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Creating software for robots is difficult because of the sheer amount of code required. The code needs 

to encompass everything from drivers to the actual functional program. This is why a group of students 

decided to create a new robotics middleware called Robot Operating System (ROS). The goal of ROS 

was to separate the program from the robot specific operating system to make the development process 

easier and more standardized. In this thesis we will explore the different ROS versions, as well as the 

main working principles of ROS including nodes and their communication. We’ll also explore the 

iRobot Create® 3 educational robot through a case study and develop a simple navigation program for 

it. Additionally, we’ll conduct an experiment with the Create® 3 to measure the responsivity of its infra-

red sensors and find a function to convert the output to linear using regression. 
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1 Introduction 

Every robot must have a software. Whether it's a robot vacuum or a self-driving car, they all 

require code to function. Developing software for these robots presents significant challenges 

due to their complexity and interaction with the real world. Therefore, the software must be 

resilient and capable of managing numerous variables encountered in the robot’s 

environment. 

Since robots can vary greatly due to different use cases, it is impractical to try to use a 

universal software with all of them. This might lead to the conclusion that we should create 

unique software for every robot, but this approach lacks efficiency due to the extensive 

amount of code required. The software must encompass everything from drivers to 

communication protocols and intelligent decision-making processes. Also, since the required 

breadth of expertise to make efficient software is so vast, the architecture should enable easy 

co-operation between researchers [1]. 

Given these challenges, it is not feasible to develop an entire operating system from scratch. 

Hence, a group of students from Silicon Valley opted to create a new open-source robotics 

development middleware known as the "Robot Operating System" (ROS) [2]. This system 

allows developers to concentrate on the development rather than the fundamental aspects 

common to different types of robots. 

In this thesis, we get to know the working principles of ROS as well as the different versions 

that are out there. The second part is a case study, in which I will describe the installation 

process of Linux and ROS 2 as well as give a quick overview of iRobot’s Create® 3 

educational robot. Lastly, there is an example application that I wrote for the Create® 3 with 

C++ and ROS 2 Galactic Geochelone. 
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2 The Robot Operating System 

2.1 Overview of ROS 

2.1.1 What is a robotics middleware? 

A robotics middleware is an abstraction layer that sits between the user applications and the 

operating system of the robot [3]. Illustration of this can be seen in figure 1. Middleware’s 

primary function is to equip developers with an array of tools, including libraries, drivers, and 

monitoring tools, to assist the development process. For example, within these libraries, 

developers can access pre-existing and thoroughly tested functionalities such as path planning 

algorithms or computer vision algorithms [4]. Similarly, monitoring tools encompass various 

data visualization and simulation software, aimed at enhancing development efficiency and 

speed. Standardized algorithms play a pivotal role, enabling collaborative development 

among multiple engineers simultaneously. 

Figure 1: Representation of software layers in a Robot. [3] 

 

However, ROS isn't the first robotics middleware to emerge. Previous attempts existed but 

failed to transcend the confines of the lab due to several reasons. One significant obstacle was 

the intertwining of operational code with the middleware, rendering the extraction of the 

middleware impractical upon robot completion [2]. Additionally, some of these predecessors 

concealed their source code, thereby hindering other developers' ability to modify the 

software effectively. In contrast, ROS operates on an open-source model, making its source 

code freely accessible for anyone to view and improve upon. This open approach has 

cultivated a vibrant community around ROS, launching it to the forefront as the standard in 

robotics development that we recognize today. 
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2.1.2 ROS versions 

It is important to note that even though the acronym “ROS” is used a lot in this paper, there 

are actually two different versions of ROS: ROS 1 and ROS 2. These two versions have some 

major architectural and technical differences, but regarding this paper, their working principle 

is pretty much the same, so I’ll just use ROS to describe both of them. Regardless, I’ll now 

list some of the key differences between the two. 

ROS 1 is the original Robot Operating System which development started at Willow Garage 

2007 [5]. During the development, the main point was to create something standardized so 

that different developers around the world could experiment and improve upon each other’s 

work. The main point was to create something universal that would make robot development 

easier and more accessible for researchers. Because of this the performance of the system 

wasn’t the main priority, which led to some problems when trying to adopt it to commercial 

use cases [6]. 

For commercial use, the software must satisfy real-time run requirements. These requirements 

include, for example, certain security, fault tolerance, and process synchronization 

specifications that ROS 1 doesn’t fulfil [7]. Also since the real-time embedded systems 

weren’t the focus when developing ROS 1, the system ended up being quite resource 

demanding (e.g., CPU, memory, network bandwidth, threads, and cores) [7]. If this kind of 

inefficient software were to be used in commercial robots, the robots would need way too 

powerful hardware, which would lead to unnecessary costs and energy usage. 

Hence the Robot Operating System 2 (ROS 2) was born. ROS 2 was announced at a ROS 

developer conference “ROSCon” in 2014 [8]. ROS 2 was built from ground up to address the 

previously mentioned issues of its predecessor. One of the biggest changes was to move from 

ROS 1’s proprietary data transport system to Data Distribution Service (DDS [9]), which is an 

open communication standard [10]. DDS enables ROS 2 to have the best-in-class security 

features as well as robustness in multirobot applications and non-ideal networking 

environments [9].  

Second big change was to get rid of ROS 1’s Master node system. All ROS applications are 

constructed using nodes, a concept that will be further explained later in this paper. In ROS 1 

all communications between these nodes are handled by the master node, which leads to a 

major security vulnerability, since if this process is compromised, the whole system will be. 
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Also, the system isn’t very resilient when it has this kind of single point of failure. Because of 

this, ROS 2 moved from the Master node system to a truly peer-to-peer topology, where all 

the nodes are equal, and the DDS handles the communication. [7] 

Third main improvement of ROS 2 was the increased number of supported operating systems. 

While ROS 1 only supports Linux, to make it more widely available, the developers expanded 

ROS 2 to support Windows, Mac OS and RTOS in addition to Linux. [7] Visualization of the 

main differences between ROS 1 and ROS 2 can be seen in figure 2. 

ROS 2 also received some major performance improvements, which makes it possible to 

deploy on a standalone robot platform. Due to these changes, ROS 2 is now becoming the 

industry standard used and further developed for commercial applications. [7] 

Figure 2: ROS 1/ROS 2 architecture. [7] 

 

2.1.3 ROS Distributions 

In addition to these two main versions of ROS, the versions are further split into distributions 

or “distros”. Distros are a collection of libraries that have been verified to work together. This 

also includes the versions of the libraries. If some libraries were to be updated, they wouldn’t 

necessarily work anymore with the other libraries of the distribution. For this reason, the 

libraries can’t be modified (besides from some bug fixing) after the distro has been published 

[11]. If you want to get a newer version of some library, you need to wait for it to be available 

in a new ROS distribution. 
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As of today, there have been thirteen distributions of ROS 1, with only one, "Noetic 

Ninjemys," still receiving support [11]. Noetic Ninjemys’s support will end in May of 2025 

which will mark the end of the support of ROS 1. 

When new distros are published, the old one’s support doesn’t end immediately. This gives 

developers more time and flexibility when designing their software. The supported distros can 

be found from the ROS 2’s official website [12]. For ROS 2, there are usually two supported 

versions at the same time. There is one “long-term support” (LTS) version, which will be 

maintained for multiple years, and another version which will be maintained for around a 

year. 

2.2 Working principle of ROS 

2.2.1 ROS nodes 

When ROS was developed, one of the main design philosophies was to build a peer-to-peer 

topology using nodes [1]. These nodes are the fundamental building blocks of any ROS 

program. The word “node” is used to describe one computational unit with usually one 

specific function. The basic idea is to split the required processes into small individual 

components, which then can communicate with each other. The concept of nodes is an 

essential way of organizing the software, which helps developers break down complex 

systems into more manageable sections [6]. 

How would you structure a program using nodes? Imagine you have a basic robot equipped 

with wheels and a camera, and you want it to identify and track an object. Instead of writing a 

single lengthy piece of software, you would break it down into multiple nodes, each serving a 

specific purpose. 

First, you'd create a node to manage the camera, which communicates with the camera's 

hardware and retrieves the data from it. This data stream is then forwarded to an image 

recognition node, responsible for processing the image and attempting to identify the desired 

object within it. Once the object is recognized, the image recognition node can transmit its 

coordinates to a navigation node, which translates them into usable data for real-world 

location calculation. 
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Subsequently, the navigation node calculates the necessary movement commands and 

forwards them to a wheel control node, which controls the robot's wheels. Finally, the robot 

executes the movement based on these commands, effectively tracking the identified object. 

Figure 3: Computing graph of the example’s object tracking robot. 

 

With these nodes the development is easier and debugging more efficient compared to one 

single program, since you can test the nodes individually. This becomes especially apparent 

when advancing to bigger systems where the scale of complexity is much greater. If you 

didn’t have this modular framework, you would need all your components working before 

you could test them. With this approach, you can test every component individually reducing 

the number of variables affecting the program. 

Dividing the program into nodes makes it also natural to share the workload across multiple 

developers. Since the nodes are all their own individual complete systems, making changes to 

one doesn’t affect the other. Other benefit of the nodes being complete systems, is the 

possibility of reusing old nodes in new projects with minimal modification to the code.  

2.2.2 How nodes communicate 

So, we have nodes that communicate with each other, but how do they do that? There are 

notably three ways that nodes can communicate with each other. These are called “topics”, 

“actions”, and “services”. All of these have their distinctive characteristics and use cases. [10] 
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Topics are the most common way of transferring data between nodes. The basic idea is that 

you create a topic that handles a unique type of data and after that, any node can publish data 

to it or subscribe data from it. This way topics form an anonymous publish-subscribe 

architecture which allows many-to-many communication between nodes. Because we don’t 

have a specific sender or receiver, this makes topics also an asynchronous network structure, 

which means that the sender and receiver of data won’t need to be acting at the same time [3]. 

There is also some default topics which are built in the ROS software like “/rosout” which can 

be used for basic logging and debugging functionality [1]. 

What if we want to have an immediate response from another node? In such cases, services 

come into play. Services are established by implementing a service server within the 

designated node where service requests are directed. Once the hosting node is operational, 

other nodes can dispatch service requests to it, evoking immediate responses from the node 

[10]. “An example could be the request to the mapping service to reset a map, with a response 

indicating if the call succeeded” [3]. 

What if we want to ask a node to do something, but the task takes so long that the node can’t 

answer immediately? For this, we have the last form of communication, Actions. As well as 

services, actions also need an action server which is hosted at the target node. The difference 

to service is that the client sends a goal to the action server, which will try to complete that 

goal. During the completion of the action, the server sends information about the progress 

back to the client. When the action is completed, the server sends on last message where the 

node tells if the action was completed successfully or not [10]. A good example of this could 

be a docking request for a robot vacuum. 
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Figure 4: ROS 2 node interfaces: topics, services, and actions. [10] 

 

2.2.3 Coding languages 

There is one important aspect about ROS that we haven’t touched on yet, the coding 

language. ROS 1 and ROS 2 support multiple coding language libraries from which two are 

maintained by their respective core ROS teams, meanwhile the rest are maintained by 

different community members. The two official languages are C++ and Python [1], [13]. C++ 

is generally more widely used because of its better performance compared to Python. In 

contrast, Python might be easier for beginners because of its easy-to-understand syntax and 

wide range of built-in functions. 

The language neutrality makes ROS easy to approach for new developers. However, this 

language neutrality presented some unusual problems for the platform, since the same 

functionality should work across multiple completely different coding languages. To enable 

this functionality, ROS uses “language-neutral interface definition language (IDL)” [1]. 
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The IDL utilizes concise string representations to store various types of data. This means that 

upon data generation, all distinct types. such as floats, are converted into strings, accompanied 

by their respective data types. For instance, transforming a float into a string involves 

appending "float64" followed by the floating-point value. Subsequently, when the data is 

read, it is reverted to its original format. This approach allows different programming 

languages to employ their own methods for converting data into strings and vice versa. This 

makes the coding easy for the developer since they only need to input the value to the topic 

and the underlying functionality of the coding language handles the rest. 

Figure 5: The structure of a topic: /cmd_vel. 
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3 Experiments with ROS 2 and iRobot Create® 3 

3.1 ROS 2 distributions and goals for experiments 

In this part I will talk about my own experience with ROS 2. During my experiments, the two 

distributions I used were, “Foxy Fitzroy” and “Galactic Geochelone”. The reason for this is 

that for learning the ROS, I used the book: A Concise Introduction to Robot Programming 

with ROS2 [3] and for the experiments, I used the Create® 3. There are two versions of the 

book, one for Foxy and the other for ”Humble Hawksbill”. The content is otherwise the same, 

except the tutorials and examples are for different distributions. My version of the book used 

Foxy. 

However, the goal was to learn to use ROS 2 with the iRobot Create® 3 and the distributions 

that it supports are Galactic and Humble [14]. The optimal choice would have been to select 

Humble because it was supported by both, even though the examples in the book were written 

for Foxy. The problem was that I was required to use Ubuntu 20.04 (focal) and at that point I 

thought that Humble can’t be installed on that version (later I realized that this isn’t 

completely true). It also didn’t come to my attention that the book had its examples for other 

distros besides Foxy. This is why I proceeded with this suboptimal multi distributional 

approach, which goes to show, that even as simple things as choosing which version to use, 

can be a challenge for a new developer. 

My plan was to read the book and understand how the ROS system works. The book has, in 

my opinion, good examples and the code in them is explained well. Also, in the end of the 

chapters, there are exercises that require you to improve the code provided in the examples, 

which enhances the learning. After reading the book, my goal was to apply the concepts 

learned to the Create® 3 robot, and program my own simple navigation program for it. 

3.2 iRobot Create® 3 

3.2.1 Overview 

The Create® 3 is an educational robot made by iRobot to be used for learning robot 

programming. From the outside, the Create® 3 looks like a normal robot vacuum, but in the 

inside, you find free space and open circuit boards. Additionally, you get access to the robot’s 

software. After connecting the robot to Wi-Fi, you can access it straight from your computer. 

Connection can be established also via Bluetooth, Ethernet, or USB if Wi-Fi isn’t available. 



14 
 

The Create® 3 can be controlled with three different ways: iRobot Coding App, iRobot 

Education Python 3 SDK or ROS 2. [15] 

The Coding App is a browser-based graphical environment where the user can build simple 

programs from different kinds of functional blocks [16]. This approach is directed for younger 

students who are completely new to the concepts of robot programming. The whole focus is 

to get the robot moving without having to worry about the technical details. However, this has 

the draw back that the software is quite inflexible, and the possibilities are quite limited.  

The next step from here is the Python SDK (Software Development Kit) which allows users 

to write their programs with Python instead of using graphical blocks. This has the obvious 

added challenge of knowing how to program with Python, but also the possibilities are 

significantly increased. There is also a function in the Coding App which allows users to 

convert their block-based programs straight to Python. This will be remarkably useful when 

moving to Python, since you can effectively create your own examples, and study how the 

same functionality can be implemented with Python. 

Lastly, we have the most powerful and, at the same time, most difficult way of interacting 

with the Create® 3; ROS 2. With ROS, you can subscribe straight to the topics that the robot 

is publishing and do whatever you want with the data. Likewise, for example, moving the 

robot happens by sending the appropriate messages to the “/cmd_vel” topic. With ROS, you 

can also move from Python to C++ if you want, enabling possibly more powerful and 

optimized software. Unfortunately, this amount of freedom leads unavoidably to some errors 

and some debugging will be needed from time to time.  

Figure 6: iRobot Create® 3. 
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3.2.2 Hardware 

As you can see in the figure 6, the Create® 3 looks a lot like a robot vacuum. The biggest 

difference showing outside is the cover plate, which has multiple mounting holes for different 

kinds of accessories. The cover plate can also be removed completely by rotating it 

counterclockwise [14]. 

The robot has multiple sensors including: two Cliff Sensors and Optical Odometry Sensor at 

the bottom, Docking Sensor in front, Multi-Zone Bumper, and 7 IR Obstacle Sensors on the 

bumper [14]. With these, the Create® 3 can sense its surroundings very effectively. All these 

sensors can be accessed straight from the ROS 2 interface. All sensors have their own topics 

that the user can subscribe to. 

3.2.3 Software 

The Create® 3 incorporates multiple safety “reflexes” and built-in actions that the developer 

can utilize. The reflexes are a set of predefined behaviours that activate after a certain 

condition is met. For example, if the robot hits something and the bumper sensor detects that, 

the robot will stop moving and reverse a little bit. Same reaction can be observed if the cliff 

sensors detect a big ledge. If these functionalities are not desired, they can be disabled from 

the robot’s configuration file or by sending a command to the robot via terminal. [17] 

The built-in actions that the Create® 3 has, are all involved with moving the robot. The user 

can send, for example, a command that tells the robot to drive certain distance and then the 

robot will move. One of the most useful action available, is the docking command. If sent to 

the robot, the command will start the docking process and if the dock is in sight, the robot will 

try to dock itself. There is also an action for leaving the dock. 

3.3 Setup and installation 

3.3.1 Preparing the computer 

When starting to work with ROS, the first step is to prepare the Ubuntu installation on a 

computer. Since my laptop already had Windows installed on it, the idea was to deploy a dual 

boot. Dual boot means, that you partition the hard drive so that you can install both Windows, 

and Linux on the same computer. After installation, the computer will prompt the user every 

time at startup, and ask, which operating system should be launched. I had some problems 
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with the Ubuntu installation, which were caused by outdated network drivers, but I was able 

to update them by sharing internet from my phone to the computer via USB. 

Next step was to install the ROS itself. There are great installation tutorials on the official 

ROS 2 website and also in the book [3]. The only problem in just copying commands that 

other people have written, is that if something doesn’t go as it should, the troubleshooting can 

be difficult, since you don’t know what the specific commands do. For me, one thing that 

caused a lot of problems, was that I sometimes mixed the two ROS 2 versions, which caused 

errors during the installation. After all, the errors weren’t anything special, but because of the 

new platform and software, the troubleshooting was occasionally hard, since my questions 

ended up being so basic, that most of the suggestions, just assumed that I already knew how 

to fix them myself. 

Next, I installed some example application from the book as well as from the internet. The 

tutorials were again good, but I had quite many problems when trying to install the 

dependencies that the examples required. The ROS developer tools package has a tool for 

installing dependencies called “rosdep”. However, the problem with the tool was, that by 

default, it only searches dependencies for supported ROS distros, and since I was using older, 

already discontinued distros, the rosdep couldn’t find my dependencies. This can be easily 

fixed by adding a flag to the end of the rosdep command, that tells it to include end-of-life 

distros. The only problem at the time was, that I didn’t know this, so finding this information 

online took a while. 

3.3.2 Preparing the robot 

After successfully installing ROS, the next step is to setup the Create® 3. Luckily, there is a 

great tutorial for it in the documentation website of the robot [14]. The process is very simple, 

and all you need to do, is to follow the step-by-step instructions. The first step after turning on 

the robot, is to connect it to Wi-Fi. This is achieved, like many other Wi-Fi-enabled devices 

nowadays, by connecting to a Wi-Fi hotspot that the robot hosts and then, configuring your 

own network settings to the robot via the robot’s browser-based configuration interface. After 

that, you can disconnect from the hotspot and the robot will try to connect to your wireless 

network. Now you can access the configuration interface from your browser, provided that 

you are connected to the same Wi-Fi network as the robot. It is also recommended that you 

update the firmware of the robot at this point. 
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The final step in getting the robot working with ROS is, to install the “irobot-create-msgs” 

library which includes all the Create® 3 specific ROS 2 messages. These can be installed with 

a simple install command in the Ubuntu terminal. 

3.4 Driving the Create® 3 

The first functional thing that I tried with the Create® 3, was teleoperating the robot with the 

computer. This means that, I can drive the robot in real time using the computer over the Wi-

Fi connection. This requires you to download and install the ROS Teleop Twist package, 

which installs the program that translates the presses on the keyboard to ROS 2 messages and 

publishes them to the “cmd_vel” topic. [18] 

After the installation is completed, the teleoperation is quite simple. All you need to do is to 

run the command: “ros2 run teleop_twist_keyboard teleop_twist_keyboard”. This launches 

the program, after which you can start driving the robot. However, at this point the robot 

doesn’t let you move backwards. This is because of the built-in safety features of the robot. 

You can disable only the backup limit that prevents the reversing, but for the most extensive 

experience, you can set the variables “safety_override” and “reflexes_enabled” to “full” and 

“false” respectively, which will disable all built-in reflexes and give you full control of the 

robot. 

3.5 Navigation program 

3.5.1 Main idea 

My goal with the Create® 3 was to develop a navigation program for it that could read the 

sensor data from the IR-sensors on the bumper and utilize that information for avoiding walls 

and navigating around a space. While learning ROS 2 with the help of the book [3], I noticed 

that one of the examples had an interesting approach to navigating. 

In the example, the robot has a laser scanning sensor that scans the surroundings with 

hundreds of beams and returns an array where there are all the readings from every laser 

beam. After that, the program detects which of the beams is the shortest (the closest object) 

and selects that. The orientation and length of the said beam are then turned into a “repulsive 

vector”, which is then rotated 180 degrees. After this, it is added to another vector which is 

pointing straight forward. This all sounds complicated, but the resulting vector that you get, 

will point in the direction you want the robot to move to avoid the nearest object (coloured 
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vectors in figure 11). This approach of adding vectors together fascinated me, and I figured 

that maybe I could read the data from the IR-sensors of the Create® 3 and create the repulsive 

vector that way.  

I used the book’s “br2_vff_avoidance” project as my base and modified the necessary parts to 

fit my own use case [3]. My own ROS 2 project can be found here [19]. Since I didn’t have 

much coding experience with C++, the progress was slow at first, but eventually I got 

everything that I needed to get data from the Create® 3 imported to my ROS 2 project. 

3.5.2 The IR sensor 

The initial task was to see, what kinds of data the IR-sensors are sending. Turns out that like 

in the example, the Create® 3 sends an array where the values of every sensor are listed. 

However, when I tested the sensors with moving my hand in front of them, I noticed that the 

numerical output of the sensor isn’t linear related to the distance between my hand and the 

robot. For my application I wanted the sensor data to be at least roughly linear, so I conducted 

a small experiment to see what the data looked like. I placed a cardboard box in front of the 

robot and measured the distance and the value from the front sensor (figure 8). I repeated this 

for all values in the range from 2 cm to 60 cm with and increment of 2 cm. I didn’t start 

measuring from 0 cm, because the sensor couldn’t sense it properly. After all measurements 

were done, I collected the data and plotted it, which can be seen in figure 7 (the red line). 

You can see that the value increases when the box gets closer to the sensor. However, it’s 

clear that at first the value decreases rapidly and after the distance exceeds 6 cm the function 

starts to flatten out. My solution for this was to split the graph from two points splitting the 

graph to two about straight parts and one curved part. After which I implemented a 

normalizing function for every section, so that the resulting function is as linear as possible 

(the blue line). For finding the functions I used polynomial regression. I wrote a short python 

script that utilizes pandas [20] and scikit-learn [21] to use machine learning to find the best 

polynomial functions to fit the data. The script can be found here [22]. I used second order 

polynomials to approximate every section of the graph. After the readings are converted with 

the proper functions, the value we get is further divided by 50 to represent the objects distance 

from the robot in the range from 1 to 0. 1 representing no object detected and 0 that the object 

is touching the robot. The implementation of this can be seen in figure 9, where the “x” 

represents the actual reading of the sensor and “distance” represents the result after the 

normalization. 
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Figure 7: Values from the experiment 

Figure 8: Experiment setup 

int x = scan.readings[i].value; 
if (x < 37) { 
  distance = 82.2453 - 2.9149*x + 3.9393*pow(10,-2)*pow(x,2);   
} else if (x < 330) { 
  distance = 33.0739 - 0.13588*x + 2.0024*pow(10,-4)*pow(x,2);   
} else { 
  distance = 12.7179 - 8.7737*pow(10,-3)*x + 1.8066*pow(10,-6)*pow(x,2); 
} 

distance /= 50; 
distance = std::clamp(distance, 0.0f, 1.0f);  

Figure 9: Implementation of the normalization function. NavigatorNode.cpp. [19] 
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3.5.3 Calculating the vectors 

Unlike in the “br2_vff_avoidance” project where the program chooses the shortest laser beam, 

I decided to consider every sensor (fig. 11, grey arrows) on the Create® 3 that detects an 

object, and then take an average of those to calculate the repulsive and resulting vectors. To 

turn the distance readings into vectors, I got the orientations of every sensor from the 

documentation [14] and then calculated the necessary x and y coordinates with simple 

trigonometry to create the vectors (top of figure 10). Instead of using the real angle of the 

sensor, we use the opposite angle (angle + 180°), because we want the repulsive vector (fig. 

11, red arrow) pointing backwards so that the result vector will turn the robot in the right 

direction. 

  // Adding the vector to repulsive vector 
  complementary_dist = 1 - distance; 
  vff_vector.repulsive[0] += cos(oposite_angle) * complementary_dist; 
  vff_vector.repulsive[1] += sin(oposite_angle) * complementary_dist; 
} 

   

// Dividing the repulsive vector with the number of added vectors 
// to shorten the lenght. 
// (1.5 and 3 are multipliers to enhance the navigation characteristics) 

if (active_vectors != 0) { 
  vff_vector.repulsive[0] = vff_vector.repulsive[0] / active_vectors * 1.5; 
  vff_vector.repulsive[1] = vff_vector.repulsive[1] / active_vectors * 3; 
} 

 

// Creating the result vector 
vff_vector.result[0] = (vff_vector.repulsive[0] + vff_vector.attractive[0]); 
vff_vector.result[1] = (vff_vector.repulsive[1] + vff_vector.attractive[1]);  

Figure 10: Calculating the vectors. NavigatorNode.cpp. [19] 
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As you can see in figure 10, we add the vectors to the already existing repulsive vector. 

Because of this, after all seven sensors have been analysed, we take the repulsive vector and 

divide it by the number of active vectors that have been used to create the repulsive vector. 

This way, the vector that we get, is the average of all repulsive vectors that were used to 

create it. However, after testing and tweaking the algorithm I ended up adding multipliers (1.5 

and 3) to the calculations to enhance the behaviour of the robot when avoiding an obstacle. 

Lastly, we add the repulsive vector to the attractive vector to get the result vector that will 

guide the robot (fig. 11, green arrow). 

Figure 11: Vector illustration. 
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3.6 Final outcome 

The navigation algorithm works, and the robot can avoid obstacles. However, the algorithm is 

no way perfect and there are many edge cases where the robot will get stuck or hit something. 

One obvious example of this is narrow obstacles, like table legs. Because there are only seven 

sensors on the robot, it is possible, that the obstacle is between two sensors causing a 

situation, where neither of them can detect it, and the robot can’t recognize it. 

One way of improving the algorithm would be, for example, implementing tf2-library to the 

program. tf2 is a library that enables you to map out the robot’s movement in 2D space, which 

could be useful if the robot got stuck. For example, if the robot couldn’t move forward, we 

could use tf2 to know where the robot came from and then backtrack there. 

Nonetheless, the object of this experiment wasn’t to create a perfect obstacle avoidance 

algorithm but to get to work with the robot and practise development with ROS 2. For this 

purpose, this worked great since for getting this to work required me to explore every part of 

ROS 2 and Create® 3 systems. 

Figure 12: Behaviour of the algorithm when encountering a wall. 
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4 Conclusion 

During my experiments, it became clear that ROS has a somewhat steep learning curve, that 

new developers need to overcome before being able to use the system. Additionally, before 

even beginning to work with ROS, the developers need to know how computer programming 

works in general and be familiar with using Linux and terminal. Additionally, the multiple 

versions and distributions of ROS, can sometimes make finding the right information difficult 

and troubleshooting laborious. 

However, when you finally overcome this learning curve, you realize that ROS is a very 

powerful framework. The node-based system makes structuring your program natural and 

enables great collaboration possibilities. The integrated communication protocols and 

standards make it also straight forward to start the development without having to worry 

about practicalities. One of ROS’s greatest strengths is the fact that it separates the robots own 

operating system from the user program. This makes adopting old software on new robots fast 

compared to the software being included in the robot’s own operating system. 

Even though I had my own problems when installing and learning ROS, I can tell, that it 

wouldn’t have been possible for me to program any robot with my level of knowledge at the 

time, if I weren’t using ROS. The learning material on the official ROS 2 website as well as 

the iRobot Create® 3’s website, supported me well and enabled me to slowly get to know the 

ins and outs of the software as well as the Create® 3 educational robot. 

After all, ROS has successfully become the universal standard for robot programming that it 

was envisioned to be. It all started with ROS 1, in which the researchers created the 

foundation to build on. With ROS 2, the system’s biggest flaws were fixed, and the platform 

was finalized, so that it could be adopted for real life commercial use cases. During all of this, 

ROS has established a vibrant community around it which will continue the development of 

the platform making it even better in the future. 
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