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This thesis examines the effectiveness of copula-based Value at Risk (VaR) compared to
traditional VaR methods under extreme market volatility within the Finnish financial
markets from 2004 to 2009. Traditional VaR has been widely used in risk management
due to its simplicity; however, it often fails to capture the nonlinear dependencies, tail
risks and stylized facts in financial time series. This inadequacy is critical during periods
of significant market stress, such as the 2007-2009 financial crisis.

To address these limitations, this study employs copula-based VaR, which integrates cop-
ulas to model dependency structures from the marginal distributions, potentially offering
enhanced accuracy in risk assessment during volatile periods. Utilizing historical data
from Finnish stock and bond markets, the research applies ARMA-GARCH models to
estimate the marginal distributions and Monte Carlo simulations to compute VaR. The
VaR forecasts are done in rolling fashion manner, imitating a more practical approach.
The performance of both copula-based and traditional VaR models is tested with two
backtesting methods.

The results indicate that copula-based VaR, particularly the Student’s t copula, provides a
more accurate and reliable measure of risk under extreme market conditions compared to
traditional VaR. These results not only underscore the potential limitations of traditional
VaR in extreme market conditions but also highlight the advantages of copula-based
approaches in enhancing risk assessment frameworks.
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Tämä tutkielma tarkastelee kopulaan perustuvan Value at Riskin (VaR) tehokkuutta peri-
nteisiin VaR-menetelmiin verrattuna, äärimmäisen volatiliteetin aikana, Suomen rahoitus-
markkinoilla vuosina 2004-2009. Perinteistä VaR:ia on laajasti käytetty riskienhallinnassa
sen yksinkertaisuuden vuoksi se kuitenkin usein epäonnistuu epälineaaristen riippuvuuk-
sien, häntäriskin ja poikkeavien tekijöiden huomioimisessa tuotto-sarjoissa. Tämä puut-
teellisuus on erityisesti kriittistä merkittävän markkinastressin aikana, kuten 2007-2009
finanssikriisin aikana.

Perinteiden VaR:in rajoitusten kiertämiseksi, tämä tutkimus käyttää kopulaan perustuvaa
VaR:ia, joka yhdistää kopulat mallintamaan riippuvuusrakenteita marginaalijakaumista,
mahdollisesti tarjoten enemmän tarkkuutta riskinarvioinnissa volatiileina aikoina. Käyt-
täen historiallista dataa Suomen osake- ja obligaatiomarkkinoilta, tutkimus soveltaa ARMA-
GARCH -malleja marginaalijakaumien estimoimisessa ja Monte Carlo -simulaatioita VaR:in
laskemiseksi. VaR-ennusteita tehdään rullaavan ikkunan menetelmällä, jäljitellen käytän-
nönläheisempää lähestymistapaa. Sekä kopulaan perustuvan, että perinteisen VaR-mallien
suorituskykyä testataan kahdella takaisintestauksen menetelmällä.

Tulokset osoittavat, että kopulaan perustuva VaR, erityisesti Studentin t-kopula, tarjoaa
tarkemman ja luotettavamman riskimittarin äärimmäisissä markkinaolosuhteissa verrat-
tuna perinteiseen VaR:iin. Nämä tulokset korostavat perinteisen VaR:n mahdollisia ra-
joituksia ja vahvistavat kattavien sekä monipuolisten lähestymistapojen merkitystä riskin-
arvioinnin kehittämisessä.

Avainsanat: Riskienhallinta, Value at Risk, kopulat, GARCH, Monte Carlo, takaisintes-
taus, normaalijakauma.
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1 Introduction

In the complex world of financial markets, the management of risk is crucial for the fin-
ancial sector, including banking and insurance, and thus becomes essential for companies
and the entire economy (McNeil, Frey and Embrechts 2005, 15–16). The 2007–2009 finan-
cial crisis serves as a stark example of the catastrophic consequences that can ensue when
risks are not accurately assessed and managed. Despite the acknowledged importance of
risk management, developing and implementing effective risk management strategies that
also satisfy regulatory requirements remains a challenging task.

Value at Risk (VaR) has emerged as a cornerstone for risk management and is widely
utilized as a risk metric due to its relative simplicity (Jorion, 2007). Although the tra-
ditional way of calculating VaR is widely used, it has been criticized for having several
shortcomings; for example, it is noted in various academical studies that it fails to address
the stylized facts of financial time series or the tail dependencies between assets (McNeil
et al. 2005, 40–41). These problems arise from the traditional way of calculating VaR,
which is based on the assumption that asset returns are elliptically distributed, especially
normally.

To address the problem of inaccurate distributions, much research has been conducted
on statistical models that can model nonlinear dependencies of the financial assets and
therefore allow more accurate joint distributions to calculate risk metrics of. One of these
being the statistical method known as copulas.

Copulas allow for the construction of multivariate distributions that are better at rep-
resenting tail dependencies and nonlinear relationships between assets (Danielsson 2011,
25). The copula concept, originally introduced by Sklar (1959) and popularized in fin-
ance through the work of Embrechts, McNeil and Straumann (1999), has attracted much
attention in the computation of the VaR of market portfolios Cherubini (2011). However,
to the authors knowledge, there has been no research on how well the copula based VaR
performs against its traditional counterpart in the Finnish stock and bond market, under
extreme market volatility.

1.1 Research question

Amid growing concerns over traditional Value at Risk models’ inability to accurately
capture dynamics of asset returns and assess risks in extreme market conditions, this study
aims to examine the performance of copula-based VaR against its traditional counterpart.
By focusing specifically on the Finnish stock and bond market—an area yet unexplored
in this context—the thesis aims to determine whether the copula-based model offers a
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more reliable and accurate risk measurement tool during periods of extreme volatility.

This study will adopt an empirical approach, utilizing historical data from two indexes
that aim to mirror the Finnish economy. The data, taken from 2004 to 2008, will be
used to estimate the market conditions of 2009. In addition to copulas, the study also
employs GARCH-type models to estimate the marginal distributions of the assets to help
also capture the stylized facts of asset returns. The main objective is to then find the
best copula to be used modelling the joint distribution of the marginals and calculate the
copula based VaR from it.

The study seeks to answer the question: Does the Copula-based VaR perform better than
traditional VaR under extreme market conditions? This is studied with an approach
more in line with the banking side of risk management, by calculating the 1-day 95% and
99% copula-based VaR and traditional VaR from the indexes. The results from these
calculations will be backtested with two distinct methods, to answer the question.

1.2 Hypothesis

In the light of the theory behind the traditional VaR and copula based VaR infused with
ARMA-GARCH model, we would assume that it performs better than traditional VaR,
therefore the null hypothesis is as follows:

H0: Value at Risk based on copulas and ARMA-GARCH model gives better estimation
than Value at Risk based on normal distribution assumption

1.3 Structure

The thesis is structured as follows: Chapter Two discusses the theoretical background of
VaR and copulas, highlighting VaR’s limitations and introducing copulas as a solution
for improved risk estimation. Chapter Three details the methodology used to conduct
this study, including the specification of the ARMA-GARCH model, identification of the
copulas used, and the backtesting methods. Chapter Four presents the data used, analyzes
the results of the empirical study, and compares the copula-based VaR model with the
traditional one. The final chapter, Chapter Five, summarizes the findings and concludes
the study also offering insights for future research.
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2 Theory

2.1 Market Risk

Financial risk is commonly segmented into four main categories: market risk, credit risk,
liquidity risk, and operational risk. In this thesis, we are focusing on market risk, which
is often associated with movements in asset prices in liquid financial markets when new
information enters the market (Miller 2018, 6). To measure market risk, many models
have been developed. These models often assume that price movements follow a smooth
and continuous path, which is an idealization. In reality, asset prices can exhibit sudden
jumps or falls due to specific events as seen in financial crises. Market risk models can
have high-frequency and they utilize large amounts of historical market data to evaluate
risk. In classical finance, investors view risk as volatility, i.e., the standard deviations of
returns, as noted in Markowitz (1952). The current risk metrics are often infused with
other measures such as skewness, kurtosis, and quantiles. However, volatility has not
been abandoned; it is reported alongside the current metrics and plays an important role
in their calculation, such as in the case of Value at Risk (Miller 2018, 15–16).

The choice of risk metric to assess market risk depends on the application. On trading
desks, modeling of risk is much more short-term than in senior management reports for
the board. For this reason, the assessments of market risk have evolved quite separately
and can be separated into three broad categories: banking, asset management, and large
corporations (Alexander 2009, 7). In this thesis, we are focusing on the short-term aspects
of market risk assessment used in the banking side of risk management.

Banks are under the Second Basel Accord (Basel II) regulatory framework. This regula-
tion demands that banks and other Authorized Deposit-taking Institutions (ADIs) follow
minimum capital requirements according to their riskiness (Hull 2018, 18–19, 359). Banks
have adopted risk measures like Value at Risk to assess the risk of their operations and
allocate their capital to match the minimum requirements (Luenberger 2014, 260–261).

2.2 Properties of financial time series

Studies have shown that financial time series possess certain characteristics that present
challenges for researchers and risk management in general. These problems complicate the
data generating process, since it is very important to identify good models for generating
data that can capture the asset price dynamics and replicate them (Lu, Lai and Liang,
2011). Traditionally, models used to estimate the data-generating process are categorized
into parametric and non-parametric approaches. Parametric models adopt a more rigid
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approach by assuming the data distribution is defined by a fixed set of parameters. In
contrast, the non-parametric approach makes no assumptions about the probability dis-
tributions and relies solely on empirical data, enabling it to represent highly nonlinear
functions effectively.

Cont (2001) identifies three main challenges affecting the application of statistics to finan-
cial time series, particularly in estimating asset returns. The first challenge is stationarity,
which implies that the properties of a time series are independent of the time at that the
series is observed. This means that no matter at what point we examine the series, its be-
havior and structure would be statistically similar. In finance literature the asset returns
are assumed to be weakly stationary (Tsay 2010, 30). Furthermore, empirical studies have
demonstrated that the assumption of stationarity does not hold for returns. For example,
there are notable seasonal effects, such as the weekend and January effects.

The second issue concerns the ergodicity of asset returns, which requires that the empirical
averages of asset returns converge to the values they aim to estimate, i.e., they must align
with the values they are trying to predict. This theorem is often referred as the ergodic
theorem (Tsay 2010, 180–181). Stationarity is essential for ensuring that the statistical
properties of asset returns remain consistent over time; however, the ergodic property is
crucial for guaranteeing convergence. This convergence is often assumed based on the
asset returns being independent and identically distributed (i.i.d.), but empirical studies
have challenged this assumption, showing that asset returns are not i.i.d. (Cont, 2001).

The third issue pertains to the properties of finite samples. The statistical estimator
does not necessarily equal the quantity it aims to estimate. Although daily returns can
be collected from thousands of data points, this amount is still significantly insufficient,
leading to considerable estimation error. To mitigate this issue, confidence intervals are
essential; however, their computation introduces new challenges. There is an underly-
ing assumption that the residuals, or the noise terms of the returns process, are i.i.d.
Furthermore, it is assumed that these residuals have well-defined higher-order moments.
Yet, real-world data often exhibit heavy tails and nonlinear dependencies that challenge
the i.i.d. assumption for residuals, thereby questioning the relevance and accuracy of
traditional confidence intervals, which are designed under the premise of i.i.d. residuals
(Artzner, Delbaen, Eber and Heath, 1999).

Cont (2001) also lists statistical properties that are common for asset returns across
various markets.

(1) Negligible autocorrelation. Asset returns are generally not autocorrelated, with
the exception over short intraday periods.
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(2) Heavy tails. Unconditional distribution of asset returns exhibits a power law or
Pareto-like tail behavior, characterized by pronounced tail risks which normal distri-
bution models fail to accommodate.

(3) Asymmetry of gain and losses. Large losses are more likely to happen compared
to equally large gains.

(4) Aggregational Gaussianity. When the time scale is increased the distribution of
asset returns looks increasingly like Gaussian distribution.

(5) Intermittency. Asset returns experience substantial variability at all timescales,
observed by irregular spikes of volatility.

(6) Volatility clustering. Although individual returns don’t consistently show strong
autocorrelation, the high volatility of returns does.

(7) Conditional heavy tails. Even after adjusting for volatility clustering, the time
series of returns still exhibits heavy tails, though these tails are less pronounced than
in the unconditional distribution

(8) Slow decay of autocorrelation in absolute terms. The autocorrelation of abso-
lute returns diminishes slowly as a function of the time lag.

(9) Leverage effect. Returns of assets correlate negatively with the volatility of the
asset.

(10) Correlation of volatility and volume. The trading volume of an asset is found
to have a correlation with its volatility.

(11) Asymmetry of volatility time scales. When one uses coarser measures of volat-
ility these tend to provide better predictions for the finer measures of volatility than
the other way around.

Cont (2001) studies some stylized facts in more detail that are very important in this thesis
point of view. These are the characteristics of return distributions and the dependent
structure of the returns.

As early as Mandelbrot (1963) demonstrated that the asset returns can’t be sufficiently
modelled based on normal distribution. The normal distribution could not capture the
kurtosis of realized returns. The empirical kurtosis was larger than the normal distribu-
tion, indicating heavier tails and sharper peak (Cont, 2001).

As previously mentioned, Cont (2001) highlighted volatility clustering and the absence of
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autocorrelations as key dependency properties of asset returns. Autocorrelation measures
the strength of a time series’ correlation with itself at different time points. If one however
finds autocorrelation in the examined asset returns, it may be used to predict future
returns. Volatility clustering, first also identified by Mandelbrot (1963), indicates that
large changes in asset prices are likely to be followed by further large changes in returns,
regardless of the direction. Similarly, small changes tend to be followed by small changes.
These properties are linked to each other, as they suggest that past can be used to predict
outcomes in the future. Tsay (2010, 131–134) suggests that GARCH models can be used
to address the volatility clustering of asset returns, which will be further discussed in
Chapter 3. These stylized facts are crucial for constructing models to estimate asset
returns, even though simpler models often fail to capture these dynamics effectively.

2.3 Value at Risk

Most often, risk management focuses exclusively on the risk of loss rather than the pos-
sibility of gain. In mathematical language, this means concentrating on the lower tail of
the probability density function (Luenberger 2014, 258–261). Value at Risk is the most
common quantile risk metric that focuses on this lower tail of probability function, and
it is the most used risk measure after volatility (Danielsson 2011, 76–77). VaR has it’s
downfalls, which can be lead to pretty crucial underestimations of risks, but when we
consider it’s simplicity and ease of backtesting, we can see why it is so used. VaR gives
the best balance among the available risk measures and underpins most of the quantile
risk models (Danielsson 2011, 76–77). As Hull (2018, 271) noted, VaR can be defined as
the highest loss a portfolio endures in time horizon ∆ with a given confidence level 1−α.
Formally expressed as

VaRα = inf{u : F (u) ≥ α}, (1)

where F (·) is some cumulative distribution function of portfolio returns in time horizon
∆. In probabilistic terms, VaR is thus simply a quantile of the return distribution. As
McNeil et al. (2005, 38–39) noted VaR also can be defined from the loss distribution when
it is the 1− α quantile of the loss distribution. This way the VaR is a positive value.

So VaR has two basic parameters to be chosen, the significance level α (or confidence
level 1 − α) and the time horizon ∆, traditionally measured in trading days (Alexander
2009, 13–14). Most common values for α are α = 0.95 or α = 0.99 and the time horizon
∆ is usually 1 or 10 trading days (McNeil et al. 2005, 38–39). In this thesis we are using
both α = 0.99 and 0.95, but ∆ is 1 in both cases. It is also important to note that when
calculating VaR we are assuming that the portfolio we are holding does not change during
the time period ∆.
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As mentioned before, VaR has its downfalls, and it is most commonly criticized for its
properties. Artzner et al. (1999) created an objective framework with four properties
that a risk measure should ideally possess to be considered a coherent risk measure. A
risk measure should be invariant, subadditive, monotonic, and positively homogeneous;
however, VaR does not satisfy the subadditive property. This failure means that VaR
may contradict the diversification principle because it suggests that the total risk of a
portfolio, as measured by VaR, could be greater than the sum of the VaR measures for
the individual assets within the portfolio. In addition to that VaR has problems for
measuring the extreme price losses, by definition VaR only measures the distribution
quantile and disregards losses that exceed the VaR level (Yamai and Yoshiba, 2005).
Although VaR’s problems are well known it still remains the standard risk measure for
financial organizations. While coherent risk measures like Conditional Value at Risk
(CVaR), also known as expected shortfall, are available, many of these measures rely on
VaR estimation (Alexander 2009, 34).

Estimating VaR accurately is an important and challenging problem, and many methods
have been proposed. (Nadarajah and Chan 2016, 283-356) categorize these methods into
two main types: parametric and nonparametric. The parametric method is based on
an assumed distribution, while nonparametric methods do not make any assumptions
about distributions. There are also combinations of both methods, which are referred
to as semiparametric methods. In this thesis we are using the parametric Monte Carlo
simulation for calculating VaR with copulas and also for traditional VaR calculations.
The usage of Monte Carlo method will be further discussed in Chapter 3.

As the accuracy of VaR estimations depends heavily on the cumulative probability dis-
tribution of the portfolio returns, it is important to be able to estimate the distribution
as precisely as possible. Danielsson (2011, 78) further notes that this is the most diffi-
cult and important aspect of risk modeling. As outlined in Chapter 2.2 the estimation
of the probability distribution should satisfy the stylized facts of the time series. In the
case of traditional VaR this inadequacy stems largely from the limitations of assuming
normal distribution for asset returns, which fails to reflect the complexities of financial
markets. More effective VaR calculations require the adoption of sophisticated probability
distribution models that can accommodate these features. A key challenge is identifying
suitable multivariate joint distributions that can model all the asset returns in the portfo-
lio we are looking at. The reliance on linear correlation coefficients in multivariate normal
distribution introduces further inaccuracies, as noted in Embrechts et al. (1999). Hu
(2006) further underscores this issue, noting that in almost all cases where VaR was cal-
culated based on these Gaussian assumptions significantly underestimated the downside
risk. Copula models are thus introduced as a valuable tool for the multivariate modelling
and examining the degree and structure of the dependence, since they do not require
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assumption of normal distribution.

2.4 Copulas

As mentioned before, asset returns don’t usually follow a normal distribution, a fact that
becomes particularly evident during financial crises when all assets tend to drop together.
Therefore, if financial data were modeled using a multivariate normal distribution, cor-
relations would decrease for extreme events, whereas, empirically, it has been shown that
correlations actually increase (Danielsson 2011, 21). In other words, linear correlations
overestimate the dependence of asset returns in non-crisis periods and underestimate them
during crises. To address this problem, we need multivariate models that can also capture
nonlinear dependence structures.

Copula functions provide us the tools to create multivariate distributions of random vari-
ables with a range of types of dependencies. As noted by McNeil et al. (2005, 184–185)
every joint distribution for asset returns contains both a characterization of the marginal
behavior of each individual asset as well as a description of their dependence structure.
Copula functions offer a way to isolate and analyze the description of the dependence
structure and do not require normality in marginal nor in joint distributions. In the con-
text of risk management, and particularly for VaR, copulas are a natural fit because they
express dependence on a quantile scale, which is useful for describing extreme outcomes
(McNeil et al. 2005, 187).

Moreover, copulas support a bottom-up methodology for constructing multivariate mod-
els. This approach is especially beneficial in risk management, where our understanding
of the marginal distributions of assets tends to be more comprehensive compared to our
knowledge of their dependence structure (McNeil et al. 2005, 185). Furthermore, by em-
ploying the marginal distribution functions and any copula function, one can form a joint
distribution (Patton, 2006). As copulas enable the representation of a joint distribution
as a function derived from marginal distributions, they are capable of capturing all the
dependence properties of the data generating process (Ibragimov, 2009; Danielsson, 2011).

2.5 Copula function

Copula can be thought as being a function that links together marginal distributions
to form a joint distribution. As mentioned in the introduction, the concept of copula
originates from the Skalar’s theorem, by the work of Sklar (1959). McNeil et al. (2005,
185–186) define a d-dimensional copula as being multivariate distribution function C :

[0, 1]d → [0, 1] with standard uniform marginal distributions. Hence C is mapping from
the unit hypercube [0, 1]d into the unit interval [0, 1]. McNeil et al. (2005, 185–186) also
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notes that a copula must have thee basic properties to be referred as copula,

(1) C(u1, . . . , ud) is increasing in each component ui.

(2) C(1, . . . , 1, ui, 1, . . . , 1) = ui, for all i ∈ {1, . . . , d}, ui ∈ [0, 1].

(3) For all (a1, . . . , ad), (b1, . . . , bd) ∈ [0, 1]d with ai ≤ bi we have

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(u1i1 , . . . , udid) ≥ 0, (2)

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , d}.

The first property asserts that if any argument ui is increased, the value of the cop-
ula C(ui, . . . , ud) does not decrease, a requirement clearly essential for any multivariate
distribution function. The second property, required for ensuring uniform marginal dis-
tributions, states that if all but one argument are set to 1, the copula returns the value of
the remaining argument ui. The third property, known as the rectangle inequality, also
referred to as the 2-increasing or non-negativity condition (Cherubini 2011, 12), simply
implies that the probability of a number falling within a given interval [0, 1] cannot be
negative.

As second property required the margins have to uniformly distributed. To achieve this
requirement one can use the probability integral transformation, a result stemming from
the research by Fisher (1932). Fisher demonstrated that if a random variable X has a
continuous distribution F , then U = F (X) will have a uniform distribution U ∼ U(0, 1)

regardless of the original distribution F . Furthermore if F−1 is the generalized inverse of
F , it follows that F−1(U) ∼ X. Given the that F is continuous and F (X) ∼ U(0, 1) we
can express the joint distribution of F in d-dimensions as

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F

−1
d (ud)), (3)

where u1, . . . , ud are uniformly distributed marginals. Equation (3) shows how to express
dependence on quantile scale since the value C(ui, . . . , ud) is the joint probability that
a random variable X lies below its corresponding u-quantile McNeil et al. (2005, 187).
Marginal distributions provide a complete overview of the behaviors of individual vari-
ables, while the joint distribution contains both the individual and combined behaviors of
all variables, thus copulas must encapsulate the information on the dependence structure
that exists among the variables (Patton 2009, 767-785). This is why sometimes copulas
are known as ’dependence functions’ (Galambos, 1978).
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2.6 Sklar’s theorem

Sklar’s theorem is right at the core of the copula theory. Let F be a joint distribution
function with margins F1, . . . , Fd. Then there exists a copula C : [0, 1]d → [0, 1] such that,
for all x1, . . . , xd ∈ R

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (4)

If the marginal distributions F1, . . . , Fd are continuous then copula C is unique; otherwise
C is uniquely determined on the Cartesian product of the ranges of the margins RanF1×
RanF2 × · · · × RanFd where RanFi, is the set of all possible values that Fi can take
(McNeil et al. 2005, 186).

Sklar’s theorem further establishes that all multivariate distributions contain copulas, and
conversely, all copulas can construct a multivariate distribution function with univariate
ones. If one has a copula and marginal distributions, a valid multivariate distribution can
be constructed (McNeil et al. 2005, 186–187). Complementing Sklar’s theorem, Nelsen
(2006) presents a corollary indicating that a copula can be isolated from any multivariate
distribution. This allows for the construction of new joint distributions using any copula
with any pair of marginal distributions and for the determination of the underlying copula
and margins from a given joint distribution (Danielsson 2011, 27).
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3 Methology

The model used in this thesis aims to capture the most crucial properties of asset returns
and dependencies between two indexes by employing an ARMA-GARCH model, copulas,
and Monte Carlo simulation, thus striving for accurate VaR estimations. The modeling
process can be divided into four steps: first, modeling the marginal distributions of the
indexes using the ARMA(1,1)-GARCH(1,1) model; second, using the residuals obtained
from the marginals to fit four different copulas to the data and selecting the best fit for cal-
culating VaR. Next the VaR is calculated using monte carlo method and lastly the results
are evaluated with two backtesting methods and compared with the backtesting results
of the traditional VaR. Next, the thesis will review the model used in VaR calculations
without focusing on the methodology of the traditional model.

3.1 Marginal distribution modelling

When discussing the financial properties of time series in Chapter 2.2, it’s noted that
asset prices demonstrate asymmetries and volatility clustering, also known as conditional
heteroskedasticity. This phenomenon means the conditional variance of the time series
depends on time. Incorporating volatility clustering into the modeling of marginal distri-
butions for variables is crucial. GARCH-type models, first introduced by Engle (1982),
have been widely adopted to capture these characteristics of financial time series, as high-
lighted by Bollerslev, Engle and Nelson (1994); Lu et al. (2011). In this thesis we assume
that marginal distributions are characterized by an ARMA(1,1)-GARCH(1,1) model. The
model was first introduced by Bollerslev (1987) and subsequently utilized within a Cop-
ula framework by authors such as Patton (2006); Lu et al. (2011). The ARMA-GARCH
method used in this thesis is defined as follows

rt = µ+ ϕ1rt−1 + θϵt−1 + ϵ (5)

ht = ω + αϵ2t−1 + βht−1

ϵt = ηt
√

ht,

where µ, ϕ, θ are parameters of the ARMA model; ω, α, β are parameters of the GARCH
model. The term ht denotes the conditional variance, which is a positive, quantifiable and
time-varying function of the information set at t− 1 (Angelidis, Benos and Degiannakis,
2004). In the last equation ϵt is the residual and ηt is the standard residual with t

distribution and v degrees of freedom. Lambert and Laurent (2001) proposed adopting
the skewed extension of Student’s t distribution by Fernández and Steel (1998) within
GARCH frameworks. In this thesis, however the student’s t will not have this extension
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for the sake of simplicity.

In practice, the most widely used approach to fitting GARCH models to data is maximum
likelihood. While the Quasi-Maximum Likelihood (QML) method is a common prefer-
ence for GARCH model estimation, alternative approaches like the Maximum Likelihood
Estimate (MLE) are also viable, as Francq and Zakoian (2019) discuss. In this particular
study, the method chosen for modeling the marginal distribution is the MLE approach,
which aligns with the capabilities of the rugarch package in R utilized for this analysis.
This approach is also used in similar studies that combine the ARMA-GARCH process
with the copula framework, see, for example, Lu et al. (2011).

After estimating the ARMA-GARCH parameters for the two sets of return data, r1,t and
r2,t where t = 1, 2, . . . , T represents time, we obtain the filtered standardized residuals
η1,t and η2,t (Lu et al., 2011). Data can be perceived as being filtered, because ARMA-
GARCH process can capture information from the variable itself. As such, this data holds
limited relevance when the primary interest lies in examining the dependencies between
different variables. These residuals will then be transformed to have uniform distributions
through the probability integral transformation, as mentioned in Chapter 2.5.

3.2 Models for dependence

This part of the thesis will detail the copula models applied. Building on the foundations
of copula theory and the established uniform distribution of the random variables, we
will examine the dependency structure through copula functions. Four distinct bivariate
copula functions from two copula families are being considered: Gaussian, Student’s t,
Gumbel, and Clayton copulas. These particular copulas were chosen due to their wide-
spread use and their proven track record, both theoretically and empirically, in effectively
estimating the dependence structure within financial time series.

3.2.1 Elliptical copulas

Elliptical copula functions are based on elliptical distributions, as the name suggests.
These copulas are often referred to as implicit because they are not defined by closed-form
expressions. However these copulas are fairly easy to use and parameters can be easily
interpret (Embrechts, Lindskog and Mcneil, 2001). The Gaussian copula is very widely
used copula in financial applications due its simplicity (Amengual and Sentana, 2020),
although it often fails to fit in the real-world applications, as highlighted in (Embrechts,
2009). Gaussian Copula can be expressed using Equations (3) and (4) as follows

CGa
ρ (u) = ϕn

ρ(ϕ
−1(u1), . . . , ϕ

−1(un)), (6)
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where ϕn
R denotes the joint distribution function of the random vector X with correlation

matrix ρ and ϕ−1 denotes the inverse function of the univariate standard normal distri-
bution (Embrechts et al., 2001). As we can see from the equation above, the problem
with Gaussian copulas is that they rule out any type of nonlinear dependence structures
since the only parameter is linear correlation coefficient (Amengual and Sentana, 2020;
Embrechts et al., 2001). Embrechts et al. (2001) further showcases that Gaussian copulas
do not exhibit lower or upper tail dependence.

While Gaussian copula cannot model tail dependence, the student’s t copula can. Like
the Gaussian copula the t copula is based on the t-distribution, which has a additional
parameter v, usually known as the degree of freedom (Amengual and Sentana, 2020).
The degrees of freedom is responsible for so-called fat tail, which can be observed if v

approaches ∞ making it the same as the normal distribution. This same principle applies
to copulas as well; ν → ∞, Ct

ν,ρ = (u, v; ρ, ν) → CGa
ρ (u, v; ρ). The t Copula of X can be

written as
Ct

ν,ρ(u) = tnν,ρ(t
−1
ν (u1), . . . , t

−1
ν (un)), (7)

where tν,ρ(X) is the Student’s t distribution and tν(x) is the univariate one. When the
dependence of assets is moderately normally distributed but at the same time exhibits fat
tails, i.e., has extreme co-movements, the t copula might be able to model the depend-
ence quite accurately (Demarta and McNeil 2005; Cherubini 2011, 30). Empirical results
suggested the same as demonstrated in (Lu et al., 2011).

3.2.2 Archimedean copulas

In the world of financial modeling the mentioned elliptical copulas have drawbacks. Em-
brechts et al. (2001) points out that elliptical copulas are restricted to have radial sym-
metry and therefore cannot capture asymmetries. As Author further mentions, in finance,
it is reasonable to assume that the dependence is stronger between big losses than between
big gains. As mentioned before, securities often fall together but do not necessarily rise
together.

The Gumbel and Clayton copulas belong to the family of Archimedean copulas. Unlike
elliptical copulas, they have an explicit closed-form expression. Archimedean copulas
are also not derived from multivariate distributions using Sklar’s theorem but rely on
generator functions instead, which vary across different Archimedean copulas (Embrechts
et al., 2001). If now φ is continuous and strictly decreasing function from [0,∞] to [0, 1]

such that φ(1) = 0, bivariate Archimedean copulas can be expressed as

C(u, v) = φ[−1](φ(u) + φ(v)), (8)
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where the function φ is called the generator of copula and φ[−1] is the pseudo-inverse of
φ. The equation 8 can be referred to as a copula if and only if the generator function φ

is convex.

The family of Archimedean copulas encompasses a variety of models designed for statist-
ical analysis and is frequently applied within the realm of financial studies due to their
effective alignment with financial data (Smith, 2003). Embrechts et al. (2001) further
notes that The Archimedean family of copulas provides models that can only capture
upper or lower tail dependence. The Gumbel copula is an Archimedean copula that is
only able to capture the upper tail dependence and can be expressed as

CGu
θ (u, v) = exp(−[(− lnu)θ + (− ln v)θ]1/θ), (9)

where the θ has parameter space 1 ≤ θ < ∞ (Smith, 2003). The generator function
associated with Gumbel copula is

φθ(t) = (− ln t)θ (10)

The parameter θ indicates the degree of dependency in case of Archimedean copulas. It
defines the strength and type of dependency in the lower and upper tails of the distri-
bution. Specifically, for the Gumbel and Clayton copulas, which are considered com-
prehensive copulas, the parameter θ allows for interpolation between a lower limit of
countermonotonicity and an upper limit of comonotonicity as it traverses the boundaries
of the parameter space (McNeil et al. 2005, 221). In the context of a Gumbel copula,
θ value of 1 at the lower boundary denotes independence between the variables but de-
pendence in the upper tail. In other words, the Gumbel copula captures the upper tail
dependence, but since we are more concerned with lower tail dependence, the Gumbel
copula may come up short. It is possible to rotate the Gumbel copula to capture lower
tail dependence, but this will be ignored in this thesis. For more information, see, for
example, Brechmann and Schepsmeier (2013).

The Clayton copula can be seen as opposite of Gumbel copula since it exhibits strong
dependence in the lower tail. Therefore it is often used in modelling risk associated with
losses (Danielsson 2011, 28). The Clayton copula can be defined as

CCl
θ (u, v) = (u−θ + v−θ − 1)−1/0, (11)

where the θ has parameter space 0 ≤ θ < ∞ (Smith, 2003). The generator function
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associated with Clayton copula is,

φθ(t) =
1

θ
(tθ − 1) (12)

As mentioned the Gumbel copula tends to the comonotonicity as θ → ∞. Using a similar
technique, the lower tail coefficient λ1 for Clayton copula is,

λ1 = 2−1/θ, (13)

given that θ > 0 (McNeil et al. 2005, 209).

3.3 Estimation of parameters

There are several ways to estimate copula parameters. The most popular method is the
maximum likelihood estimation (MLE), which according to Patton (2006) and (Cherubini
2011, 43) is the natural and the strongest way to do the estimation. In the MLE method,
the parameters of both marginal distributions and the copulas are estimated simultan-
eously. This approach can be computationally intensive if dealing with a copula of higher
dimension, which increases the number of parameters to be estimated (Lu et al., 2011). To
address this issue, Joe and Xu (1996) proposed a method where the marginal parameters
and copula parameters are estimated in two separate steps, known as the inference for
margins (IFM). There is also canonical estimation method (CML) where the likelihood
is estimated directly using non-parametric representations of the margins; i.e., making
no assumptions about the marginals (Cherubini 2011, 44). In this thesis, we stick to
the maximum likelihood estimation method and therefore estimate the margins for the
standardized residuals η1,t and η2,t simultaneously with the copula parameters. The MLE
method is combined with the log likelihood and can be written as

L(θ) =
T∑
t=1

logC(Fη1(η1,t), Fη2(η2,t)) +
T∑
t=1

log(fη1(η1,t) + fη2(η2,t)), (14)

where C is the copula, Fη1 and Fη2 are the Cumulative Distribution Functions and the
fη1 and fη2 are the Probability Density Functions of each standardized residual.

3.4 Selecting criteria

The choice of copula that fits the data is very important to one just cannot just arbitrarily
choose it as noted in Kole, Koedijk and Verbeek (2007); Durrleman, Nikeghbali and
Roncalli (2000). Hence, the copula must be tested to see if it the copula can accurately
describe the data. A natural way to test the goodness of fit for the copula is Akaike’s
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information criterion (AIC) (Akaike 1998, 199-213) firstly introduced in 1973. The AIC
is defined as

AIC = −2(LogL) + 2(p), (15)

where LogL is the log likelihood for each copula and p the number of parameters in each
copula function. The copula that gets the lowest value in AIC test will the preferred one.

There are other methods like the Bayesian information criterion (BIC) and more, presen-
ted and compared in Genest, Rémillard and Beaudoin (2009). However, this study will
focus only on the AIC, as Jordanger and Tjøstheim (2014) showed that it is sufficient to
make a selection of copulas.

3.5 VaR estimation using Monte Carlo simulation

After we have obtained the marginal and bivariate distributions, we will estimate the
VaR of portfolio returns. Given the diverse marginals and copulas, there is no straight-
forward analytic formula for calculating VaR (Fantazzini, 2008). However, Monte Carlo
simulation, a method widely used in quantitative finance and VaR applications, can be
utilized. Monte Carlo method enables the estimation of the VaR of portfolio returns
r1 and r2 for time T + 1. In this method first large number N of pseudo-observations
(µ1

1, µ
1
2), (µ

2
1, µ

2
2), . . . , (µ

N
1 , µ

N
2 ) is generated from the chosen copula function. In this study

we are are using N = 10, 000, which represents good compromise between accuracy and
speed according to Lu et al. (2011). Next the pseudo-observations are transformed to
standardized residuals η1,t and η2,t via inverse cumulative distribution functions F−1

η1 and
F−1
η2 . This step translates the copula’s theoretical relationships into real-world scenarios

of asset behavior. This transformation is given by

(rj1,T+1, r
j
2,T+1) = (r̃1,T+1 + ηj1 ·

√
h̃1,T+1, r̃2,T+1 + ηj2 ·

√
h̃2,T+1), (16)

where r̃1,T+1 and r̃2,T+1 are the means and h̃1,T+1, h̃2,T+1 are the variances forecasted in
time T+1 with ARMA(1,1)-GARCH(1,1) model (Lu et al., 2011). These equations adjust
the standardized residuals by the forecasted mean and standard deviation to obtain po-
tential future returns. By aggregating these simulated returns for each asset and aligning
them with the portfolio weights, we derive a distribution of portfolio returns

rjT+1 = w · rj1,T+1 + (1− w) · rj2,T+1, (17)

where w denotes the weight of each asset in the portfolio and j = 1, 2, . . . , N . Then we
simply sort the values from the 10, 000 values of the portfolio rjT+1 in increasing order,
and for example the VaR with confidence level 1% is simply calculated as: 99% VaR is
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the absolute value of 10, 000 · (1−99%) = 100th ordered scenario of rjT+1 (Lu et al., 2011).

After obtaining 1-day VaR, this process is repeated M times, where M is the number of
shared trading days of the picked indexes over a 1-year period 2th January 2009 to 30th
December 2009. These estimations are done using a rolling window technique in which
the forecasts of VaR uses a segment of recent data, then moves forward a day at a time,
constantly updating the dataset to include the newest information while dropping the
oldest, ensuring the dataset always contains T observations. These results are then used
for backtesting the VaR.

3.6 VaR evaluation: backtesting

After forecasting the daily Value at Risk using a rolling approach, we compare the pre-
dicted values with the actual observed results and assess the model’s performance using
two distinct backtesting methods. Backtesting is a crucial technique for determining
the accuracy and reliability of VaR models. It stands as a central evaluative tool for
financial institution supervisors and also for regulators, who provide guidelines on how
institutions should interpret the results of backtesting (Alexander 2009, 335–336). VaR
backtesting is generally divided into two categories frequency-based and size-based tests.
Frequency-based tests evaluate how often the predicted VaR is breached On the other
hand size-based tests assess the magnitude of the losses when breaches occur. This study
focuses on frequency-based tests, which are more common in both practice and regulat-
ory guidelines, where the primary concern is the number of times losses exceed the VaR
predictions within a certain confidence level (Alexander 2009, 335–336).

Most backtest methods are based on the assumption that daily returns are generated by
an i.i.d. Bernoulli process. A Bernoulli variable can take values of 1 or 0, success and
failure. In our context, ’success’ defined as an instance where the return exceeds the VaR,
thereby taking the value of 1. Following Alexander (2009, 334) we can an define indicator
function Iα,T , which examines the exceedances as a binary sequence.

It+1(α) =

1, if YT+1 ≤ −VaRj,α,T ,

0, otherwise,
(18)

where Yt+1 is the realized daily return at time T + 1. According to Christoffersen (1998)
the sequence It+1 should exhibit the following characteristics to be considered accurate:
the Unconditional coverage property, which dictates that the realized α of VaR should
equal the probability of ’success’ and the Independence property, which implies that oc-
currences of past exceedances should not influence or predict subsequent exceedances.
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If both of these characteristics are satisfied simultaneously VaR forecast is said to have
satisfactory conditional coverage and the sequence truly follows an i.i.d. Bernoulli process
(Christoffersen 1998; Alexander 2009, 334–335).

3.6.1 Unconditional coverage test

The unconditional coverage test, also known as Kupiec’s Proportion of Failures (POF),
introduced by Kupiec in 1995, is a widely used VaR backtest. The POF test compares the
observed number of exceedances against the number of expected, given the VaR confidence
level. It uses a likelihood ratio test statistic that follows χ2 (chi-squared) distribution with
one degree of freedom. The formula for the POF test is given by:

POF = −2 ln

(
(1− α)N−x · αx(
1− x

N

)N−x ·
(

x
N

)x
)
, (19)

where x is the number of exceedances, N is the total number of observations, and α is the
predetermined confidence level of VaR. If the POF value exceeds the critical value from the
chi-square distribution, the null hypothesis that the VaR model is accurate is rejected. The
POF tests shortcoming is that it specifically focuses on the amount of exceedances without
taking into account any possible dependency between them (Berkowitz, Christoffersen and
Pelletier, 2011; Jorion, 2007).

3.6.2 Conditional coverage test

Conditional coverage ratio test was developed to asses shortfalls of Kupiec’s test by Chris-
toffersen (1998) by evaluating both the frequency and the independence of exceedances of
VaR forecasts. It combines the POF (noted LRuc in this context) test and adds separate
statistic for the independence of exceedances. The independence test checks if successive
exceedances are independent of each other. Conditional coverage ratio test can be defined
as

LRcc = LRuc + LRind, (20)

where LRcc is the conditional coverage ratio with a χ2 distribution and two degrees of
freedom, reflecting the two statistics being tested. The independence test LRind can be
defined as

LRind = −2 ln

(
(1− α)n00+n01αn01+n11

(1− π0)n00πn01
0 (1− π1)n10πn11

1

)
, (21)
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where nij denotes the number of days a given condition j occurs following another con-
dition i on the previous day. A value of 1 denotes exceedance as in the POF test, and 0
indicates no exceedance. This leads to the definition of transition probabilities

πij =
nij∑
i nij

(22)

For the sequence of exceedances to be considered independent, the probability of an
exceedance on any given day should remain unaffected by the previous day’s outcome,
more formally π0,1 = π1,1 = α. he main disadvantage of Christoffersen’s test is that it
requires a more substantial sample size compared to Kupiec’s test to ensure the validity
of its results (Angelidis et al., 2004).
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4 Data and results

This thesis analyzes data sourced from Bloomberg and LSEG Refinitiv Workspace, util-
izing R and the R packages rugarch, as introduced by Galanos (2023), and copula, as
detailed by Hofert, Kojadinovic, Maechler and Yan (2023). The dataset comprises the
Bloomberg Finland Treasury Bond Index and OMXH GI closing prices, spanning from 7th
April 2004 to 30th December 2009. Ideally, a larger dataset would have been preferable;
however, data prior to 7th April 2004 were not available. These indexes were selected
aiming to mirror Finnish stock and bond markets during one of Finland’s most volatile
historical periods. The portfolio of these two indexes was constructed with equal weights.

As the Bloomberg Finland Treasury Bond Index and the OMXH Index represent aggreg-
ations of their respective market data rather than tradeable assets, discrepancies arose
due to missing values when the underlying assets of one index had updated prices while
the other did not. To address this issue, adjustments were made by eliminating instances
where both indexes did not have concurrently updated values. Returns were calculated
before this elimination, thus avoiding discrepancies such as attributing a three-day return
for one index against a one-day return for the other due to non-simultaneous update days.
Subsequently, the returns were converted into log returns using the formula defined by
(Tsay 2010, 5):

rt = ln
Pt

Pt−1

(23)

This process resulted in a dataset consisting of 1422 log returns for each index. The
dataset was divided into two parts: the first 1174 observations (from 7th April 2004 to
30th december 2008) were used to estimate the model, and the last 248 observations (from
2th January 2009 to 30th December 2009) were reserved for out-of-sample estimations
and backtesting. This division is crucial for conducting out-of-sample estimations, as the
model requires a substantial amount of data to accurately capture the dynamics of the
returns. Because the data was not available before the April 2004 the study made a
compromise, and used the whole 2008 period also for estimation of the model and left
only the 2009 time period for the out-of-sample estimations. The estimation window T ,
remained constant of 1174 as the analysis was conducted in a rolling sample fashion.
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Table 1: Descriptive Statistics for log returns

The table presents the descriptive statistics for the log returns of both indices, segmented
into the initial estimation window T and the entire dataset. Values denoted with an asterisk
(*) have been scaled by a factor of 100. The table also includes results from the Jarque-Bera
test, with p-values provided in parentheses.

OMXH GI FI Treasury Index

1. estimation window Whole data 1. estimation window Whole data

Mean -0.0011* 0.0116* 0.0166* 0.0170*
St. dev. 1.4407* 1.5265* 0.1850* 0.1890*
Min -0.0792 -0.0792 -0.0099 -0.0099
Max 0.0885 0.0885 0.0096 0.0096
Skewness -0.1102 -0.0396 -0.0074 -0.0552
Kurtosis 6.0030 4.3232 2.9300 2.3200

Jarque-Bera 1174 1113 423 322
p-value (<0.001) (<0.001) (<0.001) (<0.001)

Table 1 displays the descriptive statistics for the daily log returns. From the mean com-
parison, it is evident that the average return of the OMXH GI was negative during the first
estimation window but turned positive in the subsequent backtesting window, reflecting
the market’s recovery from the financial crisis. Correspondingly, we observe an increase in
volatility, aligning with the motivating factors of our study. The Finland Treasury Index
exhibits similar patterns, though with less pronounced changes, which is expected given
that government bonds typically exhibit less volatility than stocks.

Skewness measures the symmetry, or lack thereof, of the distribution of returns. A skew-
ness greater than zero suggests a distribution with a long right tail (more extreme values
on the positive side), while a negative value suggests a long left tail (more extreme values
on the negative side). As discussed in Chapter 2.2, asset returns are generally negatively
skewed, indicating that large losses are more probable than large gains. This characteristic
is observable across both indices and time horizons.

Kurtosis measures how heavily the tails of a distribution differ from those of a normal
distribution. The OMXH GI shows a leptokurtic distribution, as evidenced by a kurtosis
value well above 3, suggesting ’fat tails’. In contrast, the FI Treasury Index, with a
kurtosis below 3, suggests a platykurtic distribution, implying a reduced likelihood of
outliers compared to a normal distribution.

The Jarque-Bera test evaluates the normality of a dataset by examining its skewness and
kurtosis (McNeil et al. 2005, 69). The test conclusively rejects the normality assumption
for both indices, as the p-values indicate strong evidence against a normal distribution.
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This result implies that traditional Value at Risk calculations based on the presumption
of normality may lead to incorrect estimations as stated before.

In Table 2 The presence of volatility clustering was examined via the volatility clustering
teste created by by Nordhausen, Matilainen, Miettinen, Virta and Taskinen (2021). The
test assesses autocorrelation in the squared returns of the time series, and evidence of
such autocorrelation signals the presence of volatility clustering (Ljung and Box, 1978).
Furthermore, Table 2 includes findings from the Dickey-Fuller test for stationarity, since
stationarity is a fundamental requirement for employing GARCH models on the dataset
(Francq and Zakoian 2019, 74).

Table 2: Tests for Volatility clustering and Stationarity

The table reports Volatility clustering test and Augmented
Dickey-Fuller test (ADF) for the whole data of both indices.

OMXH GI FI Treasury Index

Volatility clustering 5414.9551 1506.3682
p-value (<0.001) (<0.001)

Dickey-Fuller -10.8993 -10.9219
Lag order 11 11
p-value (<0.01) (<0.01)

Based on the volatility clustering test, the p-values indicate significant volatility clustering
in the returns for both the OMXH GI and FI Treasury Index. With p-values well below
the 0.01 threshold, we reject the null hypothesis that the time series has no squared auto-
correlation. This result supports the findings of Cont (2001), reinforcing the suitability
of employing a GARCH model to capture and model this characteristic. The Augmented
Dickey-Fuller test, designed to test the null hypothesis of a non-stationarity in the time
series, also leads us to reject this null hypothesis, as the p-values are smaller than 0.01.
This affirms that the data is stationary and appropriate for GARCH modeling. Fur-
thermore, Table 3 showcases the estimated parameters for the ARMA(1,1)-GARCH(1,1)
model with t-distributed residuals for both indices’ return series. The analysis was con-
ducted in a rolling manner; hence, the table displays the model specifications for the
initial and final fits, without documenting the day-to-day changes as they are minor.
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Table 3: ARMA(1,1)-GARCH(1,1) parameters and tests for autocorrelation and ARCH
effects

This table presents the first (30th of December 2008) and last (30th of December 2009)
model fits’ parameter estimates and p-values in parentheses. The table also reports results
of the Ljung-Box test and Engle test for three different lags.

OMXH GI FI Treasury Index

First fit Last fit First fit Last fit

µ 0.1098 0.1161 0.0127 0.0080
(<0.001) (<0.001) (<0.01) (0.0934)

ϕ -25.5916 -32.8776 -7.5223 -2.6894
(0.5752) (0.5321) (0.9682) (0.9913)

θ 28.8362 35.0347 8.8086 3.9952
(0.5228) (0.5015) (0.9631) (0.9874)

ω 0.0000 0.0000 0.0000 0.0000
(0.7604) (0.7872) (0.9934) (0.9861)

α 7.8392 8.1247 3.2341 3.8699
(0.2451) (0.1708) (<0.01) (0.0161)

β 91.1969 91.5254 96.6159 95.8595
(<0.001) (<0.001) (<0.001) (<0.001)

v 621.3288 773.5615 2602.0211 1500.3391
(<0.001) (<0.001) (0.0767) (<0.01)

Ljung-Box Test

Lags First fit last fit fist fit last fit

1 4.2641 5.3349 0.009 0.0019
(0.0389) (0.0209) (0.9239) (0.9612)

5 0.4298 1.4632 1.3071 3.5313
(0.5124) (0.2257) (0.2527) (0.0602)

10 5.4112 10.3868 0.9712 2.0961
(0.0213) (0.0013) (0.3241) (0.1478)

Engle Test

Lags First fit last fit fist fit last fit

1 0.0246 0.0383 0.0208 0.0254
(0.8753) (0.8449) (0.8852) (0.8733)

5 0.2960 1.7037 5.9197 7.4678
(0.9977) (0.8884) (0.3141) (0.1881)

10 0.5436 4.7365 10.3551 11.2882
(0.9999) (0.9081) (0.4112) (0.3355)
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All parameters in the ARMA-GARCH model were tested at a 5% significance level against
the null hypothesis that their true value is zero, which would indicate they do not notably
influence the model. The autoregressive ϕ, moving average θ, and GARCH constant
ω coefficients are consistently non-significant, thus failing to reject the null hypothesis.
Conversely, the ARCH β parameter is the only one showing consistent significance, which
could indicate long run persistence of volatility over time. The mean return µ and shape
parameter v show variability in their significance; they are consistently significant for
OMXH GI, but for the F1 Treasury Index, they only exhibit significance in one of the
two examined windows. (Harrell 2015, 67) emphasizes that in statistical analysis, one
should not overstate the importance of parameter significance levels, since statistical tests
are designed to test hypotheses rather than to select variables. To further examining the
model’s adequacy, the Ljung-Box and Engle tests are utilized, aligning with practices used
in Lu et al. (2011).

Ljung-Box test created by Ljung and Box (1978) is used to test for autocorrelation re-
maining in the return residuals after fitting a model to a time series. The null hypothesis
is that there is no autocorrelation in residuals after fitting the model. The results suggest
that, at a 5% significance level, there is no indication of autocorrelation at the first and
fifth lags for either index. However, autocorrelation appears to be present at the tenth
lag for the first fit of the OMXH GI and in the last fit for both indices.

For Engle’s ARCH test created by Robert Engle (1982), the null hypothesis is that there
is no autoregressive conditional heteroskedasticity known as the ARCH effects in the
residuals. Engle’s ARCH test indicates high p-values across nearly all lags and fits for
both indices, suggesting that there is no significant ARCH effects present, and hence the
variance seems to be adequately modeled by the GARCH component.

These insights suggest the models are largely, but not perfectly, capturing the dynamics
of the of the data and the models are adequately fitted to marginal distributions of both
time series.
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4.1 Copulas modelling

After fitting the ARMA(1,1)-GARCH(1,1) model for marginal distributions, we derived
standardized residuals from both margins, as outlined in Chapter 3.1. These standardized
residuals, initially used for evaluating the ARMA-GARCH model, are now employed to
identify the most suitable copula among the four previously introduced: the Gaussian
copula, Student’s t copula, Gumbel copula, and Clayton copula.

Table 4: Copula estimation and test results

Table 4 presents the parameter estimations for each copula, the log-likelihood func-
tions, and the results of the Akaike Information Criterion (AIC) selection criteria.
As parameters vary between elliptical copulas and Archimedean copulas, see Chapter
3.2 for parameter specification. The Student’s t copula’s degree of freedom is in par-
entheses. The best-fitting copula is highlighted in bold.

OMXHGI-FI Treasury Index parameter L(θ) AIC

Gaussian -0.3301 62.1876 -122.3751

Student’s t -0.3372 72.5202 -143.0404
(7.0285)

Gumbel 1 -0.0001 2.0001

Clayton -0.1229 19.2551 -36.5103

Table 4 presents the outcomes of the copula fitting analysis for the joint distribution of
OMXH GI and FI Treasury Index residuals. The results indicate that the Student’s t

copula offers the best fit, as evidenced by its lowest AIC value. This finding is consistent
with existing financial literature and study’s, which frequently acknowledges t copulas
efficiency in capturing the dependencies of assets returns, see, for example, Ning (2010)
and (Charfeddine and Benlagha, 2016).

The Gaussian copula also fits the model quite well, closely following the t copula in
terms of AIC value. The adequacy of the Gaussian and t copulas likely stems from the
ARMA-GARCH model’s ability to capture the primary characteristics of the data, leaving
residuals that adhere closely to a normal distribution but with the added complexity of
fatter tails—traits that the t copula can accommodate. This is illustrated in figure 1,
which shows that the joint distribution of the standardized residuals (marked with red
dots) resembles the randomly generated data from a standardized normal distribution
(marked with black dots).
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Figure 1: Residuals obtained from ARMA-GARCH model versus normal distribution

On the contrary, the Gumbel and Clayton copulas demonstrate a poor fit when applied
to the residuals. The Gumbel copula, with a parameter estimate of 1, suggests no upper
tail dependence, whereas the negative parameter estimate for the Clayton copula not
only contradicts theoretical expectations, since the parameters’ lower bound is 0, but also
indicates a complete lack of fit, as it fails to model any lower tail dependence. These
findings underscore the need for selecting a copula that aligns with the underlying data
structure. As these findings all considered student’s t is chosen for the VaR calculations
as it has demonstrated best fit of the examined copulas.

4.2 VaR evaluation

After determining the most suitable copula for the models, we use it to calculate the
one-day 95% and 99% VaR for the out-of-sample window of 248 estimations, by employ-
ing the Monte Carlo method as detailed in Chapter 3.5. In parallel, we estimated the
traditional VaR, assuming that the returns follow a normal distribution. These forecasts
were then backtested using the two methods outlined in Chapter 3.6. The results from
these backtests are presented in Table 5.
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Table 5: VaR backtest results

Table 5 presents forecast results for both VaRs on α = 0.95 and α =

0.99, denoted as VaR95% and VaR99%. The Unconditional coverage
ratio is denoted as LRuc, and the Conditional coverage ratio as LRcc.
Both backtests were evaluated at the 5% significance level.

Copula VaR Traditional VaR

VaR95% VaR99% VaR95% VaR99%

Expected exceedance 12 2 12 2
Actual VaR exceedance 7 1 18 8

LRuc 0.0876 0.2830 0.1252 0.0051
LRcc 0.1895 0.5597 0.2565 0.0153

Table 5 presents results that align with expectations and others that come as a surprise.
Both backtests were evaluated at the 5% significance level, as with all previous tests. The
null hypothesis for for LRuc posits that the model accurately predicts the correct number
of exceedances, and the hypothesis for LRcc adds that the timing between exceedances is
independent. For the Copula VaR model, both tests produced p-values greater than 0.05,
so the null hypotheses are not rejected, suggesting the model captures risk dynamics well.
However, the actual exceedances being lower than expected indicates that the Copula
VaR model is conservative, possibly overestimating risk. Such caution might be preferred
in risk management, as the number one concern is the possible losses, as noted before.
Banks could also be penalized if they have excess amount of capital requirement violations
(Danielsson 2011, 146). An overly conservative risk measure can also be problematic. For
instance, banks may be restricted in their lending capacity due to higher capital held as
a buffer, which could naturally lower profits. The conservative tendency of the Copula
VaR model could stem from the influence of the 2008 financial crisis on the estimation
period. This period can be causing the model to project a higher degree of caution in
its forecasts for 2009, a period marked by yet very large volatility but also recovery and
generally positive market returns.

Conversely, the Traditional VaR, relying on the normal distribution, holds up at the 95%
VaR level without rejecting the null hypothesis, signifying a reasonable prediction of less
severe risk levels. The number of actual exceedances is higher than the expected but not
significantly, which is surprising finding. However, at the VaR99% the null hypothesis is
rejected indicating significant underestimation of risk level. The logical conclusion for
the different outcomes between the VaR levels, is that the normal distribution assump-
tions holds up reasonably well for less extreme events but fall short at the tails of the
distribution, where extreme events lie.
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5 Conclusion

This study examined how the VaR based on the copula and ARMA(1,1)-GARCH(1,1)
model performed against the traditional VaR. The study was based on an equally weighted
portfolio constructed from the Bloomberg Finland Treasury Bond Index and OMXH GI.
As there have been no studies on the Copula approach to VaR with these assets, it cannot
be said that the results are directly in line with previous studies. However, the study was
able to find results that were in line with the theory behind this comparison. The copula
VaR gave more conservative results compared to traditional VaR, thus able to take the
dynamics of asset returns better into account. For this reason it did not underestimate
the risk and performed better under extreme volatility. As the Copula VaR did not reject
the null hypotheses at either confidence level, while traditional VaR did reject, it leads us
not to reject the null hypothesis of this study; Value at Risk based on copulas and ARMA-
GARCH model gives better estimation than Value at Risk based on normal distribution
assumption. However, as the study included data only from two indexes and estimated
VaR under certain market conditions, we cannot state that the model is generally better
than traditional in more normal market conditions and with different assets.

The study also aimed to find the best copula to fit the data and it was indeed much in
line with previous studies. Studies have mainly found that the t-copula is the best fitting
copula for asset returns, which was the case in this study as well. However, the copula
fitting process in this study was slightly different as it specifically regarded residuals of
the ARMA-GARCH model, so it would be exciting to conduct a study to see if the ’raw
data’ from these indexes and time period, suggest the same results.

The data used in this study was not very extensive, and it would have been better if
we could have accessed data from before April 2004. This way, the data for the model
estimation would have been larger, and the estimation window could have also been more
extensive, spanning from the start of 2008, thus providing estimates for the entire period
of the financial crisis. Moving forward, it would be great to analyze a longer time frame,
especially during recent volatile periods, like the COVID-19 crisis. Another good way to
construct further study is to focus more on stocks, looking into how certain stocks depend
on each other, building a portfolio based on these pairs, and then calculating VaR. It
would also be interesting to see how the VaR performs based on multivariate or rotated
copulas under market stress or just generally in the Finnish stock or bond markets. Since
this study did not focus on estimating the autoregressive and moving average coefficients
for the ARMA(1,1) component, nor the autoregressive and moving average coefficients for
the volatility equation in the GARCH(1,1), another potential study could delve deeper
into finding the best coefficients for the model.
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