021 for secure design 
monitoring (Tripathi et al., 2023). Industry improvement in establishing, detecting, 
and responding to cybersecurity controls aims to become a resilient system 
(Kayashima et al., 2023). These comprehensive measures add solid cybersecurity 
integration for secure operation development on the new metaverse. 

2.9 Product related services 
The framework for customer requirement management practices offered to 
customers is ordinarily built into a computerized system. The development process 
of manufacturing execution aligns with the digital elements and services offered by 
the product, considered over measurable layers of assemblies. Customer requirement 
management practices have meaning for outcoming manufacturing solutions 
augmented in the line function's operational competitiveness history (European 
Commission 2023b).  

Integrating digital elements like virtual reality for traceable product 
characteristics modelable in the Internet of Things (IoT) enables customer 
requirement management systems to effectively capture, analyze, and utilize 
customer data (Representatives et al., 2020). This data management forms the 
business factors for developing competitiveness and employment. Studies show that 
cybersecurity practices with relocation activities reshape customer requirement 
management practices, appearing as tailored product-related services (Heilala et al., 
2023a).  

R&D factors enable innovation with a custom customer requirement 
management strategy. Developing situational service affordance and managing the 
overall customer experience could support customers in making independent 
decisions more advanced (Barney, 1991; Roco & Sims, 2003). Applying 
integrateable product-related services promotes incorporating sustainability, 
adapting to green environmental technology derived from business practices. 
Preserving the environment for eco-conscious customers requires this tolerability 
(Bisello et al., 2019). Regional adaptation requires understanding the technological 
infrastructure, regulatory environment, and product services in customer 
requirement management, as specific localizable factors differ (Porter, 2008).  



Advanced Manufacturing Key Variables 

 31 

The competitiveness and employment framework development shows 
trajectories similar to successful rocket payload transpiration, depending on a 
company's adoption of product-related services in customer requirement 
management. The importance of discriminating whether firms have relocated 
operations has implications for R&D factors and contemplates renewed product-
related services sustainability (Heilala et al. 2023d; cited Heilala 2023). Regional 
variations shape customer requirement management practices to reach new product-
related services responding to customer requirements for manufacturing advanced 
manufacturing of assets. 

2.10 Digital services 
The digital services implemented by companies take many forms, including 
customer contact platforms, digital standard solutions, automated customer 
interactions, remote access control elements, cloud and IoT solutions, and extensive 
data analysis (Heilala et al., 2023a). The exploration of services integration involves 
artificial intelligence and opportunist natural language processing technologies 
research (Mashaabi et al., 2022). 

AI-driven chatbots on customer contact platforms are transforming how 
businesses manage customer communication, simulating human interaction by 
leveraging machine learning models for customer support systems that consistently 
respond to needs without alleviating cognitive load (Mashaabi et al., 2022). 
However, artificial services must consider cybersecurity to avoid regional privacy 
violations (Söderlund, 2023). 

Digital standard solutions have been revolutionized by implementing artificial 
intelligence algorithms that customize customer service, with efficiency assessed 
through machine translation and text summarization techniques comparing chatbot 
responses to human agents (Mashaabi et al., 2022). AI has significantly changed 
automated customer interactions in high-end technology firms, using natural 
language processing techniques to understand and independently respond to 
customer inquiries, reducing human intervention necessity and potentially 
improving efficiency, which could also have a place in manufacturing education 
(Heilala et al., 2024d; Olujimi & Ade-Ibijola, 2023). For remote access control 
elements, AI and natural language processing provide secure and user-friendly 
remote support services (Mashaabi et al., 2022). 

Regarding cloud IoT solutions, the infrastructure research aligns with cloud and 
IoT solutions, benefiting from integral analysis of these technologies. Processing big 
data with AI can support rapid changes in customer service strategy (Mashaabi et al., 
2022) once the system has been validated and tested before mass adoption for the 
use of humans along with risk assessment of new technology impact in its safety. 
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Integrating AI in extensive data analysis enables understanding customer behavior 
and emotions, but sentiment analysis techniques must consider the customer mindset 
for service, which can subsequently affect service delivery (adapted (Sajno et al., 
2023; Heilala Toivonen & Nevalainen, 2023), necessitate virtual training. From a 
human monitoring perspective, standards validate such medical devices responding 
to digital services advancements in daily life, utilizing AI integration and handling 
fuzzy logic of large, diverse, quality datasets (Olujimi & Ade-Ibijola, 2023). As 
companies strive for improved customer service through digitalization, this study 
shows whether these digital services are integrated into manufacturing of advanced 
assets. 

2.11 Digital elements 
Regarding integrating digital elements into the manufacturing process, Heilala et al. 
(2023a) describe incorporating digital identification tags, sensor technology, 
interactive interfaces, real-time network connections, and digital transformation 
technologies. These elements are essential for traceability of manufacturing 
processes for advanced engineering assets.  

However, challenges exist in incorporating digital elements. A significant issue 
is the manual nature of current customer-specific processes from design to quality 
check, resulting in high costs with limited scalability (Deloitte, 2019, 18). 
Prototyping scenarios are weighted when a limited number of parts are produced, 
while extensive data collection could be more structurally possible. As 
manufacturing transitions towards mass production, software integration for 
structural systems capabilities to reduce manual labor costs is critical (Deloitte, 2019, 
18), necessitating integration of digital service components. Modern factories are 
heavily digitized beyond the shop floor to cover the entire value chain. While 
digitization improved efficiency, current IT solutions designed to track individual 
parts make it difficult to manage individually produced or customized parts for 
additive manufacturing (Deloitte, 2019, 18). This necessitates significant changes to 
existing resource management tools and data architecture to accommodate additive 
manufacturing with proper service (Deloitte, 2019, 18). 

The digitalized elements connection provides a solution by allowing data 
collection with technologies throughout a part's lifecycle for a thorough 
understanding of how materials and design features were processed over time. 
However, the realization of this scenario is still distant for many manufacturers, as 
existing software modules have limited capabilities and require a high degree of 
manual operation (Deloitte 2019, 19). For example, standardized additive 
manufacturing materials are needed to meet quality specifications, expecting 
integration on databases to store information on material properties flexibly for 
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marking all products and new development (Heilala, Parchegani Chozaki & Piili 
2023), demonstrating the ongoing IT integration for manufacturing advanced 
manufacturing of assets and research. 
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3 Methods and Data 

3.1 Research protocol 
As a preparation for the study, borrowing ethical guidelines for the social sciences 
was mandatory to the extent of the anonymized registry for transparent industry 
measures (Mustajoki, 2017; European Commission, 2022b). The study protocol 
involved stages and encountered challenges with saturation, of which response 
occurrences measured the end saturation. A newsletter was sent to segmented 
industries in the YritysFiltteriPro marketing registers. A website was created to 
collect survey responses from where the study was piloted in April-May 2022, and 
the data collection was aired at the beginning of June. A marketing register was made 
available from information services, identifying each company's contact information 
for research marketing. The operation faced defining the respondent segment, 
design, and input errors to comply with the regional regulations. The data was 
collected by registering for the survey. General Data Protection Regulation 
requirements included an email cancellation link to be set to unsubscribe. Webropol 
attributed the challenge of unsubscription to manual removal. The challenge was the 
YritysFiltteriPro's segmentation: some entries were outside the manufacturing 
sector, regardless of the segmentation. The study circulated a hybrid, printable form 
among the managers to broaden the responses. Respondents' successful input and 
identification were transferred to a Webropol's coded link and supplemented from 
an email list. The overall data collection was extended until the 15th of October. The 
method involved newspaper columns and an email newsletter. (Heilala et al., 
2023abc.). The data were shared on accessible contracts, which were previously 
studied (Sternberg, 2012). 

After the data acquisition process was implemented entirely, the modifications 
were introduced in this work's data acquisition postoperative stage. The variables 
were confirmed as correct initially; the establishment year of the factory required 
conversion to years instead of annual trends. The human resources variable required 
adjustments to round percentages into integers. The supply chain contractor-type 
modifications followed the human-to-human marketing proposition (Kotler et al., 
2021). The contractor type combined manufacturers for consumers and businesses, 
suppliers for consumers and businesses, and contract manufacturing entities. The 



Methods and Data 

 35 

version control integrated data cloud in storage solution of a closed implementation 
for different datasets in the folder and database previously given functions adaptions 
(Fuchs et al., 2023). This closed data approach is the recommendation (Consortium 
for the European Manufacturing Survey 2020). The format was adapted from the 
EMS22. EMS22 was a multinational survey project investigating different strategies 
in the sectors within the EU. The Institute for Systems and Innovation Research 
coordinated this survey. The EMS22 data from 2019 and 2021, including cross-
lagged and reciprocal effects, was collected (Muthen & Asparouhov, 2022). The 
identifiable effects in manufacturing companies were covered from the supply chain 
contracts, human resources management, business innovation models, 
organizational concepts, critical enabling technologies, relocation activities, 
cybersecurity practices, product-related services, digital services, and digital 
elements as introduced to gain depth on the industry. The broad coverage and 
consistency of data and challenges related to the representativeness and timeliness 
of survey data were noted (Heilala et al., 2022ab).    

3.2 Data collection and preparation 
The first phase, "Piloting," lays the groundwork for the entire process. In this stage, 
outreach was initiated to chosen business leaders by processing the feedback, which 
led to significant refinements in the survey's structure. The pilot version of the 
EMS22 was launched in early spring. In Finland, the process involved contacting 15 
business leaders through anonymous convenience sampling from March 28 to April 
15, 2022. The manufacturing industry, competitive factors, manufacturing 
technology, and key performance indicators were initially purposeful in processing 
to validate the respondees, forming an initial model for the manufacturing research. 
Figure 6 represents the comprehensive survey methodology, broken into four main 
phases. Each phase is distinct for its role and significance in the overall survey 
progression. Nine respondents participated in the initial survey, providing valuable 
feedback that informed substantial modifications to the survey's structure, all 
encapsulated within Phase 1, of which the piloted survey was refined as pre-stage 
Phase 2. (EMS 2022 analysis result.) The third phase signifies the period following 
the closure of the survey on October 15, 2022. This phase was dedicated to 
scrutinizing the responses and ensuring participating corporations had time to 
participate. The sample selection sought to capture a representative picture of the 
classification of diverse manufacturing sectors in Finland. The survey reached 
approximately 2000 core organizations representing over 12000 employees, with a 
response rate of around 26.25%, subtracting the unattributed submissions explaining 
the highness. Following a thorough post-processing to ensure data accuracy and 



Janne Heilala 

36 

consistency, the final sample size comprised 123 organizations, providing a 
comprehensive view of the development of the manufacturing industry. 

 
Figure 6.  A generic structure of building surveying studies of a conventional web-based 

questionnaire. (EMS 2022.) 

The study population included a broad cross-section of industries, which is 
summarized in Figure 7. Among these were a few businesses in the food production 
and textile sectors. The study's most significant responses were from the metal 
manufacturing sector. Firms engaged in the production of computer-related 
electronics participated, along with those involved in machinery and equipment 
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manufacturing. Additionally, many respondents originated from the R&D technical 
and software sector, offering manufacturing-related solutions. These software 
services provide unique perspectives and implications for manufacturing processes. 
Regardless of the sample's more miniature representation, other industry sectors, 
though not detailed here, offered essential insights into the study following the 
respondent structure. 

 
Figure 7.  Visual representation of respondents by industry (EMS 2022). 

To further elaborate on the demographic details of the sample, Figure 7 presents 
the range of industries in a pie chart format. A detailed pie diagram reveals that 
specific industries captured in data harnessing serve multiple others. The developed 
framework aligns with the economic activities glossary classified in the world's 
global connections in the financial sector, underpinned by international agreements 
(Heilala et al., 2023d cited Heilala & Krolas, 2023.). For example, the manufacturing 
industry in this study's empirical scope supplies machinery (25%), technical design 
(18%), construction manufacturing (11%), chemistry, and trade (5%). Additionally, 
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logistics, energy, and automotive industries each receive 4% of supplies from the 
manufacturing industry. Other recipients include the shipbuilding and forestry 
industries, both at 3%. Smaller percentages of supplies go to the aviation industry, 
paper, heating, ventilation, and air conditioning, restaurants (2%), and even smaller 
units in the oil, gas, forest machinery industry, mining, semiconductors, food, toys, 
museums, and confectionery (1%). These businesses either directly carry out 
manufacturing activities or serve as legal supply units for these industries. The 
sample selection was driven by the broad range of distribution of EMS respondents 
by industry, marking, for example, software design and metal fabrication 
perspectives in manufacturing. The survey was disseminated across management 
levels, including work management, project management, and marketing 
communication. It was individually distributed within large corporations to garner 
responses from sectors. Cases reported secretarial staff to the C-suite directly 
facilitating data entry into the data-acquisition system after data cleaning and post-
processing on guidelines. Literature was adopted from various domains with 
knowledge of statistics guidelines (Field 2018). 

3.3 Research sampling method 
In this study, a mixed sampling method was employed. It combined convenience 
sampling with similar sample sizes as in the popular Delphi method to form a small 
specialty dataset, looking for the cross-lagged effects with special considerations for 
reciprocal effects, assuming the residuals correlate with the dichotomous 
multivariates at the time point. When the system of variables is uncorrelated, for 
example, the cross-lagged effects, the conclusion forward bias in simulation is in the 
generation of correlated variables (Muthen & Asparouhov, 2022, 11). The 
interventions of the summative time-lagged reciprocal effects are set in the 
correlogram in Figure 8. The time-lagged reciprocal effects respect the component 
modeling approach. The convenience integrative sampling approach was preferred 
because of the varying performances of independent manufacturers, suppliers, and 
contract manufacturers based on intersectional factors growth altogether (Galloway, 
2005). The method is similar to an expert discussion framework (Delphi), and results 
were quantified and trained with cross-lagged effects to derive the correlations with 
examination of the residuals to the covariance structures showing contentious 
subjects contextually (Beiderbeck et al., 2021; Muthen & Asparouhov, 2022). 
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Figure 8.  Correlogram shows variables' significance and weight; A priori model maxes at ±1 for 

observations. 

Many interrelations among the development of competitiveness and 
employment, including the variation of the cross-lagged effects to parametrized 
European manufacturing survey’s business innovation model, digital services, 
digital elements, product-related services, cybersecurity practices, vital enabling 
technologies, and organization concepts, are partially invariant for time 2019 and 
2021. A high degree of mathematical improbability of the link was hypothetically 
speculated as if training and competence development of supply chain pipeline 
manufacturer were based on the human resources tendency, the available resource 
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use reasonably amount of cashflow with decent techno-organizational business 
innovation managerial concept for transactional system evidential to the front-end 
function of the element of the promise of the service and delivery developing the 
indexing to the Physical assets usable to the customer to attract transactional 
purchase situations. At the same time, the reinforced modulization also includes the 
reciprocal model difference while communication invariance defined under the 
simulation-based in variable sets factor sequences in total results in many ways the 
main factors can be arranged for experimenting the analysis dependent variables 
aligned with the empirical theory (Muthen & Asparouhov, 2022; Gersing et al., 
2023; Heilala et al., 2023a). The specific employed parametrized estimate of the 
responses was adapted to the pattern. These relationships had to be defined and tested 
as part of a minimal structural equation model without interdependencies that 
constrain the research dataset too narrow. The cross-lagged effects required at least 
one solution; for example, negative correlation and non-symmetric confidence 
intervals are unnecessary (Muthen & Asparouhov, 2022). Higher-order multivariate 
studies rarely investigate quadratic or higher terms because these can lead to 
unreliable results based on the given, unsaturated sample. Past samples have shown 
this to be somewhat conclusive. (Schober & Boer 2018; Robinson & Schumacker 
2009.). The perspective of fewer Degrees of freedom restricts the reciprocity of the 
variables, which rules out the irrespective sample of real-data analysis for possible 
simulations (Muthen & Asparouhov, 2022). Identifying variables taking research 
center lays the foundation for modeling potential interrelationships that show 
business performance over time (Kearney, 2017). 

3.4 Data analysis 

3.4.1 Structural path modeling 
The research methodology adopted in this study, structural equation modeling, Was 
used with an analysis method combining the best sides of factor analysis and 
bivariate/binary/logistic regression, allowing for the analysis of component 
structures, connections between observed indicators, and baseline concepts. 
Component modeling versatility in assessing the representation of numerous 
variables on outcomes and the relationships between explanatory variables makes it 
a fitting method for this study’s constructs in understanding manufacturing, the 
development of competitiveness, and employment (Kline, 2005; Hair et al., 2010). 
SEM requires large sample sizes for reliable results and a factor duly accounted for 
in the study’s design and execution (Ukaidi, 2016). 

Data collection was twofold: primary and secondary. Primary data is procured 
through surveys among the sample, capturing insights regarding the European 
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manufacturing survey’s critical enabling technologies, organization concepts, 
business innovation models, product-related services, digital features, and regional 
expansion. Secondary data, gathered from sources like industry reports, academic 
articles, government publications, and relevant literature, contextualizes the broader 
trends within the sample for Industry 4.0 implications. 

3.4.2 Explorative PRISMA analysis 
These studies affirm the breadth and depth of application spectral waves through 
selective PRISMA (preparation for the report style of the itemized objects for 
systematic literature reviews and meta-analyses) methodology across industry 
literature. Its use in systematic literature reviews contributes to the quality of studies 
with reviews relevant to action research (Rethlefsen et al., 2021). The PRISMA 
protocol scoping review has aided industries' strategic planning and decision-making 
by identifying key trends, current study gaps, and future research opportunities. This 
is particularly evident in the context of Industry 4.0, where technological 
advancements and shifts in organizational and societal practices are in rapid flux 
(Tubis & Rohman, 2023; Sahoo et al., 2022; Shunmugasundara & Maurya, 2023; 
Wicaksono et al., 2022). Moreover, its use in examining and shaping is in the 
intersection between Industry 4.0 and training for Education 4.0; it is critical, given 
the pressing need for a workforce equipped with 21st-century skills to navigate and 
thrive in the digital revolution (Yusuf & Aroyewun, 2023; Iensen et al., 2023). 
PRISMA has been effectively utilized within supply chain management to assess the 
current status and potential opportunities of technologies for Industry 4.0 that are 
key to contributing to the development of more efficient and sustainable systems 
regardless of the manufacturing sector, increasing the synergism for sparse 
manufacturing industries development (Tubis & Rohman, 2023; Ogunmakinde et 
al., 2023; Abdul Rahman et al., 2022). Its application in the financial sector analyses 
correlated financial literacy and investment decisions (Shunmugasundara & Maurya, 
2023) with the role of correlation patterns in the Financial sector (Wicaksono et al., 
2022). The multivariate approach had significant implications for various sectors and 
industries. 

To the technological innovation, PRISMA's attunement uncovered the depth of 
supply chain management for technology propagation (Heilala, 2022; Sahoo et al., 
2022) and introduced a structured approach for identifying these applications 
(Manthey et al., 2022). Such insights help industries to strategize the adoption of 
new technologies. Furthermore, PRISMA's role in systematic reviews is to help 
unravel emerging concepts like the metaverse and its potential applications in 
industries (Samala et al., 2023; Valle-Cruz et al., 2023). The widespread adoption 
and use of the PRISMA methodology in research mark its role in research integrity. 
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The systematic and transparent literature review maps reliably and aligns only when 
the research has gaps within research directions regarding the selection. PRISMA 
usage is expected to contribute significant integrity to industrial practices' 
evolutionary findings and processing. At the same time, its narrowness in the 
industry field gives only possibilities that hit the Scopus, while some unindexed ones 
are left outside for research integrity. The PRISMA outcome shows alignment with 
the ongoing technological revolution. 

3.4.3 Cross-lagged panel analysis 
A PRISMA-based review introduced in the first part connects to the (Heilala et al. 
2023abc) reviews. This introduction is systematical and conventional based on a 
traditional mechanical engineering literature review. The PRISMA analysis 
guidelines are accessible and give a limited view based on the most reputable 
database. The review shows limitations in the past while addressing the attached 
source, along with which integrity is dependent on the arising innovation. 
Addressing the cross-lagged effect of literature review sampling has an opportunity 
for systematic and conventional selection. The controversies of the literature refer to 
the publication's demographic differences. This study uses cross-lagged panel 
modeling to examine the dynamic interaction of factors within the development of 
competitiveness and employment models to the data acquired from the industry 
(Hamaker et al., 2015). Figure 9 illustrates the variables and magnitudes weighted 
of the study respondees in total as of principle inspired by (Mackinnon et al., 2022). 
Analysis reading has delimited the inherent limitations of cross-lagged panel 
modeling. The boundaries are discussed, for example, by Lucas (2022; 2023). 
Alternative methods include panels with time-shifted reciprocal effects, random 
intercept modeling (Lüdtke & Robitzsch, 2021), and general modeling (Usami, 
2020), which provides relationship information. 
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Figure 9. Diagram shows how competitiveness development links to employment models via 

survey coding (Heilala et al., 2023a).    

In Figure 9, the development of competitiveness and employment is the parent 
variable of factors labeled with symbols (João et al., 2022). The values linked with 
each element represent regression coefficients indicative of the strength and 
directionality of relationships between the development of competitiveness and 
employment and each item correspondingly to the model (Mladenovici & Marian, 
2023). The arrows emerging from the development of competitiveness and 
employment to each item indicate the impact direction, as the primary factor 
(Kearney, 2017). Positioning the elements on the y-axis does not imply a relation, 
illustratively serving the factor loadings (Hamaker et al., 2015). As Heilala et al. 
(2023a) noted, each signifies different elements or factors integral to the model 
without the factorization cut-off. The arrows from the development of 
competitiveness and employment to each factor show the directionality (Kearney, 
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2017). A visualization supports dynamics within the competitiveness and 
employment model development, contributing to the factorization model. The model 
mirrors similar relationships between variables addressed in socio-technological 
sciences (Du et al., 2023; Sorjonen & Melin, 2023). These factors and interrelations 
constructively show a comprehensive model across sectors (Zhang et al., 2020; Zhou 
et al., 2021; Choi & Jeong, 2022; Gupta & Jain, 2022; Somya & Saripalle, 2023). 
Techniques maintain a systematic investigation approach across sectors to 
mainstream generalizable literature reviews (Mackinnon et al., 2022; Hamaker et al., 
2015.). The conditions for efficient utilization of dynamic capabilities in emerging 
sectors are considered, representing a range of studies to support scientific discussion 
for existing literature models' contribution to this study and also considering the 
timing of the publication and its used references against cross-lagged panel modeling 
to ensure the source reliableness often left from consideration in publication search 
ranking. The dependence upon an array of factors results in these factors' 
interrelationships for a comprehensive model serving as a valuable resource (Lucas, 
2023). 

3.4.4 Interpretation of structural equation paths 
The results were interpreted while acknowledging that cross-lagged panel analysis 
demonstrated correlations to proposing causal relationships that could not confirm 
causation (Kearney, 2017; Lucas, 2023). Primarily, the explorative analyses were 
used to enable adjustment of the causation by looking at different stems of systems 
from multiple handles (Field 2018). Contemplating every factorization space in a 
correlating manner aspect leaves simulation tolerance. The article's knowledge of 
data results was later adopted in Python for the adaptability of execution and 
automation. Structural equation modeling was the primary analytical method due to 
its relationship estimation visuals among multiple variables. The structural equation 
modeling was represented using data to Python, leveraging the functionality of the 
memory, stats models, system libraries, and the lava (Seabold & Perktold, 2010; 
Borisov, 2020; Rosseel, 2012). This analytical framework enables the construction 
and estimation of the theoretical models representing relationships between observed 
and latent variables as the uni-to-multivariate analysis was undertaken. These 
correlations were conducted across only a few pilots (Barone et al., 2021, 65). The 
study approach was predominantly focused on quantitative modeling, which offered 
insights into the states of sum variables and interdependencies. At the company level, 
growth was illustrateable by annual turnover and the number of employees 
sustainably (Heilala et al., 2023a).  
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4 Results 

The progression toward Industry 5.0 is driving new frameworks for technology-
organization integration, exemplified by advancements in additive manufacturing 
(Flores Ituarte et al., 2017). Horizontally integrated additive manufacturing (Heilala, 
Parchegani Chozaki & Piili, 2023) and case studies of manufacturing inspired by 
sustainable development (Heilala et al. de Freitas, 2023 cited in Heilala, Parchegani, 
Mohamed & Gomes de Freitas 2023) illustrate this trend to analyze competitiveness 
and employment trajectories along with decision-maker qualifies to resolution. 

4.1 Refined empirical benchmarking results 
The research followed a rigorous process to refine and validate the empirical 
variables for predicting manufacturing outcomes. Reliable variables were first 
exploratively pruned to be validated (Heilala et al., 2023a), then identified from main 
component models with depth using a simple combination of regression analysis and 
recursive algorithmic approaches (Heilala et al., 2023b, 2023c). The focus was on 
variables strongly associated with vital independent variables. Finally, after 
explorative steps, a logistic regression model was used for empirical validation, 
demonstrating the linear rearrangement capability of the selected variables for 
prognosticating binary outcomes in the manufacturing domain. Throughout the 
analyses, the dataset containing numerical values with missing entries was processed 
using imputation techniques to ensure integrity and achieve a satisfactory model fit, 
as presented in Figure 10 (Heilala et al., 2023a's Appendix). This comprehensive 
variable refinement technology allowed the distilling of the most relevant predictors 
for reliable binary prediction in the manufacturing context. 
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Figure 10.  Metrics by outcome: 'FF' has low recall, missing 'FF' predictions; 'TF' excels in recall 

and precision. (Heilala et al., 2023a, Appendice.). 

The logistic regression model in Figure 11 shows the study path for production 
control accuracy in an environment enriched by automation and robotics toolsets that 
provide depthless results. The complex model is augmented through the lens of odds 
ratios, allowing the delineation of the variables on their linear, demonstrating the 
influence on the general outcomes (Heilala et al., 2023bc). The precision of the 
model's performance variables is outstanding. (Heilala et al., 2023a, Appendice.). 

 
Figure 11.  F1 Score reflects model reliability; its variance across averages suggests research entry 

(Heilala et al., 2023a, Appendice.). 
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The analytics of production control systems show the tools for modern 
manufacturing that provide process monitoring to find the golden ratio for model. 
The receiver operating characteristics curves tend to trace the pulse of the model's 
diagnostic ability, plotting true positives against false positives over an array of 
threshold settings. The model's receiver operating characteristics show highly 
accurate favorable rates against false positives. In digital manufacturing, the 
integration of manufacturing execution systems with product lifecycle management 
correlates strongly, showing financial efficacy. The technological physics of 
automation and robotics show a connection, affirming the realities of the 
manufacturing ecosystem. Component modeling shows empirical support and 
industrial relevance of these systems integration, along with automation. For 
advancing smart manufacturing—captured in the plotted figures, binary analyses 
provide the knowledge augmenting the data and analytics to the literature. (Heilala 
et al., 2023a.). 

4.2 Key performance metrics cross-validated 
Logistic regression modeling was utilized to analyze the relationship between critical 
enablers for manufacturing in the form of technologies out for manufacturing 
operations. The operations analyses were due to the predicted likelihood of binary 
outcomes of observed variables of interest extracted from exploratory studies 
(Heilala et al., 2023a; Heilala & Krolas, 2023). Specifically, the correlation between 
production control systems characterized by manufacturing execution systems, 
product lifecycle management integration, and automation/robotics technologies 
was brought to the foreground by satisfactorily evaluating the sample's range 
(Heilala et al., 2023a). The logistic regression model demonstrated a firm fit, with 
0.90 accuracy across the sample data. The high precision, recall, and F1 scores 
further support the reliability of the model's decision boundaries and predictive 
capabilities (Heilala et al., 2023a). Visual representation through regression plots 
(Figures 9-10) provides additional validation of the positive linear correlation 
between the variables (Heilala et al., 2023a). The past research and legislation 
showed outdated but foremost upgradable alignment to the certification and the 
benefits of systems integration and operational alignment, especially following the 
automation and robotics technologies with high energy density practicing 
technologies (Heilala & Krolas, 2023). The logistic regression model indicates a 
statistically significant positive correlation between production control systems and 
automation/robotics when integrated into additive manufacturing operations (Heilala 
et al., 2023d). 

Further research into specialized systems and configurations based on unique 
operational needs is warranted. The findings of Heilala (2023ab) highlight the 
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potential efficiency gains from integrating the enablers for intelligent product 
development without additive manufacturing (Heilala, Parchegani Chozaki, & Piili, 
2023). The logistic regression model indicates a strong correlation between variables 
for effective manufacturing integration (Heilala et al., 2023a), emphasizing 
operational alignment of systems collaborativeness in automation and robotics. On 
the contrary, based on linear model depth, a negative correlation would be expected 
from Heilala et al. (2023a), which might suggest that some firms favor specialized 
systems for unique operational needs. 

4.3 Additive manufacturing missing 
Recommendations emphasize boosting R&D investments and ecosystem 
collaboration to enhance innovation and competitiveness in additive manufacturing 
are present (read: Fame Ecosystem, 2022; Dimecc, 2020a). Automated and robotic 
additive technologies can increase supply chain flexibility and customization (read: 
Dimecc, 2020b). However, rigorous integration across operations is necessary, 
spanning design to prototyping, testing, production implementation, and product 
support (read: O3D, 2022). 

While standardizations (ISO/ASTM 52931) and innovations like ultrasonic-
guided printing with embedded electronics show progress (Eurogrip, 2022; Sardon 
et al., 2022), scalability and quality control issues persist. Sustainable bio-materials 
and axiomatic planning methods can transform supply chains (Salonitis, 2016; UPM, 
2023). 

Blending multi-material production with data-driven machine learning is 
imperative for Industry 5.0, along with stable overall equipment efficiency (Tofail et 
al., 2018; Fan et al., 2022). Empirical evidence from logistic regression affirms that 
integrating production control technologies (MES, PLM) with automation/robotics 
improves manufacturing performance (Heilala et al., 2023a). These digital 
technologies intersect technological capabilities and organizational management 
(Lee et al., 2022; Sánchez-Sotano et al., 2019). 
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5 Discussion 

The development of competitive and employment situations with critical enabling 
technologies and administrative practices, multiple factors, business innovation 
models, product-related services, and other digital areas within the study sample 
(Heilala et al., 2023a) was explored entirely. These findings align with prior studies, 
indicating the significant implications of Industry 4.0 on these relationships, showing 
a limited view (Philbeck & Davis, 2018). This study faces limitations. The 
relationships should be studied in broader contexts, involving different geographical 
locations and industrial sectors with segmentation. Moreover, future studies should 
investigate elements related to integrating business and artificial intelligence into 
sustainability strategies and the role of sustainability. Considering alternative 
research methodologies, comparative studies across countries or simulations within 
supply chains, for example, increase the studied innovation depth. 

As a generalization, the industry's potential to digitize industrialized levels of 
organizational manufacturability infrastructures remains substantial. Digitization 
achievability from the technological connectivity perspective positively impacts 
value, competition, and market power as in former studies (Subramaniam, 2020), 
leaving the manufacturing execution system development scope into integrating 
level significantly narrowed scope of the practices how the servicing manufacturing 
industries are organizing. A note on structural changes in the industry lead to shifts 
in the industry composition (Frieden, 2019). The organizing adds value to 
researching the subject. Sociotechnological opportunities in the manufacturing 
sector are included in employment research, while political wage wars, for example, 
should be avoided (Vanttinen, 2020). Instead, higher-level representatives must 
maintain the innovation to provide opportunities for funding tenders to support the 
industries and form integration plans for new supply chain channels. The result of 
the study fits the scientific discussion of various scientific domains, with an 
innovative combination of advancing the knowledge toward Industry 5.0 integration, 
understating that the role of additive manufacturing cannot be understated among 
robust automation and robotics and software integrations. The global industry shift 
is quick, and the potential of this work is limitless. From customization to innovation, 
from mixed production to sustainability, the world of additive manufacturing is 
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heading from Industry 4.0 to Industry 5.0, and ever-heightening environmental 
standards for manufacturing efficiency Continental, why development would not be 
important Globally (Vihma, 2020). The labor market development has implications 
for the organizational flow development, while the health care payback benefits 
more extended care and activity in the industry  (2020 Fornaro & Kaihovaara). A 
comparative study using mixed methods across European countries concerning 
environmental systems, for example, provides valuable results for manufacturing 
sustainability decisions grounded scientifically in sustainability (Vihma, 2020). 

5.1 Limitation of saturation of the sample and 
methods 

The studies face limitations that are subject to criticism from the perspective of this 
research. The limitations of the sample size appear in inaccurate estimates, tiny 
statistical power, and outliers everywhere (Field 2018). Small sample sizes result in 
over/underfitting in statistical models and increase the likelihood of type II errors. 
The associations not treated after detection are included within the scope of skew 
(Field 2018). The sample firms have been considered equally in the analysis. A larger 
sample generally results in better reliability and validity. Applying the study's results 
in broader contexts is limited to the localized manufacturer's exclusive focus. This 
raises the question of how applicable the results are to other industrial sectors and 
geographical contexts (Bryman & Bell, 2015). Saturation criticisms arise in research 
when the sparse principal component analysis out of extensive data collection needs 
to adequately capture the breadth and depth of the phenomenon under investigation. 
In the context of this study, the criticisms, for example, withstand the risk 
management necessitate more studies in safety not measured. Narrowing unit 
binaries with principal components results using a defined sample produces limited 
variables. The limited investigation only represents some elements of the 
development of competitiveness and employment in the sample (Bryman & Bell, 
2015). The unique characteristics of the sample include the context of the included 
companies. The stratified sampling and other methods verify the sample 
representation to the larger population of interest (Flick, 2018). 

The factor of depthness in terms of skewness presents weight for few variables 
to contend the study, as business innovation models or product-related services— at 
the expense of others is resulting in an imbalanced view of the firm's practices 
(Heilala et al. 2023 bc) while overcoming the development of competitiveness and 
employment situations are still adjustable to smaller firms in statistically delineating 
the prediction on the position of the sample respondee is, could be aligned well 
(Bryman & Bell, 2015). The alignment of capturing manufacturers' business models 
could have been an option in the YritysFiltteriPro marketing segmenting neural 
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network. The segmentation errors, design and input mistakes, and issues related to 
compliance with the General Data Protection Regulation within Webropol, where 
recipients could not unsubscribe, increased manual labor for the researcher. This 
brought the requirement for narrowing this more extensive range of samples as a 
digitalized system counterpart (Asch, 1951). The YritysFiltteriPro did not segment 
the manufacturing sector directly, including many non-related businesses that had to 
be sifted out during the study's first drafts. This lack of segmentation resulted in the 
immaturement of depth. The broad range of factors fails to bring all industries 
peculiarities. This depth limit has superficial processing implications. The 
methodological approach of mixed methods, to which the factor analysis and 
structural equation modeling were employed, balanced the risk of creating 
superficial conclusions of the sample as indicative results when the regression test 
shows no meaningfulness. The sample factorization and dimension elimination 
valuability uncover the variables' insufficient relationships to the full capturement in 
the view of the development of sample limiting saturation. The overall dataset 
inspection of a direct connection with direct implications statistically proves that the 
histograms, through validity, suffice for ideal model creation (Bryman & Bell, 2015). 

Regarding method reliability, the dimension elimination process and the 
anonymizing provide trustworthiness for statistical significance. Thus, indirect 
visibility of the classification framework of industrial that is a designated system for 
categorizing the various types of economic activities to be conducted worldwide to 
show the clientele as manufacturing or serving of or for the manufacturer along with 
higher-end design offices necessity to the systems integration. Verifying the 
information respects the sample characteristics intended to be studied and shared 
(Welsby & Weatherall, 2023). The study contemplates the significance of 
capturement validation. The two-factor authentication of the data collection phase 
faced the form's challenges to a need for another verification. The open research 
protocol requires firm data handling and collection of broader verification using two-
factor authentication for verification as of the figuratively came forward 
institutionally for EMS22 year after for personnel. By two-factor authentication, a 
confirmed contact enables the respondee to assess the submission, improving 
response validation from the company. In this way, the anonymously coded index 
handled in the company, for example, confirming the response, requires assuming 
the data privacy information assessment has been implemented and agreed upon for 
the firm. The bias instead means insatiability within the sample. The saturation of 
responses in the representative group staying low represents the responding fatigue 
of the respondee, for example, compared to EMS09. A manufacturer's focus on 
intangible to tangible product representation within the sample limits the 
saturationless group generalizability to other populations. Anonymization ensures 
response confidentiality, of which unsaturated population validity, on the other hand, 
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is left out by inflating sample mass and reaching distinctive outliers. The connected 
groups turn off group comparison to view conformity differences; the combined 
group has issues with ecological validity without actual generalization (adapted from 
Asch 1951). The production surveys combining transdisciplinary perspectives are 
more complex than those taught in school (Welsby & Weatherall, 2023). Possible 
challenging analyses of several biases and potential errors pervading this research, 
including selection bias—more oversized, technologically advanced firms were 
overrepresented, introducing potential outliers (Battaglia, 2011). 

The results, however, align with the status quo of advanced firms, and any 
measurement bias was mitigated through rigorous statistical procedures. Reporting 
inaccuracies arise when firms mark digitalization from a service-provider 
perspective, introducing how to answer to the external (Podsakoff et al., 2012), for 
example, phishing risks. Non-response bias affected the study, particularly 
concerning the innovation adoption rate. Issues in surveying, such as omitting high-
performance computing-based services and skewed responses from specific firm 
segments, raise interest for future studies to be pruned into homogenous cases for 
withdrawing case-specific assumptions. (Davern 2013). This is explicit because few 
responses were answered, and few were not. Several vital questions went 
unanswered, linking to industry segments not primarily represented. Assumptions 
about dominant practices could introduce type nth errors, and firm-specific factors, 
such as economic conditions, are treated confidentially, complicating interpretation 
(Hernán et al., 2004). Complete sampling remains a critical challenge—limited 
generalizability arises due to low sampling saturation and the model's misfit (Biau et 
al., 2008; Heilala et al., 2023a). Without ideal sampling, the study's statistical 
validity hinges on employee indices but describes the actual statistics rigorously. The 
emphasis on firm-level effects and the focus on SMEs mark the need for a 
comprehensive analysis. The gathered data marks the importance of tracking 
changes between 2019 and 2021 and confirming supply chain impacts (Lakens, 
2013). 

5.2 Key findings and conclusions 
The derivated extraction from the study of the sample using the EMS22 was 
challenging to analyze or hypothesize. In Finland, this research has never been 
carried out to the level of a research publication according to the research databases, 
expecting complexity to refer to the previous scientific, non-indexed frameworks not 
found. Thus, study implications make the organizations' contours and sustainability 
levels visible on the measurement interval. From the outset, the structural equation 
modeling had the most work for establishing the perspective to rely upon with 
partners, industry, and other stakeholders' publications. Concluding structural paths, 
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the relationship between the manufacturer's portfolios and the development of 
competitiveness and employment factors is simple. Among business innovation 
models, product-related services and production organization demonstrated strong 
associations. Thus, the sample's firm business progress toward Industry 4.0 reliably 
predicts specific key performance indication that is not assessed for performance in 
this extraction, including business innovation models (particularly access and 
turnkey innovative economies), regular organizational concepts, and certain 
variables under product-related services (namely maintenance and repair and 
takeback services). Marking the end with extracting production control functional 
manufacturing execution systems, automation, and robotics shows a strong 
foundation for withdrawals. The study revealed that the manufacturing systems' 
access is thus enough through proper control. 

Nevertheless, digital services, cybersecurity practices, efficiency technologies, 
simulation, data analysis, and additive manufacturing were rare. Roughly under one-
tenth of the firms only significantly integrated into the betterment of the development 
of competitiveness and employment, pointing to possible areas of improvement and 
implementing future research and technology management. In contrast, the measures 
for regional expansion among sample firms were rare; the conclusion is a potential 
need for reassessment for significant strategic changes, whether to improve locally 
and also expand abroad for future research into locations not explored but popular 
with higher technology than within Europe, also considering lower technology 
regions. The study augmented resolution for advanced engineering to inspire the 
small sample size. With the limitations of the sample, the findings provide valuable 
marks for developing competitiveness and employment within the sample, 
contributing to future research directions. Further investigation stresses the 
importance of manufacturers reconsidering the service focus and domestic-based 
operations for organizations to adopt efficient multi-criteria decision-making 
technologies for product development stages. 

5.3 Implications for the science and operations 
management 

Scientific implications show digitalization and automation increase efficiency, real-
time communication, and efficient resource allocation while shaping organizational 
structures. However, decreased cost adaptability and backshoring pressures from 
constraints pose challenges for near-term. Sustainability is a broader concept aligned 
with managerial industry guidelines requiring business operations adaptation with 
generative artificial intelligence integration. Internal and outsourced innovation 
enables transitions, updating job roles, learning, and training while the qualification 
of the integrationist requires new qualification requirements. 
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The study findings have notable implications for the participating cohorts. 
Fundamentally, business innovation models, product-related services, and 
organizational concepts necessitate emphasis, given the robust associations with 
digitalization uncovered in the research (Heilala et al., 2023a). As manufacturers, 
reevaluation of business models and regional expansion strategies proves warranted 
based on the study's revelation of limited expansion among firms (Heilala et al., 
2023a; Heilala et al., 2022). 

Certain technologies stand out as requiring additional adoption to enhance 
digitalization. Production control systems, automation, and robotics are substantially 
linked to digitalization, indicating the need for novel integration requirements 
(Heilala et al., 2023b). However, the lack of meaningful simulation, data analytics, 
and additive manufacturing implementation in some firms' digitalization efforts 
suggests that these advanced technologies mandate reassessment and tailored 
integration for certifications (Heilala et al., 2023a; 2023c). Beyond technologies, 
comprehensive workforce training and development focused on digital skills emerge 
as critical for manufacturers (Heilala et al., 2023b). Multi-criteria decision-making 
techniques, for instance, further enable efficient and sustainable production 
processes (Heilala et al., 2023a). 

At the governmental level, the study denotes private actors' primacy in 
development and investment in certain regions. Human impacts like energy sector 
emissions contribute markedly to manufacturing efficiency, underscoring the 
necessity of governmental initiatives in project funding and cross-sectoral 
coordination (Asian Development Bank, 2012). Global energy market alignment 
with decarbonization in the 21st century reflects the potential for emissions reduction 
through policy (International Energy Agency, 2022). 

With workforce composition instrumental for manufacturers, migration policy 
holds substantial implications. Proactive, flexible practices tailored to industry needs 
to drive economic growth, innovation, and job creation (Hogeforster & Wildt, 2021). 
Rethinking residence permit constraints and enabling immigrant entrepreneurship 
prove critical for growth (Hogeforster & Wildt, 2021). Historical and economic 
factors shape migration patterns, often involving highly skilled labor; targeted 
migration strategies offset regional knowledge and managerial gaps (Hogeforster & 
Wildt, 2021). 

5.4 Recommendations for future research 
The manufacturing sector requires continuous longitudinal research integrating 
larger samples and variables to study temporal changes related to future business 
needs. Comparative research between countries provides insights into the global 
impact of different operations models on Industry 4.0 to 5.0 competitiveness and 
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employment (Hogeforster & Wildt, 2021). Supply chain simulations reveal how 
changes in contract and human resource practice affect competitiveness and 
employment development. Further research should explore inconsistent advanced 
technology integration impacts on competitiveness sustainability by studying energy 
management adoption and funding options (Hogeforster & Wildt, 2021). Regional 
economic incentives benefited the manufacturing sector’s marketing, as explored by 
Hogeforster and Wildt (2021). Investigating sociocultural leverage, branding 
strategies, and labor conditions could help retain skilled employees. Exploring new 
areas helps understand the manufacturing sector’s contribution by integrating 
sustainability practices for regional economic growth. Studying new organizational 
requirements is needed as digital transformation strategies evolve horizontally 
(Gurcan et al., 2023). Firms’ adoption of efficient technologies with AI integration 
and converting manufacturing into sustainability strategies warrants operational 
research. The focus extends to exploring social sustainability aspects at an Industry 
5.0 level as Industry 4.0 trends decline (Gurcan et al., 2023). 

Specific organizational and technology concepts like production organization, 
production management and control, and competency development generally impact 
creativity and competitiveness in employment, requiring observation (Dul & Ceylan, 
2014; Heilala & Krolas & Gomes de Freitas cited Heilala, Salminen, Bessa & 
Kantola 2023). Promoting efficiency technology and AI innovation adoption related 
to competitiveness and employment requires further study (Bendoly, 2016) fully. 
Exploring innovation laggards’ sustainability and competitiveness productivity in 
manufacturing supports research on employee well-being, community impact, and 
ethical supply chains (Ferraris et al., 2018; Kopnina & Blewitt, 2014). 
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6 Conclusion 

The empirical analysis validated that integrating production control systems like 
manufacturing execution systems (MES) and product lifecycle management (PLM) 
software with automation industrial robots leadsing to significant improvements by 
reframing high-performance work systems theory empirically out of manufacturing 
performance metrics. The models exhibited high accuracy, precision, recall, and F1 
scores, confirming the reliability of the decision boundaries and predictive 
capabilities. 

Nonetheless, the adoption levels of some advanced technologies, such as 
simulation, data analytics, and additive manufacturing, were relatively low across 
many of the surveyed manufacturing firms. This underscores an opportunity to 
integrate these technologies further to enhance advancing Industry 5.0 through 
additive manufacturing and technology integration. 

The breakdown also uncovered full-bodied associations between business 
innovation models, product-related services like maintenance/repair, and 
organizational restructuring concepts with the degree of digitalization executed by 
manufacturers. Firms making more progress on digitalization tended to exhibit more 
vital key performance indicators in these areas. 

At the same time, expansion into new regional markets was relatively rare among 
the sample firms, suggesting potential areas for strategic growth through relocation 
of manufacturing activities and R&D efforts tied to growing supply chain dynamics. 

Workforce training and skills development, particularly around digital 
competencies, were highlighted as critical for manufacturers to capitalize on 
advanced technologies and adapt rapidly to balance future intelligent factory 
climates. 
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Since the first industrial revolution, the leading role of emerging technologies has been highlighted in 

modernizing the industry and developing the workforce. This study explores the impact of Industry 4.0 

digital technologies on manufacturing competitiveness, focusing on Finnish SMEs within the EU with 

a sample (n = 123). It utilizes extensive 2022 European Manufacturing Survey (EMS22) data. Advanced 

statistical techniques reveal complex connections between automation, competitive edge on services, 

and innovation models, among other factors. Robust statistical methods, including component and 

reliability analyses, reinforced the findings. The conclusion offers critical insights and identifies areas 

for further research in combining innovative manufacturing practices with technology education. 

Keywords: Industry 4.0; Competitiveness and employment, Supply chain contracts, Human Resources, 

Training and competence development, Business innovation model, Digital Services, Digital elements, 

Product related services, Cybersecurity practices, Key enabling technologies, Organization concepts, 
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Introduction 
This study's central motive is to quantitatively assess the impact of Industry 4.0 digital technologies 

on manufacturing competitiveness, specifically within the context of European Union Finnish small 

and medium-sized enterprises (SMEs). The alignment within the EU's strategic priorities is to 

modernize industry. Preparing the workforce in education and training means examining how 

technologies like automation and robotics applications can be integrated and leveraged. By utilizing 

the European Manufacturing Survey 2022 (EMS22) dataset tailored to the Finnish manufacturing 

sectors, the study aims to gain granular insights into SMEs' adoption and use of the manufacturer's 

key enabling technologies. The quantitative analysis of survey data provides data-driven perspectives 

to inform decision-making for Industry 4.0 integration. 

 

The manufacturing industry has undergone significant transitions over centuries, from the advent of 

steam power and assembly lines in the 1750s (Industry 1.0) to the rise of global supply chains and 

localized production goals (Industry 2.0), and then progressive automation and digitalization since 

the 1960s (Industry 3.0). These advances have been driven by innovation and connectivity needs 

(Heilala, 2022). Today's environment demands extreme customization and efficiency. This motivates 

embracing technologies like automation and robotics, moving towards Industry 4.0. Such 

technologies are critical for European Union (EU) small and medium-sized enterprises (SMEs) to 

bolster competitiveness. The EU aims to strategically modernize industry and develop workforces for 

the future (Heilala, 2022). 

 

This research utilizes the EMS, which has tracked Europe's industrial progression for two decades, 

offering a rich dataset. The EMS is an extensive survey conducted across European countries that 

collects key information on manufacturing strategies, technologies, and practices. It provides valuable 

insights into the state of the industry and how it is evolving amidst digital transformation and Industry 

4.0 trends. The EMS adopts a broad perspective on manufacturing evolution, complementing the 

innovation-focused Community Innovation Survey (CIS) grounded in the OSLO framework 

(Consortium for the European Manufacturing Survey 2020; Dachs & Zanker, 2015; European 
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Commission et al., 2015). The refined EMS22 survey shows, by each question, The quantified 

variables of a representative sample of 123 small firms. As per leveraging EMS data, the impact of 

digital transformation on competitiveness is analyzed. The analysis applies exploratory factor 

analysis, structural equation modeling, and logistic regression to evaluate variable relationships on 

testing proposed hypotheses to form the logistic regression model. Key results reveal complex 

interdependencies between innovation models, technologies, services, and performance. The 

discussion interprets these insights, outlining empirical connections found and limitations 

encountered. The statistically driven findings contribute to the discourse on digital competitive 

advantage, providing a modeling foundation for ongoing research into optimizing smart 

manufacturing implementation. 

Literature review - Decade-Long Perspective 

Analytical review of manufacturing research trends  

Prior EMS-based studies have utilized diverse statistical methods to analyze the survey data. The 

scoping review includes component analysis, reliability analysis through alpha, rho, and omega, and 

exploratory and confirmatory analyses. Structural path analysis shows multivariate analysis for 

discriminant and convergent validity assessments to implement in response to information 

characterization. Prior studies have shown depth in trade (European Commission, 2016; Kinkel et al., 

2015). The lookup followed the format 'TITLE-ABS-KEY ("manufacturing" AND "statistic 

method")' to identify publications similar in the metadata. Results were filtered by year (2013-2023) 

for trends in Figure 1. The usage of each component's method used in manufacturing literature (2013-

2023) needed to be more extensive. The internal structures' lower reliability frequency and the current 

research gap were identified. 

 
Figure 1: Trends for the statistical methods used in manufacturing method studies (2013-2023) 

(Scopus 2023). 

 

While the analysis criteria development established the management domain, the gap in examined 

publication trends is shown. The scope highlights increased utilization of exploratory and 

confirmatory factor analysis while other areas decline. The current study is aligned with the use of 

pre-defined variables from key themes from the EMS 2022 survey to fill the gap. The analysis 

incorporates a meta-level surfacing the variables from the EMS2022 survey across categories, 

including competitiveness and employment metrics, supply chain contracts, human resources 

distribution, training initiatives, business innovation models, implementation of digital services, 

adoption of digital elements, provision of product-related services, cybersecurity practices, utilization 



of key enabling technologies, organization concepts, and prevalence of relocation activities abroad 

(Table 1). 

Table 1 The study's classification development baseline adapts to EMS22 statements, testing if the 

practice is used for the context frameworks (EMS, 2022). The questions on the development of 

competitiveness and employment (DCES) are measuring manufacturing digitalization, acronymized 

as European manufacturing survey's (EMS's) key enabling technologies (KETs); organizational 

concepts (OCs) for relocation activities (RAs); digital services (DSs); cybersecurity practices (CPs) 

from the supply chain contract (SCCs) and resources (HR) perspectives. This shows that each of the 

factors explained is emerging in the experimental factor analysis addressed sample. 
Category Variables 

Competitiveness and 

Employment 
Annual turnover, number of employees, manufacturing capacity utilization, return 

on sales, investments in equipment and machinery, annual payroll as percentage of 

turnover, year of establishment 
Supply Chain 

Contracts 
Manufacturers, suppliers, contract manufacturers 

Human Resources 

Distribution 
University/college graduates, technically skilled workforce, trained workforce, 

semi-skilled and unskilled workers, trainees each segment indicating that practical 

skills and in-house training are highly valued in the workforce. 

Training Initiatives Task-specific training, cross-functional training, support in digital implementation, 

data security and compliance training, creativity, and innovation training 
Business Innovation 

Models 
Distribution, access, maintenance service-based, high-performance computing, on-

demand, sharing, performance, and turnkey innovative economies 
Digital Services 

Implementation 
Customer contact platforms, digital standard solutions, automated customer 

interactions, remote access control elements, cloud and IoT solutions, big data 

analysis 

Digital Elements 

Adoption 
Identification tags, sensor technology, interactive interfaces, real-time network 

connection, digital transformation technologies 
Product-Related 

Services Provision 
Installation and start-up, maintenance and repair, training, remote support, design 

and project planning, prototype development, revamping and modernization, take-
back services, software development 

Cybersecurity 

Practices 
Data security awareness, software solutions, hardware solutions, organizational 

measures 
Key Enabling 

Technologies 
Utilization 

Production control, automation and robotics, efficiency technologies, simulation, 

data analysis, additive manufacturing 

Organization 

Concepts 
Organization of production, management, and control, such as lean management, 

quality circles, and continuous improvement processes highlight the significance of 

organizational culture and structure in driving performance and adaptability. 

Sustainable manufacturing is the creative process of synergizing the supply chain components. The 

enhanced competitiveness is a sign of good manufacturing for maintaining operations. It is reflected 

in key EMS variables related to innovation. Innovativeness requires automating human capital 

development for efficiency (Chia-Yen & Andrew, 2015; Mehta et al., 2010). Aligning with Europe's 

2020 strategy goals, the Scopus review has limitations to the latest EMS data. Studying and assessing 

relationships between digital transformation, competitiveness, and employment within Finnish 

manufacturing is a top priority (European Commission, 2014). 

Research hypothesizes 

The review preliminaries show eight hypotheses developed to align with the analysis methods 

subsequently presented in the literature. The hypotheses show predictive relationships between 

EMS22 survey variables and manufacturing competitiveness and employment status for managing 

new natural law for technologist implications. The analysis tests hypotheses on the influence of EMS 

variables related to competitiveness and employment metrics (integer/binary), 

which are 

H1. Business innovation model variables 

H2. Digital service implementation variables, 

H3. Digital element adoption variables, 

H4. Product-related service provision variables, 



H5. Cybersecurity practice variables, 

H6. Key enabling technology utilization variables, 

H7. Organization concept variables, and  

H8. Relocation activity variables, that 

Have an explicit connection to Finnish manufacturers' competitiveness and employment. 

Anonymization was applied to model the small enterprises on the modeling path for a general 

overview. Competitiveness and employment status show the sample balanced challengingly with 

various sectors. The general model of the multivariate analyses between variables is usable for remote 

measurement of the firm floor-level relationships when fitted with normalized scores. The hypotheses 

assume the specific hypotheses of connections explore the exploratory model and the bottom-level 

quotes to converge for discussion. Thus, the literature review of analysis methods considers 

exploratory factor analysis to assess the underlying factor structure. The measurement models against 

the survey data follow the factor structure evaluation. Structural path visioning shows the Tested 

hypothesized relationships advantaged to classify the sample. Reliability analysis for discriminant 

and convergent validity assessments validates the construct's internal validity. This EMS data derives 

the measure to manage small chains by a quantitative approach aligned with analyzed studies. 

Multi-analytic Research Methodology 

Over time, the manufacturing studies trends from Scopus show applications to analyze manufacturing 

survey data. Findings of analyses type sorted (e.g., Kinkel et al., 2015; European Commission, 2016). 

A requirement to utilize factor analysis with structural path analysis is to establish an augmentation 

to explore relationships between variables from the latest EMS data. As such, explorative factor 

analysis is applied to assess the underlying factor structure with linear regression. The confirmatory 

on-path evaluation shows the measurement models on the survey data to the lagged binary 

correspondence. This was adapted to logistic regression with industry responses, reporting reliability 

to the causal treatment domain, see, e.g. (Wang et al., 2020; Gomila, 2021). For the detailed analysis, 

with the depth of linear analyses, utilizing logistic regression helped deal with binary data for drawing 

dedicated results. The grounding is considering traditional model fit indices for likelihoods. The 

accuracy on the analysis-dependent level is usually based on statistical principles (Hilbe, 2009; 

Casella & Berger, 2002; Hosmer Jr. et al., 2013). The approach offers coefficient interpretation in 

terms of associations between the variables studied. The regression path shows the hypothesized 

relationships influencing manufacturing competitiveness and employment component space. 

Reliability analysis shows internal consistency (Taber, 2016). discriminant and convergent validity 

validated in further models of measurement (Anderson & Gerbing, 1988). 

Data-analysis 
 

A sample (n=123) encompassed diverse industrial classifications to capture a breadth of product types 

and business models as classified (Heilala & Krolas, 2023). The data was acquired through 

Webropol's natural language collection tool and underwent cleaning to remove irrelevant responses 

(Webropol, 2022). The refined dataset was coded for frequency, reliability, and component analyses. 

Reliability analysis of the EMS2022 constructs was used to reveal internal consistency values. For 

reliable data, a partial technique across Industry 4.0 sectors established interpretable results 

(Bozgulova & Adambekova, 2023; Juariyah et al., 2020). Utilizing over 50 sub-items from the 

EMS22 survey represents a framework. Analysis of growth strategies in manufacturing, focusing on 

technologies, practices, and their impact on competition and employment industry-wide. 

 



This spectrum of the manufacturing sector shows' manufacturing of metal products and 

'Manufacturing of machinery and equipment,' and the software sector is most prominent. Industry 

sectors held a more miniature representation on each side for diversity and possibilities (Heilala & 

Krolas, 2023). The manufacturing industry studies have not been interested in industry-wide 

participatory studies (EMS, 2022; European Commission et al., 2015). Participation is included in the 

varied scope of industrial manufacturing, from factory assemblies to comprehensive lifecycle process 

assessments. Studies have usually served customers with platform requirements, such as within 

construction industry (He et al., 2018). 

Convergent and congeneric reliability levels 

Component analysis was used for dimensionality reduction to measure the reliability of constructs. 

The Cronbach Alpha, Jöreskog's Rhô, and McDonald's omega were followed as in Table 2 (Taber, 

2016). Alongside the analysis of several items (survey questions or statements used), the measures of 

internal consistency indicate a set of items' interrelation. A higher value suggests that the items 

measure the same concept. 

Table 2: Construct reliability levels show higher reliability for constructs, abbreviations explained 

below, indicating strong internal consistency with high measurement accuracy. 
  Items Cronbach's Alpha Joreskog Rhô McDonald’s Omega val. 

DCES 4 0.900  0.803 0.867 62 

BIMs 6(7) 0.765 0.530 0.505 59 

DSs 6 <.50 <.50 <.50 88 

PRS 17 .825  0.824 .839 105 

DEs 5 .799 0.865 .812 106 

CPs 4 <.50 <.50 <.50 105 

KETs 18 0.951  0.595 0.755 123 

OCs 11 0.803  0.889 0.659 120 

RAs 3(4) 0.900 0.885 0.583 80 

Several constructs in Table 2 exhibit poor reliability per the coefficient values below 0.5. In the stats 

table, DCES (developing competitiveness and employment stats) measures various aspects such as 

AT (annual turnover) and NE (numbers of employees) to the other factory specifics, showing high 

reliability in all coefficients and suggesting it is a well-measured construct. On the contrary, BIM 

(business innovation models) has moderate reliability, indicating the varying degree of integration 

that could be the first varying signal of innovation potential within firms. Surprisingly, DSs (digital 

services) exhibit poor reliability, raising concerns over the effectiveness of these measures in 

capturing companies' digital transition. PRS (product-related services) demonstrated robust reliability 

across all coefficients for services provided, reflecting customer relationship on maintenance services. 

The high-reliability scores were affirmed for DEs (digital elements). Poor reliability for CPs 

(cybersecurity practices) has indicated potential issues in consistently measuring how digital 

infrastructure is safeguarded. Despite moderate reliability, KETs (key enabling technologies) benefit 

the omega display because it has a broad scope of moderate reliability measures regarding a few item 

combinations that align with each other. Similarly, but contrary to omega, OCs (organization 

concepts) present reliable measures contributing to firm efficiency and agility. Uniformity to 

globalization, RAs (relocation activities) exhibit varied reliability across coefficients. The first signal 

to the empty tabulations shows Heilala and Krolas (2023), who note that the carbon footprint in 

offshore locations needs to be more consistently optimized by reassessing certified systems. 



Factor analysis  

Despite a few constructs having insufficient reliability for further analyses, another angle to 

considering partial exploratory factor analysis (PEFA) was taken. PEFA was an intriguing option to 

form over an established, validated framework of the survey metrics. The technique has been used 

across manufacturing and other Industry 4.0 sectors, reliably increasing safety to select the analysis 

method (Bozgulova & Adambekova, 2023; Juariyah et al., 2020). Factor analysis provides insights 

into the multivariate relationships of survey instruments (Creswell, 2015; Edmonds & Kennedy, 

2019). PEFA shows the interconnections between factors influencing the instruments (Matsunaga, 

2010; Revelle, 2013). Rotation methods of VariMax and ProMax optimize factor separability 

(Matsunaga, 2010). The PEFA is shown in the Table 3 model DCES (developing competitiveness 

and employment situ) measures of annual turnover for 2019-2021 (AT19/21; m23a1, m23a2), 

employee numbers for 2019-2021 (NE19/21; m23b1, m23b2), capacity utilization for 2019-2021 

(MCU19/21; m23h), return on sales for 2019-2021 (ROS19-21; m23i1-5), investments (m23f), 

payroll percentage (m23g), and establishment year (m23k) reflect financials, labor dynamics, asset 

efficiency. High turnover and employment correlate with competitiveness. Supply chain contract 

(SCC) types categorize operators as manufacturers (MFR; m03a1-a3), suppliers (SPLR; m03a4-a5), 

or contract manufacturers (CM; m03a6), capturing production system roles. Manufacturers' negative 

SCC correlation potentially signals inflexibilities, unlike positively correlated suppliers and contract 

manufacturers benefitting from dynamic agreements. Human resources (HR) distribution classifies 

graduates (m16a1), technical staff (sm16a2), trained workers (m16a3), semi/unskilled personnel 

(m16a4), and trainees (m16a5), measuring skills and qualifications. Graduates' negative HR 

correlation potentially reflects oversaturation, contrasting positives for vocational abilities. Business 

innovation models (BIM) like leasing (BIM1; m18a1), service contracts (BIM2; m18b1), output-

based services (BIM3; m18c1), sharing models (BIM4; m18d1), availability guarantees (BIM5; 

M18e1), and turnkeys (BIM6; m18f1) integrate variably, signaling innovation potential. Digital 

services (DS) include standards solutions (m18g1), automated customer processes (m18g2), remote 

access controls (m18g3), cloud/IoT applications (m18g4), and data analytics (m18g5), enabling 

digital transitions. Digital elements (DE) such as identification tags (m04a1), sensors (m04a2), 

interactive interfaces (m04a3), real-time connections (m04a4), and IoT integrations (m04a5) 

emphasize digitization's role. Product-related services (PRS) spanning installation (m15a1), 

maintenance (m15b1), training (m15c1), support (m15d1), consulting (m15e1), prototyping (m15f1), 

modernization (m15g1), takebacks (m15h1), and software (m15i1) maintain customer relationships. 

Cybersecurity practices (CP), including awareness (m11a1), data controls (m11a2), network solutions 

(m11a3), and protections (m11a4) safeguard digital infrastructure. Key enabling technologies (KET) 

from programming devices (m09a1) to simulation software (m09p1) drive innovation and 

sustainability. Organization concepts (OC) encompassing integration (m06a1), customer-focus 

(m06b1), pull-based control (m06c1), changeover optimization (m06d1), standardization (m06e1), 

visual management (m06f1), quality assurance (m06g1), innovation involvement (m06h1), 

performance incentives (m06i1), environmental management (m06k1), and energy management 

(m06l1) contribute to efficiency and agility. Relocation activities (RA), including offshoring 

production (m26a1) and R&D (m26b1) and backshoring production (m26c1) and R&D (m26d1) 

represent strategic footprint optimization. The commonalities indicate digitalization's integral role 

and human capital's nuance in competitiveness, demanding tailored management. This statistical 

portrait outlines the drivers of European manufacturing competitiveness, employment, innovation, 

and strategy amidst Industry 4.0 transformation. (EMS, 2022.). 

Table 3: The factor loadings offer a multidimensional perspective on the interconnected variables influencing European manufacturing as discerned 

from the EMS22 survey.  
EMS item DCES SSC  HR  BIM  DS  DE  PRS CP KETs OCs RA COM 

m23a1 .937           .878 

m23b1 .915           .836 

m23h .389           .151 

m23i1-5 .261           .068 

m23a2 .932           .869 



m23b2 .920           .846 

m23h .419           .175 

m23f .514           .264 

m23g -.451           .203 

m23k .676           .457 

m03a1-a3  -.909          .826 
m03a4-a5  .522          .273 

m03a6  .564          .318 

m16a1   -.927         .860 

m16a2   .190         .036 

m16a3   .211         .045 

m16a4   .677         .458 

m16a5   .357         .127 

m18a1    .332        .110 

m18b1    -.144        .021 

m18c1    -.081        .007 
m18d1    .794        .631 

M18e1    .795        .631 

m18f1    .785        .616 

m19a     -.612       .375 

M18g1     .538       .290 

m18g2     .153       .023 

m18g3     .570       .325 

m18g4     -.560       .313 

m18g5     -.612       .375 

m04a1      .768      .356 
m04a2      .727      .590 

m04a3      .858      .528 

m04a4      .785      .736 

m04a5      .597      .616 

m15a1       .681     .463 

M15b1       .625     .391 

m15c1       .654     .427 

M15d1       .602     .362 

M15e1       .550     .302 

m15f1       .482     .232 
m15g1       .622     .387 

M15h1       .208     .043 

M15i1       .577     .333 

m15a2       .598     .358 

m15b2       .643     .413 

m15c2       .499     .249 

m15d2       .506     .256 

m15e2       .436     .190 

m15f2       .276     .076 
m15g2       .360     .130 

m15h2       .089     .008 

m11a1        -.318    .101 

m11a2        .617    .381 

m11a3        .725    .525 

m11a4        .509    .259 

m09a1         .446   .199 

m09b1         .448   .201 

m09c1         .259   .067 

m09d1         .496   .246 
m09e1          .537   .289 

m09f1          .466   .218 

m09g1          .481   .232 

m09h1          .560   .313 

m09i1          .588   .345 

m09q1          .536   .287 

m09r1          .562   .316 

m09k1          .665   .443 

m09l1          .552   .304 

m09m1          .581   .337 

m09n1          .584   .341 

m09o1          .452   .204 

m09p1          .608   .369 

M09q*          .516   .266 

m06a1           .609  .370 

m06b1           .595  .355 

m06c1           .482  .232 

m06d1           .570  .325 

m06e1           .647  .418 

m06f1           .532  .283 

m06g1           .480  .230 

m06h1           .613  .375 

m06i1           .552  .305 

m06k1           .555  .308 

m06l1           .393  .155 

m26a1            .699 .488 

m26b1            .749 .561 

m26c1            -.175 .031 

m26d1            .751 .564 

z-standardized; *Extra            

 



Annual turnover and employee numbers (m23a1, m23a2, m23b1, m23b2) strongly correlate with the 

Competitiveness and Employment Status factor (DCES), underscoring their pivotal role in 

manufacturing prowess. Conversely, manufacturers (m03a1-a3) exhibit a negative relationship with 

Supply Chain Contracts (SSC), in contrast to the positive loadings for suppliers and contract 

manufacturers (m03a4-a6), revealing the complexities within supply chain dynamics. Human 

Resources (HR) are differentially impacted by the workforce composition, where graduates (m16a1) 

show a negative association, while technical, trained, semi-skilled, unskilled staff and trainees 

(m16a2-a5) present positive correlations, highlighting the multifaceted nature of human capital in this 

sector. The Business Innovation Models (BIM) spectrum (m18a1 to m18f1) demonstrates diverse 

associations, suggesting that innovation models integrate more seamlessly into the current industrial 

fabric. Digital Services (DS) and Elements (DE), illustrated by loadings for (m19a, m18g1 to m18g5, 

and m04a1 to m04a5), emphasize the growing importance of digitalization. Product-related services 

(PRS: m15a1 to m15h2), Cybersecurity Practices (CPs: m11a1 to m11a4), Key Enabling 

Technologies (KET: m09a1 to m09p1), Organization Concepts (OC: m06a1 to m06l1), and 

Relocation Activities (RA: m26a1 to m26d1) all display variegated correlations, indicating that 

specific practices, technologies, and strategies are differentially integrated and valued within the 

sector. Collectively, these loadings serve as a statistical map outlining how various elements 

contribute to the overall competitiveness, employment landscape, innovative capacity, and strategic 

direction of European manufacturing firms. 

Convergent and discriminant validity 

However, the PEFAs Tucker-Lewis (Tucker & Lewis 1973) indicated only partial reliability, as from 

the reliability in Table 2 a few chapters back elaborated. For consistency, the potential removal of 

some variables is suggested. The limit must be raised to elaborate the unrelated contribution of 

interrelations of arithmetic sums of the companies’ characteristics studied (Revelle, 2013)—

correlation (R) analysis to Table 4 further explored relationships between variables of interest. The 

data normalization Was applied to ensure compliance with the central limit theorem (Schober & Boer, 

2018). This comprehensive analysis elaborates on variable relationships. Potential quadratic 

relationships were acknowledged. The quadratic or cubic terms are rare, highlighting the need for 

careful analysis to saturation (Robinson & Schumacker, 2009). The R shows that the internal 

reliability does not control the fluctuations of the company-dependent variables. There are no 

homogeneous groups unless market transformers are balanced in the manufacturing portfolio (Malik 

et al., 2023). 

 

Table 4: R magnitudes average extractions; the factors are z-standardized 
 ZDCES ZBIMs ZDSs ZDEs ZPRS ZCPs ZKETs ZOCs ZRAs 

ZDCES (0.25)         

ZBIMs -0.063 (0.297)        

ZDSs 0.052 .324** (0.283)        

ZDEs .303** .318** 0.219 (0.565)      

ZPRS 0.028 .419*** .371**** .658**** (0.41)     

ZCPs 0.007 0.256* .910**** 0.089 .205** (0.317)    

ZKETs .417*** -0.100 0.060 0.175* 0.047 0.042 (0.28)   

ZOCs .418*** 0.006 0.090 .248** 0.050 0.046 .655**** (0.31)  

ZRAs 0.077 0.022 0.085 .398*** .379**** 0.023 .305*** 0.214* (0.41) 

Note: results do not have significant relation/not connect (n.s./n.c.), ****p<0.001, ***p<0.01, **p<0.05 and *p<0.1.  

Table 4 presents a matrix of R coefficients, which explores the relationships between pairs of z-scored 

variables representing different constructs (e.g., ZDCES, ZBIMs, ZDSs, etc.). Rs are showing the 

strength and direction of the relationships between constructs. The diagonal elements in parentheses 

indicate the average variance extracted for each construct, a measure of convergent validity that 

assesses the extent to which items of a construct are positively correlated. For instance, ZDEs and 



ZPRS have a robust positive correlation (R = .658****), suggesting that as one construct increases, 

the other tends to increase as well, and this relationship is statistically significant at the p<0.001 level. 

Similarly, ZCPs and ZDSs are highly correlated (R = .910****), indicating a strong positive 

relationship with statistical significance. 

Hypothesis testing  

Table 5 presents the results of hypothesis testing, adding depth to the cross-correlations by direct 

multivariate measures to evaluate the fit of different models to the data. The models test specific 

hypotheses concerning the relationships between the introduced construct and other variables within 

the dataset. A high RMSEA (root mean square error approximation) suggests a poor fit between the 

model and the observed data, indicating the need for model revision. Despite model data fit 

limitations, the survey analysis is a complete, valid measure involving an extraordinary spectrum. 

The mediation model successfully depicted indirect effects on the resolution (Baron & Kenny, 1986; 

Frazier et al., 2004). For example, in biotechnology studies, multiple indices can be eliminated if a 

too-good fit becomes a highly restricted model (Lai et al., 2016). 

 

Table 5: uses DoF (degrees of freedom), 𝜒² (Chi-squared) test, and p-value for model evaluation. 

A p-value < 0.05 typically rejects the model fit. Ratios 𝜒²⁄𝑑𝑓, and RMSEA show fit informing 

questionnaire validation. 

Models DoF (𝜒2) p-value 𝜒2⁄𝑑𝑓 RMSEA* Hypotheses Result 

BIMs 21 61.636 <.001 2.92 Medium 

Accepted for BIM2, BIM6; 

Rejected for others 

DSs 10 N/A >.05 N/A High Rejected for all (5) 

PRS 153 497.613 <.001 2.47 Medium 

Accepted for PRSO3, 

PRSO8; Rejected for others 

DEs 10 170.463 <.001 17.463 Medium Accepted for all (5) 

CPs 10 N/A >.05 N/A High Rejected for all (4) 

KETs 
6 59.579 <.001 9.93 Null model 

Accepted for PC, AR; 

Declined for SDA, ET 

OCs Accepted for all (3) 

RAs Rejected for all (4) 

*Note Low (>.07), null model  (>.20), medium (<.20) or High RMSEA (<.30). 
N/A (not applicable): not computed; lack of data.  

 

The hypotheses result column reflects hypothesis testing outcomes within each model for having 

relative model fit indices based on what we have (Schubert et al., 2017). The consideration of industry 

requirements culminates in certifying operating boundaries in the globally recognized framework for 

management. The question of accepting or rejecting the sample rather than removing the sample size 

could be based on p-values and fit indices like 𝜒²⁄𝑑𝑓 and RMSEA with high factor loadings applicable 

to be studied. This would elevate the indices results due to limited saturation. As per medium models 

were found in the BIMs (business innovation models), specific hypotheses such as BIM2 (access) 

and BIM6 (turnkey project) having supported; product-related service (PRS) show PRS3 (training) 

and PRS8 (recycling/lifecycle of a product tracing); and for DE (digital elements) for all: DE1 

(identification), DE2 (digital functions); DE3 (interfaces); DE4 (realtime-network); and DE5 

(transformations). KETs (key enabling technologies) for AR (automation and robotics) with PC 

(production control) were supported, but other technologies like simulation, data analysis, and 

additive manufacturing were not. The OCs (organization concepts) spectrum showed affirmative. 

Table 5 shows that null modes were taken to the investigations to build a new model in discussion. 

The proposed automation and robotics technology management model was stable out of statistical 

biases. The industrial engineering management on automation and robotics robustness shows a 

technology model. Industrial Management's dilemma on perfect model fit corresponds to the highest 



expectations (Hogeforster & Wildt, 2021). The chi-square is not definitive in determining fit indices 

in understanding industrialized imbalanced segregations with indications (West et al., 2012; Shi et 

al., 2019). The hypothesized per a priori model is in Figure 2—the path drives key relationships. The 

figure's paths provide the research model's partial exploratory factor analysis elimination perspective. 

The figure proposes ln-not corroborated linkage to avoid worsening the model fit. 

 
Figure 2. Has medium outlining for a null model for manufacturing survey results for discussion 

(arrows as causal hypotheses), focusing on contribution altogether, with BIMs with factors fc1-access 

and fc2-turn key innovation; KETs with factors fc3-automation and robotics and fc4-production 

control; and PRS, with factors fc5-online and fc6-maintenance provided —to achieve digital 

competitive advantage in Industry 4.0. Solid arrows depict validated causal connections between 

variables and factors, while double-headed arrows represent bidirectional correlations among BIMs, 

KETs, and PRS. 

Refining empirical variables 

The refined structural multivariate hypothesis test shows evidence for support. Proposed relationships 

in the explorative research model are merged. Automation and robotics technologies computed 

dependent variables. Given the guess. Given their increasing prevalence in smart factories (Wang et 

al., 2020). This will allow testing of the integration between production control software and 

automated/robotic management. Per Manufacturing execution systems (MES, m09g1) and product 

lifecycle management (PLM, m09f1) selection to the independence of production control systems. 

The integral components of digital manufacturing infrastructure were explored (Lee et al., 2022). 

Shall MES and PLMs be selected for real-time data collection, monitoring, quality management, and 

product lifecycle data management (Zhong et al., 2021)? As per demonstration affirmative. The 

maintenance model into performance could also be critical for manufacturing operations review 

(Grieco et al., 2022). The result identifies MES and PLM enabling the transformation forward for 

Industry 4.0 (Capgemini Research Institute, 2021). 

KETs PRS
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Empirical results 

Structural concept 

Per linear analysis: the depth included methods for causal links and chained handling of binary data, 

providing logic for advanced manufacturing (Heilala & Krolas, 2023). The logistic analysis is flexible 

per practice contract. Figure 3 shows that managed business innovation models (BIMs) and product-

related services (PRS) can be abandoned. Industry 4.0 emphasizes manufacturing production control, 

automation, and robotics as key enablers. This framework for competitive advantage dynamics is in 

Figure 3. 

 
Figure 3. Structural models illustrate the a priori linear relationships between automation and 

robotics production control endogenous variables (e1-e6, m09, and m23-series with financial 

management in EMS). 

Exclusions of most of the factors were due to data constraints-imposed model. The boundary 

limitations for the power analysis on a small square are visible. Yielding lower RMSEA for fit 

between production control, automation, and robotics technologies. The correlates in m09-series 

endogenous variables e1 (f1) and e2 (g1), and connections to e3 (h1) and e4(i1) were highlighted. 

Integrating advanced technologies as foundational for Industry 4.0's competitive positioning evokes 

the primary hypothesis. The cross-sectional innovative servicing of robots and automation also 

linkages with e5(q1) and e6(r1) can validate hypotheses. Confirmatory analysis suggests that 

innovative business practices leverage m09-series digital capability. This implies refined performance 

strategies resulting in manufacturer-minimum classification. The pathways of the manufacturer show 

solid arrows for empirically supported hypotheses, as regression ruling demonstrates. Growth 

stimulates advancement in other elements without the requirement for simulation. The selection 

variables support the theoretical hypotheses in Table 7 (Appendix A). 

Table 7:   The examination of a logistic regression model showing linear as detailed in Appendix 

A with A.1, merging various metrics of model performance with validation; A.2 measuring the 

model predicting correct outcomes; A.3-A.4 the model's accuracy to the relationship with result 

predictions. 

  precision recall f1-score support     
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 0.0 1.00 0.71 0.83 7  

 1.0 0.88 1.00 0.93 14  

 
      

 accuracy 0.90 21    

 macro avg 0.94 0.86 0.88 21 

weighted avg 0.92 0.90 0.90 21   

 

The logistic regression predicts the fusion of automation technology with performance metrics. The 

characteristics of manufacturing classification accuracy elucidated precision to continue scientific 

discussions of applied regression's (Hilbe, 2009; Casella & Berger, 2002; Hosmer Jr et al., 2013). the 

analytical strategy's novelty shows reliability and discourse to literature to transform it into 

transformative innovation for engineering and financial management. Execution and lifecycle 

systems were chosen to represent the production of automation and robotics. These are integral 

components of digital manufacturing infrastructure for sustainability (Lee et al., 2022). These systems 

offer comprehensive capabilities for real-time data collection, monitoring, quality management, and 

product lifecycle data management (Zhong et al., 2021). Past research shows similarities in 

shipbuilding (Sánchez-Sotano et al., 2019). Execution systems dimensioning without what operations 

are left to the heavy organization procedures irrelevant to manufacturers. Leading industry reports 

also identify results essential in digital transformation enablers for Industry 4.0 (Capgemini Research 

Institute, 2021). Regressions in measuring the literature confirmed a similar significant positive 

correlation between integrated execution on the production lifecycle, and it is being integral to 

finance.   

Discussion 

This study utilized path analysis and logistic regression to examine relationships between key 

manufacturing technologies and production outcomes. The analysis focused on widely adopted 

technologies and their interactions with automation and robotics. Positive correlations were found 

between these variables, validating hypothesized beneficial technology integration effects. While data 

limitations prevented confirmation of all proposed relationships, the statistically supported linkages 

represent essential findings for a refined model concentrating on validated connections to enable 

intelligent manufacturing performance. 

The study also analyzed survey data assessing connections between digital transformation, 

manufacturing competitiveness, and employment in Finland. While hypothesis testing yielded mixed 

results, complex interrelationships, some business models and technologies exhibited clear positive 

ties to improved competitiveness. Furthermore, interactive interfaces, real-time networking, and 

digital transformation adoption are related to better competitiveness and employment scenarios 

(Moeuf et al., 2017). However, more than transparent or insignificant relationships were found for 

other variables like digital services, cybersecurity, simulation tools, and additive manufacturing 

(McNeish, 2018). These highlight areas needing further research before emphasis or investment. 

Conclusion 

A statistical factorization outlined manufacturers' contributions from 2019 to 2021. The science gap 

reaches integration into European manufacturing competition, which concludes with execution and 

lifecycle management. According to the original hypotheses, growth has complex interdependencies. 

The inevitable other elements correspond to the performance outcomes. However, the study cannot 

decide which principles of execution and lifecycle should prepare manufacturing. The standpoint on 

usable data constraints limited full confirmation. A partial overview supports every hypothesis. 

However, it is rare for a company to afford a complex system and business when manufacturing must 



be planned separately. A couple of more prominent companies with higher turnovers have higher 

integrative posts. 

In conclusion, this study utilized statistical modeling to analyze the relationships for competitive 

manufacturing. Findings confirmed automation, robotics, and production control integration for 

performance. However, emerging technologies showed unclear impacts, requiring a reliable network. 

While small datasets set limitations preventing full spectral confirmation to all hypotheses reliably, 

responses contribute to future research and development. The database meta-analysis on the factor 

analysis’ reliability reporting could be interesting to address in further studies. Factor analysis root 

means a square error has been outlined as heterogeneous, to which homogeneous generalization 

researchers aim to keep science differentiated from the actual practice. At the same time, others seem 

not to report indices. The indicative meta-analysis with regression test differentiates items and could 

open the industry trends, improving high indices. 
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Appendix A: Evaluation of Logistic Regression Model Outcomes 

   
 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import accuracy_score, classification_report 

data = { 'AT_m23a1': [-99, -99, -99, -99, 0, -99, -99, -99, 1, -99, -99, -99, -99, 113, 13, -99, -99, 1, 2.1, -99, 6, 6, 65, 8, 1, 2, -99, 29, 1, 

16, 4, -99, 12, 4, 1, 7, 339, -99, 24, -99, 3, 59, 29, 24, 1, 10, 3, 10, -99, 70, 3, -99, 17, 2.4, 17, -99, -99, 3, 1, -99, 48, 2, 2.8, -99, -99, -99, 

120, 10.8, -99, -99, 3.022, 0.6, 3, 45, 1.5, 1.2, -99, 1, -99, 5, 0.432, 4.7, 1, 9.7, 2, -99, -99, 1.2, 2, 12.397, 100, -99, 1.04, 2.2, -99, 32, 80, 

220, -99, -99, 6, -99, 19.586, 11, -99, 6.26, 9.3, 6.4, 110, -99, 6, 1.7, -99, -99, -99, -99, 3.096, 6.2, 55, 0.4, 128, 82.295749 #… all others], 
'AT_m23a2': [-99, -99, -99, -99, 0, -99, -99, -99, 1, -99, -99, -99, -99, 105, 11, -99, -99, 1, 1.6, -99, 7, 6, 60, 6, 1, 1, -99, 38, 1, 15, -99, -

99, 11, 5, 0, 9, 326, -99, 22, -99, 20, 63, 24, 24, 1, 9, 2, 12, -99, 49, 2, -99, 15, 0.6, 15, -99, -99, 2, 1, -99, 32, 1, 2.7, -99, -99, -99, 120, 

7.8, -99, -99, 3.275, 0.615, 3, 35, 1.5, 1.4, -99, 1, -99, 5, 0.158, 4.7, 0.64, 9, 2, -99, -99, 1.2, 1.8, 10.625, 110, -99, 0.1, 2.1, -99, 13, -99, 

250, -99, -99, 6, -99, 16.694, 7, -99, 19.214, 7.3, 4.2, 120, -99, 4.5, 1.5, -99, -99, -99, -99, 4.865, 6, 50, 0.5, 108, 70.102277 #… all 

others], 
'NE_m23b1': [-99, 15, 3, -99, -99, 15, 15, -99, 40, 30, 65, 18, 7, 14, -99, 250, 17, 108, 35, -99, 46, 19, 8, 53, 345, -99, 35, -99, 10, 177, 

150, 54, 10, 42, 4, 55, -99, 220, 30, -99, 50, 21, 110, -99, -99, 6, 12, -99, 65, 19, 15, -99, -99, 43, -99, 300, 120, 230, -99, 20, 26, 3, 240, 

11, 6, 12, -99, 100, 7, 17, 12, 57, 11, 20, -99, 17, 20, 65, 280, -99, 14, 10, -99, 65, 160, 500, -99, -99, 42, -99, 99, 60, -99, 51, 34, 76, 300, 

200, 80, 12, -99, 75, -99, -99, 25, 43, 190, 4, 52, 75, 20, 120, 140, 90, 14, 54, -99, -99, 5, 47, 9, 4, 54, 5, -99, 45 #… all others], 

'NE_m23b2': [-99, 12, 2, -99, -99, 14, 14, -99, 38, 28, 64, 18, 7, 13, -99, 240, 17, 105, 33, -99, 44, 18, 8, 51, 320, -99, 33, -99, 8, 175, 
140, 52, 9, 40, 4, 53, -99, 210, 28, -99, 48, 20, 108, -99, -99, 5, 11, -99, 63, 18, 14, -99, -99, 40, -99, 290, 118, 220, -99, 19, 25, 2, 235, 

10, 5, 11, -99, 96, 6, 15, 10, 55, 10, 18, -99, 16, 18, 63, 270, -99, 13, 8, -99, 62, 158, 480, -99, -99, 40, -99, 96, 58, -99, 50, 32, 73, 290, 

190, 78, 11, -99, 70, -99, -99, 24, 40, 185, 3, 50, 73, 19, 116, 135, 88, 12, 52, -99, -99, 4, 45, 8, 3, 52, 4, -99, 42 #… all others], 

'PLM_ m09f1': [0, 1, 0, -99, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, -99, 0, -99, 0, 0, 0, 0, 0, 0, 1, 0, -99, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 

0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, -99, 0, 0, 0, -99, -99, 0, 0, 0, 0, -99, 0, 0, 1, 0, 1, 0, -99, 0, 0, 1, -99, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, -99, 0, 0, 
0, 0, 0, 1, 0, 0, 0, -99, 0, 0, 1, -99, 1, 1 #… all others], 

'MES_ofm09g1': [0, 0, 0, -99, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, -99, 1, -99, 0, 1, 0, 0, 0, 1, 1, 1, -99, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 

0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, -99, 1, 0, 0, -99, -99, 0, 0, 0, 0, -99, 0, 0, 0, 0, 0, 0, -99, 1, 0, 1, -99, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, -99, 1, 0, 

0, 0, 0, 0, 0, 0, 0, -99, 0, 0, 0, -99, 1, 0 #… all others], 

'AR1_m09h1': [1,1,-99,-99,0,1,-99,-99,-99,-99,1,0,-99,1,-99,-99,0,-99,-99,-99,-99,-99,-99,-99,-99,1,-99,1,-99,-99,0,-99,-99,1,-99,-99,-
99,1,-99,1,-99,-99,-99,1,-99,-99,1,0,-99,0,-99,1,-99,-99,-99,-99,-99,1,-99,1,1,1,0,-99,1,0,-99,-99,-99,1,-99,1,1,-99,-99,1,-99,-99,1,0,1,1,-

99,1,0,-99,-99,-99,-99,1,-99,1,1,-99,-99,0,-99,-99,-99,1,-99,-99,1,1 #… all others], 

'AR2_m09i1': [0,0,-99,-99,1,0,-99,-99,-99,-99,0,0,-99,1,-99,-99,0,-99,-99,-99,-99,-99,-99,-99,-99,0,-99,0,-99,-99,1,-99,-99,0,-99,-99,-

99,0,-99,0,-99,-99,-99,0,-99,-99,1,1,-99,1,-99,0,-99,-99,-99,-99,-99,0,-99,1,0,1,1,-99,1,0,-99,-99,-99,0,-99,0,1,-99,-99,0,-99,-99,0,1,1,0,-
99,1,0,-99,-99,-99,-99,0,-99,1,0,-99,-99,1,-99,-99,-99,0,-99,-99,1,1 #… all others], 

'AR3_m09q1: [0,0,-99,-99,0,0,-99,-99,-99,-99,1,1,-99,0,-99,-99,0,-99,-99,-99,-99,-99,-99,-99,-99,0,-99,0,-99,-99,0,-99,-99,1,-99,-99,-

99,0,-99,0,-99,-99,-99,0,-99,-99,0,0,-99,0,-99,0,-99,-99,-99,-99,-99,0,-99,0,0,1,0,-99,0,0,-99,-99,-99,0,-99,0,0,-99,-99,0,-99,-99,0,0,1,1,-

99,0,0,-99,-99,-99,-99,0,-99,0,0,-99,-99,0,-99,-99,-99,0,-99,-99,0,1 #… all others], 

'AR4_ m09r1': [0,0,-99,-99,0,0,-99,-99,-99,-99,0,1,-99,0,-99,-99,1,-99,-99,-99,-99,-99,-99,-99,-99,0,-99,0,-99,-99,0,-99,-99,0,-99,-99,-
99,0,-99,0,-99,-99,-99,0,-99,-99,1,0,-99,0,-99,0,-99,-99,-99,-99,-99,0,-99,0,0,1,1,-99,0,1,-99,-99,-99,0,-99,0,0,-99,-99,0,-99,-99,0,1,1,1,-

99,0,1,-99,-99,-99,-99,0,-99,0,0,-99,-99,0,-99,-99,-99,0,-99,-99,0,1 #… all others] }  

df = pd.DataFrame(data) 

df.replace(-99, pd.NA, inplace=True) 

for col in df.columns: 

    mode_val = df[col].mode()[0] 

    df[col].fillna(mode_val, inplace=True) 

X = df[['MES', 'AT_m23a1', 'AT_m23a2', 'NE_m23b1', 'NE_m23b2', 'AR1 m09h1', 'AR2 m09i1', 'AR3 m09q1', 'AR4 m09r1']] 

y = df['PLM'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

clf = LogisticRegression(max_iter=1000)  # max_iter  

clf.fit(X_train, y_train) 

y_pred = clf.predict(X_test) 

Figure A.2: Receiver Operating Characteristic (ROC) Curve Demonstrating Outcome Predictive 

Efficacy 



   
 

import numpy as np 

from sklearn.metrics import precision_recall_fscore_support, roc_curve, auc 

import matplotlib.pyplot as plt 

import seaborn as sns 

df = pd.DataFrame(data) # As given 

df.replace(-99, np.nan, inplace=True) 

df.dropna(inplace=True) 

X = df[['PLM', 'MES']]  # PLM & MES as features 

y = df['AR1']  # Assuming for example, that 'AR1' is the target variable 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) 

logreg = LogisticRegression() 

logreg.fit(X_train, y_train) 

y_pred = logreg.predict(X_test) 

y_pred_proba = logreg.predict_proba(X_test)[:,1] 

accuracy = accuracy_score(y_test, y_pred) 

precision, recall, f1, _ = precision_recall_fscore_support(y_test, y_pred, average='binary') 

report = classification_report(y_test, y_pred) 

print('Accuracy:', accuracy) 

print('Precision:', precision) 

print('Recall:', recall) 

print('F1 Score:', f1) 

print('Classification Report:\n', report) 

fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba) 

roc_auc = auc(fpr, tpr) 

  



Figure A.3: Histogram and Bar Plot Analysis Detailing Precision, Recall, and F1-Score for 'FF' and 

'TF' Outcomes 

 

# Plotted normalized data 

data = {     # 'Y': [5.5, 6.7, 8.8, 4.4], # Interface 

    'AT_m23a1': [1, 2, 3, 4], # Growth for 2021 

    'AT_m23a2': [2.1, 2.2, 2.3, 2.4], Growth for 2019 

    'NE_m23b1': [3, 3.1, 3.2, 3.3], # Size for 2021 

    'NE_m23b2': [4, 4.1, 4.2, 4.3], # Size for 2019 

    'AR1 m09h1': [5, 5.1, 5.2, 5.3], # Industrial robots for manufacturing adoption  

    'AR2 m09i1': [6, 6.1, 6.2, 6.3], # Industrial robots for handling adoption adoption 

    'AR3 m09q1': [7, 7.1, 7.2, 7.3], # Mobile industrial robots adoption 

    'AR4 m09r1': [8, 8.1, 8.2, 8.3], }# Collaborating robots adoption 

df = pd.DataFrame(data) 

# -99 missing removal 

df = df[df.PLM != -99] 

df = df[df.MES != -99] 

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) 

ax[0].hist(df['PLM'], bins=3, edgecolor='black') 

ax[0].set_title('PLM Distribution') 

ax[0].set_xlabel('PLM Value') 

ax[0].set_ylabel('Frequency') 

ax[1].hist(df['MES'], bins=3, edgecolor='black') 

ax[1].set_title('MES Distribution') 

ax[1].set_xlabel('MES Value') 

ax[1].set_ylabel('Frequency') 

plt.tight_layout() 

plt.show() 

# Regression 

sns.regplot(x='PLM', y='MES', data=df, logistic=True, ci=None)  # logistic regression as data is binary 

plt.title('Regression Plot between PLM and MES') 

  



Figure A.4: Scatter Plot with Trend Line for Model Support Against 'Outcome' Categories 

 

   
 

data = pd.DataFrame({ # Tabulated logistic training results  

    'Outcome': ['FF', 'TF', 'Accuracy', 'Macro Avg', 'Weighted Avg'], 

    'Precision': [1.00, 0.88, None, 0.94, 0.92], 

    'Recall': [0.71, 1.00, None, 0.86, 0.90], 

    'F1-Score': [0.83, 0.93, 0.90, 0.88, 0.90], 

    'Support': [7, 14, 21, 21, 21] }) 

palette = {"FF": "#1f77b4", "TF": "#ff7f0e"} 

plt.figure(figsize=(20, 6)) 

# Plot 1 for Precision, Recall, and F1-Score for FF and TF 

plt.subplot(1, 2, 1)  # 1 row, 2 columns, first subplot 

bar_data = data[:2].melt(id_vars='Outcome', value_vars=['Precision', 'Recall', 'F1-Score']) 

bar_plot = sns.barplot(x='variable', y='value', hue='Outcome', data=bar_data, palette=palette) 

plt.ylim(0, 1.1) 

plt.title('Precision, Recall, and F1-Score by Outcome') 

plt.ylabel('Score') 

plt.xlabel('Metric') 

plt.legend(title='Outcome') 

for container in bar_plot.containers: 

    bar_plot.bar_label(container, fmt='%.2f', padding=3) 

# Plot 2 for F1-Score for Accuracy, Macro Avg, and Weighted Avg 

plt.subplot(1, 2, 2)  # 1 row, 2 columns, second subplot 

f1_data = data[2:].melt(id_vars='Outcome', value_vars=['F1-Score']) 

f1_plot = sns.barplot(x='Outcome', y='value', data=f1_data) 

plt.ylim(0, 1.1) 

plt.title('F1-Score for Accuracy, Macro Avg, and Weighted Avg') 

plt.ylabel('F1-Score') 

plt.xlabel('Metric') 

for container in f1_plot.containers: 

    f1_plot.bar_label(container, fmt='%.2f') 

plt.tight_layout() 
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Abstract— The European Manufacturing Survey 2022 

(EMS22) evaluated the Finnish manufacturing industries 

between advanced manufacturing technologies and 

sustainability management systems in Finnish industrial 

companies. The profitability was compared under the 

development of competitiveness and employment situations 

(DCES) narrowed industry requirements. The study utilized 

EMS22 techno-organizational innovation indicators to 

measure performance components within manufacturing 

organizations. In the first part, the horizontal factors were 

considered thoroughgoingly with a literature review: 

significant growth in the Finnish industry between 2014-

2018, the impacts of the COVID-19 pandemic, and the 

importance of integrating sustainable practices in 

manufacturing operations. In the second part, the EMS22 

larger pool of respondees provided parities in statistical 

assumptions on a national scale. The implications of supply 

chain contracts (SCC) on manufacturers and contract 

manufacturers were assessed in diverse human resources 

(HR) contexts by comparing the firms’ employee 

percentages. The findings highlight the critical role of 

adopting efficiency technologies (ET) and simulation, data 

analysis, and additive manufacturing technologies (SDA) to 

enhance firms’ competitiveness in augmenting virtual and 

reality. Conversely, to expectations, companies were lagging 

in advanced technology adoption, particularly needing a 

focus on university resources-driven innovations. Firms 

lacking certified environmental management systems 

demonstrated reduced competitiveness. The survey 

underlines the importance of energy management systems for 

firms’ satisfactory performance. The future of research is 

headed for the determinants of competitiveness on a national 

scale by integrating business and artificial intelligence into 

sustainability strategies among exploring sustainable 

manufacturing. 

 

Keywords—Industry 4.0; Competitiveness, Employment, 

Supply Chain Contracts, Human Resources, Simulation, 

Data-Analysis, Additive Manufacturing, Energy 

Management Systems, Environmental Management Systems 

I. Introduction 
The landscape of Finnish industrial companies has 

evolved significantly in recent years. The European 

Manufacturing Survey 2022 (EMS22) offers a critical look 

into the operations and strategies of these industries, 

targeting improving firms' key decisions and assessing 

their practices within a rapidly changing environment to 

understand the development of competitiveness and 

employment situations (DCES). 

This research is comprised of two parts. The first part 

was conducted through a Scopus search. The data plotted 

in Figure 1 represent the number of documents returned 

from a database search. Second, a multimethod-embedded 

correlation model was applied from the EMS22 data. A 

literature review related to industry measurement period 

and requirements regionally with relevant sources for 

adjusting to establish new science in technology. The study 

focused on key firm metrics, specific inquiry lines, or 

executed search queries for Figure 1. Topics of each topic 

range of interest are followed, substituting the {topic} with 

each additional with a more detailed search term. The 

Figure 1 y-axis (number of documents) is plotted on a 

logarithmic scale to visualize differences and trends better. 

This scale transformation shows several orders of 

magnitude for establishing theoretical domain knowledge. 

(Source: Scopus 26.6.2023.). 
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Figure 1: Mostly positive trends in the long term in document counts by 
topic and year for contract manufacturers and manufacturers, plotted on 

a logarithmic scale. Each line represents the documents with solid lines 

for "contract manufacturing" and dashed lines for "manufacturer." The 

topics include "simulation," "data analysis," "additive manufacturing," 

"energy," "environment," "performance," "competitiveness," "turnover," 
and "employment." The number of documents per year was displayed 

on a logarithmic scale of several orders for magnitude shown in the 

function of the decade. (Source: Scopus 26.6.2023.). 

The Finnish industry witnessed a growth of over 20% 

between 2014 and 2018, with a notable increase in 

employment rates (European Commission 2019). The 

industry has been resistant to global challenges. The 

COVID-19 pandemic brought significant disruptions, 

including temporary layoffs (Hanhinen 2022; YLE 2022). 

Such layoffs often result from operational challenges, 

financial strains, or the need to adapt to new technological 

advancements (Eurofound 2022). The pandemic's effects 

severely impacted manufacturing, though support for 

firms and workers mitigated some shocks (EK 2020; 

OECD 2023). 

In consideration of such challenges, sustainable 

manufacturing has come to the forefront. The importance 

of integrated platforms, computer-aided technologies, and 

practices focusing on energy density and power-saving 

cannot be understated (CADMATIC 2023; Battisti et 

al. 2022). As Finland navigates its role as a high-tech 

exporter, it addresses high labor costs for operations 

maintained with significant R&D investments. It 

accommodates regulations and cultural factors for world-

class quality (Celik & Alola, 2023). This landscape 

requires Finnish industries to consider more than just 

traditional metrics. Firms also prioritize sustainable HR 

development, focusing on training the workforce for 

Industry 4.0 and the upcoming Industry 5.0 and Industry 

6.0 (Vrchota et al. 2020; Singh et al. 2019; 2020; El-

Gaafary et al. 2015; Chen et al. 2023; Anggoro et al. 2022; 

Heilala & Singh 2023). 

The EMS22 further examines the intricate dynamics 

between advanced manufacturing technologies and 

sustainability management systems. Through its indicators 

– from annual turnover, number of employees, 

manufacturing capacity utilization, return on sales, 

investments in machinery, annual payroll, and established 

year of factory (AT, NE, MCU, ROS, IEM, AP, and EYF) 

– studies gain insights into how companies leverage 

technology and human resources differently. Particularly, 

the emphasis is on the effects of supply chain contract 

(SCC) types on various HR categories, from university 

professionals to trainees (Poloski Vokic & Vidovic 2008; 

Puty 2021). 

However, the broadness of SCC and factory 

demographics has yet to lead to significant research 

maneuvers. The study establishes the manufacturing key 

enabling technologies (KETs) such as efficiency 

technologies and simulation, data analysis, and additive 

manufacturing (SDA) to find the relation for sustainability 

failure. These advanced manufacturing technologies are 

shaping modern manufacturing practices, making 

industries smarter and more efficient (Stanic et al., 2018). 

The rise of AI and the potential integration of metaverse 

technologies further demonstrate within the orbit of the 

industries (Lee et al. 2022; Directorate-General for 

Enterprise and Industry 2009). The adoption of advanced 

manufacturing technologies has become a challenge. 

Firms that must catch up in innovation often find 

competing hard, indicating a pressing need for 

technological and human resource strategies to ensure 

sustainable growth. The role of HRM in moderating these 

transitions is critical, emphasizing the importance of 

training, competency development, and strategic HR 

practices (Vokic & Vidovic 2008; Agudelo et al. 2016; 

Piwowar-Sulej 2021; Boehm et al. 2021; Merriman 2017; 

Hansen et al. 2021; McCune et al. 2006). 

The research offers a multi-faceted understanding, 

suggesting that for Finnish industries to thrive, they must 

adopt technological advancements and sustainable 

human resource practices. This synthesis of past studies 

and the insights from EMS22 provides a holistic view of 

Finnish industries' current and future directions. 

A. Research issues and hypotheses 

This study seeks to understand the relationships and 

contexts of various DCES variables concerning SCC and 

HR classifications and their impact on production 

management/control (PMC) efficiency, especially ET-

based SDA technologies. The dependent technologies are 

computationally sustainable in considering waste 

integration between these (Yi 2020; Jayanath & Achuthan 

2019). The system may follow certification. To this end, 

hypotheses were formulated and tested using a correlation 

model (1). 

            (1) 

Noting hypothesized variables axioms (1) when the 

equation secondary latent (child) variables were 0 show no 

significant relation or not correlating (n.s./n.c.). On the 

contrary 1 indicates to satisfy, which is signified by 

asterisks in standardized 95-99.99% confidence interval 

tests. The hypotheses of (1) of the qualitative descriptive 

perspective are arranged as the DCES (AT, NE, MCU, 

ROS, IEM, AP, EYF)1 is represented from the SCC (MFR, 

SPLR, CM)2 perspective. How the operations performance 

qualifies in terms of HR3 (graduates from 

universities/colleges, technically skilled workforce, 



technically or commercially trained force, semi-skilled 

and unskilled workers, and trainees in technical/industrial 

or commercial sectors, distributed within operations 

totaling approximately 100% impact. What performance 

extent, advanced manufacturing (PMC, ET & SDA)4 is 

implemented is explored in research radar: 

 

1.) What is the influence of a company's descriptive1 

parameters on the adoption of advanced 

manufacturing4 techniques from the SCC2 

perspective? 

2.) How does a firm's HR3 background affect the 

adoption of advanced manufacturing3 

techniques4 from the SCC2 viewpoint? 

These questions intend to examine the correlation 

between a company's performance metrics and the 

adoption of advanced manufacturing techniques, and how 

a firms’ HR background impacts the adoption of these 

techniques during COVID-19. 

II. Research methodology 

A. Industry survey 

III. Analytical approach 

The study utilizes EMS22 results, focusing on Finnish 

EMS22 collected data from internet web portals, 

newspaper columns, and email newsletters. The 

respondents of the study are company managers or 

equivalent legal entities. The study adopted a multi-

method approach centered on quantitative modeling to 

examine the distribution and dependencies of the 

variables. The method includes an embedded correlation 

model and a two-step process of quantitative data 

interpretation and merging to the literature perspective 

found (Scopus 26.6.2023.). The data analysis is based on 

multivariate tests. The objective is to understand how the 

variables interact and predict the relationships between 

variables. 

IV. Instruments used 

The research tool was constructed based on the EMS22 

model and implemented in Finland to foster corporate-

level discussions. This tool's data entries, or codings, 

broadened the DCES representation of the sampled 

companies from the manufacturer's perspective. The tool 

was designed to gather a spectrum of information, 

including Annual Turnover (AT, m23a1), Number of 

Employees (NEs, m23b1), Manufacturing Capacity 

Utilization (MCU, m23h), and Return-On-Sales (ROS, 

m23i1-m23i5), along with additional details like 

Investment in Equipment and Machinery (IEM, m23f), 

Average Payroll % of AT (AP%AT, m23g), and 

Establishment Year of the Factory (EYF, m23k). The 

measures defining the characteristics were linked to the 

viewpoint of the operators. These included the type of 

Supply Chain Contract (SCC) and whether the overall 

sample identifies as an operating Manufacturer (MFR, 

m03a1-m03a3), a Contracted Supplier (SPLR, m03a4-

m03a5), or a Contract Manufacturer (CM, m03a6). Labor 

Market performance within the organization is frequently 

distributed according to operation and qualification. Labor 

distribution is categorized as university/college Graduates 

(GUC, m16a1), Technically Skilled Workforce (TSW, 

m16a2), Workforce trained in Technical/Industrial or 

Commercial sectors (TF, m16a3), Semi-skilled and 

Unskilled Workers (SUW, m16a4), and Trainees in 

Technical/Industrial or Commercial sectors (TCT, 

m16a5). The complete organizational DCES, based on 

anticipated on-site characteristics, was subsequently 

matched with insights from KETs and OCs for 

manufacturing research. The study identified side effects 

such as the non-usage of production management or 

control techniques within the organization and all 

companies adopting efficiency and SDA technologies. 

Hence, different entities were introduced for efficiency 

technologies (ET, m09k1-m09l1) and Simulation Data-

Analysis and Additive (SDA, m09m1-m09p1) 

manufacturing methods, as well as Production 

Management or Control (PMC, m06f1-m06l1) (EMS 

2022.). The DCES, SCC, HR, partial KETs, and OCs 

instrument variables were standardized into Z-score values 

and deployed into a statistical analysis program for social 

sciences. This programming technology examined 

resource reliability, combining subordinate variables into 

a single parent variable, and calculating arithmetic means 

to make the analysis interpretable. The analyses concluded 

as indicated by the protocol. 

V. Data Analysis 

A. Descriptive Statistics 

Shared from the basic mathematics, the descriptive is 

said to provide the data depthness with its applications 

(Dong 2023). Table 1 contains descriptive statistics of the 

measured variables, showcasing the range of responses 

from participants. Annual Turnover (AT) represents yearly 

revenue in millions of euros, whereas the Number of 

Employees (NE) refers to the overall workforce count. 

Manufacturing Capacity Utilization (MCU) denotes the 

utilization rate of main operations, while Return of Sales 

(ROS) is a value scale (from 1 to 5) representing 

profitability before tax. Additional parameters, namely 

Investment in Equipment and Machinery (IEM), Average 

Payroll (AP), and Establishment Year of the Factory 

(EYF), were included in the model. The DCES model 

necessitates the classification of Supply Chain Contract 

(SCC) type to define business segments (binary) as 

operating Manufacturer (MFR), Supplier (SPLR), or 

Contract Manufacturer (CM). Workforce categorization is 

important to understand internal labor distribution 

(summing to 100%). (EMS 2022). 

For manufacturing, a specialized investigation 

introduced Key Enabling Technologies (KETs), including 

Efficiency Technologies (ET) and Simulation Data-

Analysis and Additive (SDA) technologies. 

Organizational Concepts (OCs) latent variables covering 

Production Management or Control (PMC) were 



introduced, considering energy and environmental 

certifications considering controversies. 

Starting from the DCES side, the sample consists of 

valid responses from 61 to 85 small-to-medium-large 

range corporations, according to AT and NE. MCU and 

ROS display statistical imbalances, requiring a more in-

depth correlation analysis for a comprehensive 

understanding. The descriptive statistics reveal a 

distributional skew, with the sample leaning towards a few 

larger enterprises amidst smaller ones. Regarding capital 

utilization, operations seem sustainable, but their 

competitiveness in fiscal year 2021 needs further 

examination. A qualitative analysis of Supply Chain 

Contract (SCC) types showed 42% Manufacturers 

(MFRs), 14% Suppliers (SPRs), and 15% Contract 

Manufacturers (CMs) out of 87 valid responses. 

Moreover, the workforce was comprised of 31% 

Graduates from universities/colleges (GUC), 23% 

Technically Skilled Workforce (TSW), 27% Technically 

or Commercially trained Force (TF), 17% Semi-skilled 

and Unskilled Workers (SUW), and 3% Trainees in 

Technical/Industrial or Commercial sectors (TCT), 

totaling approximately 100%. The research highlighted 

that not all companies use a specific range of production 

management/control methods. 

 

Table 1: Descriptive Statistics (EMS 2022 results) 

  MIN MAX M MED MOD STD SKEW KURT SUM VALID 

AT21 0 339 26.219 6 1 52.445 3.767 17.641 2071.329 79 

AT19 0 326 24.84 6 1 52.661 3.8716 17.471 1912.7 77 

NE21 3 600 84.000 40 12 115.41 2.335 5.980 7140 85 

NE19 2 500 78.229 40 6 105.79 2.1043 4.249 6493 83 

MCU21 0 100 66.672 75 80 28.975 -1.227 0.664 4267 64 

MCU19 0 100 63.295 75 0 31.812 -0.907 -0.34 3861 61 

ROS 1 5 3.423 4 5 1.567 -0.509 -1.290 267 78 

IEM 0 65 4.975 0.131 0 12.72 3.332 11.220 323.37 65 

AP 0 2 0.395 0.3 0.2 0.362 2.732 10.048 26.476 67 

EYF 2 104 29.013 25 5 21.398 1.399 2.604 2292 79 

MFR 0 1 0.423 0 0 0.496 0.317 -1.931 52 123 

SPR 0 1 0.138 0 0 0.347 2.123 2.546 17 123 

CM 0 1 0.146 0 0 0.355 2.026 2.139 18 123 

GUC 0 100 30.980 20 10.0 29.351 1.056 0.109 3779.605 122 

TSW 0 100 22.561 15 0 22.731 1.388 1.424 2752.393 122 

TF 0 93 27.393 20 0 25.478 0.724 -0.516 3341.922 122 

SUW 0 100 16.546 5.000 0 24.040 1.591 1.533 2018.668 122 

TCT 0 15 2.501 0.000 0 3.555 1.348 1.051 305.120 122 

ET 0 1 0.276 0.000 0 0.3798 0.959 -0.597 34 123 

SDA 0 1 0.341 0.200 0 0.3185 0.641 -0.672 42 123 

PMC5 0 1 0.49 0.00 0 0.502 0.049 -2.031 60 123 

PMC6 0 1 0.15 0.00 0 0.363 1.936 1.776 19 123 

Table 2: Construct correlations (EMS 2022 results) 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

AT21 I                        
AT19 .991 **** I                       
NE21 .818 **** .807 **** I                      
NE19 .822 **** .831 **** .983 **** l                     
MCU21 .243 * .267 ** .131 .123 I                    
MCU19 . .245 * .244 * .209 .195 .829 *** I                   
ROS .233 ** .221 * .221 * .203 * .300 ** .241 * I                  
IEM .398 *** .404 *** .265 ** .307 ** .002 -.021 .214 * I                 
AP -.338 *** -.283 ** -.274 " * -.297 ** -.163 -.378 *** -.112 -.072 I                
EYF .149 .147 .270 ** .317 *** .146 .212 .129 .548 **** -.407 *** I               
MFR -.122 -.135 -.147 -.149 .217 * .077 .184 .097 -.093 .175 I              
SPR -.077 -.069 .006 .013 -.083 -.008 -.276 ** -.106 .203 * -.226 ** -.343 **** I             
CM -.038 -.051 -.048 -41 .102 .194 .031 -.09 -.153 .101 -.354 **** -0.166 * I            
SCC -.208 * -.22* -162 -151 .202 .231 * -.058 -.095 -.02 .034 .268 *** .435 **** .425 **** I           
GUC -.044 -.001 -.036 -.016 -.319 ** -.393 *** -.250 ** .043 .491 **** -.237 ** -238 *** .391 **** -.217 " -.06 I          
TSW -.047 -.066 .15 0 .192 .162 .083 -.065 -.207 * -117 .172⁰ -.127 -.004 .036 -.359 **** I         
TF .056 .065 -.01 .001 .183 .244 * .014 -.002 -.149 .125 -.066 -.122 .138 -.04 -.411 **** -273 *** I        
SUW 0 -.044 .11 -.012 .023 .094 .235 ** .013 -.324 *** .293 *** .212 ** -.220 ** .087 .069 -.429 *** -.201 ** -.293 *** I       
TCT .285 ** .260 ** .221 ** .215* .022 .018 .201* .012 -.064 .108 -103 -.057 .246 *** .077 -.119 -.112 -.056 .163 * l      
HR .271 " * .236 ** .217 ** .206 * .1 .112 .257 ** -.005 -.192 .145 -.024 -.148 .275 *** .091 -.350 **** .066 -.035 .265 *** .966 **** l     
ET .295 *** .306 *** .298 *** .311 *** .042 -.075 .062 .227 * -.134 .161 -.038 -.137 .123 -.05 -.214 ** -.036 -.037 .311 *** .154 * .197 ** I    
SDA .173 .195 * .330 *** .340 *** .043 .011 -.009 .054 -.042 .145 -.008 0 .062 .047 .079 -.055 -.168 * .107 .167 * .14 .433 *** l   
PMC5 .224 ** .225 ** .344 *** .376 *** .21 * .053 .284 ** .213 * -.189 .540 ***** .153 * -.249 *** .056 -.04 -.205 ** .004 .003 .226 ** .106 .15 .254 *** .211 ** I  
PMC6 .363 **** .388 **** .475 **** .518 **** .206 .11 .103 -.074 -.23 .153 .044 .024 -113 -.04 -.085 .055 .138 -.099 .044 .06 .163 * .221 ** .393 **** l 

  AT21 AT19 NE21 NE19 MCU21 MCU19 ROS IEM AP EYF MFR SPR CM SCC GUC TSW TF SUW TCT HR ET SDA PMC5 PMC6 

****p<.001, ***p<.01, **p<.05, *p<.01 

 

B. Study Methodology: Correlation Modeling 

Pearson's correlation (R) is employed to assess the 

correlation between DCES and KETs parameters of 

interest (Table 2). This metric quantifies the degree to 

which two variables vary together. Pearson R was chosen 

to elevate Type I error rates (Bishara & Hittner 2012), 

thereby facilitating clearing outlier extraction. The method 

can assess the strength of linearity between two variables 

to indicate non-linearity (Bishara & Hittner 2012). This 

correlation coefficient was used to maintain a larger 

sample size and optimize empirical considerations (Graf & 

Bauer 2011). 



Bartlett's sphericity test revealed an acceptable score for 

model factors, an appropriate determinant, and an adequate 

Kaiser-Meyer-Olkin measure. Despite these acceptable 

parameters, the observations from the descriptive statistics 

point out that the data may only be suited for some models. 

However, this does not necessarily invalidate 

hypothesized correlations. Therefore, a pairwise 

investigation approach will be utilized. 

With focus for correlation, the investigation of is shown 

in Table 2. Though the data distribution appears skewned, 

the normalized distributes along with the central limit 

theorem. This asserts when sample size increases, the 

sampling distribution of the mean tends to normalize, 

irrespective of the original population distribution's shape 

(n > 30/40).  

Given the complexity of the dataset from the supplier's 

viewpoint, understanding the results require focused 

interpretation. The findings are based on the two 

formulated research questions. 

Regarding Research Question 1, the analysis points out 

that small to large companies (in the sample's scale) within 

the sample maintain high competitiveness, demonstrated 

by ROS. Notably, older companies established for longer 

tend to have higher investments and display a greater 

degree of competitiveness than newer counterparts. 

Furthermore, smaller companies excel in managing their 

operational costs, which leads to higher MCU rates and 

ROS relative to their AT. While demonstrating similar 

competitiveness, larger companies make more substantial 

investments (larger working capital). Additionally, 

between the years 2019 to 2021, a technological shift 

occurred within the sampled companies, adopting 

advanced technologies such as something from the SDA 

portfolio, leading to improved growth and operational 

efficiency. It is interesting to note that the data shows a 

higher growth percentage for companies that have adopted 

these technologies, emphasizing the critical role that 

technology adoption has in driving business growth. 

Regarding Research Question 2, from an HR 

perspective, there is an apparent demand for trainees 

within manufacturing companies. Companies that manage 

operational costs effectively often employ more interns, 

potentially signifying their success and readiness to 

incorporate new hires into operations. However, there is 

also a significant need within many manufacturing 

companies for a workforce educated at the university level 

to increase their capacity for innovation in advanced 

manufacturing technologies. Furthermore, the analysis 

indicates that older companies sustain operations when AP 

costs are approximately less than ROS. This balance is key 

to maintaining sustainable operations and often 

necessitates the implementation of advanced technologies. 

VI. Conclusion 

The study findings show the key factors regarding 

supply chain contract type for structure and adoption of 

advanced manufacturing technology and practices 

contemplated in the DCES of the sample. It underscores 

the increased adoption of efficiency, simulation data 

analysis, and additive manufacturing technologies among 

the most competitive firms during 2019-2021. It also 

highlights the influence of energy management systems on 

companies' cost structures and resilience to energy market 

volatility. Interestingly, firms leveraging cost-effective 

technology for self-reliance demonstrate a higher level of 

innovation and a larger number of trainees, indicative of 

sustainable operations. However, the study also reveals 

uncertainty within the industry, such as uneven 

efficiencies in response to resource-saving and production 

and a decrease in the variation of university/college 

graduates among associated companies. These findings 

underline the need for a more in-depth exploration of these 

dynamics' implications on the industry's future trajectory. 

Future research evidence is optional to understand the 

determinants of competitiveness within the Finnish 

manufacturing sector's lack of technology adoption with 

workforce composition, energy management, and 

environmental certification. There is a need for objective 

longitudinal studies to track the evolution of these trends. 

The long-term impact on the industry's competitiveness 

and sustainability can be scoped from EMS22 by 

partnering with respondees to deploy certifications related 

to tenders' integration, perhaps as a new requirement. It is 

beneficial to implement cross-country comparisons. The 

path analysis of the relationship between company size, 

technology adoption, competitiveness, and the role of an 

educated workforce in promoting innovative practices and 

sustainability is beneficial because the respondents' 

success is only partially visible. 

VII. Criticism and Future research predications 

There is all novel in this study. This has implications for 

understanding the narrowness of advanced manufacturing 

in additive and efficient domains. At the same time, 

succesful simulation and data analysis-based actions are 

rare within the sample with certifications in environment 

and energy. However, it is unethical to cherry-pick the 

results without referring to the full context: This study 

cannot be generalized and has implications for the 

micromanagement of the circle of respondees and, in the 

future, in terms of improvement. Research may be open to 

future cooperation and new partnerships outside Europe 

for comparison. 
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 Abstract— This paper analyzes exploratory, the findings from 

Finland's 2022 European Manufacturing Survey (EMS22). The 

primary focus is on the narrowed Development of 

Competitiveness and Employment Situations (DCES) measures, 

measured by parameters such as Annual Turnover (AT), 

Number of Employees (NE), Manufacturing Capacity 

Utilization (MCU), and Return on Sales (ROS). The interaction 

between Organizational Concepts (OCs) and Key Enabling 

Technologies (KETs) is explored in the context of 

manufacturing, with attention to Organizing Production (OP), 

Production Management and Control (PMC), Training and 

Competency Development (TCD), Production Control (PC), 

Automation and Robotics (AR), Efficiency Technologies (ET), 

and Simulation Data Analysis and Additive Manufacturing 

(SDA). The investigation seeks to understand how OCs and 

KETs interplay with the key components of DCES in the EMS22 

environment. Results illustrate the influence of these aspects on 

AT and NE, with significant implications for MCU and ROS. 

Interestingly, the impact of PMC on ROS was marginal, 

suggesting a contentious relationship. TCD appears to play a 

supporting role in this context. 

 
Index Terms— Industry 4.0; Organizational Concepts; 

Manufacturing Key Enabling Technologies; Correlation 

Modeling 

I. Introduction 
This study investigates techno-organizational 

practices within the Finnish manufacturing industry. 

The approach is technology, organization processes, 

and people (TOP) to address the technology and 

organizations from the past science output perspective.  

People to artifact, user, task, organization, situation 

(AUTOS) framework forming an experimental research 

design (Boy 2020). The study explores the literature 

behind the historical development of the sector to 

understand the impact of the technologies used on the 

firm's performance and transition (John et al., 2022). 

This study's findings are based on surveys conducted 

among firms' people, where data was collected 

primarily from C-suite executives and other managerial 

roles. This EMS22 data was obtained for a cross-

sectional analysis of the firms' DCES (Armbruster et al., 

2005). In the past, the focus has often been on isolated 

factors affecting manufacturing key enablers and 

 
 

organizational performance. Used performance 

(growth, labor market, stimulated utilization) is a 

standard economic and organizational measure in 

EMS22. This study aims to provide a perspective, 

analyzing the full spectrum of OCs before narrowing it 

down to specific practices and production management 

gaps (Coriat, 2002) of KETs. This study research 

methodology follows multi-method, quantitative 

research to ensure a comprehensive assessment. The 

analysis involved short, concise explanations and broad 

data acquisition methods, striving to reach most 

corporate executives through various channels. 

EMS22 survey has a historical significance, having 

previously analyzed data relating to technological and 

non-technological organizational innovation. 

Technological key enablers have been defined 

differently in the context of European Horizon 

(European Parliament 2023). Within EMS22, the study 

promotes the key manufacturing enablers, which are 

combinations of key enablers. This investigation has 

provided insights into which EU countries are poised 

for change through organizational innovativeness and 

the utilization of KETs (Armbruster et al., 2005). In this 

study, the self-reported performance of Finnish 

manufacturing firms is evaluated for the case of the 

fiscal year 2021 and comparing these results with other 

cross-sectional variables. This analysis further 

examines how OCs and KETs impacts companies' 

capital utilization. Previous studies have demonstrated 

the multivariates between used practices and 

correspondence (European Commission et al., 2015). 

Methods used in this study incorporate analysis of 

correlations of dummy variables associated with the 

AUTOS in the companies for revenue. The technical 

data analysis conducted in this study explores the 

interconnections between EMS22 factors after the 

literature review to conclude and govern future 

research. 
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II. Literature Review 
In the industrial landscape, two critical factors 

contribute significantly to a company's competitive 

position: OCs and KETs, interconnecting into a 

competitive advantage of a techno-organization 

(Barney 1991; Teece 1997). OCs primarily include 

organizational structures and systems that enable 

effective operation and decision-making across sectors 

(Mintzberg 1989). In contrast, KETs of manufacturing 

refer indirectly to the combination of infrastructures for 

innovation and competitiveness (European Parliament 

2023). In fully developed organizations, techno-

organization performs at various levels at all hierarchies 

(Mintzberg 1989). The study research context suggests 

the development is fully developable. Past research has 

attempted to analyze the relationship between OCs and 

KETs and the overall impact on the manufacturing 

company's performance. Understanding the depthness 

of the overall impact in research purpose was sought 

utilizing keywords relevant to the study context as 

found in figure 1.  

Close behind the last ten years of progress, the 

analysis of Scopus documents related to manufacturing 

shows high-interest areas, with search syntaxes: 

"production AND control AND manufacturing" 

(47,128 documents) and "organization AND 

manufacturing" (32,768 documents) seeing the most 

extensive research. Other notable areas of focus include 

"efficiency AND technologies AND manufacturing" 

(19,135 documents) and "production AND management 

AND control AND manufacturing" (11,645 

documents). The role of emerging technologies and 

automation in categories like "enabling AND 

technologies AND manufacturing" (5,465 documents) 

and "automation AND robotics AND manufacturing" 

(3,817 documents). Despite having fewer documents, 

the importance of skill development and data-driven 

manufacturing approaches is underscored in "training 

AND competency AND development AND 

manufacturing" (165 documents) and "simulation AND 

data AND analysis AND additive AND manufacturing" 

(515 documents), respectively (Source: Scopus 

26.6.2023). 

 

 
Fig.1. Scopus documents related to manufacturing in the last 10 years. 

 

As depicted in Figure 1, certain themes like 

"Production control "Efficiency Technologies" have 

been extensively explored, downright, intersecting with 

this new organizational practice, while others have 

received comparatively less attention, signaling 

potential opportunities for future research of new tech 

and sustainability, Because they must surely exist. 

Interestingly, there is a correlation between the 

complexity of a theme and the quantity of related 

articles. More topical, "Training and Competency 

Development" and "Simulation and Additive 

Manufacturing" have low saturation, underrepresented. 

However, these studies need to address manufacturing 

in Finland, which interrelates directly within a 

comprehensive measurement framework in Finland. 

This leaves a gap in understanding the synergistic 

effects of OCs and KETs on the firm's performance as a 

human factor with capital performance, e.g., labor 

turnover rate (Ni 2022) outcomes interacting within the 

infrastructure based in information (Abualooush et al. 

2018).  

This study aims to bridge this gap by comprehensively 

exploring the interaction between OCs and KETs and 

how this relationship influences crucial performance 

indicators such as AT, NE (as Ni 2022; Lee 2017; 

Guzeller et al. 2020), MCU (Okeoma 2022), and ROS 

profit (Wang & Li 2021). The reformation process is the 

transformation towards a more adaptable, innovation-

centric paradigm for firms coined I4.0. EU papers with 

varying objectives emphasize the modernization of key 

regional challenges through funding and fostering 

employment growth. The focus will be on the following 

technological trends in the field of I4.0 via KETs (SDA, 

AR, PC, and ET) (European Commission 2022b). In 

developing countries, ET has proven to improve MCU 

at the state level (Cheng 2022), while inflation-bound 

capital formation ought to result in the lag of capital 

acquisition autoregressive distributively (Bank-Ola et 

al. 2020). Environmental regulations, shown in terms of 

ET adoption, have negatively impacted manufacturing 

(Wang & Li 2021). 



  

III. Organization concepts 

Digitalization has changed manufacturing and its 

processes' sustainability progressively (Noiki et al. 

2022). The various areas of the EMS22 organizational 

perspective are how the organization maintains the 

manufacturing operations. 

1) Organizing production in organizational 

context 

OP encompasses manufacturing processes' strategic 

arrangement and coordination to ensure optimal 

efficiency (Rahman et al. 2021). There is a role of 

organization platformization in integration into a 

circular economy (Cantù et al. 2021). This strategy 

involves carefully orchestrating production processes to 

ensure maximum utilization of resources and minimize 

waste (Prause, 2018). The effective implementation of 

OP strategies directly affects MCU and ROS, key 

indicators of a firm's competitiveness (Serrano-García 

et al., 2022). 

Modern advances such as AR and ET have been 

instrumental in manufacturing for energy efficiency 

(Ding et al., 2023). Integration especially supports 

optimizing OP on the I4.0 maintenance level (Di Nardo 

et al. 2021). Over the coming decade, future trends 

above 5.0 will allow for real-time adjustments and 

precision control over production processes (Ortiz et al., 

2020). 

2) Production management and control in 

organizational context 

PMC deals with the process’s maximization of 

efficiency and product quality (Coriat, 2002). It 

includes activities such as scheduling, controlling, and 

monitoring production, as well as inventory and 

production cost management included in the 

manufacturing execution system (MES) (Kletti 2007; 

Saenz de Ugarte et al. 2009; Sauer 2009). 

Incorporating KETs, such as data analytics and 

Machine Learning (ML), has revolutionized PMC, 

providing real-time data analysis and predictive 

capabilities (Bäckström & Bengtsson, 2018). Industry 

4.0 (I4.0) technologies like cyber-physical systems and 

cloud computing have further streamlined PMC, 

leading to decoupled organizations on autonomous 

control of production processes (Khalil et al., 2016).  

The most prominent role of manufacturing is 

increasingly played by technology, and in the context of 

the organization, it is important to emphasize people to 

achieve TOP. Environment system integration for 

people's security is important, and in digitalization, it is 

a tricky area for the future of manufacturing, seen as 

increasing sustainability (Mustapic et al. 2023). 

Digitalization-based environment awareness is an 

Industry 5.0 key enabler (Trstenjak et al. 2023). 

3)  Training and competency development 

TCD is critical for developing necessary skills and 

competencies among the workforce in manufacturing 

firms regarding safety leadership (Edmondson, 2003, 

48). The growing complexity of manufacturing 

processes, particularly with the adoption of advanced 

technologies like AR and ET. This necessitates 

continuous upskilling and training of the workforce. 

Developable from industry operations to curricula 

context (Gunasekaran & Ngai 2012). Labor numbers in 

firms have been turned down because of the talent 

acquisition, development, and retainment plans for 

sustainable instead of the number of resources sawn in 

labor reductions (Khatri et al. 2010). Employee talent 

management is part of a broad concept that recognizes 

talent, globalized mobilization services, and 

competitive remuneration (Yon 2020). 

Furthermore, TCD emphasizes soft skills such as 

problem-solving, critical thinking, and teamwork, 

which are essential for fostering an innovative and 

efficient working environment. Employers must 

respond to employees' requirements by selecting forces 

to provide the training needed (Yon 2020). 

Sustainability-based problem-solving is, 

metaphorically, an efficient power transfer, as 

utilization becomes new technologies and emphasizes 

soft skills (Song et al., 2023). 

B. Key enabling technologies for 

manufacturing 

1)  Production control is the key enabler of 

manufacturing 

Key enabling technologies (KETs) are in the study 

context more into manufacturing key enablers from the 

EMS22; manufacturing key enablers in a broader 

context than the Panel for the Future of Science and 

Technology (2021) suggested European Parliamentary 

Research Service on KETs. 

  PC significantly impacts the smooth functioning and 

efficiency of manufacturing operations. Effective PC 

manages scheduling and task execution. Double-

directional indirect streamlining of the production line 

from raw material supply to finished goods delivery via 

the use of IoT and industry technology could contribute 

to the implementation of smart factories (Kim et al. 

2023). PC acts as the intersection of Entrepreneur 

Resource Planning (ERP) and Machine/Product Data 

Acquisition (MDA/PDA), helping maintain product 

lifecycle management (Liu et al. 2020). The advent of 

the Internet of Things (IoT) and Machine Learning 

(ML) has further empowered PC, transforming physical 

signals into digital data that provides valuable insights 



  

for continuous improvement and fosters R&D activities 

(Kaiser et al. 2019; Oluyisola et al. 2022). Digital 

transformation has facilitated the integration of 

technologies such as Radio-frequency Identification 

(RFID) and Quick Response (QR) codes, enhancing 

supply chain management, product traceability, and 

real-time tracking (Gunasekaran & Ngai 2012). 

2) Automation and robotics technologies in 

manufacturing 

AR is the foundation of I4.0, transforming 

manufacturing processes, enhancing efficiency, and 

consequently boosting productivity and employment. 

AR's integration in manufacturing allows functions to 

proceed independently of human presence, ensuring 

high quality (Kinkel et al. 2015). A recent EU study 

revealed a strong correlation between AR and 

productivity gains in SMEs (EC 2019). Higher MCU 

has been achieved through AR, reducing time spent on 

servicing and installation and thus minimizing 

production loss (Kinkel et al. 2015; Kleine et al. 2011). 

3) Efficiency Technologies for manufacturing 

ET is instrumental in achieving sustainable 

manufacturing processes. ET tackles environmental and 

social concerns such as waste management, energy 

efficiency, and resource conservation through the 

implementation of sustainable technologies and 

practices. Aiming for a meta-level of efficiency, ET's 

approach is characterized by three layers. The first is 

compliance with EU directives aimed at reducing 

greenhouse gas emissions, promoting renewable 

energy, and reducing waste generation (Lyons et al. 

2021). The second layer involves leveraging Life Cycle 

Assessments (LCAs) data for financial management to 

reduce operating costs, increase competitiveness, and 

meet regulatory requirements (Abidi et al. 2022; 

Lindow 2013). The final layer targets the assessment 

and minimization of manufacturing waste, promoting 

the efficient and sustainable use of resources 

(Venkataramana et al. 2013). 

4) Simulation data analysis and additive 

manufacturing 

SDA plays a pivotal role in the application of KETs. 

Laser-based additive manufacturing, compared to laser-

based non-traditional manufacturing, is subject to fewer 

input resources, also bearing case specifically 

comparison against subtractive manufacturing for good, 

lubricated rotation. Manufacturing benefits have a 

dependence on competitiveness: performance of sales 

within the market in various sectors. (Johansen & 

Akaya 2022.).  

The future forms expectations based on managing 

information beyond the projected 175 zettabytes by 

2025. SDA-based tangible system development 

operates on data- or simulation on sustainable model-

based manner first approaching lifecycle assessment via 

simulated robotics machinery (European Commission 

2022b; 2016.). In the journey from design to 

decommissioning of a product, SDA provides a 

comprehensive data-based product simulation and 

retirement by analysis, which is crucial for efficiency 

planning (Pufahl & Weske 2017; EC 2018). SDA's 

application includes harnessing user data for simulation, 

enhancing product quality, and improving 

manufacturing processes. In I4.0, SDA creates digital 

mirrors of factories, products, and workers for better 

management and control, helping businesses remain 

competitive through innovation (Straßburger 2019; 

Corallo et al. 2022). 

5) Refining manufacturing 

Refining the integration for effective implementation of 

OCs (OP, PMC, and TCD) are vital for enhancing the 

competitiveness of manufacturing firms. These KETs 

(PC, AR, ET, and SDA) are integral to modern 

industry's adaptation to the I4.0 revolution. They drive 

competitiveness and innovation, enhancing efficiency 

while promoting sustainability. 

IV. Research problematization and 

hypotheses 
Environment modeling over statistics with 

mathematics gains support from the literature 

mentioned above review. Growth in terms of turnover 

is a contradictory measure. This focus gains convergent 

validity in cross-sectional studies, enlightening on how 

statistical sciences is usable, particularly in terms of 

method, to process the EMS 2022 dataset dimensions. 

Crucially, Statistical Package for the Social Sciences 

(SPSS) in-built statistical analyses offers an 

independent perspective on observations, regardless of 

the low spectral dimension saturation (n=123). The 

research questions (RQs) identified serve as the heart of 

the research, asking for an exploration into the 

intersection of terms with a primary focus on the DCES. 

OCs are investigated across three primary areas: the 

OP, PMC, and TCD practices. The RQs prompt an 

analysis of how these concepts influence AT, NEs, 

MCU, and ROS. Each RQ is further broken down into 

sub-RQs to encapsulate the objective. 

Machine learning-governed Supervised learning-

based statistical sciences processing software enable 

interpret the data further. The research also 

problematizes the role of single- to multiclass clustering 

of organizational innovation practices, giving an 

alternative approach to observing the variable-related 

phenomenon. The interdisciplinary actions aim to 



  

achieve sustainability-activated growth, further 

underscoring the importance of the convergent validity 

of the cross-sectional approach. 

In addition to the RQs, the following sub-RQs were 

formulated to address the usage of KETs. How are the 

DCES of companies considered influenced by the 

utilized KETs and OCs? 

This question aims to understand the techno-

organizations practice used to enhance competitiveness. 

By mapping these hypotheses according to the 

objectives of the study and database findings, the 

research can simulate sub-RQs recursively as part of the 

top-down themes related to latent entities. The outcome 

is the establishment of hypotheses for OCs in Table 1, 

and for KETs hypotheses found in (Heilala et al. 2022). 
TABLE 1: OCS CONSTRUCT CORRELATIONS HYPOTHESES 

  AT NE MCU ROS OP PMC TCD 

AT I       

NE n.s/n.c. I      

MCU n.s/n.c. n.s./n.c. I     

ROS16 n.s/n.c. n.s./n.c. n.s./n.c. I    

OP n.s./n.c. n.s./n.c. n.s./n.c. n.s/n.c. I   

PMC n.s/n.c. n.s/n.c. n.s/n.c. n.s/n.c. n.s/n.c. l  

TCD n.s/n.c. n.s./n.c. n.s/n.c. n.s/n.c. n.s/n.c. n.s./n.c. l 

Hypothesized variables axioms not having significant correlation/ correlation (n.s./n.c.) 

 

V. Methodology 
 

A. Research Setup 

The study offered a compilation of the initial results of 

the EMS22 in Finland. The information was obtained 

from various sources such as the internet web portal 

(EMS 2022), newspaper columns (Six 2022; Eurometal 

2022; SATL 2022), and an e-mail newsletter (Webropol 

2022). A separate printable survey form was circulated 

among company managers or legally competent 

individuals with the capacity to give insightful 

responses. These individuals, often responsible for 

compiling company responses, helped achieve a broad 

information collection. 

A. Instruments Used 

This study research tool was developed from the 

responses of the EMS22 Finland. Based on 

manufacturers ' perspectives, the data entries were taken 

from the DCES and the KETs. The selected range was 

covered from (m23a1), including Annual Turnover 

(AT, m23a1), Number of Employees (NEs, m23b1), 

Manufacturing Capacity Utilization (MCU, m23h), and 

Return-On-Sales (ROS, m23i1-m23i5). Furthermore, 

the range covered Production Control (PC, m09a1-

m09g1), Automation and Robotics (ARs, m09h1- 

m09i1 and m09q1-m09r1), Efficiency Technologies 

(ETs, m09k1-m09l1), and Simulation, Data-analysis, 

and Additive (SDA, m09m1-m09p1) manufacturing 

technologies. (EMS 2022.). 

B. Analysis Protocol 

The adopted multi-method approach primarily centers 

on quantitative modeling to provide insights of 

Sørensen's dice into the relationship and intrinsic states 

of variables. An example of this is the interpretation of 

the Jaccard index (Costa 2021). This is the linkage 

between a company's growth as F1-score, represented 

experimentally by turnover, and the employed and 

deployed factors. Signifying the true and false positives 

of the sample with less emphasis on the outliers. The 

study seeks to ascertain the dataset's intrinsic interplay. 

For example, taking a high variable A ("AT") 

normalized also implies a low variable normalized B 

("AR") and interprets high C ("NEs") within the sample. 

This focuses on the causal reliability among the 

variables, analyzed using multivariate methods and 

rotation. 

A. Descriptives 

The descriptive data from EMS22 analysis results 

(Table 2) and correlation found in another book (Heilala 

et al. 2022) provide measures of various variables used 

in these studies. The response range from minimum to 

maximum indicates the array of values for variables like 

AT, NE, and MCU, among others. AT provides an 

overview of the annual revenue of the companies 

surveyed, reported in millions of Euros. The NE 

represents the total human resources of the surveyed 

companies. MCU from both Tables (Heilala et al. 2022) 

measures the extent to which companies' primary 

operations are used. Meanwhile, the ROS in both 

studies gives a scaled performance index before tax, 

with values ranging from 1 to 5 and denoting different 

profitability margins (negative, 0-2%, >2-5%, >5-10%, 

and >10%). 

An important element in both Tables (Heilala et al. 

2022) is the binary classification indicating whether the 

companies employ specific OCs methods or KETs. 

These include KETs for manufacturing (PC, AR, ET, 

SDA) technologies. 

The relations among these variables are analyzed using 

embedded correlation modeling. This approach 

involves computing the sum of variables for each 

dimension of the EMS22 and dividing it by the total 

number of variables. This method allows for a 

comprehensive understanding of the interaction and 

relationship between the different variables considered 

in the study. 

 

 

 

 

 



  

TABLE 2: OCS CONSTRUCT DESCRIPTIVES 
  MIN MAX M MED MOD STD SKEW KURT SUM VALID 

AT 0.000 339 26.219 6 1 52.445 3,767 17.641 2071 79 
NE 3 600 84 40 12 115.41 2.335 5.98 7140 85 
MCU 0.000 100 66.672 75 80 28.975 -1.227 0.664 4267 64 
ROS 1.000 5 3.423 4 5 1.567 -0.509 -1,29 267 78 
OP 0.000 1 0.493 0.600 0.600 0.336 -0.025 -1.189 60.60 123 
PMC 0.000 1 0.549 0.667 0.667 0.278 -0.207 -0.823 67.50 123 
TCD 0.000 1 0.525 0.600 1.000 0.344 -0.115 -1.209 63.00 120 

 

 

The descriptive data analysis reveals key insights 

about the DCES and KETs parameters of interest. 

Certain trends are noticeable for the DCES sample, 

which includes AT, NE, MCU, and ROS. The AT 

ranges from zero to 339 million euros, with a grand 

mean of 26.219 million euros and a standard deviation 

of 52.445 million euros. The distribution shows a 

positive skewness, indicating a larger player in the 

sample and some smaller enterprises. Interestingly, NE 

shares similar distributional characteristics with AT. 

For MCU and ROS, the distributions are negatively 

skewed in a platykurtic manner, showing less peakiness. 

Despite these variations, an intriguing observation is 

that the grand mean of 3.42 for ROS implies positive 

returns for corporations on average. However, AT's 

positive skewness and leptokurtic peakedness indicate 

that some larger players are more prominent in the 

sample, necessitating further correlation analysis for 

more comprehensive insights (EMS 2022 analysis 

results). 

B. Correlation modeling 

The variables from the DCES and KETs instruments 

were standardized (Z-score). Analyses were then 

launched within the SPSS analysis program, tested for 

reliability, and found processable. Parent variables were 

computed from child variables using arithmetic means 

in a convex combination. This step was performed to 

enable interpretable analysis and draw conclusions per 

the guidelines set in the Analysis protocol.  

In this section, multivariate methods are used to 

analyze the explanatory variables. The non-

multicollinearity of sum variables (Paollella 2019) 

ensures that a strong correlation does not exist. The 

utilization of variables hinges on obtaining a linear 

outcome (Metsämuuronen 2001). Hence, the statistical 

approach relies on all variables being continuous and 

originating from a random sample.  

It is important to note that correlations do not 

necessarily test for a causal relationship between two 

variables; therefore, each pair must be evaluated 

independently (Tanni et al., 2020). The reliability of 

multivariate analyses typically depends on having at 

least 40 observations per variable (Metsämuuronen 

2001; Paollella 2019). Considering the sample size of 

this study (n = 123), only a sample-specific analysis can 

be performed. 

The correlation coefficients in Table 3 and (correlation 

found in Heilala et al. 2022) serve as predictors in the 

analysis. After examining the EMS characteristics, 

provided recommendations to support managing 

manufacturers' balance within Finland. The variables' 

multivariate test elucidates in the background analyzes 

minimum and maximum, while printed Table(s) shows 

non-standardized R and p. 
 

 

TABLE 3: OCS CONSTRUCT CORRELATIONS 

  AT NE MCU ROSI6 OP PMC TCD 

AT l       
NE 0.905 **** l      

MCU 0.243 ** 0.18 * l     
ROS16 0.237 ** 0.176 * 0.299 *** l    

OP 0.254 ** 0.255 ** 0.062 0.16 l   
PMC 0.403 *** 0.446 **** 0.161 0.323 *** 0.422 **** l  
TCD 0.289 ** 0.281 ** 0.181 * 0.164 .314 .28 ** l 

****p<.001, ***p<.01, **p<.05, *p<.01  

 
Comparing OCs children (OP, PMC, TCD) to KETs 

parameters show underutilization as confirmed by 

standardized deviation, mode, and median. It is found 

that the KETs involved (AR, ET, and SDA) are the most 

significant variables for further investigation because of 

distributional absence characteristics (EMS 2022 

analysis results). 

The correlation between DCES and KETs was 

performed using Pearson's correlation (R), a standard 

measure of the linear relationship between two 

variables. This correlation analysis is essential to 

understand the variables' dynamics and derive extensive 

insights from the dataset's narrowed big data, hence the 

study's exploratory nature supported. 

The correlation analysis shows that a healthy 

operating company, indicated by high AT, has a good 

NE and can generate ROS, which relies on MCU to 

respond to real capital utilization. Also, AR and ET's 

usage positively correlates with AT and NE. 

Interestingly, the use of PMC is common across all 

company cases, hinting at a potential direct relationship 

between them (EMS 2022 analysis results). 

The analysis also revealed a strong association 

between AR, ET, and SDA, suggesting that 

companies using these technologies likely simulate 

and prototype their manufacturing at different 

levels. This connection might reduce companies' 

resource loss for innovating, positively impacting 

operational efficiency (EMS 2022 analysis results). 

VI. Conclusions 
The findings illuminate the association between a 

company's DCES and the adoption of certain KETs 

and management strategies. The first part of the 

study analyzes the effect of OP, PMC, and TCD on 

competitiveness and employment. Findings 

indicate that the organization of production can 

positively influence AT, NEs, and MCU for top-



  

tier firms. However, the impact on ROS is less 

clear. PMC shows a significant correlation with 

OCs for larger companies, but not all firms fully 

leverage this. TCD significantly influences 

business growth, though with variable returns, 

suggesting the need for tailored training 

approaches. 

The second part examines the relationship between 

KET usage and DCES status. It was found that the 

application of PC significantly positively 

correlated with AT and NEs for larger companies. 

However, the link with MCU is less definitive and 

varies among firms. The use of ETs and SDA 

showed a weak but significant correlation with 

DCES, indicating that they are primarily utilized by 

larger companies. These findings underline the 

importance of OCs and KETs in improving a 

company's DCES, pointing to varying peaks and 

the interpretability of latent variables as areas for 

future research. 

A. Limitations 

The analyses in both studies showed satisfactory 

results, even with the inclusion of a few medium 

companies among the small ones. Despite the 

limitation of a weak decimal correlation and 

marginals as a threshold for interpretable results, 

the studies provided valuable insights into the 

factors that influence an organization's DCES. 
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Abstract.  

The recent version of the European Manufacturing Survey (EMS) was done in 
Finland by asking companies' CEOs or cognizant personnel (n=123) to 
respond. This study aims to report the results of the following Development of 
Competitiveness and Employment Situations (DCES) covering Annual 
Turnover (AT), Number of Employees (NE), Manufacturing Capacity 
Utilization (MCU), Return on Sales (ROS) concerning corporations' operations: 
Relocation Activities (RAs) converging to Offshoring Manufacturing 
Performance (OMP), Backshoring Foreign Manufacturing (BFM); Offshoring 
R&D (ORD); and Backshoring Foreign R&D (BFRD). The defined research 
question, "How do the DCES and RAs relate?" was answered by seeking 
influences directly for AT and NE corresponding to all RAs positively except 
negative BFRD. Large corporations can be said OMP, but the sample also has 
smaller companies those that BFM. The reason for BFM could be the decreased 
ROS with a statistically significant negative impact during the COVID-19 
fiscal year 2021. 

Keywords: Industry 4.0; Global Supply Chain Management; Manufacturing 
Competitiveness; Organizational Concepts;  
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1 Introduction 

The first results of the European Manufacturing Survey (EMS) Finland discuss research 

on key enabling technologies for manufacturing. Heilala (2022ab) found that 

manufacturing technologies' parent variables: production control was accurate, 

automation and robotics were not even near, efficiency technologies were very far away, 

and simulation, data analyses, and additive manufacturing were on the same page, as 

manufacturing capacity utilization or returns on sales were not evenly distributed among 

the technologies variables in use. Thus, the study found the association with returns and 

explained why technology integration benefits what organization concepts are fulfilled 

(Heilala 2022abc). The organization concepts were considered to assess current 

organizational innovations in manufacturing technologies by structuring the operations in 

optimized rotation to ensure that the technologies used are efficient for high 

manufacturing capacity and return on sales contribution. To this end, a fascinating 

question arises; "Where do companies use their technologies and employees to grow their 

profits?" competitiveness is built by locating in an optimal business location. For the 

large organizational differences, the respondees' operating environment is an important 

consideration in understanding the development of employment and competitiveness 

situations more broadly. The inflationary and deflationary weaknesses or advantages 

explain how some corporations had negative and very positive financial indicators for 

operations and why the organization concepts and manufacturing technologies' beneficial 

use varies on a large scale largely. Could it be that the measure included corporations 

with multi-site foreign operations?    

This paper aims to find out the Relocation Activities (RAs) practices of the companies 

that responded to the survey operating in the Finnish Servicing Manufacturing Market 

Environment (FSMME) for the first time concerning the development of employment 

and competitiveness Situations (DCES). The data were acquired using the European 

Manufacturing Survey (EMS), and generally, from the responses, CEOs and equivalent 

leaders gathered the most unity in their organizations from the department heads. Past 

research in the EMS consortium has tied most EU member states' RAs to the free-access 

publication level, where the study findings have helped newcomers and existing players 

to position and change their intuitional strategies based on open research guidelines 

(Kinkel & Maloca 2009; Dachs et al. 2012; Dachs & Kinkel 2013; Kinkel 2014; Dachs & 

Zanker 2015; Dachs et al. 2019). 

This report follows the method used in EMS, multi-method, quantitative research. It has a 

reliably broad dissemination method, as the research was disseminated through multiple 

channels to reach as many interested CEOs as reachable. The collection, pruning, and 

splitting of the dataset into parts are explained concerning the entirety of this study. The 

analysis method was to fit regression to see the dummy variables in connection with the 

operations used in the companies in a very cross-sectional manner. The data analysis 

convergently investigates the mutual relationships between all thematic subsets on 

relocation operations, relying on the first given descriptive variables that show a very 

representative spectrum, which is critical for a few corporations. Introductory to the 

foreign operations anatomy travel destinations and reasons will be given by the 

respondees practices, which could have been more evenly distributed. For the respondees' 

rareness, the image is used in all companies for consideration, whether situations require 

changes within the scale of the likelihood for larger turnover and number of employees, 

and whether external factors selectively affecting different companies' operations are 

unequally operating.  

The unevenly distributed negative random factors justify offshoring research and 

development to the more technologically advantaged locations among corporations to 

gain leverage of the deflationary levers speculatively or to increase the global market 

share. For instance, offshoring foreign manufacturing for large corporations expects 

increased manufacturing capacity utilization and thus return of sales while requiring 



smaller corporations to backshore foreign manufacturing because the negative return on 

sales can occur as rising prices in less deflationary advantaged countries, which have 

been reported during the COVID-19 fiscal year 2021. For over some time, history shows 

that years before now, climate change has been a fatal factor in generating losses, 

resulting in vulnerabilities in value chains, which will be emphasized in the future (Raza 

et al. 2021). It is claimed that the different quartiles of the entrepreneur series' lowest tail 

can suffer losses. It is explicitly associated with digitalization laggards (OECD 2021, 6-7) 

and easily measurable costs, particularly labor (adapted to Heilala 2022a; Dachs et al. 

2019). If labor costs suddenly increase, it creates a challenge to maintain the company's 

operations as a counterweight to serving the market efficiently. Urgent backshoring of 

foreign research and development needs is likely the reason for raised cost structures that 

surpass the return on sales and are also expected negatively, walking hand in hand with 

annual turnover and number of employees, expecting smaller corporations to take 

damage in foreign markets and transition production back to headquarters.       

2. Research problematization and hypotheses 

Machine learning-governed supervised learning can resolve observations in the spectral 

dimension with astonishing precision, offering several ways of examining the 

phenomenon. It involves interdisciplined, systemic action conducive to cross-sectional 

validity over the EMS database content. The RQs treat subconcepts under top-level 

research questions. A research question identifies relocation activities that can serve to 

assist decision-makers within corporations and other institutions in determining the level, 

association, and context of the development of employment and competitiveness 

situations in the Finnish manufacturing market environment. Before integrating the 

research questions, the following sub-research questions were defined to cover the study 

objectives: 

1. How did corporations’ offshoring manufacturing performance operations predict 

the study sample respondees by annual turnover measures, number of 

employees amount, factories manufacturing capacity utilization, and return 

on the sales side? 

2. How does sample respondee corporations’ backshoring foreign manufacturing 

plot change in the site expect the study by annual turnover measures, 

number of employees amount, factories manufacturing capacity utilization, 

and return on the sales side? 

3. How does corporations’ offshoring R&D use expect the entire purview of the 

study sample respondees by annual turnover measures, number of 

employees amount, factories manufacturing capacity utilization, and return 

on the sales side? 

4. How do corporations backshoring foreign R&D use expect sample respondees 

the entire span by annual turnover measures, number of employees amount, 

factories manufacturing capacity utilization, and return on the sales side? 

What was the most efficient way for companies to decentralize their operations to 

achieve the highest levels of competitiveness? Hypotheses mapping was conducted based 

on the EMS database findings to address the research questions. Through the recursive 

modeling of sub-research questions, 32 hypotheses were established regarding latent 

entities according to the cross-sectional approach. 

Table 4: Construct correlations hypotheses 

  AT NE MCU ROS OMP BFM ORD BFRD 

AT 1 

 
      

NE n.s./n.c. 1       
MCU n.s./n.c. n.s./n.c. 1      
ROS n.s./n.c. n.s./n.c. n.s./n.c. 1     
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OMP n.s./n.c. n.s./n.c. n.s./n.c. n.s./n.c. 1    

BFM n.s./n.c. n.s./n.c. n.s./n.c. n.s./n.c. n.s./n.c. 1   

ORD n.s./n.c. n.s./n.c. n.s./n.c. n.s./n.c. n.s./n.c. n.s./n.c. 1  

BFRD n.s./n.c. n.s./n.c. n.s./n.c. n.s./n.c. n.s./n.c. n.s./n.c. n.s./n.c. 1 

Note hypothesized variables axioms: not having significant relation/not correlating (n.s./n.c.), while 1 indicates to satisfy. 
 

3. Research methodology 

3.1 Research set up 

Finland's first EMS results compiled. The research was distributed virtually but also in 

printable form for large corporation divisions' support to be filled by pen and responded 

to by departments from or on behalf of CEOs or other steering group members (Heilala 

2022bc.). The sources are input from the web portal news and e-mail newsletter. 

3.2 Analysis protocol 

The EMS database was analyzed with mixed methods to understand intrinsically 

quantifiable metrics from the database and its variables indices collected and definable. 

The variable tensors were measurable from the logged sessions the respondees mentioned 

above gave in the Webropol system. (Heilala 2022bc.) the analysis method from this 

dataset is used to understand how the manufacturers are positioned in the Finnish 

servicing manufacturing market environment, likely also in foreign operations. The most 

laborious part was the dataset pruning and selecting the responses for the information 

acquisition forms given responses. Explanatory variables analysis was suggested to be 

implemented by probing interactions on multilevel regression (Dachs & Kinkel 2013), 

which is taken into account in developing the measurement depths in Finnish and 

European scales for variable computational interaction situations. The employment and 

competitiveness of the industry are susceptible to marginalized results. Even in a single 

study or series of studies of EMS, quantitative data is collected, analyzed, and mixed with 

qualitative information, which directly brings the respondees' voices in a computationally 

analyzable form to be able to simulate the researcher’s philosophical questions. 

According to this approach, quantitative and qualitative approaches can be combined 

more effectively than either approach alone to understand research problems better. 

(adapted to Creswell & Plano 2007.) 

The selected variables are logical in the cross-sectional investigation of companies, 

whereby best and worst mean ends are inferential to the effects of one predictor on 

another. Relocating businesses establishes conditional relation towards growth, best 

measured by annual turnover and the number of employees. The probing interaction 

whether the value of offshoring or backshoring would be omitted from specific 

companies working in domestic markets. The movement of operations can expect 

specific companies and characteristics to explain the responses that explain the behavior 

as the dependent variable, to which the range of variables can provide explanations e.g., 

for operations. When the whole spectrum is considered, the other measurements can 

provide existing alternatives, which can be seen as unsatisfying for some researchers. 

This is why this research protocol does not standardize the measurement relations but 

focuses on preparing regression. Explanatory variables are used to analyze the data for 

regression. For the analysis of connections, the correlation coefficients were used instead 

because, for embedded correlation modeling, the model is not interested in variable 

dependencies or directions, i.e., they have been omitted. Since the sum of variables 

cannot be multicollinear to be processable, there should not be a strong correlation among 

variables, which is supportive of choosing meaningful variables for regression. Because 

variables should not have neutral correlations for integrative variables, these can be 

omitted. The variables can only be used if a linear result is obtained. Regression analyses 

are generally believed to be reliable when at least 40 observations per variable exist. A 



sample-specific steering analysis can only be performed since the clustering sample size 

(n = 123) covers only this study's sample. Ultimately, the regression test can be used to 

determine confidence intervals. We suggest that the European Commission supports 

Horizon Europe (HE) funding by following the regression analysis results and deducing 

the EMS characteristics' outcomes in, for example, project organization forming. (Heilala 

2022bc.) It is also possible to use correlation coefficients as predictors since they also 

serve as explanatory rates, but the continuous variables have no position on the 

directions. 

4. Data Analysis 

4.1 Descriptives 

The descriptives provide information about the variables' measures. Minimum to 

maximum indicates respondents' response range: Annual Turnover (AT) values (million 

€); Number of Employees (NE) displays employees count; Manufacturing Capacity 

Utilization (MCU) indicates the usage of the main operations; Return of Sales (ROS) 

value scale indicates (from 1 to 5: negative, 0-2%, >2-5%, >5-10%, and >10%) before 

tax; and Offshoring Manufacturing Performance (OMP); Backshoring Foreign 

Manufacturing (BFM); Offshoring R&D (ORD); and Backshoring Foreign R&D (BFRD) 

reveal if the company has been in transient mode (binary). (adapted to Heilala 2022a; 

2022b; 2022c.) The relations based on embedded correlation modeling are about the sum 

variables' relation to each other, i.e., the sum of the variables for each dimension of the 

European Manufacturing Survey has been calculated and then divided by the number of 

total variables, cf. Table 2. 

Table 2: Construct descriptives 

  MIN MAX M MED MOD STD SKEW KURT SUM VALID 

AT 0 339 26.219 6 1 52.445 3.767 17.641 2071 79 

NE 3 600 84 40 12 115.41 2.335 5.98 7140 85 

MCU 0 100 66.67 75 80 28.975 -1.227 0.664 4267 64 

ROS 1 5 3.42 4 5 1.567 -0.509 -1.29 267 78 

OMP 0 1 0.12 0 0 0.329 2.354 3.629 10 82 

ORD 0 1 0.09 0 0 0.281 3.023 7.319 7 82 

BFM 0 1 0.04 0 0 0.19 4.996 23.54 3 81 

BFRD 0 1 0.01 0 0 0.111 9 81 1 81 

The mean of 26.219 million euros and the standard deviation of 52.445 million euros are 

calculated for a sample of zero to 339 million euros AT. The sample distribution appears 

to have a positive skewness, as a few participants fall at the most positive end of the tail. 

A platykurtic model's distribution is negatively skewed for MCU and ROS. According to 

leptokurtic peak performance for AT, the sample included a few large and some smaller 

companies. Based on the fact that the largest provider has 600 employees, while the 

smallest provider has three, NE has similar curve characteristics to AT, following its 

skew and kurtosis. ROS is the last, perhaps most captivating, indicator of competitiveness 

(M = 1, 2 to 5). (Heilala 2022bc.) a grand mean of 3.42 implies that, on average, 

companies have positive returns. For the operations side, it is highly likely that in the 

light of statistics, very few corporations have faced offshoring and backshoring activities 

because all distributions are skewed positively to the binary zero, while few players face 

challenging situations. 12 % of the corporation offshored manufacturing, 8.5 % offshored 

R&D operations, 4% backshore manufacturing, and 1% backshore R&D. After all, there 

are no generalizable results foreseen for the sample operations here in terms of transfer, 

except that the majority do not transfer. However, it is important to look at the learning 

ability factors and what kind of companies usually perform this activity, which we delve 

deeper into next. 
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4.2 Model Correlations 

It is possible to determine the correlation between the development of employment and 

competitiveness situations and relocation activities model parameters of interest using 

Pearson's correlation (R), which describes how two variables change together over time. 

In non-linear correlations, variation is represented from -1 to 1 in the R-coefficient, 

determining the intensity and direction of linear correlations. The positive value shows 

that the variables are perfectly correlated, the negative value indicates an inverse 

correlation, and when the value is near 0, the variables do not match. Barlett's sphericity 

test indicates a barely satisfactory score for the model because the unsaturation is so high. 

The determinant (d=.051) and Kaiser-Meyer-Olkin values for the individual investigation 

of the relocation activities on development of competitiveness and employement 

situations are (0.52 to 0.56). The model yielded values in Table 1. (adapted to Heilala 

2022bc.) 

The research questions share different weaknesses than (Heilala 2022b). How the results’ 

reader herein should position the scale depends on the viewpoint on the study design for 

assessing the results. Whether to take responses seriously together makes a barely 

satisfactory model, but on the other hand, reducing respondees could have led to gaining 

a perfectly validatable model. The first one requires a curious angle of entry on scale 

effects because there are large corporations among smaller ones, and the large 

corporations are not necessarily revealing or have information for relocation activities 

available. At the same time, the model's hard quantitative grounding explores the very 

few factor outcomes by the CEOs' responses that were yielded in EMS and rotated 

through regression and resulted in relocation activities outcome space shown in Table 2. 

(to manufacturing key enabling technologies and organizational concepts used and 

adapted from Heilala 2022abc.) The tool proves to have low internal consistency in 

correlative means. However, its performance measure does not reject its factorability, and 

it can always be done in pairs if the model weaknesses reproduce challenges further. 

Table 4: Construct correlations 

  AT NE MCU ROS OMP BFM ORD BFRD 

AT 1 
 

      

NE 0.905**** 1       

MCU 0.244** 0.18* 1      

ROS 0.243** 0.179* 0.298** 1     

OMP 0.228** 0.283** 0.046 0.042 1    

BFM 0.085 0.168* 0.037 -0.171* -0.075 1   

ORD 0.135 0.257** -0.049 0.091 0.357*** -0.06 1  

BFRD -0.078 -0.083 -0.013 -0.21 0.391*** -0.029 0.487**** 1 

Note: results are not having significant relation/not correlating (n.s./n.c.), ****p<0.001, ***p<0.01, **p<0.05  and *p<0.1 

Table 4 shows the DCES having the same connections as in (Heilala 2022a; 2022b). The 

model had a relatively small number of players on OMP or within other actions. In 

theory, however small the signals caused by the movements are, they are essential in 

convergent validity since corporations seek different growth-related achievements when 

expanding to international markets. The table findings indicate that the OMP is relatively 

highly predictable by the AT. It is because large corporations are needed to move from 

domestic markets to foreign in terms of possibly supplying the manufacturing feed on the 

customer locations beneficially, which requires further investigation and clarification in 

forthcoming Figure 1. 

On the contrary, BFM is the majority. However, a proportionally slightly lower number 

of players are expected to impact repatriating operations, as can also be seen in Figure 1. 

MCU perspective without clear statistical significance to validate results, and the 



connection remained relatively low. However, the directions are interesting because 

statistical dispersion and randomness are not random. However, intentional retreating for 

players’ businesses, appearing as statistical anomalies, are significant results and should 

be taken seriously. It calls for a closer look at what perspectives were retracted. It would 

seem that OMP and ORD walk hand in hand, while BFM and BFRD do not seem to be in 

contact with each other. It also showed meaningful links to ORD, confirming that the 

players keep operations alive by repatriating old operations and connecting to new areas 

simultaneously, which needs closer examination in Figure 1. 

Figure 1 map coding and legends indicate that the OMP has focused on the Baltics 

(Estonia, Lithuania, Latvia), Central Europe (Poland), Southwestern Europe (Portugal), 

East Asia (Japan and China), South Asia (India), The US, and Canada. The reason is that 

the operation costs, i.e., price and certainty, are opportunist for employee relocation from 

the opportunistic beginning of the core company. In some cases, delivery time is much 

quicker. Secondly, BFM expects respondents to relocate to the headquarters of their 

parent company. Thirdly, for multisite-based operations, ORD is popular for travel 

destinations in North-western Europe (Belgium), Central Europe (Germany and Poland), 

Baltics (Estonia), South Asia (India), Nordic countries (Norway and Sweden), 

southwestern Europe (Spain). Due to the availability of labor or competencies at a 

reasonable cost, the owner of an unidentified corporation contends that BFRD from India 

is feasible due to the lack of functional performance available (based on EMS22 open-

ended data Heilala et al. 2022.) 

 

Figure 1: Certain Travel Destinations for Offshoring Manufacturing Performance (OMP); 

Backshoring Foreign Manufacturing (BFM); Offshoring R&D (ORD); and Backshoring 

Foreign R&D (BFRD) connections (Heilala et al. 2022) 

5. Conclusions 

To answer the first research question, based on the data from the research, companies' 

production outsourcing activities predicted the extent of total employment and 

competitiveness development outsourcing activities in terms of annual turnover, such that 

medium-sized companies with turnover typically transfer production. At the same time, 

the number of employees refers to reasonably large companies. Concerning the number 

of employees, the reason for moving operations abroad is primarily cheap labor (e.g., 

China) - but the printouts are very cheesy from their consistency, as it is only visible in 

some companies' manufacturing capacity utilization and corresponding returns. 

Furthermore, this shows that only some things can be successfully carried out in domestic 

markets, i.e., reasonably weak Finnish entrepreneurs offshore their operations abroad 
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because it may be more profitable in the light of the research results but resembles a risk-

taking. A small signal indicates that the production runs fluently and better in foreign 

operations. When the market is pulling either ostensively or performatively led, it appears 

as positive returns, so the given recommendation from the sample is to move operations 

overseas while keeping the core business innovation in Finland.  

To address the second research question and answer the prospects of companies' 

backshoring foreign manufacturing operations: whereby companies operating in Finland 

have recorded a response of forced or volunteering (not directly measured the cause- or 

reason) to transfer their business back to domestic trade has been processed. At this point, 

the changes to be announced are expected in the scope of the relocation activities 

operations for the development of employment and competitiveness situations 

perspective in terms of annual turnover positively but not equal statistically. However, in 

terms of the number of employees, there seems to be regularity, meaning that, by and 

large, companies of the same size belong to a cluster number of employees with a fairly 

strong connection. This cluster is also affected by a small rising production capacity 

utilization rate and negative return sales, statistically significantly showing the reason to 

move back because production costs have increased in the country of production. 

In order to answer the third research question, we discuss the expected total employment 

of R&D offshoring and the extent of transfer measures intended to develop 

competitiveness in terms of annual turnover, which is a fairly positive relationship 

without equality, i.e., companies have weaker and stronger actors that do not outsource 

R&D. However. It can appear as an ideal model for companies that do not do this. The 

motivating result is that if the company offshores R&D operations, the company has a lot 

to do with the number of employees, so it is worth outsourcing research, but with caution. 

The justifying factor may be that the company wants to increase its small production 

capacity. 

Finally, let us move on to the strict place exchange fence, the fourth research question, to 

answer how companies' use of backshoring foreign R&D expects the full extent of 

relocation activities intended to develop employment and competitiveness in annual 

turnover. It gave negative and statistically insignificant results, but it is a critical topic of 

conversation in practice. This means that some small companies are bringing their 

businesses back to Finland, meaning that technology is being patriated. However, it also 

speaks of challenges because the number of employees is seen expecting sample's small 

companies. The negative manufacturing capacity utilization appears to be a small cause- 

or reason for this, whereby the relation to returns is also strongly negative due to lacking 

sales. None of these is statistically a good thing. However, on the contrary, the research 

results show that small entrepreneurs bring their R&D functions back because the 

offshored performance fails to sustain at expected levels. 

References 

Chia-Yen, L. & Andrew, J. (2015). Effective production: measuring of the sales effect 

using data envelopment analysis. Annals of Operations Research. 235. 10.1007/s10479-

015-1932-3. 

Creswell J, Plano Clark V. Designing and conducting mixed methods research. Thousand 

Oaks, CA: Sage Publications 2007 

Dachs, Bernhard & Kinkel, Steffen & Jäger, A. & Palcic, Iztok. (2019). Backshoring of 

Production Activities in European Manufacturing. Journal of Purchasing and Supply 

Management. 25. 10.1016/j.pursup.2019.02.003. 

Dachs, Bernhard & Kinkel, Steffen & Jäger, A.. (2019). Bringing it all back home? 

Backshoring of manufacturing activities and the adoption of Industry 4.0 technologies. 

Journal of World Business. 54. 10.1016/j.jwb.2019.101017. 



Dachs, Bernhard & Kinkel, Steffen. (2013). Backshoring of production activities in 

European manufacturing – Evidence from a large-scale survey. 

Dachs, Bernhard and Borowiecki, Marcin and Kinkel, Steffen and Schmall, Thomas 

Christian (2012): The Offshoring of Production Activities in European Manufacturing. 

https://mpra.ub.uni-muenchen.de/42973/ 

Dachs, Bernhard and Zanker, Christoph (2015): Backshoring of Production Activities in 

European Manufacturing. https://mpra.ub.uni-muenchen.de/63868/ 

Gourdon, K. & C. Steidl (2019), "Global value chains and the shipbuilding industry", 

OECD Science, Technology and Industry Working Papers, No. 2019/08, OECD 

Publishing, Paris, https://doi.org/10.1787/7e94709a-en. 

Heilala, J. (2022a). ISPIM. Deployment Of Competitive Techno-organizational Global 

Supply Chain Management. XXXIII ISPIM INNOVATION CONFERENCE. The 

International Society for Professional Innovation Management. 5-8.6.2022 Copenhagen. 

Heilala, J. (2022b). Finnish Technology-oriented Manufacturing-Service Companies 

would benefit more from integrating Efficiency and Simulation, Data analysis, and 

Additive Manufacturing. XXXIV ISPIM INNOVATION CONFERENCE. The 

International Society for Professional Innovation Management. X-X.11.2022 Athens. 

Heilala, J. (2022c). Potential Production Managementcontrol Practices Through Training 

And Competency Development To Successful Manufacturing And Returns. 

Heilala, J., Kantola, J., Jäger, A., et al. (2022). European manufacturing survey 2022 

questionnaire. Connection and E-mail available Heilala, J. janne.p.heilala@utu.fi & 

Kantola, J. jussi.kantola@utu.fi. Jäger, A. has been responsible for coordinating the 

dataset: angela.jaeger@isi.fraunhofer.de, phone: 0721 68 09 322 fax: 0721 68 09 77 766. 

Kinkel, S. & Maloca, S. (2009). Drivers and antecedents of manufacturing offshoring and 

backshoring—A German perspective. 

sciencedirect.com/science/article/abs/pii/S1478409209000387 

Kinkel, S. (2014). Future and impact of backshoring—Some conclusions from 15 years 

of research on German practices, Journal of Purchasing and Supply Management, 

Volume 20, Issue 1, 63-65. 

Lester, A. (2013). Companies respond to customer needs with demand-driven 

manufacturing. Article in TechTarget 1.8.2013. 

Machek, O. & Machek, M. (2014). Factors of Business Growth: A Decomposition of 

Sales Growth into Multiple Factors. WSEAS Transactions on Business and Economics. 

11. 380-385. 

Metinvest. 2020. The Use of Metal in Aircraft Construction: Steel, Aluminium and 

Composites. https://metinvestholding.com/en/media/news/metalli-v-samoletostroenii-

stalj-alyuminij-kompoziti  

OECD. (2021). OECD SME and Entrepreneurship Outlook 2021. OECD Publishing. 

https://www.oecd.org/industry/smes/SME-Outlook-2021-Country-profiles.pdf 

Raza, W., Grumiller, J., Grohs, H., Essletzbichler, J., Pintar, N., and European 

Parliament. (2021). Post Covid-19 value chains: options for reshoring production back to 

Europe in a globalized economy. 

https://www.europarl.europa.eu/thinktank/en/document/EXPO_STU(2021)653626 

Yi, Hwa & Park, Sambock & Kim, Jonghyun. (2019). The Effects of Business Strategy 

and Inventory on the Relationship between Sales Manipulation and Future Profitability. 

Sustainability. 11. 2377. 10.3390/su11082377. 

 

 

https://mpra.ub.uni-muenchen.de/42973/
https://mpra.ub.uni-muenchen.de/63868/




 

  

V 

Heilala J, Krolas P & Gomes de Freitas A (2023) 
Advanced engineering management based on intersectional R&D 

challenges on education: a case study for product classifications on 
shoring trends. 

Human Factors in Design, Engineering, and Computing  
 

 



 

 

 



Advanced engineering management based on intersectional 
R&D challenges on education: a case study for product 
classifications on shoring trends 

Janne Heilala1, Pawel Krolas2 & Adriano Gomes de Freitas3 

1University of Turku, Technology, FI 

https://orcid.org/0000-0002-0994-2710 

2Poznan University of Technology, PL 

https://orcid.org/0000-0002-1189-2484 

3Monash University, Australia 

https://orcid.org/0000-0002-2770-9154 

Abstract 

This study tethers how leading Finnish manufacturers and R&D departments approach 

sustainable global manufacturing practices. Drawing insights from the comprehensive 2022 

European Manufacturing Survey (EMS), the analysis explores how principles of sustainability 

manifest in mechanical engineering, focusing on aerospace design as an exemplar. Empirical 

findings reveal corporate relocation trends, highlighting preferences for offshoring 

manufacturing versus R&D operations to strategic geographic regions. The research examines 

offshoring decisions through the lens of additive manufacturing, energy systems, and 

organizational dynamics captured in the EMS data. Explorative correlation analysis of EMS 

variables provides a quantitative baseline, complemented by contextual insights from academic 

literature on sustainable business models and training innovation. Geographic patterns show 

proximity advantages for nearshoring to Nordic innovation clusters, while talent incentives pull 

certain activities towards South Asia. A case study showcases integrated product design aligning 

with international sustainability benchmarks. While exploratory, the multi-faceted analysis offers 

original perspectives on the complex factors influencing modern corporations’ globalization 

strategies. The synthesis of empirical observations, conceptual literature, and an exemplar 

sustainable product line provides a novel framework for navigating offshoring decisions. The 

discussion examines pathways to fortify training and help manufacturers balance global market 

access with robust domestic engineering ecosystems. 

Introduction 

Exploring the frontiers [1] of sustainable manufacturing invites us to look to the cosmos itself. 

Just as groundbreaking discoveries in understanding the accelerating expansion of the universe 

have transformed astrophysics, innovations in manufacturing exchange mechanics hold promise 

https://orcid.org/0000-0002-1189-2484
https://orcid.org/0000-0002-2770-9154


for a new era in industrial sustainability. This study examines how leading Finnish manufacturers 

and R&D operations are aligning with these shifts, drawing insights from the 2022 European 

Manufacturing Survey (EMS). 

Using aerospace engineering as a conceptual springboard, we bridge the theoretical and the 

applied. Parallels emerge between mechanical engineering design and principles of spaceflight 

navigation. Much as Newton unpacked the forces governing the fall of an apple, this research 

delves into the complex factors shaping modern offshoring decisions. The EMS offers a window 

into Finnish manufacturing priorities, signaling how product development strategies integrate 

with evolving international trade frameworks like UN classification systems. Europe’s 

progressive approach also provides guidance on how to translate sustainability from theory into 

practice. 

As the intricate algorithm of the future of manufacturing comes into focus, Finnish industry 

leaders are demonstrating how to leverage innovation to drive this transformation. The 

confluence of scientific rigor, human-centric design and environmental sustainability points 

toward a new paradigm for engineering education and industry collaboration. By exploring key 

issues like additive manufacturing through an interdisciplinary lens, this study seeks to highlight 

how Finland’s manufacturing sector can continue exploring sustainable frontiers. [1] 

Research questions and Empirical research 

To cover the objectives of the study, the following research questions (RQs) were defined by 

selecting a case EMS: 

To propel our investigation of Finnish manufacturers’ approaches to sustainable global 

operations [1], we defined three central research questions: 

- How are offshoring decisions for manufacturing and research and development 

guided by principles of sustainability development?  

Earlier research has underscored the relevance of environmental considerations in offshore 

production, particularly example regarding energy efficiency infrastructure. This prompts an 

examination of how relocation choices account for sustainability factors on optimization. 

- What protocols can guide integrated domestic and international operations to uphold 

sustainable priorities? 

Standardized frameworks like ISO certifications provide reference points for sustainable 

business practices. This suggests a need to evaluate how corporations reconcile domestic and 

offshore protocols before rabbit-holes, for mapping the need of education technologies. 

- How do quality management principles manifest in determinants of sustainable 

enterprise operations for aerospace design engineering? 

Establishing consistency across supply chains requires harmonizing environmental and quality 

standards. The research assesses how manufacturers embed sustainability into design of quality 

frameworks. While there to capture and handle data, nearside is considered. 



By approaching offshoring decisions through these multifaceted research questions, our analysis 

aims to elucidate the dynamics enabling manufacturers to integrate sustainability initiatives 

across local and global operations. The literature suggests certification models could support 

reconciling inter/national variances, though small firms face greater obstacles in implementation. 

This investigation seeks to provide a greater track on navigating these complexities. 

EMPIRICAL LOCALIZATION 

Finnish EMS dialectically offered manufacturing and R&D depthness: companies signifying 

offshoring and aligning into backshoring. The analysis part numbers are first withdrawn for a 

representative sample, and results are elaborated with case extensions. The method introduced as 

of advanced structures correlation modeling. [1] 

Descriptives and interconnections 

The respective sample characteristics withdrawn from the study were represented, minimum, 

maximum, mean, median, mode, standard deviation, skewness, kurtosis, sum, and validity of the 

sample responders on given measure indices [1, table 1 p. 233]. Declension focuses on the 

correlation between variables emphasized by offshoring or backshoring manufacturing. 

Respectively, the connection structure was presented. The variables in the tables take the 

following arguments based on abbreviations. By breaking this down, the study measure includes 

AT21 and AT19, representing the Annual Turnover for 2021 and 2019, respectively. NE21 and 

NE19 denote the Number of Employees for those same years. MCU21 and MCU19 refer to 

Manufacturing Capacity Utilization for 2021 and 2019. Other metrics include ROS (Return on 

Sales), OMP (Offshoring Manufacturing Performance), and ORD (Offshoring R&D). BFM 

indicates Backshoring Foreign Manufacturing. At the same time, BRD is for backshoring R&D. 

ET stands for Efficiency Technologies, and SDA (Simulation, Data Analysis, and Additive 

Manufacturing). The study also introduces two Energy and Efficiency Management Systems 

variants labeled PMC5 and PMC6. Breaking this down in [1, table 2 p. 234] in monodirectional 

declension. 



The sample characteristics taken from the study were represented by minimum, maximum, 

mean, median, mode, standard deviation, skewness, kurtosis, sum, and validity of the sample 

responders on the given measure indices [1, table 1 p. 233]. The focus is on the correlation 

between variables emphasized by offshoring or backshoring manufacturing. The connection 

structure was presented respectively. The variables in the tables take the following arguments 

based on full terms. The study measure includes the annual turnover for 2021 and annual 

turnover for 2019. Number of employees for 2021 and number of employees for 2019 are also 

included. Manufacturing capacity utilization for 2021 and manufacturing capacity utilization for 

2019 refer to capacity. Other metrics were return on sales, offshoring manufacturing 

performance, and offshoring research and development. Backshoring foreign manufacturing 

indicates bringing manufacturing back. Backshoring research and development refers to bringing 

research and development back. Efficiency technologies and simulation, data analysis, and 

additive manufacturing were also included. The study also introduces two energy and efficiency 

management systems variants labeled process and manufacturing control system 5 and process 

and manufacturing control system 6. Breaking this down in [1, table 2 p. 233] in monodirectional 

declension. 

Off- and backshoring manufacturing or R&D 

The decision to offshore manufacturing outside of Finland comes with considerations. While 

there is not a stringent requirement for adopting efficiency technologies, energy certifications, or 

environmental management systems, there is an undeniable emphasis on data analysis, 

simulation, and prototyping, especially using additive manufacturing. Simultaneously, the firm is 

expected to maintain a central hub or headquarters for research and development. Notably, from 

the backshoring R&D perspective, smaller companies often do not need more pressure to obtain 

these certifications. [1] 

Regarding smaller design offices’ growth expectations, offshoring manufacturing enables 

exploration of the flexibility offered. On the contrary, established factories, which have been 

operational longer, often have a larger workforce and have typically adopted a certified energy 

management system with a stable operational footprint in domestic regions, as [1] noted. 

An intriguing business perspective is the financial viability of outsourcing activities to nations 

with a political and financial incentive for energy management and environmental conservation. 

According to recent research, this approach is financially sustainable, especially in countries 

where environmental considerations were rewarded [1]. However, the taxation system often 

favors larger corporations, leaving smaller enterprises bereft of these benefits. Countries in 

Central Europe, Southwestern Europe, East and South Asia, and North America were favorable 

for offshoring manufacturing performance. 

However, regarding research and development offshoring, Northwestern and Central Europe, the 

Baltics, South Asia, and the Nordic countries were preferred destinations packed with 

possibilities. From a logistical standpoint in nearshoring, the most sustainable relocation options 

for manufacturing for Finnish companies were the Nordic countries, the Baltics, and Central 

Europe. 



Classifying international trading 

Human systems integration compatibility between industrial systems from legislative and 

economic perspectives is presented in former studies. Representation is the so-called 

Nomenclature Générale. Domain’s integration into economic activities is selectively represented 

in the global schematic drawing [1, p. 236). They integratively illustrate the interplay of human 

and industrial systems within legislative and economic contexts. The Nomenclature Générale 

exemplifies this through various products, emphasizing the significance of responsibility. Quality 

validation, crucial for facilities such as productized universities, complements the need for 

product development certification in the digital era. Offshoring, with its evolving dynamics, 

underscores the development trajectory. The UN’s ISIC (Int Classification of All Economic 

Activities) regional classifications emphasize understanding economic activities through global 

and local lenses. Discerning these by country and specific indicators for efficacious industry 

interpretation has implications for regional development—integrated data access, particularly in 

inclusive supply chain engineering [2]. The progressive approach is exemplified by Eurostat 

standards and mirrored by the UN’s interpretation. The UN’s CPC (Committee for Programme 

and Coordination/Central Product Classification) certified production classification (such as 

PRODCOM) should be a developing product taxonomy covering everything from fundamental 

to state-of-the-art processes. Merging classifications underlines the foreign trade statistical 

framework synergizing with ISIC’s global trade data. These systems reveal details about the 

elaboration of connections between harmonious human structures, no matter their differences. 

Keeping track of these classifications is fundamental to harnessing the innovative prowess of 

industry leaders, meta-commanding global economic navigation, and fostering global sustainable 

technological integration. [1.]. 

HUMAN SYSTEMS INTEGRATION 

Quality standards development 

Sustainable manufacturing practices, rooted in environmental considerations, apply to 

technologically advanced and intensified competition [1]. Smaller organizations were very 

flexible with the intensity of adopting these standards with the competition. Efforts from 

suppliers illustrate an industry-wide shift towards sustainability, extending to areas like energy 

efficiency and infrastructure maintenance [3]. How can for example, wafer optimization and 

training advancements improve performance and reliability within optical connections? 

Integrating electronic control optimization techniques requires holistic technology and skilled 

personnel to drive product development transformation. Finnish systems engineering education 

framework offers system and engineering standards guidelines, emphasizing stakeholder 

requirements to ensure the training models remain relevant [4]. 

Industry stakeholder alignment 

In continuous development, particularly in sectors like Fashion, the modern education 

engineering system is bound by the competitive challenge of keeping the pace [5]. Diamond 

extending business strategies, such as training simulations, offer potential solutions [6]. 

Concurrently, as industries demand technologies for Smart Manufacturing, educational curricula 



must impart theoretical knowledge and practical skills to students with industry-standard [4]. 

Sustainability challenges in global development demand a curriculum on solar energy, health 

protocols, and system upkeep. Though the ever-evolving life sectors evolving, the innovations 

could present opportunities for industries’ research alignment throughout the organizational 

culture change by reverse engineering and optimizing the systems [2]. Emphasizing eco-friendly 

practices in water and smart wafer control until the water tap, prioritizes the Earth. With many 

solutions to climate change already in place, smart manufacturers were shifting focus. 

Nevertheless, these manufacturers play a critical role in maintaining high standards across the 

supply chain. 

Training for technology innovation management  

The specialized demands of manufacturing highlight the value of industry-focused educational 

content. It is essential that curricula seamlessly blend academic theory with intersection less 

setting to industrial use. Thus, education for most advanced innovation management roles is 

possible through science. Engineering education to technology has requirements for the synergy 

between combining structures with systems engineering. Synergizing system operations is of 

structural design is not affected by intersecting factors. By default, modern technology 

engineering education is coupled with endless innovations. The Internet of Things archives 

control the current business landscape within systems [7]. The big ascendancy of progressive e-

commerce mechanisms emphasizes the urgency for businesses to grab the narrow points and 

connect to innovations. Design is not a word of user experience or infringement of the copyright 

but has seamless operations requirements for inspired design results with education. The 

incorporation of state-of-the-art platforms highlights examples. For example, systems 

applications and products courses in education that reflect the dynamic shift in business practices 

and strategic orientations for students to apply new management with systems, applications, and 

products in data processing high-performance analytic appliance. 

Smart integrative solutions are relative 

Integrating Industry 4.0  

The manufacturing process’s digitalization necessitates a systematic approach to ensure 

adaptability and efficiency. Implementing real-time feedback mechanisms in an industry setting 

is an educative tool for real-time rectifying in tackling glitches. Manufacturers can capitalize on 

independent subsystems’ flexibility by integrating a modular design approach, ensuring seamless 

updates and replacements. The audits and reviews form the cores of the system design with 

decoupling. This comprehensive documentation captures the design process, providing a 

foundation for future initiatives. At its core, the culture of innovation is recognizable from the 

continuous engineering of solutions supporting intersectionally accessible education adapting to 

the future. [8] 

Infusing traditional curriculum  

Modern engineering tools fluctuate with the dynamic demands of the manufacturing sector. As a 

core between theory and practice, simulation labs with the pipeline afford customers an 

immersive experience; while, simulating real-world challenges is pedagogical in industry 

education [9]; [10]; [11]. Peer reviews could refine collective field visit experiences to view 



industry practices, while continuous industry efforts for collaboration does not form silos that 

transdisciplinary would differentiate the industry from education. Industry collaborative 

initiatives for guest lectures could infuse the curriculum content for industries with rich, 

experiential knowledge with complete independence to industrial protocols with continuous 

assessment, abandoning traditional examination for the culture of continual learning and 

problem-solving. Learning and motivation have a place; they remain paradoxical pitfalls between 

excellent learning, studying, and teaching processes. 

Adapting synchronized setting for education  

The fusion of service and manufacturing portends a transformative shift in manufacturing in a 

regionally free setting until it is properly regulated. Database service infrastructure fortifies 

manufacturing execution systems capabilities and maintains its fluidic data exchange and 

synchronized operations, creating a cohesive systems appliance with indexing [12]. Instead of 

the aforementioned waferwaffle example this integration heightens operational reasoning with 

black box analysis [13]. The versatility of the manufacturing service platform, for example 

survey, localizes in the complete management of languages and frameworks for adaptability to 

the research laboratories forming responsible a digital ocean. Database database-service-as-a-

service data protection protocols initiatives safeguard critical data sensitivity that may prove to 

be a complicating factor without a design involving, for example, feature aggregation in synergy 

with the open-ended structure. The service toolkit in manufacturing operations has initiated a 

manufacturing standard has characterized by precision for innovating for enterprise resource 

planning systems of future. Promising manufacturing can help reveal the less visible parts of the 

engineering curriculum by adapting to the industry trends in selective scenarios. The rise of 

innovative approaches to the engineering curriculum aligns with the current shift towards higher 

quality to support industry in certification adoption. 

The education sector development shows quality in systems design aligning with artificial 

intelligence with aerospace due to its popularity of design studies, e.g., [14]; [15]. The detailed 

analysis of the classification of the development state to the sanctuary of the enchantress of 

containerization requires more design studies. The importance of advancing training and 

meaningful learning for an efficient control system is, to adapt to another industry’s requirements 

to respond to its responsible development requirements. The human-machine interaction in the 

software domain relates to the designs on this framework, shifting to explainable training with 

innovation on various platforms [16]. Modern autonomous systems prioritizing adaptability to 

develop industrial facilities considers safety for example [17]. Safety becomes central to the 

axiomatic design, built on independence and information axioms to address the reliable system 

design [18]. Designs center on functional needs and design parameters, with system-specific 

frameworks for instance in aerospace. Benefiting from improving a physiological testing for a 

remote sensing by training simulations in advanced environments [19]; [20]. Studies aim to 

improve system effectiveness and safety by designing simulations with physics, like within 

FPGA-based boundaries [21], with wishes to start tracking and surrounding quantum computing 

aerospace centered very quickly.  



RESULTS: PRODUCT LIFECYCLE STRATEGIES 

Lifecycle management strategies for Offshoring 

The analysis revealed the following key geographical preferences for offshoring different 

business activities: 

a. Manufacturing offshoring gravitated towards Central Europe, Southwestern 

Europe, East/South Asia, North America 

b. R&D offshoring preferences included Northwestern/Central Europe, South Asia, 

Nordic region   

Proximity proves important, with Nordic/Baltic countries offering lower logistical hurdles. 

However, South Asia presents talent pool benefits despite unique operational challenges.  

Integrating Global Trade Frameworks 

Classifying global economic activities related to offshoring underscores the value of 

international standards like ISIC. Connections emerge between regional approaches (ISIC: 

NAICS, NACE, ANZSIC, etc.), informing tough trade and manufacturing strategies. 

 

Case Study: Sustainable Product Development  

A case study of a universal sustainable product line demonstrates integrating eco-friendly design 

with global marketability. Energy efficiency, responsible sourcing, recyclability, and 

standardized components align with international benchmarks. This showcases strategies for 

unifying development protocols across borders. 

RECOMMENDATIONS 

Key recommendations for manufacturers include: 

a. Consider geographical pros/cons for offshoring specific activities 

b. Leverage international classification systems customer 

c. Design sustainable product lines adaptable to global  

d. Participate in developing local training ecosystems 

While exploratory, the analysis provides a foundation for data-driven decision making on 

globalization strategies, sustainability integration, and training innovation. 

INTERPRETATION 

The results show Finnish manufacturers’ offshoring practices and alignment with global 

sustainability standards, while sustainability is of significant interest to the industry. 



Technological integration, in the form of simulation, data analysis, and additive manufacturing 

for a case product of a system, emerges, requiring manufacturing offshoring. However, the same 

emphasis should be observed in R&D offshoring, suggesting different strategic considerations 

from the design built from the global innovation hub. 

As reflected in the design paradigm, training engineering for innovative transportation, 

incorporating energy efficiency and eco-friendly considerations were firsthand considered 

globally. Environmental certifications, while valuable, were not uniformly adopted, indicating 

challenges for smaller entities requiring adaptation to international laws. Geographical 

preferences for offshoring vary, and businesses must navigate a complex global economic 

landscape with various classification systems. The results guide Finnish manufacturing 

development in decision-making on offshoring and integrating sustainability into their operations 

from the case example, especially in training engineering and various features in complex 

systems engineering. 

DISCUSSION 

The comprehensive data and research underscore the importance of human systems integration 

for understanding and predicting the behaviors of businesses considering globalization [22]. The 

drive for sustainable manufacturing practices and R&D considerations seen in the EMS data lays 

groundwork for future enterprises.  

Cooperation between countries is intrinsically tied to policy compatibility, suggesting a need for 

standardized design and manufacturing practices aligned with recognized frameworks such as 

ISIC rather than solely regional approaches [1]. The findings indicate the curriculum for 

emerging technologies like containerization could align more closely with customer requirement 

management when the emphasis is on sustainable practices. Simulation, prototyping, and 

additive manufacturing require integration to ensure long-term viability and training innovation 

semantics because it does not really mean much in current industry setting [12]; [1].  

As the future of engineering education is tethered to sustainable digital platforms, blending 

containerization and international standardization forms a transformative opportunity [23]. The 

EMS analysis showed proximity advantages for nearshoring to Nordic clusters, while talent 

incentives pull certain activities towards South Asia. This demonstrates how the future of 

autonomous systems will involve innovation between advanced manufacturing techniques and 

localized training needs [24].  

As exponential industrial growth introduces new complexities, equipping the next generation of 

engineers with the requisite knowledge and strategies in design is imperative [25]. The EMS 

findings positioned training's role in risk detection and management as intertwined with 

sustainability initiatives. Decoupling legacy systems while nurturing new solutions will shape 

development trajectories [26]. 

When assessing emerging autonomous technologies, continuous innovation is crucial but must 

consider potential sustainability challenges. Adhering to standardized norms enhances 

communication reliability and safety with Certified environmental management system (ISO 

14001 or EMAS) along with Quality management system key performance indicators [28] [29]. 



Implementing human-centered training management elevates system intelligence, as seen in the 

evolution of responsible development initiatives over time [30-31]. The analysis indicates 

manufacturing technology progression towards regional industrial revolutions must keep 

industrial metaverse safe. 

Having the initial data for global industrial simulation, this research still lacks generalization to 

industry, training's expanding, and technology role in risk analysis and mitigation for smart 

manufacturing. Mismatches in existing containerization pose threats to infrastructure, 

necessitating assessment updates [32]. Further work should explore autonomous modules for 

developing smarter systems. Manufacturing advancements like virtual training enhance supply 

chain agility. Component-level design explorations could examine climate resilience to align 

with Industry 5.0 aspirations, despite not being an explicit focus of past EMS analysis.  
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