
 

 

Comparison of Implied Volatility and GARCH(1,1) 
Evidence from the German stock market 

 

 

 

 

 

Accounting and Finance 

Bachelor's thesis  

 

 

Author: 

Anton Salonen 

 

Supervisor: 

Md Khaled Hossain Rafi 

 

 

3.4.2024 

Turku 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The originality of this thesis has been checked in accordance with the University of Turku 

quality assurance system using the Turnitin Originality Check service.  



 

Bachelor's thesis 
 
Subject: Accounting and Finance 
Author: Anton Salonen 
Title: Comparison of Implied Volatility and GARCH(1,1): Evidence from the German stock 
market 
Supervisor: Md Khaled Hossain Rafi 
Number of pages: 33 pages 
Date: 3.4.2024 
 
Risk and thus volatility is a key concept in several different financial theories. As by definition 
risk is uncertain, it is necessary to forecast it, if one wants information about future volatility. This 
study’s goal is to compare two competing volatility forecasting models: implied volatility and 
GARCH(1,1).  

Implied volatility represents one of the two main lines of volatility forecasting, as it is calculated 
based on option prices. It is seen as the investors’ expectations about future volatility and thus 
found to be more informative than models that represent the other main line of volatility 
forecasting. The other line is models based on financial time series data and this line is represented 
by the GARCH(1,1) model in this study as it is often found to outperform other similar models. 

In this study the forecasts are made with data from the DAX index and the sample period of 2019–
2023 is divided into two subperiods. The comparison of the models’ forecasting performance is 
measured with three commonly used error metrics: mean squared error, root mean squared error, 
and mean absolute percentage error. 

The results of this study suggest that the GARCH(1,1) was able to outperform the implied 
volatility during both of the subperiods. The forecasting performance of the models was also 
better during the second subperiod, which is the less volatile of the two subperiods. The results 
of this study are not consistent with the majority of previous studies, as implied volatility is 
thought to be superior in comparison to models based on financial time series data. 
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Riski ja täten myös volatiliteetti ovat tärkeitä konsepteja useiden rahoituksen teorioiden taustalla. 
Riskillä tarkoitetaan epävarmuutta ja mahdollisuutta todennäköisestä poikkeavaan 
lopputulokseen, joten sen ennustaminen on tarpeellista, mikäli markkinoiden tulevasta 
volatiliteetista halutaan informaatiota. Tämän tutkimuksen tarkoitus on verrata kahta kilpailevaa 
volatiliteetin ennustemallia: implisiittinen volatiliteetti ja GARCH(1,1).  

Implisiittinen volatililiteetti edustaa yhtä kahdesta volatiliteetin ennustamisen päälinjasta. 
Implisiittinen volatiliteetti lasketaan optiohintojen perusteella, joten sen on määritelty olevan 
sijoittajien odottama markkinoiden volatiliteetti. Implisiittisen volatiliteetin on todettu olevan 
informatiivisempi ennustemalli kuin mallit, jotka edustavat volatiliteetin ennustamisen toista 
päälinjaa eli aikasarjamallit. Tässä tutkimuksessa toista päälinjaa eli aikasarjamalleja edustaa 
GARCH(1,1)-malli, jonka on usein havaittu menestyvän muita vastaavia malleja paremmin. 

Tässä tutkimuksessa ennusteet on luotu DAX-indeksille vuosilta 2019–2023. Otos on 
tutkimuksessa jaettu vielä kahteen pienempään osajaksoon. Mallien suoriutumista vertaillaan 
kolmella yleisesti käytetyllä virhemittarilla: MSE, RMSE and MAPE. 

Tämän tutkimuksen tulokset viittaavat siihen, että GARCH(1,1) onnistui implisiittistä 
volatiliteettia paremmin ennustamaan tulevaa volatiliteettia tutkimuksen molempien ajanjaksojen 
aikana. Molemmat mallit pystyivät ennustamaan volatiliteettia tarkemmin tutkimuksen toisen 
ajanjakson aikana, jolloin markkinat olivat vähemmän volatiiliset kuin ensimmäisen ajanjakson 
aikana. Tämän tutkimuksen tulokset eivät ole linjassa aikaisempien tutkimusten kanssa, sillä 
implisiittisen volatiliteetin on havaittu olevan parempi volatiliteetin ennustemalli kuin 
aikasarjamallit. 
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1 Introduction 

One of the fundamentals of finance is the concept of risk and it is considered in 

numerous financial theories. Often in everyday life when talking about risk, it is 

understood as a chance of bad consequences or exposure to mischance. In the world of 

finance, risk does not always mean the chance of a loss or an unwanted outcome but 

also the chance of a return or an outcome that is greater or better than was statistically 

expected. In financial markets risk is strongly related to uncertainty and the measures 

calculating risk are made to calculate the size of the uncertainty (McNeil et al., 2015). 

Often risk is measured with volatility, which is the spread of a random walk variable’s 

different outcomes. In financial markets, volatility can be used as a measure to capture 

the aforementioned uncertainty. In other words, volatility is measured as the sample 

standard deviation. Sometimes volatility and thus risk can also be measured with 

variance. While variance simply is the square of standard deviation, the use of sample 

standard deviation is still preferred as it has the same measure unit as the mean, if for 

example, the mean is in euros, then the standard deviation would also have euros as its 

unit while variance would have euros squared as its measure (Poon, 2005). 

Poon (2005) highlights the importance and usefulness of volatility as the measure of 

risk even though he also notes that volatility is not a perfect measure of risk, as it only 

gives information about the spread of the distribution of returns but none on the shape 

of the distribution. The exception for this is a situation where the returns follow a 

normal distribution.  

While volatility should not be used as the sole measure for risk in a financial institution, 

it is still an important part of a great number of financial theories which makes volatility 

one of the most important measures in modern financial theory. Higher volatility leads 

to a larger variation of returns and thus higher risk (Poon, 2005). 

1.1 Volatility forecasting 

As volatility is a vital component of many financial theories, the topic has become 

vastly researched and of high interest to almost anyone operating within financial 

markets according to Figlewski (1997). For example, in option pricing with the basic 

Black & Scholes (1973) pricing formula, is the future volatility of the option the only 
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parameter that cannot be extracted directly from the market, so it must be forecasted 

somehow. Volatility forecasting became of significant interest to investors in the 1990s, 

as the maturities of financial instruments lengthened significantly. During the 1970s, 

common options had maturities of a few months while now the maturities of options 

can even reach over ten years. This brings the market volatility’s effect on the value of 

the option to a new level and thus makes the need for accurate volatility forecasts 

obvious (Figlewski, 1997). 

While historical volatility can be simply calculated from the historical data as the 

sample standard deviation, the calculation of future values for volatility is more 

challenging. A common way to forecast volatility is to simply extrapolate past volatility 

values into the future. While this is a simple and non-time-consuming method, it hardly 

makes accurate forecasts, which may be problematic for investors (Figlewski, 1997).  

According to Muzzioli (2010) the modern academic research regarding volatility 

forecasting is usually divided into two main lines: forecasting models using information 

from the derivatives markets and forecasting with models, that are based on financial 

time series data. While there are a great number of models representing both lines of 

research, this study compares the forecasting accuracy of implied volatility by the Black 

& Scholes (1973) option pricing model and the GARCH(1,1) model by Bollerslev 

(1986). 

1.2 Objective of the study 

The topic of volatility forecasting has been vastly researched in the past, but the results 

gained from the research are still not completely clear. The previous research has found 

both the GARCH model and implied volatility measures to outperform one another 

under different circumstances (see for example Canina & Figlewski, 1993; Christensen 

& Prabhala, 1998). 

As most of the research is from the 1990s and the early 2000s, it is necessary to 

compare the models under the most recent time of highly volatile market conditions. 

Uddin et al. (2021) found that during the Covid-19 pandemic, the market conditions 

were highly volatile, especially in developed markets such as the German stock market. 

It is yet to be determined whether volatility forecasting in highly volatile conditions still 

follows the previous findings from mostly more than 20 years ago. The recent 
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developments of the market with the time of high volatility present a great opportunity 

to test the volatility forecasting models and see whether the findings from previous 

literature still stand. 

The forecasts in this study are made for a German stock market index DAX (Deutschen 

Aktien IndeX). Following Muzzioli (2010), the DAX index is chosen for this study for 

two main reasons. First, the options are of European style, which is a necessity when 

using implied volatility by Black & Scholes (1973) and therefore the issues of early 

exercise are avoided in this study. Second, the DAX index is a capital-weighted index, 

that was made of 30 of the major German stocks until in September 2021 the index was 

expanded to follow 40 of the major German stocks. The index is adjusted for stock 

splits, dividends, and changes in capital. Thus the assumption that dividend payments 

do not affect the index value is made. According to Sorokina & Booth (2022), the 

options in the German stock market, such as the DAX index options are known to be 

highly liquid and accessible. Wallmeier & Hafner (2000) state that DAX options 

(ODAX) are ranked among the world’s most liquid index options.  

Frennberg & Hansson (1995) found that implied volatility is not an accurate measure of 

future volatility in smaller markets, such as Sweden. This makes the Frankfurt Stock 

Exchange and the DAX index a qualified base for forecasts with implied volatility and 

the GARCH model. 

In this study, the implied volatility is calculated for call options, as the option pricing 

model by Black & Scholes (1973) assumes that the volatility of an option is constant 

over the option’s lifetime. Thus the implied volatility of two options with the same 

lifetime should be the same (Äijö 2008). 

This study examines forecasts by two different volatility forecasting models during a 

five-year period from the beginning of 2019 until the end of 2023. To obtain 

information about the performance of the forecasting models during different market 

circumstances, the period is divided into two subperiods, which are the height of the 

Covid-19 pandemic and after the pandemic.  

The purpose of this study is to answer the following research question: Why is the 

implied volatility a better forecasting method for future volatility than the GARCH 

model? The study also aims to identify the differences between the two forecasts and to 
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see which one of them is the better estimator for the volatility of the German DAX 

index during the chosen sample period. 

The forecasting ability of the two models is compared by testing two hypotheses that are 

made based on previous studies presented in chapter two: 

Hypothesis 1: 

• H0: The implied volatility is able to outperform the GARCH(1,1) during both of 

the subperiods. 

• H1: The implied volatility is unable to outperform the GARCH(1,1) during 

either of the subperiods. 

Hypothesis 2: 

• H0: The forecasting performance of the models increases after a time of 

financial turbulence, such as the Covid-19 pandemic. 

• H1: The forecasting performance is not affected by the market turbulence caused 

by the Covid-19. 

1.3 Structure of the study 

This study begins by presenting the theoretical framework around the subject and by 

introducing the topic and goals of this study. In chapter two the implied volatility and 

the GARCH model are introduced and then explored more in-depth to gain a further 

understanding about how the models work and why they were chosen for this study. At 

the end of chapter two, relevant studies about similar topics to this study are presented. 

This section focuses on the findings of these studies as they can give an insight into 

what possible outcomes this study may have. Thus the hypotheses of this study are 

made based on these previous studies about volatility forecasting and the two chosen 

models.  

Chapter three focuses on the empirical methods used in this study. The chapter goes into 

the issues with estimating realized volatility, the issues with the models, and how the 

forecasts were made. The chapter also addresses the measures that are used to compare 

the two forecasting models. Chapter four then presents the findings of the study as well 
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as discusses descriptive statistics for the DAX index and the volatility forecasts. The 

chapter also goes into comparing the volatility models. Finally, in chapter five the 

conclusions and further thoughts about the subject are presented. The chapter also 

addresses ideas for further research and ideas to gain more informative results to find 

out more about the relation of the two models.  



12 

2 Theoretical background 

This study approaches volatility forecasting by choosing one model representing both of 

the lines found in academic research regarding volatility forecasting. (Muzzioli, 2010) 

The first model used in this paper is the Black-Scholes implied volatility, referred to as 

implied volatility. It is a byproduct of the popular option pricing model for European-

style options by Black & Scholes (1973). The model gives European-style options a 

price based on five different variables: the price of the option, the price of the 

underlying asset, the strike price, the time to maturity, the risk-free interest rate, and the 

future value of volatility. As all before mentioned information besides the future 

volatility can be observed from the market, it is possible to find the volatility that the 

other information indicates based on the pricing formula. 

Implied volatility is viewed as a market-based volatility forecast. Therefore, according 

to Poon (2005), it is widely considered as the superior way of forecasting volatility 

outperforming or matching the performance of forecasts generated with time series 

models. It makes use of more informative data than its financial time series 

counterparts.  

On the other hand, it is known that the implied volatility models require several 

assumptions to hold for the option theory to produce useful volatility estimations. The 

models also suffer from market price irregularities. Even with this in mind, the forecasts 

with implied volatility have been shown to make use of more informative data than the 

financial time series versions as the implied volatility represents the knowledge and 

understanding that the investors possess about the market and everything that may 

influence the option prices (Poon, 2005). 

The second model in this study is the GARCH model. The GARCH model was created 

by Bollerslev (1986) and in this study it represents the line of models that forecast 

volatility based on financial time series data. The GARCH was chosen as a competing 

forecast model for the implied volatility because Ederington & Guan (2005) found the 

GARCH model to be a better-performing model than more complex forecasting models 

based on financial time series data. 
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2.1 The Black-Scholes option pricing model 

Today The Black-Scholes option pricing model holds a position as a critical part of the 

option pricing theory. It has become widely used both academically and within the 

market (Figlewski, 2008) and has become generally viewed as one of the most used and 

successful models in finance (Rubinstein, 1994).  

While the pricing model is related closely to the prior models featured in literature, the 

model by Black & Scholes (1973) distinguishes itself by calculating the price of an 

option in a manner that ignores the investor’s risk preferences and rather calculates the 

price of an option based on information found from the market.  

It is also important to note that the option pricing model by Black & Scholes (1973) 

makes a number of restrictive assumptions about the market, and they see the market as 

having ideal conditions. The assumptions by Black & Scholes (1973), which are 

required for the model to stand are:  

• Underlying asset’s returns follow a random walk, and its volatility is constant. 

• Frictionless market conditions, there are no transaction costs, trading is 

continuous, and there is a possibility to borrow money at a risk-free rate. 

• The options are of European style, meaning that they can be exercised only at 

maturity. 

• There are no dividend payments before the maturity of the options. 

Black & Scholes (1973) proceed to demonstrate that following the assumptions, the 

price of the option in theory is solely reliant on the underlying asset’s initial price and  

known constant variables.  

Black & Scholes (1973) derived the option price from the no-arbitrage argument: the 

hedged portfolio created from a short position on the option and a long position on the 

underlying asset must return the risk-free rate. Under these assumptions, the pricing 

equation by Black & Scholes (1973) for European-style call options takes the following 

form: 
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where: 

𝜙(𝑑!) is the cumulative standard normal distribution for variable 𝑑!,  

𝑆 is the underlying asset’s spot price,  

𝐾 is the option’s strike price,  

𝑟 is the risk-free rate,  

σ is the underlying asset’s volatility until the date of expiration, or implied volatility, 

and 

𝑇 − 𝑡 is the time left until the option reaches maturity. 

For the model to produce volatility forecasts that are accurate, it is necessary to satisfy 

the assumptions as well as possible. Due to these assumptions, the model is not 

considered to be optimal or perfect, but rather to be a useful and widely used approach 

to volatility forecasting in academia and in practice. The main problem with the use of 

this model is that it assumes volatility to be non-stochastic, meaning that it assumes 

volatility to be unchanged from the issuance of an option until the option reaches 

maturity (Canina & Figlewski, 1993). 

2.2 The GARCH model 

The modeling of stochastic volatility was originated by Robert Engle (1982). Bollerslev 

(1986) defines stochastic volatility as a volatility that changes over time as a function of 

past errors. Engle designed the ARCH model and then Bollerslev (1986) further 

developed the model into a generalized version: GARCH.  

The GARCH model stands for Generalized AutoRegressive Conditional 

Heteroskedasticity. Heteroskedasticity means that variance and thus volatility vary over 

time, and are not constant. Conditionality means that the model makes the estimations 
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of volatility depending on its past values (Bollerslev, 1986). Autoregressive means that 

the estimation is based on its previous value and a stochastic term, Pinsky & Karlin 

(2010) define stochasticity as randomness. The model being generalized means that the 

lag structure of the model is much more flexible than the one for the ARCH model. 

Lags mean the number of previous values that are taken into account when calculating 

the new volatility value (Bollerslev, 1986). 

The GARCH(𝑝, 𝑞) model can be formulated as: 

𝜎'" = 𝜔 +:𝛼)𝜎'#)"
*

)+!

+:𝛽,𝑣'#,"
-

,+!

 

where: 

𝜎" is the value of volatility that the model forecasts for moment 𝑡,  

𝜔 is the white noise error term and it is assumed to be greater than zero,  

𝛼# and 𝛽# are coefficients determining weights for the variables 𝜎"$# and 𝑣"$% (𝛼, 𝛽 ∈

[0,1]),  

𝑣"$% is the volatility of the time series at the moment 𝑡 − 𝑗,  

In this study the GARCH (1,1) is used, which implies: 𝑝 = 𝑞 = 1 (Bollerslev, 1986). 

Ederington & Guan (2005) have criticized the GARCH model for giving too much 

weight on most recent volatility observations but nevertheless they found the model still 

gives a better estimate than other models. Even while keeping this in mind, Ederington 

& Guan (2005) note that the GARCH(1,1) model often tends to outperform more 

refined time series models. This is the reason for it being often used as a benchmark in 

comparing the volatility forecasting models. This is the main reason for choosing the 

GARCH(1,1) model as a comparison to the implied volatility in this paper. 

2.3 Comparisons in previous literature 

Studies from the 1990s comparing the forecasting performance of implied volatility and 

financial time series methods have come up with inconclusive and contradictive 

findings. Canina & Figlewski (1993) found the implied volatility to be a poor forecast 

for future volatility of the S&P 100 index. The study was made using data from the S&P 

100 index options, which at the time were the most liquid options in the United States. 

Their study found the correlation between implied volatility calculated with the Black-



16 

Scholes option pricing model and the realized volatility to be next to nonexistent. They 

also found that a simple historical volatility measure outperformed implied volatility in 

predicting future volatility, but the historical volatility measure was not able to 

accurately forecast future volatility either.  

Day & Lewis (1992) compared the forecasting performance of estimations for future 

volatility made with implied volatility, GARCH and EGARCH (exponential GARCH). 

The forecasts were calculated for the S&P 100 index and call options on the S&P 100. 

They found that implied volatility forecasts may contain more information than the 

forecasts by GARCH and EGARCH models. As the result of their study, Day and 

Lewis refrained from proclaiming a ranking for the models and found that none of the 

models is completely able to characterize the market volatility. 

Lamoureux & Lastrapes (1993) encountered ambiguous results when comparing the 

implied volatility to the GARCH model’s forecast. The study was done by forecasting 

volatility for stock options of some of the world’s largest companies at the time of the 

study. They refrained from making definitive conclusions about the predictive ability of 

implied volatility compared to forecasts generated with GARCH models. 

Despite the mixed results from research during the 1990s, in further studies, which have 

sought to address methodological shortcomings of earlier works, it is indicated that 

forecasts made with implied volatility tend to outperform time series forecasts.  

Christensen & Prabhala (1998) studied the implied volatility of call options for the S&P 

100 index. They found that implied volatility outperforms forecasts made based on past 

volatility, one of the used models to forecast volatility based on historical data was 

GARCH(1,1). Their analysis found an interesting phenomenon, as the forecasting 

performance of implied volatility improved significantly after the stock market crash of 

year 1987.  

Similar results to support the superiority of implied volatility’s forecasting performance 

were yielded in a study by Harikumar et al. (2004). They examined the performance of 

the implied volatility and different types of GARCH models one of which was the 

GARCH(1,1). The analysis was made by examining currency call options data from, the 

Philadelphia Stock Exchange for British Pounds, Swiss Francs, and Japanese Yen. Their 

study found the implied volatility to outperform GARCH models.  
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Poon & Granger (2005) note that implied volatility is widely documented to produce 

biased forecasts for future volatility. The model tends to under forecast lower levels of 

volatility and it also tends to over forecast higher levels of volatility. On average 

volatility forecasts made with implied volatility tend to yield volatility forecasts with a 

higher level of volatility than the realized volatility. Even with this in mind, Poon & 

Granger (2005) still state that implied volatility is a better way to forecast volatility than 

models based on historical data. 
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3 Empirical methodology 

This chapter discusses the issues related to empirical methodology. The chapter covers 

the estimation of the realized volatility and the evaluation criteria for the forecasts. The 

made decisions considering the data and the methods are significant, as they may have 

considerable effects on the results of this study. 

3.1 Estimation of the realized volatility 

As already established in this study, the volatility of a financial asset can be calculated 

as the sample standard deviation of the asset’s returns: 

𝜎> = ?
1

𝑇 − 1
:(𝑟' − 𝜇)"
&

'+!

 

 

where:  

𝑟" is the daily return on day 𝑡 and  

𝜇 is the average return over the 𝑇-day period (Poon, 2005). 

The accurate estimation of realized volatility can still be challenging as the estimates are 

subject to noise. As the realized volatility in this study is a reference value to which the 

volatility forecasts are compared, it is necessary to calculate it as accurately as possible 

to obtain results that are informative and accurate (Poon, 2005). 

The issue with approaching the realized volatility as the standard deviation of the 

returns is that the sample mean may not provide enough information about the true 

mean of the population unless the sample period is extensive enough. Intuitively one 

could think that taking a longer historical sample would correct this problem. While 

including older data leads to a larger sample size of the population, this might not make 

the information about the state of volatility more accurate. As volatility is calculated by 

comparing the value of the daily return to the mean return, the possible misinformation 

the mean value holds has a big impact on the estimation of the realized volatility. 

Enhancing the accuracy of volatility estimation often involves an alternative estimation 

of the theoretical mean and utilizing it in the place of the sample mean. It is a common 
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practice to enforce a theoretical zero mean and use the square root of average squared 

returns as the estimate for volatility (Poon, 2005; Figlewski, 1997).  

Thus, the formula to calculate realized volatility in this study takes the following form, 

𝜎; = <∑ 𝑟"&'
"()
𝑇  

 

where: 

𝑟" is the return at time 𝑡, and  

𝑇 is the length of the sample period (Poon, 2005). 

 

Since volatility does not remain constant over time, it is necessary to take this into 

account when calculating the values of weekly realized volatility. As the volatility of an 

asset varies over time, it is necessary to use data with intervals that are as short as 

possible. In this study the realized volatility of the DAX index is calculated based on the 

daily value of the DAX index and then the daily volatility values are converted into 

weekly values by multiplying with the square root of 5 as there are 5 trading days in a 

regular trading week (Poon, 2005). 

3.2 Forecasting with Implied volatility 

The volatility forecasting with implied volatility is made following Jiang & Tian (2005). 

In this study, this forecast is made by simulating a scenario where an investor forecasts 

volatility for the following week by extracting the implied volatility of an option, using 

the option pricing model by Black & Scholes (1973). 

The source of the options data used in this study is LSEG Workspace from where 

monthly data for DAX index options (ODAX) with maturities from the 19th of January 

2019 until the 24th of January 2024 were gathered to forecast volatility for the chosen 

period 2019–2023. Options for the DAX index are traded in the EUREX derivatives 

exchange. 

To determine the options for the calculation of implied volatility, this study follows 

Jiang & Tian (2005), where options with seven days or less until maturity are excluded 

from the sample, as these options are more vulnerable to market microstructure noise 
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than options with more time until maturity. Besides the option with less than a week 

until expiration, the options that are nearest to maturity are used to calculate the implied 

volatility. The options chosen for the calculation will be near-the-money call options, 

this specification is also made following Jiang & Tian (2005) as near-the-money options 

are more liquid, and thus the prices more informative than with options that are not 

near-the-money. Specifically, the nearest-to-money options have been selected for this 

study.  

The usage of one-month Euribor rate as a proxy for the risk-free rate was made 

following Muzzioli (2010). As the LSEG Workspace at TSE FinanceLab does not have 

a license for Euribor data, the data was collected from Suomen Pankki 

(https://www.suomenpankki.fi/fi/Tilastot/korot/kuviot/korot_kuviot/euriborkorot_pv_ch

rt_fi/), as they provide daily data for the annual one-month Euribor rate on their website. 

The price of the underlying asset for a DAX index option is the value of the DAX index 

itself. The daily values of the DAX index from January 1, 2019, to December 31, 2023, 

were gathered from LSEG Workspace. 

As the Black & Scholes (1973) gives the implied volatility values as annual volatilities, 

they must be converted into weekly values, to make comparisons with the realized 

volatility and the volatilities forecasted with the GARCH(1,1). This is done by 

following the same method as earlier in this chapter dividing the annual implied 

volatility value by the square root of 52 as there are 52 weeks in a year. 

3.3 Forecasting with GARCH(1,1) 

Out-of-sample testing is widely considered to be the “gold standard” of volatility 

forecasting with financial time series models. Conducting out-of-sample forecasts gives 

much more information about the model’s predictive ability than estimating the model’s 

parameters with historical data to see if a model could fit the realized volatility data. As 

in practice the forecasts are made before there is any realized data from the period, in 

this study the forecasts will be made as they would have been done when forecasting the 

future (Sahiner, 2022). 

Out-of-sample forecasts for volatility with the GARCH model can be made by using 

two different methods which are a recursive forecast and a rolling window forecast. In 

this study, the out-of-sample forecasts with GARCH(1,1) are generated with a recursive 
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method which means that every GARCH(1,1) forecast is based on a sample period 

where the model is fitted to the sample data and then the model makes an out-of-sample 

forecast for the decided forecasting period (Sahiner, 2022). 

In this study the out-of-sample forecasts are generated for every financial quarter based 

on the realized volatility data from the previous five years. This simulates a situation 

where an investor wants to forecast the weekly volatility of the DAX index for next the 

financial quarter one day at a time. The sample used in this study for fitting the model to 

make a forecast is the logarithmic returns of the DAX index from the previous five 

years. The method was chosen following Huang (2011). 

The forecasts with GARCH(1,1) in this study are made with EViews following the 

instructions and settings by Aljandali & Tatahi (2018). 

3.4 Evaluation of the forecasts 

To obtain more informative results about the performance of the two forecasting 

models, the examined period of 2019–2023 is divided into two subperiods. The first 

period is the time during the height of the Covid-19 pandemic 2019–2021 and the 

second is after the height of the pandemic 2022–2023. The division into subperiods is 

made, to obtain information about the forecasting performance of the models during 

different market conditions: a market that is highly volatile and a market after a time of 

high volatility.  

The forecasting performance of the two models is evaluated with three different 

statistical measures, chosen following Ching & Siok (2013): mean squared error, root 

mean squared error and mean absolute percentage error. Ching & Siok (2013) note that 

when evaluating the performance of forecasting models in practice, it is rare that one 

model dominates the other with respect to all evaluation measures. This is commonly 

solved by comparing the average performance across all chosen evaluation measures. 

While none of the models alone are a perfect indicator for the performance of the 

forecasting model as a whole, with all of the three used at the same time, the average 

result of the comparison can give a good indication on the models’ ability to forecast 

volatility during the chosen period in comparison to one another (Ching & Siok, 2013). 

The mean squared error or MSE is often applied in studies comparing forecasting 

performance. It has a tendency to more harshly penalize larger forecasting errors than 
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other commonly used measures of error, thus it is considered to be the most appropriate 

measure to determine which models avoid making large errors. The MSE is written as, 

𝑀𝑆𝐸 =@
𝑒"&
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!

"

 

𝑒" = 𝑦" − 𝑦;" ,	 
 

where: 

 𝑦" is the actual value at moment 𝑡, and 	

𝑦;"  is the value of the estimation at moment of time 𝑡 (Ching & Siok, 2013). 

The root mean squared error or RMSE is the measure that is favored the most among 

practitioners and academics. The RMSE is written as, 
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where the variables are the same as for MSE. Just like the MSE the RMSE gives equal 

weight to all the errors, thus the errors that happen at different times during the forecast 

are weighted equally (Ching & Siok, 2013). 

Mean absolute percentage error or MAPE is written as, 

𝑀𝐴𝑃𝐸 =@
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where, 𝑛 is the number of data points in the sample and K*!
+!
K ∙ 100 is the absolute 

percentage error of the forecasted values. The variables are the same as for MSE (Ching 

& Siok, 2013). 
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4 Empirical results 

In this chapter, the empirical findings of the study are presented. At the beginning of 

this chapter, the performance of the DAX index between 2019 and 2023 is discussed as 

well as a graphical illustration of the DAX index volatility forecasts and realized 

volatility is presented. The second part of this chapter is reserved for the analysis of the 

forecasting performance of the two competing models. 

4.1 Descriptive statistics 

Figure 1 shows the weekly closing values of the DAX index between 2019 and 2023. 

The graph illustrates that the DAX index’s value is considerably affected by the highly 

volatile market conditions during the height of the Covid-19 pandemic in the spring of 

2020. During the chosen period the DAX index reached its highest value towards the 

end of the period in December of 2023 and the lowest values are found during the 

height of the pandemic in March and April of 2020. To conclude, the chosen sample 

period consists of times with high volatility, which could possibly influence the 

performance of the two forecasting models. 

 
Figure 1 The value of the DAX index 

 

Table 1 presents descriptive statistics for the DAX index (𝑛 = 261) and the weekly 

logarithmic returns during the sample period. The mean of the weekly returns is near 
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zero but slightly positive as well as the median weekly return. This can also be seen in 

figure 1, where the DAX index’s value is clearly higher at the end of the sample period 

than at the beginning of the period. The lowest weekly return of −0,22330	was 

observed on March 14, 2019, during the earlier stages of the Covid-19 pandemic, while 

the highest return value was observed four weeks later March 11, 2019. 

 

Table 1 Descriptive statistics of the DAX index 

 Value of the index Weekly return 

Mean 13843,22 0,002 

Median 13786,29 0,003 

Max 16759,22 0,104 

Min 8928,5 –0,223 

Standard deviation 1693,69 0,031 
 

Table 2 provides descriptive statistics of the realized volatility, implied volatility, and 

the volatility forecasted with GARCH(1,1) for the whole sample period from 2019–

2023. According to the means and medians, both forecasts are positively biased and 

seem to have forecasted volatility values that are larger than the realized volatility.  

While both forecasts seem to be positively biased, according to the mean and median in 

this study the implied volatility gives the investor even more positively biased results 

than the GARCH(1,1). The maximum value given by the GARCH(1,1) is very similar 

to the realized volatility, while both the maximum and minimum values of the implied 

volatility are significantly different from realized volatility values. 

Table 2 Descriptive statistics of the volatility forecasts 

 Realized Volatility Implied volatility GARCH(1,1) 

Mean 0,019 0,029 0,027 

Median 0,016 0,025 0,023 

Min 0,002 0,0000001 0,013 

Max 0,107 0,113 0,107 

Standard deviation 0,013 0,017 0,013 
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4.2 Results of the forecast performance analysis 

Figure 2 illustrates the results given by the two different volatility forecasting models 

and the realized volatility. In the graph, it seems that the implied volatility especially 

seems to over forecast higher levels of volatility. This is supported by findings in table 2 

as the average value of the implied volatility is higher than that of realized volatility. 

The spike in volatility during 2020 is also easily identified from the graph and it seems 

that implied volatility forecasts high volatility slightly earlier than it actually realized. 

 

 

 
Figure 2 Forecasts and realized volatility 

 

Table 3 provides the error statistics to compare the forecasts made with implied 

volatility and GARCH(1,1) for the first subperiod (𝑛 = 157). The forecast made with 

GARCH(1,1) outperforms the forecast made with implied volatility over all of the three 

error statistics. According to these three error statistics, during the first subperiod the 

GARCH(1,1) was able to perform superiorly in comparison to the implied volatility. 
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Table 3 Forecast Error Statistics for the first subperiod 

Model: 
MSE RMSE MAPE 

Level Rank Level Rank Level Rank 

Implied 
Volatility 0,0003 2nd 0,018 2nd 101,162 2nd 

GARCH(1,1) 0,0002 1st 0,013 1st 86,292 1st 
 

In table 4 the error statistics for the second subperiod are provided (𝑛 = 104). The 

forecast made with GARCH(1,1) is able to outperform the implied volatility also during 

the second subperiod. According to the error measures chosen in this study, the used 

GARCH(1,1) method is a forecast in comparison to the used implied volatility method. 

 

Table 4 Forecast Error Statistics for the second subperiod 

Model: 
MSE RMSE MAPE 

Level Rank Level Rank Level Rank 

Implied 
Volatility 
 

0,0003 2nd 0,017 2nd 123,767 2nd 

GARCH(1,1) 
 

0,0001 1st 0,010 1st 75,286 1st 

 

In table 5 are the results for the comparison of the models to themselves during the two 

different subperiods. The values are represented as the second subperiod value 

subtracted by the second subperiod value. This means that a positive value implicates 

better performance during the first subperiod and vice versa. The GARCH(1,1) is able 

to outperform the first subperiod forecast in every error category during the second 

subperiod. Meanwhile the implied volatility forecast is able to outperform the first 

subperiod forecast in two of the three categories: MSE and RMSE but in the third 

category MAPE, the first subperiod forecast is able to outperform the forecast made for 

the second subperiod. 

Table 5 Comparison of the model performance during both subperiods 

Model: MSE RMSE MAPE 

Implied Volatility –0,00002 –0,0005 9,007 

GARCH(1,1) –0,00002 –0,001 –3,548 
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5 Conclusions and Summary 

The objective of this study was to provide insight into the comparison of volatility 

forecasts made with the GARCH(1,1) model and implied volatility. The first hypothesis 

presented in this study was that the implied volatility would be able to outperform the 

GARCH(1,1) during both of the subperiods. This hypothesis was made based on 

previous studies examining the differences between volatility forecasting models based 

on information from the derivatives markets and models based on financial time series 

data (see, for example Christensen & Prabhala, 1998; Harikumar et al., 2004; Poon & 

Granger 2005). 

The results yielded in this study do not support the first hypotheses and thus supports 

rejecting the null hypothesis “The implied volatility is able to outperform the 

GARCH(1,1) during both of the subperiods” and accepting the alternative hypothesis 

“The implied volatility is unable to outperform the GARCH(1,1) during either of the 

subperiods”. Thus resulting in the conclusion that in this study, measuring forecasting 

performance with the MSE, RMSE and MAPE the GARCH(1,1) by Bollerslev (1986) is 

actually the superior forecasting method over both of the two subperiods in comparison 

to the implied volatility by Black & Scholes (1973). 

The second hypothesis made in this study is that the forecasting performance of the two 

models improves after a time of financial turbulence and a time of higher volatility such 

as the market conditions were between the two subperiods. This hypothesis was made 

based on the findings of Christensen & Prabhala (1998) that are presented in chapter 

two of this study.  

For the GARCH(1,1) the results of this study support accepting the null hypothesis 

“The forecasting performance of the models increases after a time of financial 

turbulence, such as the Covid-19 pandemic”. This is supported because all of the three 

chosen error metrics show that the forecast during the second subperiod has less error 

than the forecast during the first subperiod. For the forecast made with implied 

volatility, the results are not quite as clear as with the GARCH(1,1). The forecast with 

implied volatility for the second subperiod is able to outperform the first subperiod 

when measuring error with MSE and RMSE, but when measuring with MAPE, the 

results are the opposite as the first subperiod forecast has a lower MAPE value than the 
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second subperiod forecast. In this, the choice comes down to the investor’s preferences. 

If the investor prefers a model where the ratio of the forecasts that are made are close to 

each other, then they would be inclined to prefer the model that has the lower MAPE 

value. If the investor prefers the model to just have less error, then they would be 

inclined to prefer the model where the MSE and RMSE values are lower. 

As previously mentioned in chapter three, this study determines the performance of the 

model as an average across all of the error metrics. As two of the three error metrics 

suggest so, the implied volatility makes a more accurate forecast during the second 

subperiod than during the first subperiod and the null hypothesis “The forecasting 

performance of the models increases after a time of financial turbulence, such as the 

Covid-19 pandemic”. 

In this study the implied volatility could not outperform the GARCH(1,1) even while 

that was expected in this study based on previous studies. This implies the fact that as 

the implied volatility is based on investors’ expectations, the investors were unable to 

make accurate predictions and the turbulent market conditions caused the expectations 

to not be accurate. In this situation a financial time series model such as the 

GARCH(1,1) that makes predictions based on historical data shows that it can still be a 

useful tool to an investor for volatility forecasting. 

The main problem behind making volatility forecasts with implied volatility was 

highlighted by Canina & Figlewski (1993) to be the fact that it assumes the volatility 

over an option’s lifetime to be non-stochastic. This assumption is faulty as can be seen 

by calculating weekly volatility for the DAX index during the sample period. A faulty 

assumption for the model to hold implies that the results produced by the model may 

also be faulty. This can result in a situation such as this study found, where the volatility 

forecast made with implied volatility is not as accurate as a forecast made with another 

model such as GARCH(1,1). 

Another possible reason for why the GARCH model was able to outperform implied 

volatility is due to the fact noted by Ederington & Guan (2005), that the GARCH(1,1) 

gives so much weight on recent volatility observations. This could possibly create a 

scenario where the unexpectedly functioning market can be accurately forecasting by 

closely following the previous few volatility values. Though this is a theory and it 

should be studied by comparing forecasts made by GARCH models with different lag 
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structures to see how the weight put on different lag periods affects the forecasting 

ability of the models. 

Even though this study found evidence that supports the GARCH(1,1) being a superior 

volatility forecasting model in comparison to implied volatility, it still is not appropriate 

to declare it as a superior model in comparison to the implied volatility in all situations 

and samples. The implied volatility has been shown extensively to outperform the 

GARCH(1,1) and thus it still remains a sufficient tool for volatility forecasting. (see for 

example Christensen & Prabhala, 1998; Harikumar et al., 2004; Poon & Granger, 2005) 

Further research on this topic still seems necessary as studies have shown contradicting 

results. To gain more understanding about the forecasting ability of the two models in 

comparison to each other should the future studies include a longer sample period than 

this study. This is to ensure that the results of future studies can have even more reliable 

results that this study. It is also necessary to study different markets and not only the 

German market. A study to gain further insight into the topic should research most of 

the worlds largest markets. If a study with longer sample period and with more markets 

included yields similar results to this one, would it then be relevant to discuss whether 

the GARCH(1,1) has for some reason overtaken implied volatility in forecasting ability. 

Instead of declaring clear superiority of one single model, it would be more informative 

for an investor to make volatility forecasts using multiple different models and 

comparing the forecasts to be able to understand why such forecasts were made and 

what assumptions the models make of the financial markets. This way an investor may 

gain more insight into the possible future volatility values. It is still important to keep in 

mind the fact that this study noted in chapter one: future volatility is uncertain and based 

on chance, meaning that perfectly predicting it is difficult if not impossible. An investor 

can only make forecasts and compare the forecasts to one another to see their compared 

forecasting performance. 

To summarize, this study focuses on volatility forecasting with two competing models: 

the GARCH(1,1) by Bollerslev (1986) and implied volatility by Black & Scholes 

(1973). The two models represent the two main lines of volatility forecasting that are 

recognized in literature. The expectation based on previous literature was that the 

implied volatility should produce more accurate volatility forecasts than the 

GARCH(1,1) model and the research question was made based on that assumption as 
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“Why is the implied volatility a better forecasting method for future volatility than the 

GARCH model”. Surprisingly the study found results that oppose the made 

expectations as the GARCH(1,1) model was able to outperform implied volatility’s 

forecasting performance. Based on previous literature, the reasons for this could be that 

the investors’ expectations on the future volatility were inaccurate, the faulty 

assumption that volatility is non-stochastic affected the forecast enough for the 

GARCH(1,1) to outperform it or that the GARCH(1,1) was able to be reactive enough 

because of its lag structure to make more accurate forecasts in a quickly changing 

market to outperform implied volatility. 



31 
 

References 

Aljandali, Abdulkader – Tatahi, Motasam (2018) Modelling Volatility in Finance and 

Economics: ARCH, GARCH and EGARCH Models. Economic modelling with 

EViews, 143–195. 

Black, Fischer – Scholes, Myron (1973) The Pricing of Options and Corporate 

Liabilities. Journal of Political Economy, Vol. 81 (3), 637–654.  

Bollerslev, Tim (1986) Generalized autoregressive conditional heteroskedasticity. 

Journal of Econometrics, Vol. 31 (3), 307–327. 

Canina, Linda – Figlewski, Stephen (1993) The Informational Content of Implied 

Volatility. The Review of Financial Studies, Vol. 6 (3), 659–681.  

Ching, Mun L. – Siok, Kun S. (2013) Comparing the performances of GARCH-type 

models in capturing the stock market volatility in Malaysia. Procedia Economics 

and Finance, Vol. 5, 478–487. 

Christensen, Bent J. – Prabhala, Nagpurnanand (1998) The relation between implied 

and realized volatility. Journal of Financial Economics, Vol.50 (2), 125–150.  

Day, Theodore E. – Lewis, Craig M. (1992) Stock Market Volatility and the 

Information Content of Stock Index Options. Journal of Econometrics, Vol. 52, 

267–287. 

Ederington, Louis H. – Guan, Wei (2005) Forecasting Volatility. Journal of Futures 

Markets, Vol. 25 (5), 465–490. 

Engle, Robert F (1982) Autoregressive Conditional Heteroscedasticity with Estimates of 

the Variance of United Kingdom Inflation. Econometrica, Vol. 50 (4), 987–

1007. 

Figlewski, Stephen (1997) Forecasting Volatility. Financial Markets, Institutions & 

Instruments, Vol 6 (1), 1–88. 

Figlewski, Stephen (2008) Estimating the Implied Risk Neutral Density for the U.S. 

Market Portfolio. Volatility and Time Series Econometrics: Essays in Honor of 

Robert F. Engle, eds. T. Bollerslev – J.R. Russell – M. Watson. Oxford 

University Press, Oxford, England.  

Frennberg, Per – Hansson, Björn (1995) An Evaluation of Alternative Models for 

Predicting Stock Volatility: Evidence from a Small Stock Market. Journal of 

International Financial Markets, Institutions and Money, Vol. 5, 117–134. 



32 

Harikumar, Sankaran – De Boyrie, Maria E. – Pak, Simon J. (2004) Evaluation of 

Black-Scholes and GARCH models using currency call options data. Review of 

quantitative finance and accounting, Vol. 23 (4), 299–312. 

Huang, Kun (2011) Modelling Volatility of S&P 500 Index Daily Returns: A 

comparison between model based forecasts and implied volatility. Hanken 

School of Economics. 

Jiang, J.J. – Tian, Y.S. (2005) The Model-Free Implied Volatility and Its Information 

Content. The Review of Financial Studies, Vol. 18 (4), 1305–1342. 

Lamoureux, Christopher G. – Lastrapes, William D. (1993) Forecasting Stock Return 

Variance: Toward an Understanding on Stochastic Implied Volatilities. The 

Review of Financial Studies, Vol. 6 (2), 293–326.  

McNeil, Alexander J. – Frey, Rüdiger – Embrechts, Paul (2015) Quantitative risk 

management: concepts, techniques and tools. Revised edition. Princeton: 

Princeton University Press. 

Mohammadi, Mohammad (2016) Prediction of α-stable GARCH and ARMA-GARCH-

M models. Journal of forecasting, Vol. 36 (7), 859–866.  

Muzzioli, Silvia (2010) Option-based forecasts of volatility: an empirical study in the 

DAX-index options market. The European Journal of Finance, Vol. 16 (6), 561–

586. 

Pinsky, Mark A. – Karlin Samuel (2010) An introduction to stochastic modeling. 

Academic Press. 

Poon, Ser-Huang (2005) A practical guide to forecasting financial market volatility. 

John Wiley & Sons, Chichester, England. 

Poon, Ser-Huang. & Granger, Clive (2005). Practical issues in forecasting volatility. 

Financial Analysts Journal, Vol. 61 (1), 4–556. 

Rubinstein, Mark (1994) Implied Binomial Trees. Journal of Finance, Vol. 69 (3), 771–

818.  

Sahiner, Mehmet (2022) Forecasting Volatility in Asian Financial Markets: Evidence 

from Recursive and Rolling Window Methods. SN Business & Economics, Vol. 

2, (10) 157–157. 

Sorokina, Nonna Y. – Booth, David E. (2022) Does liquidity matter when crisis is 

brewing? Equity returns and intraday liquidity in DAX futures market. Journal 

of Accounting and Finance, Vol. 22 (1) 116–132. 



33 
 

Uddin, Moshfique – Chowdhury, Anup – Anderson, Keith – Chaudhuri, Kausik (2021) 

The effect of COVID – 19 pandemic on global stock market volatility: Can 

economic strength help to manage the uncertainty? Journal of Business 

Research, Vol. 128, 31–44. 

Wallmeier, Martin – Hafner, Reinhold (2000) The Dynamics of DAX Implied 

Volatilities. University of Augsburg Working Paper. 

Äijö, Janne (2008) Implied volatility term structure linkages between VDAX, VSMI 

and VSTOXX volatility indices. Global Finance Journal, Vol. 18 (3), 290–302. 
 


