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Catalanin otaksuma on väittämä, jonka mukaan Catalanin yhtälöön xn − ym = 1,
missä x, y > 0 ja n,m > 1 ovat luonnollisia lukuja, ei ole muita ratkaisuja kuin
32 − 23 = 1.

Tässä työssä tarkastellaan Catalanin otaksumaan liittyviä osittaisia tuloksia.
Catalanin otaksuma esitetään, mutta sitä ei todisteta.

Tutkielmassa todistetaan, että jos Catalanin yhtälön ratkaisussa (x, y, n,m) y
on alkuluku, niin y = 2 ja x = 3, n = 2,m = 3.

Lisäksi todistetaan Casselsin lause, mikä antaa jaollisuusehtoja sellaisille Cata-
lanin yhtälön ratkaisuille (x, y, n,m), missä n ja m ovat parittomia alkulukuja.

Casselsin lauseen avulla todistetaan lisää jaollisuusehtoja sellaisille Catalanin
yhtälön ratkaisuille (x, y, n,m), missä n ja m ovat parittomia alkulukuja.

Tutkielman lopussa esitetään tuloksia ympyräkunnista ja niiden ihanteista ja
todistetaan Inkerin lause, minkä avulla todistetaan, että suurelle määrälle alkulukuja
p, q > 2 yhtälölle xp − yq = 1 ei ole ratkaisuja, missä x, y > 0.
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1 Introduction

Eugène Catalan conjectured in 1844 that 23 and 32 are the only consecutive powers
of natural numbers. The conjecture was proved by Preda Mih ilescu in 2002 by
applying results from the theory of cyclotomic �elds.

Catalan's Conjecture is among the famous problems in number theory that are
simple to state, but di�cult to prove, as attested to by the fact that the conjecture
remained unsolved for some 150 years. We will present Catalan's Conjecture, make
some immediate observations, and consider divisibility conditions for a solution to
the Catalan's equation xp − yq = 1, including Cassels' theorem, and present tech-
niques that were invented in an attempt to prove the conjecture in the late 20th
century. In the end we prove partial results to the problem using results involving
cyclotomic �elds, including Inkeri's lemmas.

The actual proof of the conjecture, which is not presented in this work, examines
the properties of the group of units of the ring of integers of the p−th cyclotomic �eld
using properties of annihilators of ideals, eventually �nding a property of that group
which is impossible, as discussed by Metsänkylä in his 2003 article on Catalan's
conjecture in [3].

In this work we assume basic facts about modular arithmetic. Theory of cyclo-
tomic �elds is covered as needed and no prior knowledge is assumed except arithmetic
of complex numbers. The thesis is based on Paulo Ribenboim's book on Catalan's
Conjecture [1], written at a time when the conjecture had not yet been proved.
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2 Preliminaries

We will now gather facts which are used in the forthcoming chapters.
For a prime p and an integer n ̸= 0, vp (n) denotes the p-adic valuation of n,

that is vp (n) = k if pk | n and pk+1 ∤ n. Let n,m be integers, it is immediate that

vp (mn) = vp (m) + vp (n) .

If vp(n) < vp(m) then
vp(n+m) = vp(n).

De�ne vp (0) = ∞, and for n ̸= 0, de�ne vp
(︁
m
n

)︁
= vp (m) − vp (n). This is well

de�ned, because for any integer k ̸= 0 we have

vp

(︃
km

kn

)︃
= vp (km)− vp (kn) = [vp (k) + vp (m)]− [vp (k) + vp (n)]

= vp (m)− vp (n) = vp

(︂m
n

)︂
.

For a prime q and an integer n ≥ 0, the q-adic expansion of n is

n = a0 + a1q + · · ·+ anq
n

where the integers ai satisfy 0 ≤ ai ≤ q − 1 for 0 ≤ i ≤ n.

Lemma 2.1. For coprime integers n and m, there exists an integer a > 0 such that
an ≡ 1 (mod m) and gcd (a,m) = 1.

Proof. Since n and m are coprime, by Bézout's identity, there exists integers a, b
such that

an+ bm = 1, (1)

which means that an ≡ 1 (mod m). We may assume that a > 0: if a < 0, then for
an arbitrary integer k we get from the congruence an ≡ 1 (mod m) that

an+ kmn = (a+ km)n ≡ 1 (mod m)

whereupon the integer k may be chosen such that a+km > 0. Denote gcd (a,m) = d.
Then, from equation (1), d | an+ bm = 1, hence d = 1.

Let m > 0 and x be integers such that gcd (x,m) = 1. The order of x modulo
m, denoted by ordm (x), is the least integer k > 0 such that xk ≡ 1 (mod m).

For a real number r, the �oor function, ⌊r⌋, denotes the greatest integer k such
that k ≤ r.
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3 Catalan's conjecture

Catalan's conjecture states that the equation

xn − ym = 1 (2)

has no solution in natural numbers for x, y > 0 and n,m > 1 other than 32−23 = 1.
To prove this conjecture, it su�ces to show that

xp − yq = 1 (3)

has no solution for x, y > 0 and distinct prime exponents p and q other than 32−23 =
1. This follows from the fact that if a solution exists to the equation (2) then also

(x
n
p )p − (y

m
q )q = 1

where primes p and q are arbitrary prime factors of n and m, respectively. If p = q
we have

1 = xp − yp = (x− y)

p∑︂
i=1

xp−iyi−1,

which leads to a contradiction, because

p∑︂
i=1

xp−iyi−1 ≥
2∑︂

i=1

x2−iyi−1 = x+ y > 1.

So we may assume p ̸= q in what follows. Hence a solution to the equation (2)
implies that there is a solution to the equation (3). The contraposition leads to that
if the equation (3) has no solutions then neither does the equation (2).

The process of proving the non-existence of solutions to equation (3) other than
32− 23 = 1 may be divided into two cases according to the greatest common divisor
(gcd) of the integers x− 1 and xp−1

x−1
, which appear in the equation

yq = xp − 1 = (x− 1)
xp − 1

x− 1
.

Case I is when the gcd of x − 1 and xp−1
x−1

equals 1, and Case II is when this gcd
equals p. These are the only two possibilities which will be shown in the following
lemma. The lemma considers also the gcd of the integers x+1 and xp+1

x+1
, which will

be useful in the forthcoming chapter.

Theorem 3.1. Given a prime p and an integer x ̸= ±1, the gcd of the integers

x+ 1 and
xp + 1

x+ 1
,

is either 1 or p, and the gcd of the integers

x− 1 and
xp − 1

x− 1
,

is either 1 or p.
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Proof. Let x ̸= ±1 be an integer. If p = 2 then⃓⃓⃓⃓
x± 1− x2 ± 1

x± 1

⃓⃓⃓⃓
= |x± 1− (x∓ 1)| = 2,

so the gcd is either 1 or 2 as desired. Let us suppose p is an odd prime. Noting that

gcd

(︃
x− 1,

xp − 1

x− 1

)︃
= gcd

(︃
−x+ 1,

(−x)p + 1

−x+ 1

)︃
it su�ces to prove the claim for the integers

x− 1 and
xp − 1

x− 1
.

Let d be the gcd of the above integers. Then x ≡ 1 (mod d) and

0 ≡ xp − 1

x− 1
≡ 1 + x+ · · ·+ xp−1 ≡ p (mod d).

Therefore d is a factor of p, which implies that d = 1 or d = p.

The following lemma states some necessary properties of a solution to the equa-
tion (3) under certain restrictions, which will be useful in proving Cassels' Theorem
in chapter 5. The ultimate goal of considerations like these is to �nd properties that
a solution must possess, but which turn out to be impossible. We do not yet achieve
this ultimate goal, but the lemma provides useful conditions nonetheless.

Lemma 3.2. Let p, q be distinct odd primes and x, y > 0 integers such that xp−yq =
±1. If q | x, then exists integers a, b such that⎧⎨⎩

y ± 1 = qp−1ap

yq ± 1

y ± 1
= qbp

where q ∤ b, gcd (a, b) = 1, x = qab.

Proof. Let q | x. Then we get that 0 ≡ xp = yq ± 1 ≡ y± 1 (mod q), using Fermat's
small theorem, and this implies q | y ± 1. Since y ≡ ∓1 (mod q), we have that

yq ± 1

y ± 1
= 1 + (∓y) + · · ·+ (∓y)q−1

≡ 1 + (∓(∓1)) + · · ·+ (∓(∓1))q−1 (mod q)

≡ 1 + (1) + · · ·+ (1)q−1 ≡ q ≡ 0 (mod q),

so q | yq±1
y±1

. By Theorem 3.1 gcd
(︂
y ± 1, y

q±1
y±1

)︂
is 1 or q, hence gcd

(︂
y ± 1, y

q±1
y±1

)︂
= q.

Then there exists integers a, b such that one of the following cases is true:⎧⎨⎩
y ± 1 = qbp

yq ± 1

y ± 1
= qp−1ap,

(4)
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or ⎧⎨⎩
y ± 1 = qp−1ap

yq ± 1

y ± 1
= qbp,

(5)

where q ∤ b, gcd (a, b) = 1, x = qab. If the equations (4) hold, then y = qbp ∓ 1, so
that modulo q3 we have the congruence

0 ≡ xp = yq ± 1 = (qbp ∓ 1)q ± 1 =

q∑︂
k=0

(︃
q

k

)︃
(qbp)k(∓1)q−k ± 1 ≡ q2bp (mod q3),

which is a contradiction, since q ∤ b. Therefore the equations (5) must hold.

In Lemma 3.2 it was assumed that q | x, but it will be shown later that this fact
already follows from the preceding assumptions of the lemma.
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4 Special cases

Instead of trying to prove Catalan's conjecture outright, we will now prove that if
n,m > 1 and x > 0 are integers and q is a prime number such that

xn − qm = 1,

then xn = 32 and qm = 23. This will require a few preliminary lemmas.

Lemma 4.1. If q is a prime number and n,m > 0 are integers such that

2n − qm = 1,

then q ≡ 3 (mod 4) and m is odd.

Proof. It follows from the equation 2n − qm = 1 that q is odd. If n = 1 then
2−qm = 1, so qm = 1, which is a contradiction since q is a prime number and m > 0.
Therefore n ≥ 2. Since q is an odd prime, we have that q ≡ 1 or q ≡ 3 (mod 4).
Since n ≥ 2, we have that

qm = 2n − 1 ≡ 3 (mod 4).

Therefore, q ≡ 3 (mod 4) with odd m.

Lemma 4.2. If q is prime number and n,m > 0 are integers such that

2n − qm = 1,

then m = 1 and n is a prime number.

Proof. Suppose m = pk where p is prime. It follows from the equation 2n − qm = 1
that q is odd. By Lemma 4.1, pk is odd, so in particular p is odd. Now

2n = −((−q)k − 1)
(−q)pk − 1

(−q)k − 1

= −((−q)k − 1)(1 + (−q)k + ((−q)k)2 + · · ·+ ((−q)k)p−1)

where the integer

s = 1 + (−q)k + ((−q)k)2 + · · ·+ ((−q)k)p−1

is odd since p is odd. Then s | 2n where s is odd, so necessarily s = 1 which implies
p = 1, which is a contradiction. Hence m = 1.

If n = 1 then from 2n − qm = 1 and m = 1 we get that q = 1, which is a
contradiction since q is prime. Therefore n ≥ 2, so we may write n = pk where p is
prime and k > 0. Now we have that

q = (2p − 1)
2pk − 1

2p − 1

implying k = 1, since q is prime, and therefore n = p.
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Theorem 4.3. If q is a prime number, x is an integer, and n,m ≥ 2 are integers
such that

xn − qm = 1,

then xn = 32 and qm = 23.

Proof. Let us �rst show that it su�ces to prove the claim for instances where n is
prime. Suppose the claim is true for all primes n. Suppose a ≥ 2 is an integer such
that xa − qm = 1. Let p be a prime factor of a. Now

(x
a
p )p − qm = 1

so by assumption (x
a
p )p = xa = 32 and qm = 23 as desired.

Let us suppose that xp − qm = 1 where q is prime and p,m ≥ 2. Then

qm = (x− 1)
xp − 1

x− 1
(6)

where by Theorem 3.1 gcd
(︁
x− 1, x

p−1
x−1

)︁
is 1 or p. If the gcd is 1, then from the fact

that both factors are powers of q, it follows that exactly one of them is equal to 1.
Since

xp − 1

x− 1
≥ x2 − 1

x− 1
= x+ 1 > x− 1,

it must be that x− 1 = 1, hence x = 2. If the gcd is p, then from the equation (6) it
follows that p | qm, which implies p = q. Since the integers x− 1 and xp−1

x−1
are both

powers of q and gcd
(︁
x− 1, x

p−1
x−1

)︁
= q and xp−1

x−1
> x − 1, it follows that x − 1 = q.

Now we have that
(q + 1)q − 1 = qm.

Then using the binomial theorem we get that

qm =

q∑︂
k=1

(︃
q

k

)︃
qk = q2

(︄
1 +

q∑︂
k=2

(︃
q

k

)︃
qk−2

)︄
. (7)

If q ≥ 3 then q divides
(︁
q
2

)︁
, whereby q divides the sum

∑︁q
k=2

(︁
q
k

)︁
qk−2. But then the

factor 1 +
∑︁q

k=2

(︁
q
k

)︁
qk−2 on the right-hand side of the equation (7) is not a power of

q, which is a contradiction. Thus q = 2. Hence xn = 32 and qm = 23.
In the case of x = 2, it follows from lemma 4.2 that m = 1, which contradicts

the assumption m ≥ 2.

The following theorem shows that if xp − yq = 1 for odd primes p, q and integers
x, y > 0, then x and y cannot be successive integers except when xp = 32 and
yq = 23.

Theorem 4.4. If xp − yq = 1 where x ≥ 2 and y ≥ 3 and p, q are distinct odd
primes, then x ̸≡ 1 (mod y) and x ̸≡ −1 (mod y).

Proof. Assume �rst that x ≡ −1 (mod y). Then 1 = xp − yq ≡ −1 (mod y), which
is a contradiction since y ≥ 3. Next, assume that x ≡ 1 (mod y). Now

yq = (x− 1)
xp − 1

x− 1
(8)
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where by Theorem 3.1 the gcd of the factors on the right-hand side is either 1 or p.
Since x− 1 is a non-zero multiple of y, it must be that the gcd is p and

gcd

(︃
y,

xp − 1

x− 1

)︃
= p.

From this, and the fact that xp−1
x−1

| yq in equation (8), we have that

xp − 1

x− 1
= pn−1

for some integer n ≥ 2. Since gcd
(︁
x− 1, x

p−1
x−1

)︁
= p, we may write

x− 1 = mp

where m > 0. Since p3 | yq, we have that p2 ∤ x − 1 = mp, and, therefore, p ∤ m.
Now yq = pnm. Since p is prime, it satis�es p |

(︁
p
k

)︁
for 0 < k < p. Now we have

0 ≡ xp − 1 = (mp+ 1)p − 1 =

p∑︂
k=1

(︃
p

k

)︃
(pm)k ≡ p2m (mod p3),

which is a contradiction.
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5 Theorem of Cassels

Cassels' theorem provides further necessary conditions for a possible solution for
Catalan's equation. In order to prove Cassels' theorem, several lemmas are required.
The lemmas and their proofs are from [1] unless otherwise indicated.

Lemma 5.1. If n > 1 and x, y are non-zero relatively prime integers, then

xn − yn

x− y
= k(x− y) + nyn−1

where

k =
n−2∑︂
i=0

(︃
n

i

)︃
(x− y)n−2−iyi.

Proof. Using Newton's binomial formula, we get that

xn − yn

x− y
=

((x− y) + y)n − yn

x− y
=

∑︁n
i=0

(︁
n
i

)︁
(x− y)n−iyi − yn

x− y

=

∑︁n−1
i=0

(︁
n
i

)︁
(x− y)n−iyi

x− y
=

n−1∑︂
i=0

(︃
n

i

)︃
(x− y)n−1−iyi

=
n−2∑︂
i=0

(︃
n

i

)︃
(x− y)n−1−iyi + nyn−1 = k(x− y) + nyn−1

where k is as claimed.

Lemma 5.2. Let a, b, t be real numbers such that b > 0, t > 1, and a+ bt > 0 and
let fa,b(t) = (a+ bt)1/t. Then

f ′
a,b(t) > 0 if and only if bt log bt > (a+ bt) log (a+ bt).

In particular, for real numbers m > n > 1 and z > 1 we have the inequalities

(zn − 1)m < (zm − 1)n

(zm + 1)n < (zn + 1)m.

Proof. Let us denote f(t) = fa,b(t). Now

f ′(t) =
(a+ bt)

1
t

t

(︃
bt log b

a+ bt
− 1

t
log (a+ bt)

)︃

where (a+bt)
1
t

t
> 0, and, therefore, f ′(t) > 0 if and only if

bt log b

a+ bt
− 1

t
log (a+ bt) > 0,

which is equivalent to bt log bt > (a+ bt) log (a+ bt).
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Let a = −1, b = z > 1, and t > 1, so that a+bt = zt−1 > 0. Now zt > zt−1 > 0,
using the monotony of the log function, we have that log zt > log (zt − 1) and now
we get that

zt log (zt) > (zt − 1) log (zt − 1).

This implies by the �rst claim that f ′
−1,z(t) > 0. Therefore, for for m > n > 1 we

have f−1,z(n) < f−1,z(m), that is,

0 < (zn − 1)
1
n < (zm − 1)

1
m .

Raising the inequality to the mn-th power gives

(zn − 1)m < (zm − 1)n.

For the other case, let a = 1, z > 1, b = 1
z
, and t > 1. Now 0 < 1

zt
< 1, and

hence
1

zt
log

1

zt
< 0 <

(︃
1 +

1

zt

)︃
log

(︃
1 +

1

zt

)︃
,

which implies that f ′
1, 1

z

(t) < 0. Then for m > n > 1 we have f1, 1
z
(m) < f1, 1

z
(n),

using the �rst claim, which implies

(1 +
1

zm
)

1
m < (1 +

1

zn
)

1
n

(1 +
1

zm
)n < (1 +

1

zn
)m

(
zm + 1

zm
)n < (

zn + 1

zn
)m

(zm + 1)n < (zn + 1)m.

We will now prove a lemma concerning the p-adic valuation of a factorial, which
will be needed in the proof of Cassels' theorem.

Lemma 5.3. Let q be a prime number and R > 0 an integer. Let

R = R0 +R1q + · · ·+Rmq
m

be the q-adic expansion of R, and let

s = R0 +R1 + · · ·+Rm.

Then

vq(R!) =
R− s

q − 1
.

Proof. Let us �rst show that the claim holds in the case of R = rqm for m ≥ 0 and
0 < r ≤ q− 1. Then s = r. If m = 0 then R = r < q and vq(R) = 0 = r−r

q−1
. Suppose

m ≥ 1.

10



Let 1 ≤ i ≤ m − 1. Then there are exactly r(q − 1)qm−1−i integers n in the
interval 1 ≤ n ≤ rqm such that qi | n, but qi+1 ∤ n, which is to say that vq(n) = i.
Indeed, in this interval the multiples of qi are precisely the integers

1 · qi, 2 · qi, 3 · qi, . . . , rqm−i · qi,

which counts up to rqm−i numbers in total. Similarly, the multiples of qi+1 counts
up to rqm−i−1, which means that the number of integers 1 ≤ n ≤ rqm such that
vq(n) = i equals rqm−i − rqm−i−1 = r(q − 1)qm−1−i. The multiples of qm in the
interval [1, rqm] are qm, 2qm, . . . , rqm, which makes r numbers in total.

Now we may write

vq [(rq
m)!] =

rqm∑︂
n=1

vq(n) =
m∑︂
i=1

∑︂
vq(n)=i

1≤n≤rqm

i

=
m−1∑︂
i=1

ir(q − 1)qm−1−i + rm = r(q − 1)
m−1∑︂
i=1

iqm−1−i + rm

= r(q − 1)
qm − 1−m(q − 1)

(q − 1)2
+ rm =

rqm − r

q − 1

so the claim holds for R = rqm.
Let us now proceed by induction. Suppose that the claim holds for R = Rnq

n +
· · ·+Rmq

m ̸= 0, where 1 ≤ n ≤ m, and 0 ≤ Ri ≤ q − 1 for i = n, n+ 1, . . . ,m. Let
s = Rn +Rn+1 + · · ·+Rm.

Let us show that the claim holds for L = Rn−1q
n−1+R where 0 ≤ Rn−1 ≤ q− 1.

If Rn−1 = 0 then L = R. Hence suppose that Rn−1 > 0. Then the q-adic expansion
of L is Rn−1q

n−1 +Rnq
n + · · ·+Rmq

m, and denote s′ = Rn−1 + s.
Now

vq(L!) = vq
[︁
(Rn−1q

n−1 +R)!
]︁
= vq(R!) + vq

[︁
(R + 1)(R + 2) · · · (R +Rn−1q

n−1)
]︁
.

Since n ≤ vq(R) < ∞ and qn ∤ i for 1 ≤ i ≤ Rn−1q
n−1, implying that vq(i) < n, it

follows that vq(R + i) = vq(i) for 1 ≤ i ≤ Rn−1q
n−1. Hence

vq
[︁
(R + 1)(R + 2) · · · (R +Rn−1q

n−1)
]︁
=

Rn−1qn−1∑︂
i=1

vq(R + i) =

Rn−1qn−1∑︂
i=1

vq(i)

= vq
[︁
(Rn−1q

n−1)!
]︁
,

and using the induction hypothesis, we have that

vq(L!) = vq(R!) + vq
[︁
(Rn−1q

n−1)!
]︁
=

R− s

q − 1
+

Rn−1q
n−1 −Rn−1

q − 1
=

L− s′

q − 1
.

Lemma 5.4. If r,m, n are positive integers and l is a prime number such that l ∤ n,
then

vl (r!) ≤ vl

[︂m
n

(︂m
n

− 1
)︂
· · ·
(︂m
n

− (r − 1)
)︂]︂

.

11



Proof. Let a = m
n

(︁
m
n
− 1
)︁
· · ·
(︁
m
n
− (r − 1)

)︁
and let vl(a) = e < ∞. Since l ∤ n, by

Lemma 2.1, there exists n′ ≥ 1, l ∤ n′, such that nn′ ≡ 1 (mod le+1). Let m′ = mn′

and let a′ = m′(m′ − 1) · · · (m′ − (r − 1)). Now

vl(a) = vl

[︂m
n

(︂m
n

− 1
)︂
· · ·
(︂m
n

− (r − 1)
)︂]︂

= vl

[︃
m

n

(︃
m− n

n

)︃
· · ·
(︃
m− n(r − 1)

n

)︃]︃
= vl [m(m− n) · · · (m− n(r − 1))]

=
r−1∑︂
k=0

vl(m− kn)

=
r−1∑︂
k=0

[vl(m− kn) + vl(n
′)]

=
r−1∑︂
k=0

vl(m
′ − knn′)

= vl [m
′(m′ − nn′) · · · (m′ − nn′(r − 1))]

where

m′(m′ − nn′) · · · (m′ − nn′(r − 1)) ≡ m′(m′ − 1) · · · (m′ − (r − 1)) = a′ (mod le+1),

which implies m′(m′ − nn′) · · · (m′ − nn′(r − 1)) = a′ + dle+1 for some integer d.
Then

vl(a) = vl(a
′ + dle+1).

If vl(a
′) ≥ e + 1 then e = vl(a) = vl(a

′ + dle+1) ≥ e + 1, which is a contradiction.
Thus vl(a

′) < e+ 1, which implies vl(a) = vl(a
′ + dle+1) = vl(a

′). Since a′

r!
=
(︁
m′

r

)︁
is

an integer, we have that vl(r!) ≤ vl(a
′) = vl(a).

Lemma 5.5. If p > q where p and q are odd primes and x, y ≥ 2 are integers such
that xp − yq = ±1, then

(x∓ 1)pq(p−1)q > (y ± 1)q.

Proof. Since x∓ 1 ≥ x
2
, xp = yq ± 1 > yq

2
, and y > y±1

2
, we have the inequality

(x∓ 1)p ≥
(︂x
2

)︂p
>

yq

2p+1
>

(y ± 1)q

2p+q+1
.

Because p > q are odd primes, clearly p ≥ q + 2, hence

(p− 1)(q − 1) ≥ (q + 1)(q − 1) = q2 − 1 > 2 + q

since q ≥ 3. Now (p − 1)q > p + q + 1, implying q(p−1)q > 2p+q+1, and we get that

(x∓ 1)p > (y±1)q

q(p−1)q , which proves the claim.

The following theorem is called Cassels' Theorem. It was originally proved by
Cassels in 1960. We present the proof from [1].
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Theorem 5.6 (Cassels' Theorem). If p, q are distinct odd primes and x, y > 0 are
integers such that xp − yq = ±1, then p | y and q | x.

Proof. We may assume p > q and x, y ≥ 2: if the claim is true in the case of p > q,
then any odd primes q′ > p′ satisfying the equation xp′ − yq

′
= ±1, where x, y > 0,

also satisfy yq
′ − xp′ = ∓1, so by assumption q′ | x and p′ | y as desired. If x = 1,

then yq = 0 or 2, which is impossible. Likewise, if y = 1, then xp = 0 or 2, which
similarly leads to a contradiction.

Let us show that q | x. Assume on the contrary that q ∤ x, which implies that

q ∤ xp = yq ± 1 = (y ± 1)y
q±1
y±1

. By Theorem 3.1, the gcd
(︂
y ± 1, y

q±1
y±1

)︂
= 1 or q, so

the gcd must be 1. Then there exists an integer d > 0 such that y ± 1 = dp.
Case 1: suppose y + 1 = dp. Then d ≥ 2, and

xp = yq + 1 = (dp − 1)q + 1 < dpq.

Therefore, x < dq and, moreover, x ≤ dq − 1. Since q < p, by Lemma 5.2 we have
the inequality (dq − 1)p < (dp − 1)q. Now

yq + 1 = xp ≤ (dq − 1)p < (dp − 1)q = yq,

which is a contradiction.
Case 2: suppose y − 1 = dp. Since q < p, we have 2 ≤ x < y, so d ≥ 2. Now

xp = yq − 1 = (dp + 1)q − 1 > dpq.

Therefore, x > dq and, moreover, x ≥ dq + 1. Since q < p, by Lemma 5.2 we have
the inequality (dp + 1)q < (dq + 1)p, so now

yq − 1 = xp ≥ (dq + 1)p > (dp + 1)q = yq,

which is a contradiction. Therefore, q | x.
Let us show next that p | y. Since q | x, by Lemma 3.2 there exists integers

b, c > 0 such that ⎧⎨⎩
y ± 1 = qp−1bp

yq ± 1

y ± 1
= qcp

where q ∤ c and x = qbc. We will prove next that c > 1. The inequality

yq ± 1

y ± 1
≥ y3 ± 1

y ± 1
= 1∓ y + y2 ≥ y ± 1

holds whenever 1∓ y + y2 ≥ y ± 1, which is equivalent with

y ≥ 1± 1 +
±1− 1

y
, (9)

which is true since y ≥ 2 and the right side of the inequality (9) is either 2 or −1.
Thus, if c = 1, we have yq±1

y±1
= q ≥ y ± 1 = qp−1bp, which is a contradiction, so

necessarily c > 1.

13



Next we show that c ≡ 1 (mod qp−1). By Lemma 5.1 we have qcp = yq±1
y±1

=

k(y ± 1) + q where

k =

q−2∑︂
i=0

(︃
q

i

)︃
(y ± 1)q−2−i(±1)i,

implying that q | k. Therefore, q(cp − 1) ≡ 0 (mod qp), which implies cp ≡
1 (mod qp−1). If c ̸≡ 1 (mod qp−1), then the order of c modulo qp−1 must be
properly greater than 1, that is, ordqp−1 (c) = a > 1, and furthermore a | p, implying
that a = p. Then p | φ(qp−1) = qp−2(q − 1), which means that p | q − 1. This
contradicts the assumption that q < p. Hence c ≡ 1 (mod qp−1).

We have now that x ̸= qb since c ̸= 1, and x ≡ qb (mod qp) since c ≡ 1 (mod qp−1).

Let us suppose on the contrary that p ∤ y. Then it follows from yq = (x∓ 1)x
p∓1
x∓1

and Theorem 3.1 that gcd
(︁
x∓ 1, x

p∓1
x∓1

)︁
= 1 and, therefore, there exists an integer

a ≥ 1 such that

x∓ 1 = aq. (10)

By Lemma 5.5 we have

apq = (x∓ 1)p >
(y ± 1)q

q(p−1)q
= bpq,

implying a > b.

Next we will prove that aq ≥ qp

2
. Suppose on the contrary that aq < qp

2
. Since

x ̸= qb and x ≡ qb (mod qp), so |x− qb| ≥ qp, we have the inequality

qp ≤ |x− qb| ≤ |aq ± 1− qb| ≤ aq + qb± 1 <
qp

2
+ qb± 1,

and, therefore, qb± 1 > qp

2
> aq. On the other hand, since a > b, b ≥ 2, and q ≥ 3,

we have that aq > bq ≥ qb+1 ≥ qb±1, contradicting the previous inequality. Hence
aq ≥ qp

2
.

Using equation (10), we get the lower bounds

xp = (aq ± 1)p ≥ (aq − 1)p, and

yq = xp ∓ 1 = (aq ± 1)p ∓ 1 ≥ (aq − 1)p.

Next we show that (1− 2
3p
)p > 1

3
by showing that (1− 2

3p
)p is increasing with respect

to p. Indeed, since

1− 2

3p+1
= 1− 2

3p
+

4

3p+1
,
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we have that(︃
1− 2

3p+1

)︃p+1

=

[︃(︃
1− 2

3p

)︃
+

4

3p+1

]︃p+1

=

p+1∑︂
i=0

(︃
p+ 1

i

)︃(︃
1− 2

3p

)︃i(︃
4

3p+1

)︃p+1−i

=

(︃
4

3p+1

)︃p+1

+

p∑︂
i=1

(︃
p+ 1

i

)︃(︃
1− 2

3p

)︃i(︃
4

3p+1

)︃p+1−i

+

(︃
1− 2

3p

)︃p+1

≥
(︃

4

3p+1

)︃p+1

+

(︃
1− 2

3p

)︃p p∑︂
i=1

(︃
p+ 1

i

)︃(︃
4

3p+1

)︃p+1−i

+

(︃
1− 2

3p

)︃p+1

>

(︃
1− 2

3p

)︃p

· 4(p+ 1)

3p+1
+

(︃
1− 2

3p

)︃p+1

=

(︃
1− 2

3p

)︃p [︃
2(p+ 1)

3
· 2

3p
+ 1− 2

3p

]︃
>

(︃
1− 2

3p

)︃p

.

Hence (1− 2
3p
)p > 1− 2

3
= 1

3
, and(︃

1− 2

qp

)︃p

≥
(︃
1− 2

3p

)︃p

>
1

3
≥ 1

q
,

which together with the inequality aq ≥ qp

2
proved above gives

min{xp, yq} ≥ (aq − 1)p = apq
(︃
1− 1

aq

)︃p

≥ apq
(︃
1− 2

qp

)︃p

>
apq

q
. (11)

Next step is to prove an upper bound for
⃓⃓⃓
x

p
q − y

⃓⃓⃓
. Noting that

(︂
x

p
q − y

)︂ (︂x p
q

)︂q
− yq

x
p
q − y

=
(︂
x

p
q − y

)︂ q−1∑︂
i=0

(︂
x

p
q

)︂i
yq−1−i = xp − yq = ±1,

we get ⃓⃓⃓
x

p
q − y

⃓⃓⃓
=

1∑︁q−1
i=0

(︂
x

p
q

)︂i
yq−1−i

.

Using inequality (11) we have for each i = 0, 1, . . . , q − 1 the inequality

x
pi
q yq−1−i >

(︃
apq

q

)︃ i
q

(︄
ap

q
1
q

)︄q−1−i

=

(︃
apq

q

)︃ i
q
(︃
apq

q

)︃ q−1−i
q

=

(︃
apq

q

)︃ q−1
q

=
ap(q−1)

q
q−1
q

>
ap(q−1)

q
.

This gives us a useful upper bound⃓⃓⃓
x

p
q − y

⃓⃓⃓
<

1

q · ap(q−1)

q

=
1

ap(q−1)
. (12)
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On the other hand, by Taylor,

x
p
q = (aq±1)

p
q =

∞∑︂
r=0

(︃p
q

r

)︃
(±1)r (aq)

p
q
−r =

∞∑︂
r=0

(±1)r
p
q

(︂
p
q
− 1
)︂
· · ·
(︂

p
q
− (r − 1)

)︂
r!

ap−rq.

Let us write for r ≥ 0

tr = (±1)r
p
q

(︂
p
q
− 1
)︂
· · ·
(︂

p
q
− (r − 1)

)︂
r!

ap−rq ̸= 0, (13)

so that

x
p
q =

∞∑︂
r=0

tr. (14)

Let l ̸= q be a prime and r ≥ 1. By Lemma 5.4 we have that

vl(r!) ≤ vl

[︃
p

q

(︃
p

q
− 1

)︃
. . .

(︃
p

q
− (r − 1)

)︃]︃
,

which means that for r ≥ 1 we have that

vl(tr) = vl(a
p−rq) + vl

⎡⎣ p
q

(︂
p
q
− 1
)︂
· · ·
(︂

p
q
− (r − 1)

)︂
r!

⎤⎦ ≥ vl(a
p−rq).

Note that t0 = ap, so the above inequality also holds in the case of r = 0.
Let

R =

⌊︃
p

q

⌋︃
+ 1, ρ =

⌊︃
R

q − 1

⌋︃
.

Then R > p
q
, and, further, Rq > p.

For every r ≤ R and prime l ̸= q the inequality

vl
(︁
trq

R+ρaRq−p
)︁
≥ vl(a

p−rq) + vl(a
Rq−p) = vl(a

(R−r)q) ≥ 0

holds. In the case of l = q, we have

vq(tr) = vq(p(p− q) · · · (p− q(r − 1)))− vq(r!q
r) + vq(a

p−rq)

= 0− vq(r!q
r) + vq(a

p−rq)

= −vq(r!)− r + vq(a
p−rq),

and, therefore, it holds for r ≤ R that

vq
(︁
trq

R+ρaRq−p
)︁
= −r − vq(r!) + vq(a

p−rq) +R + ρ+ vq(a
Rq−p)

= R− r + ρ− vq(r!) + (R− r)qvq(a)

≥ 0

since by Lemma 5.3 vq(r!) = r−s
q−1

≤ R
q−1

≤ ρ, where r = R0 + R1q + · · · + Rmq
m,

0 ≤ Ri ≤ q − 1, and s = R0 +R1 + · · ·+Rm.
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Thus, for r = 0, 1, . . . , R, since the l-adic valuation of trq
R+ρaRq−p is non-negative

for every prime l, we conclude that trq
R+ρaRq−p is an integer. Then the number

I = aRq−pqR+ρ

(︄
(y − x

p
q ) +

∞∑︂
r=R+1

tr

)︄
= aRq−pqR+ρ

(︄
y −

R∑︂
r=0

tr

)︄
(15)

is an integer since Rq − p > 0.
Let us show that I ̸= 0. We write I = I1 + I2 + I3 where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

I1 = aRq−pqR+ρ
(︂
y − x

p
q

)︂
I2 = aRq−pqR+ρtR+1 ̸= 0

I3 = aRq−pqR+ρ

∞∑︂
r=R+2

tr.

(16)

Since R > p
q
, if r > R then

⃓⃓⃓
p
q
− (r + i)

⃓⃓⃓
= r + i− p

q
< r + i+ 1 for all i ≥ 0. So for

n ≥ 1 we have that⃓⃓⃓⃓
tr+n

tr

⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓⃓
(︂

p
q
− r
)︂(︂

p
q
− (r + 1)

)︂
· · ·
(︂

p
q
− (r + n− 1)

)︂
(r + 1)(r + 2) · · · (r + n)

⃓⃓⃓⃓
⃓⃓ 1

anq
<

1

anq
≤
(︃

2

qp

)︃n

since aq ≥ qp

2
. Now ⃓⃓⃓⃓

I3
I2

⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓

∞∑︂
r=R+2

tr
tR+1

⃓⃓⃓⃓
⃓ ≤

∞∑︂
r=R+2

⃓⃓⃓⃓
tr

tR+1

⃓⃓⃓⃓
=

⃓⃓⃓⃓
tR+2

tR+1

⃓⃓⃓⃓
+

⃓⃓⃓⃓
tR+3

tR+1

⃓⃓⃓⃓
+

⃓⃓⃓⃓
tR+4

tR+1

⃓⃓⃓⃓
+ . . .

<
2

qp
+

(︃
2

qp

)︃2

+

(︃
2

qp

)︃3

+ . . . .

and

2

qp
+

(︃
2

qp

)︃2

+

(︃
2

qp

)︃3

+ . . . =
2

qp

(︄
1

1− 2
qp

)︄
=

2

qp − 2
≤ 2

35 − 2
<

1

10
.

Next we show that
1

q2(R + 1)2
≤
⃓⃓
a(R+1)q−ptR+1

⃓⃓
≤ 1

4
. (17)

Since R > p
q
, we have

⃓⃓⃓
p
q
− i
⃓⃓⃓
= p

q
− i ≤ R− i for i = 0, 1, . . . , R− 2, and, therefore,⃓⃓⃓⃓

p

q

(︃
p

q
− 1

)︃
· · ·
(︃
p

q
− (R− 2)

)︃(︃
p

q
− (R− 1)

)︃(︃
p

q
−R

)︃⃓⃓⃓⃓
≤ R(R− 1) · · · 2

⃓⃓⃓⃓
p

q
− (R− 1)

⃓⃓⃓⃓ ⃓⃓⃓⃓
p

q
−R

⃓⃓⃓⃓
= R(R− 1) · · · 2

(︃
p

q
− (R− 1)

)︃(︃
R− p

q

)︃
≤ R!

1

4
,
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because
(︂

p
q
− (R− 1)

)︂
+
(︂
R− p

q

)︂
= 1 implies that their product is at most 1

4
.

Indeed, if real numbers u, v are such that u + v = 1, then uv = u(1− u) = u− u2,
which attains its highest value at u = 1

2
, hence uv = 1

2
− 1

4
= 1

4
.

The above estimate gives

|tR+1| =

⃓⃓⃓
p
q

(︂
p
q
− 1
)︂
· · ·
(︂

p
q
−R

)︂⃓⃓⃓
(R + 1)!

ap−(R+1)q ≤ ap−(R+1)q

4(R + 1)
. (18)

On the other hand, since R−i =
⌊︂
p
q

⌋︂
−(i−1) < p

q
−(i−1) for i = 1, 2, . . . , R−1,

we have that⃓⃓⃓⃓
p

q

(︃
p

q
− 1

)︃
· · ·
(︃
p

q
−R

)︃⃓⃓⃓⃓
≥ (R− 1)(R− 2) · · · 1

⃓⃓⃓⃓
p

q
− (R− 1)

⃓⃓⃓⃓ ⃓⃓⃓⃓
p

q
−R

⃓⃓⃓⃓
= (R− 1)(R− 2) · · · 1

(︃
p

q
− (R− 1)

)︃(︃
R− p

q

)︃
≥ (R− 1)!

q2
,

since R − p
q
≥ 1

q
and p

q
− (R − 1) ≥ 1

q
, because the inequality p

q
− (R − 1) ≥ 1

q
is

equivalent to p − 1 ≥ q
⌊︂
p
q

⌋︂
. To see that this holds, let p = uq + v where u, v are

integers with 0 < v < q. Then⌊︃
p

q

⌋︃
=

⌊︃
u+

v

q

⌋︃
= u ≤ u+

v − 1

q
=

uq + v − 1

q
=

p− 1

q
.

Now

|tR+1| =

⃓⃓⃓
p
q

(︂
p
q
− 1
)︂
· · ·
(︂

p
q
−R

)︂⃓⃓⃓
(R + 1)!

ap−(R+1)q ≥ ap−(R+1)q

q2R(R + 1)
. (19)

By combining estimates (18) and (19), we have proved that

1

q2(R + 1)2
≤ 1

q2(R + 1)R
≤
⃓⃓
a(R+1)q−ptR+1

⃓⃓
≤ 1

4(R + 1)
≤ 1

4
. (20)

Using this we will show that
⃓⃓⃓
I1
I2

⃓⃓⃓
< 1

10
. Indeed, by (12) and (20) we have that⃓⃓⃓⃓

I1
I2

⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓x

p
q − y

tR+1

⃓⃓⃓⃓
⃓ ≤ ⃓⃓⃓x p

q − y
⃓⃓⃓
· q2(R + 1)2a(R+1)q−p

<
1

ap(q−1)
q2(R + 1)2a(R+1)q−p =

q2(R + 1)2

aq(p−R−1)
.

(21)

Let us verify that

p−R− 1 ≥ 2 and R + 1 ≤ p. (22)

Writing p = uq + v, where u, v are integers and 0 < v < q, we have that

p−R− 1 = p−
⌊︃
p

q

⌋︃
− 2 = uq + v − u− 2 = u(q − 1) + v − 2
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where u or v is even, and hence at least 2. If u ≥ 2 then u(q − 1) + v − 2 ≥
2 · 2 + 1− 2 ≥ 2, and if v ≥ 2 then also u(q − 1) + v − 2 ≥ 1 · 2 + 2− 2 ≥ 2. This
veri�es the �rst claim in (22).

Now

R + 1 =

⌊︃
p

q

⌋︃
+ 2 = u+ 2 ≤ uq ≤ uq + v = p,

which is true, since 2 ≤ u(q − 1), and we have veri�ed the second claim in (22).
Returning to (21), by the inequality aq ≥ qp

2
and (22) we now have that

q2(R + 1)2

aq(p−R−1)
≤
(︃

2

qp

)︃p−R−1

q2(R + 1)2 ≤
(︃

2

qp

)︃2

q2p2

=

(︃
2p

qp−1

)︃2

≤
(︃

2p

3p−1

)︃2

≤
(︃
2 · 5
34

)︃2

≤ 1

10
.

Moreover, since
⃓⃓⃓
I3
I2

⃓⃓⃓
≤ 1

10
and

⃓⃓⃓
I1
I2

⃓⃓⃓
≤ 1

10
, we have that

|I| = |I1 + I2 + I3| = |I2|
⃓⃓⃓⃓
1 +

I1
I2

+
I3
I2

⃓⃓⃓⃓
≥ |I2|

(︃
1− 1

10
− 1

10

)︃
̸= 0.

Therefore, we have proved that I ̸= 0, and since I is an integer, it holds that |I| ≥ 1.
By (17) and the inequality aq ≥ qp

2
, we have

|I2| =
⃓⃓
aRq−pqR+ρtR+1

⃓⃓
=

qR+ρ

aq
⃓⃓
a(R+1)q−ptR+1

⃓⃓
≤ qR+ρ

4aq

≤ qR+ρ

2qp
=

qR+ρ−p

2
.

Now

1 ≤ |I| = |I2|
⃓⃓⃓⃓
1 +

I1
I2

+
I3
I2

⃓⃓⃓⃓
≤ qR+ρ−p

2

(︃
1 +

1

10
+

1

10

)︃
=

3

5
qR+ρ−p < qR+ρ−p.

Therefore, R + ρ− p > 0. Now if we write p = uq + v, where integers u, v are such
that and 0 < v < q and u ≥ 1, we obtain

R + ρ =

⌊︃
p

q

⌋︃
+ 1 +

⎢⎢⎢⎣
⌊︂
p
q

⌋︂
+ 1

q − 1

⎥⎥⎥⎦ = u+ 1 +

⌊︃
u+ 1

q − 1

⌋︃

≤ u+ 1 +

⌊︃
u+ 1

2

⌋︃
≤ u+ 1 + (u+ 1) = 2u+ 2

≤ 3u+ 1 ≤ qu+ v = p,

so R+ ρ− p ≤ 0, which is a contradiction. Therefore we have proved that p | y.
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6 A Consequence of Cassels' theorem

We use Cassels' theorem to prove the following lemma which is from [1].

Lemma 6.1. If p, q are distinct odd primes and x, y ≥ 1 are integers such that
xp − yq = 1, then exists integers a, b, u, v such that⎧⎨⎩

x− 1 = pq−1aq

xp − 1

x− 1
= puq

where p ∤ u, gcd (a, u) = 1, y = pau, and⎧⎨⎩
y + 1 = qp−1bp

yq + 1

y + 1
= qvp

where q ∤ v, gcd (b, v) = 1, x = qbv.

Proof. By Theorem 5.6 we have p | y and q | x. Since xp− yq = 1 and yq −xp = −1,
the claim follows from Lemma 3.2.

Next we study the properties of the integers a, b, u, v and x, y of Lemma 6.1 with
the aim of showing that such such integers cannot exist. It's clear that if xp−yq = 1
then x < y if and only if q < p.

Theorem 6.2. Let p, q, x, y, a, b, u, v be as in Lemma 6.1. Then u is odd.

Proof. Suppose u is even. Since gcd (a, u) = 1 it follows that a is odd, hence
x− 1 = pq−1aq is odd whereby x is even. But

yq =
xp − 1

x− 1
(x− 1) = puq(x− 1)

which means y is even. This is a contradiction since x and y cannot have the same
parity.

Theorem 6.3. Let p, q, x, y, a, b, u, v be as in Lemma 6.1. Then u has at least 1
prime factor which is ≥ 7. If all prime factors of u are ≤ 7 then p = 3.

Proof. By Theorem 6.2 u is odd, and necessarily u > 1 because in the case of u = 1
we have the inequality

1 + x+ · · ·+ xp−1 = uqp = p < pq−1aq = x− 1,

which is impossible. Let u = p1
s1 . . . pr

sr be the canonical factorization of u. Then it
follows from xp−yq = 1 that for each prime pi, i = 1, . . . , r, we have the congruence
xp ≡ 1 (mod pi). However, since x− 1 = pq−1aq and gcd (ap, u) = 1, we must have
x ̸≡ 1 (mod pi), which means ordpi (x) = p, so that p | pi − 1 and consequently
pi − 1 = 2kp for some integer k as both pi and p are odd. So now 2p < pi. Let us
denote

∑︁r
k=1 si = c. Then (2p)c < p1

s1 . . . pr
sr = u, so we have that

p <
u1/c

2
. (23)
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The inequality
u1/c

2
≤ 5

is equivalent to u ≤ 10c, meaning that if each prime factor p′ of u satis�es p′ ≤ 10
then p < u1/c

2
≤ 5 in which case p = 3. Similarly the forbidden inequality p < u1/c

2
≤

3 holds whenever u ≤ 6c, thus u must have at least one prime factor p′ > 6.

Theorem 6.4. Let p, q, x, y, a, b, u, v be as in Lemma 6.1. If x is even then 4 | x. If
x is odd then 4 | y.

Proof. Let x be even. Then yq = xp − 1 ≡ 3 (mod 4), so that y ≡ 3 (mod 4). From
y + 1 = qp−1bp, we have 0 ≡ qp−1bp, hence 4 | b as q is odd. Now 4 | qbv = x.

If x = qbv is odd then b is odd, hence y + 1 = qp−1bp ≡ 1 (mod 4), so that
y ≡ 0 (mod 4).

Theorem 6.5. Let p, q, x, y, a, b, u, v be as in Lemma 6.1. Then a > 1.

Proof. Suppose a = 1. Now x− 1 = pq−1aq = pq−1, hence

x− 2 = pq−1 − 1 = (p
q−1
2 − 1)(p

q−1
2 + 1) ≡ 0 (mod 4),

which means 2 | x and 4 ∤ x. But, by Theorem 6.4, 4 | x, which is a contradiction.

Theorem 6.6. Let p, q, x, y, a, b, u, v be as in Lemma 6.1. If x < y then 2x < u.

Proof. Since x < y we have q < p. By Theorem 6.2 u is odd, hence u ̸= 2x. Suppose
u < 2x. Then pau = y < 2pax, so we have that

yq < (2pax)q

−1 < (2pax)q − xp

0 ≤ (2pax)q − xp.

If 0 = (2pax)q−xp then p | x, which is false since x ≡ 1 (mod p). Thus xp < (2pax)q,
which implies

(2pa)q > xp−q ≥ x2 = (pq−1aq + 1)2 > p2(q−1)a2q = p2q−2a2q

2pa > p2−
2
q a2

2 > p1−
2
q a > a

so a = 1, which is a contradiction since by Theorem 6.5 a > 1.

Theorem 6.7. Let p, q, x, y, a, b, u, v be as in Lemma 6.1. Then pa < |x− y| .

Proof. Suppose y < x. Now

|x− y| = x− y = pq−1aq + 1− pau = pa(pq−2aq−1 − u) + 1 > pa

since pq−2aq−1 − u = 0 would imply p | u, which is a contradiction.
Suppose next that x < y. By Theorem 6.6 x < 2x < u, so that

|x− y| = y − x > y − u = u(ap− 1) > ap

whenever u > ap
ap−1

= 1 + 1
ap−1

which is true since u > 2 by Theorem 6.3.
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Theorem 6.8. Let p, q, x, y, a, b, u, v be as in Lemma 6.1. Then ap < u.

Proof. Suppose u ≤ ap, hence uq ≤ (ap)q = p(x− 1) < px, which implies

uqp = 1 + x+ · · ·+ xp−1 < p2x < x2,

since x−1 = pq−1aq, and, therefore, p2 < x. Hence p−1 ≤ 1, which is impossible.

A property of relatively prime positive integers, x and y satisfy |x− y| < x or
|x− y| < y. The next theorem considers the case of |x− y| < x .

Theorem 6.9. Let p, q, x, y, a, b, u, v be as in Lemma 6.1. Then |x− y| < x if and
only if y < x.

Proof. Let us suppose |x− y| < x. Thus (x − y)2 = x2 − 2xy + y2 < x2, which
implies y < 2x. If x < y then by Theorem 6.6 x < u, so that pau = y < 2x < 2u,
which is impossible, hence y < x.

Next let us suppose y < x. If x < |x− y| then both x and y are smaller than
|x− y|, which is impossible, so we must have |x− y| < x.

Theorem 6.10. One of the following conditions is true for x and y as in Lemma
6.1:

y < |x− y| < x (24)

|x− y| < y < x (25)

x < |x− y| < y (26)

Proof. Inequalities (24) and (25) are the two possibilities of Theorem 6.9 and the
equation (26) is the only option in the case of x < y.

Theorem 6.11. Let |x− y| < y < x. Then u8 < rr where r is the largest prime
divisor of u.

Proof. Let |x− y| < y < x. Thus p < q and (x − y)2 < y2, whereby x < 2y. Now
1 = xp − yq < 2pyp − yq, hence 2pyp > yq. By Theorem 6.5 a > 1, so we now have
2p > yq−p ≥ y2 = (pau)2 > (pa(2p)c)2 > 24c+4 where c is as indicated in Theorem
6.3. Then

p > 4(c+ 1). (27)

Consequently 4c < p < u1/c

2
by (23), so (8c)c < u ≤ rc, hence

c <
r

8
, (28)

which implies u ≤ rc < r
r
8 .
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7 Theorem of Inkeri

7.1 The p-th cyclotomic �eld

Next are some facts about cyclotomic �elds relevant to the Theorem of Inkeri. Most
of these facts are from [1].

Let C be the �eld of complex numbers, and let i ∈ C be the imaginary unit with
i2 = −1. Let p be an odd prime and let

ξ = cos
2π

p
+ i sin

2π

p
,

so ξ is a point on the unit circle on the complex plane. By Euler's formula, we have
that

ξ = e
2πi
p ,

and, therefore, for a real number k,

ξk = e
2πik
p = cos

2πk

p
+ i sin

2πk

p

It follows that ξk = 1 if and only if k is an integer multiple of p. Hence k = p is the
smallest k > 0 such that ξk = 1, and, consequently, 1, ξ, ξ2, . . . , ξp−1 are distinct,
and they divide the unit circle into p equal parts. The complex number ξ is called
the p-th root of unity, and its powers generate all p solutions to the equation zp = 1,
namely z = 1, ξ, . . . , ξp−1. Its complex conjugate ξ satis�es

ξ = cos
2π

p
− i sin

2π

p
= ξ−1,

since

ξξ =

(︃
cos

2π

p
+ i sin

2π

p

)︃(︃
cos

2π

p
− i sin

2π

p

)︃
= sin

(︃
2π

p

)︃2

+ cos

(︃
2π

p

)︃2

= 1.

The �eld Q(ξ), where ξ is adjoined to the �eld of rational numbers, is called the
p-th cyclotomic �eld. Let

Φ(x) =
xp − 1

x− 1
= 1 + x+ x2 · · ·+ xp−1.

The polynomial Φ(x) is the p-th cyclotomic polynomial, and its zeros are ξ, ξ2 . . . , ξp−1,
which are distinct as discussed before. It follows that the polynomial

f(x) = (x− ξ)(x− ξ2) · · · (x− ξp−1)

divides Φ(x) in the polynomial ring Q(ξ)[x], and, since the the leading term of f(x)
is xp−1, which is the same as the leading term of Φ(x), we have necessarily that

Φ(x) = (x− ξ)(x− ξ2) · · · (x− ξp−1).
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Furthermore, by substituting x = y + 1, and using the binomial theorem, we get
that

Φ(x) = Φ(y + 1) =
(y + 1)p − 1

y
=

∑︁p
i=0

(︁
p
i

)︁
yp−i − 1

y
=

p−1∑︂
i=0

(︃
p

i

)︃
yp−i−1,

hence

Φ(y + 1) = yp−1 +

(︃
p

1

)︃
yp−2 + · · ·+

(︃
p

p− 2

)︃
y + p.

Let us show that Φ(x) is irreducible over the rational numbers by using the Eisenstein
irreducibility criterion. As formulated in [2] on page 42, the Eisenstein criterion for
the polynomial ring Z[x] states the following: If p is a prime number, and

f(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn

is a polynomial in Z[x], such that p divides a0, a1, . . . , an−1, and p2 does not divide
a0, then f(x) is irreducible in Q[x].

In the case of Φ(y + 1), since p is prime, it satis�es p |
(︁
p
i

)︁
when 1 ≤ i < p, and

p2 ∤ p. Therefore, by Eisenstein's criterion, Φ(y + 1) is irreducible over the rational
numbers, which implies that Φ(x) is irreducible as well. Thus Φ(x) is the minimal
polynomial of ξ over Q, and the degree of the extension Q(ξ)/Q is the degree of
Φ(x), which is p− 1. Therefore, we have the following fact.

Theorem 7.1. The elements
1, ξ, . . . , ξp−2

form a basis of Q(ξ) over Q, so that

Q(ξ) =
{︁
a0 + a1ξ + · · ·+ ap−2ξ

p−2
⃓⃓
ai ∈ Q

}︁
.

De�nition 7.1. Let α ∈ Q(ξ). The presentation of α as the linear combination of
the elements 1, ξ, . . . , ξp−2 over the rationals,

α = a0 + a1ξ + · · ·+ ap−2ξ
p−2,

is called the canonical presentation of α, and the coe�cients, ai ∈ Q, are unique, by
Theorem 7.1.

De�nition 7.2. Let α ∈ Q(ξ). If there exists an integer n ≥ 1 and integers
a0, . . . , an−1, such that

a0 + a1α + a2α
2 + · · ·+ an−1α

n−1 + αn = 0,

then α is called an integer of Q(ξ). This is equivalent to saying that there exists a
monic polynomial f(x) with integer coe�cients, such that f(α) = 0.

Example 7.2. The p-th root of unity ξ is an integer of Q(ξ), since the polynomial

Φ(x) = 1 + x+ · · ·+ xp−1

satis�es the equation
Φ(ξ) = 1 + ξ + · · ·+ ξp−1 = 0.
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Theorem 7.3. The set

Z[ξ] =
{︁
a0 + a1ξ + · · ·+ an−1ξ

n−1 + anξ
n
⃓⃓
n > 0, ai ∈ Z

}︁
is a subring of Q(ξ), and, moreover, the elements

1, ξ, . . . , ξp−2

form a basis of Z[ξ] over Z.

Proof. By the subring criterion, Z[ξ] is a subring of Q(ξ): indeed, Z[ξ] is closed
under multiplication and subtraction, and contains the unit 1. Let α ∈ Z[ξ]. Then

α = a0 + a1ξ + · · ·+ an−1ξ
n−1 + anξ

n (29)

where n > 0, and a0, . . . , an ∈ Z. Since ξp = 1, and

ξp−1 = −(1 + ξ + · · ·+ ξp−2),

we get, from the equation (29), that

α = b0 + b1ξ + · · ·+ bp−2ξ
p−2,

where b0, . . . , bp−2 ∈ Z. Thus, the elements

1, ξ, . . . , ξp−2 (30)

generate the ring Z[ξ] over the integers. To form a basis, the elements (30) must
also be linearly independent over the integers. By Theorem 7.1, we have that the
elements (30) are linearly independent over Q, hence (30) are linearly independent
over Z. Thus the elements (30) form a basis of Z[ξ] over Z.

Note, that when p > 3, Z[ξ] contains real numbers that are not integers. For
example, let k > 0 be such that

2k ≡ 1 (mod p),

so that, since p is odd,
2k = (2n+ 1)p+ 1

where n ∈ Z. Since ξk and ξ−k are in Z[ξ], and ξ−k = ξk, we have that the element

ξk + ξ−k = 2Re(ξk) = 2 cos

(︃
2πk

p

)︃
is a real number in Z[ξ]. And, since 2kπ = ((2n+ 1)p+ 1)π, we get that

2 cos

(︃
2πk

p

)︃
= 2 cos

(︃
((2n+ 1)p+ 1)π

p

)︃
= 2 cos

(︃
2npπ + π +

π

p

)︃
= 2 cos

(︃
π +

π

p

)︃
= −2 cos

(︃
π

p

)︃
,
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Since p > 2, π
p
is in the �rst quarter of the unit circle, and, therefore,

0 < cos

(︃
π

p

)︃
< 1,

hence

−2 < −2 cos

(︃
π

p

)︃
< 0.

From this, we get that, if ξk + ξ−k is an integer, then necessarily

ξk + ξ−k = −2 cos

(︃
π

p

)︃
= −1,

so that

cos

(︃
π

p

)︃
=

1

2
,

but this false, since π
p
is not of the form 2πm ± π

3
, where m ∈ Z, because p > 3.

Thus, ξk + ξ−k is not an integer.
Let us denote by A the set of integers of Q(ξ). We make the following de�nitions.

� If α ∈ A is such that αβ = 1 for some β ∈ A then α is said to be a unit of A,
or simply a unit.

� If α, β ∈ Q(ξ) and there exists γ ∈ A such that β = γα, it is said that α
divides β, which is denoted by α | β.

� If α, β ∈ Q(ξ) and α | β and β | α then α and β are said to be associate,
denoted by α ∼ β.

Theorem 7.4. Let α, β ∈ Q(ξ). Then α ∼ β if and only if α = γβ, where γ ∈ A is
a unit.

Proof. Since α ∼ β, by de�nition there exists γ, γ′ ∈ A, such that

α = γβ, and

β = γ′α.

Hence

α = γβ = γγ′α,

from which we get that 1 = γγ′, and, therefore, γ is a unit of A.

The purpose of the following set of results is to eventually establish that A = Z[ξ].
The �rst theorem to that end shows that A does not contain non-integer rational
numbers.

Theorem 7.5. A ∩Q = Z.
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Proof. Since Z ⊆ A, it su�ces to show that the only rational numbers in A are the
integers. Let a, b ∈ Z be such that b ̸= 0 and a

b
̸∈ Z, so that we may assume that a

and b are relatively prime. Suppose on the contrary that a
b
∈ A. Then there exists

n > 0 such that

0 = a0 + a1
a

b
+ · · ·+ an−1

(︂a
b

)︂n−1

+
(︂a
b

)︂n
for some integers a0, . . . , an−1. Multiplying the equation by bn−1, we get that

0 = a0b
n−1 + a1b

n−2a+ · · ·+ an−1a
n−1 +

an

b
,

hence an

b
∈ Z, which is a contradiction, since it was assumed that a

b
̸∈ Z, and

gcd (a, b) = 1.

Lemma 7.6. Let b ∈ Z, b ̸= 0, and let

α = a0 + a1ξ + · · ·+ ap−2ξ
p−2 ∈ Z[ξ],

where a0, . . . , ap−2 ∈ Z. Then b | α in Z[ξ] if and only if b | ai for i = 0, . . . , p− 2.

Proof. If b | ai for i = 0, . . . , p− 2, then

α = b
(︂a0
b
+

a1
b
ξ + · · ·+ ap−2

b
ξp−2

)︂
,

where ai
b
∈ Z for i = 0, . . . , p− 2, hence

a0
b
+

a1
b
ξ + · · ·+ ap−2

b
ξp−2 ∈ Z[ξ],

so b | α.
Let us now suppose that b | α, meaning that there exists β ∈ Z[ξ], such that

α = bβ. Then
β = c0 + c1ξ + · · ·+ cp−2ξ

p−2,

for some c0, . . . , cp−2 ∈ Z, and, therefore,

α = bβ = bc0 + bc1ξ + · · ·+ bcp−2ξ
p−2.

By theorem 7.1, this canonical presentation of α is unique, so the claim is true for
α.

Let us make the following de�nitions for the purpose of upcoming theorems.

De�nition 7.3. Commutative, non-zero ring R is called an integral domain, if
ab ̸= 0 for all non-zero a, b ∈ R.

De�nition 7.4. Let B ⊆ C be two rings. If x ∈ C, and

0 = b0 + b1x · · ·+ bn−1x
n−1 + xn,

for some n > 0, and b0, . . . , bn−1 ∈ B, the element x ∈ C is said to be integral over
B. A subset S ⊆ C is likewise said to be integral over B if every x ∈ S is integral
over B.
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For example, A is by its construction integral over Z. Let us recall the de�nition
of a module.

De�nition 7.5. Let R be a ring. An Abelian group (M,+) is called an R-module,
if it satis�es the following postulates.

RM0. ax ∈ M for all a ∈ R, x ∈ M ,

RM1. a(x+ y) = ax+ ay for all a ∈ R, x, y ∈ M ,

RM2. (a+ b)x = ax+ bx for all a, b ∈ R, x ∈ M ,

RM3. (ab)x = a(bx) for all a, b ∈ R, x ∈ M ,

RM4. 1x = x for all x ∈ M .

De�nition 7.6. If M is an R-module, and a subset N ⊆ M is also an R-module,
then N is called a submodule of M .

De�nition 7.7. An R-module M is called �nitely generated, if for some n ∈ N and
m1 . . . ,mn ∈ M , we have that

M = {r1m1 + · · ·+ rnmn| ri ∈ R} .

The following provides submodule criteria.

Theorem 7.7. Let M be an R-module. Then a subset N of M is an M submodule
if it satis�es the following conditions.

AM1. N ̸= ∅,

AM2. if x, y ∈ N then x+ y ∈ N ,

AM3. if a ∈ R and x ∈ N , then ax ∈ N .

The next theorem, which is from [6], will be used, among other things, to prove
that A is a ring.

Theorem 7.8. Let B ⊆ C be two rings. Then α ∈ C is integral over B if and only if
there exists a �nitely generated, non-zero B−module M ⊆ C, such that αM ⊆ M .

Proof. Suppose that α ∈ C is integral over B, so that

0 = u0 + u1α + · · ·+ αn,

where n ≥ 1 and ui ∈ B. Let

M =
{︁
b0 + b1α + · · ·+ bn−1α

n−1
⃓⃓
b0, . . . , bn−1 ∈ B

}︁
.

ThusM is a �nitely generated B−module, and for β = b0+b1α+· · ·+bn−1α
n−1 ∈ M ,

we have that

αβ = α(b0 + b1α + · · ·+ bn−2α
n−2 + bn−1α

n−1)

= b0α + b1α
2 + · · ·+ bn−2α

n−1 + bn−1α
n

= b0α + b1α
2 + · · ·+ bn−2α

n−1 + bn−1(−(u0 + u1α + · · ·+ un−1α
n−1))

= −bn−1u0 + (b0 − u1)α + (b1 − u2)α
2 + · · ·+ (bn−2 − un−1)α

n−1,
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so αβ ∈ M , hence αM ⊆ M . Suppose next that α ∈ C, and that there exists a
�nitely generated B−module

M = {b1x1 + · · ·+ bnxn| b1, . . . , bn ∈ B} ,

where xi ∈ C and n ≥ 1, such that αM ⊆ M . From the condition that αM ⊆ M ,
it follows that αxi ∈ M for i = 1, . . . , n, and, therefore, αxi is of the form

αxi = bi1x1 + · · ·+ binxn

where bij ∈ B. Thus, we get the equations

αx1 = b11x1 + b12x2 + · · ·+ b1nxn

αx2 = b21x1 + b22x2 + · · ·+ b2nxn

...

αxn = bn1x1 + bn2x2 + · · ·+ bnnxn.

Hence

0 = (b11 − α)x1 + b12x2 + · · ·+ b1nxn

0 = b21x1 + (b22 − α)x2 + · · ·+ b2nxn

...

0 = bn1x1 + bn2x2 + · · ·+ (bnn − α)xn.

Considering (x1, . . . xn) as a solution to this homogeneous system of linear equations,
it follows that the determinant of the coe�cient matrix is 0:⃓⃓⃓⃓

⃓⃓⃓⃓
⃓
b11 − α b12 . . . b1n
b21 b22 − α . . . b2n
...
bn1 bn2 . . . bnn − α

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ = 0.

When calculating the determinant, the coe�cient of the leading term αn is 1 (or −1,
in which case the result can be multiplied by −1 to get 1 as the coe�cient). This
gives a non-zero monic polynomial over B whose zero is α, and so, α is integral over
B.

De�nition 7.8. Let B ⊆ C be two rings. The set of all elements of C which are
integral over B is called the integral closure of B in C.

Theorem 7.9. Let B ⊆ C be two rings. The integral closure of B in C is a ring.

Proof. Denote the integral closure of B in C by R. Since R ⊆ C, we check that R
satis�es the subring criteria. Since B is a subring of C, 1 ∈ B, and 1 is the zero of
the polynomial X − 1, so that 1 ∈ R. Next, let us show that R is additively and
multiplicatively closed. Let x, y ∈ R, hence we have the equations

0 = a0 + a1x+ · · ·+ xn, and

0 = c0 + c1y + · · ·+ ym,
(31)
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where ai, ci ∈ B and n,m ≥ 1. Let

M =

{︄
n−1∑︂
i=0

m−1∑︂
j=0

bijx
iyj

⃓⃓⃓⃓
⃓ bij ∈ B

}︄
,

so that M is a �nitely generated B-module. From the equations (31), we get that

xn = −(a0 + a1x+ · · ·+ an−1x
n−1), and

ym = −(b0 + b1y + · · ·+ bm−1y
m−1),

from which xyM ⊆ M and (x− y)M ⊆ M , so that, by Theorem 7.8, xy, x− y ∈ R,
so R is a ring.

Theorem 7.10. A is a ring.

Proof. By Theorem 7.9 the integral closure of Z in Q(ξ) is a ring, which is A.

From the fact that A is a ring, we have the following result.

Theorem 7.11. Z[ξ] ⊆ A.

Proof. Theorem 7.10 states that A is a ring, and since ξk ∈ A and a ∈ A for all
k ∈ Z and a ∈ Z, it follows that all the linear combinations of 1, ξ, . . . , ξp−2 over the
integers are contained in A. Since the elements 1, ξ, . . . , ξp−2 form a basis of Z[ξ]
over the integers by Theorem 7.3, we get that Z[ξ] ⊆ A.

From the fact that A is a ring, we may consider the residue ring A/I for an ideal
I of A. For α, β ∈ A, let us denote

α ≡ β, if and only if α− β ∈ I

so that the relation ≡ is an equivalence relation, and we write

α ≡ β (mod I).

In some of the following theorems we consider A/(α), where α ∈ A, and (α) denotes
the principal ideal generated by α, that is

αA = {αx|x ∈ A} .

More about ideals later.
The next theorem and its proof are from [6], and it will be used for showing that

the ring of integers A is contained in the ring Z[ξ].

Theorem 7.12. When k > 0 is an integer such that p ∤ k, the mapping

σk : Q(ξ) −→ Q(ξ),

with the rule

σk(a0 + a1ξ + a2ξ
2 + · · ·+ ap−2ξ

p−2) = a0 + a1ξ
k + a2(ξ

k)2 + · · ·+ ap−2(ξ
k)p−2

where ai ∈ Q, is a �eld homomorphism.
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Proof. For σk to be a �eld homomorphism, it must be additive, multiplicative, and
satisfy σk(1) = 1. The last condition is satis�ed, so next, let us show that σk is
additive. Let

α = a0 + a1ξ + · · ·+ ap−2ξ
p−2 ∈ Q(ξ), and

β = b0 + b1ξ + · · ·+ bp−2ξ
p−2 ∈ Q(ξ).

Now
α + β = (a0 + b0) + (a1 + b1)ξ + · · ·+ (ap−2 + bp−2)ξ

p−2,

hence

σk(α + β) = (a0 + b0) + (a1 + b1)ξ
k + · · ·+ (ap−2 + bp−2)ξ

k(p−2)

= (a0 + a1ξ
k + · · ·+ ap−2ξ

k(p−2)) + (b0 + b1ξ
k + · · ·+ bp−2ξ

k(p−2))

= σk(α) + σk(β).

Let us show that σk is multiplicative. Let

f(x) = a0 + a1x+ · · ·+ ap−2x
p−2, and

g(x) = b0 + b1x+ · · ·+ bp−2x
p−2

be polynomials in Q[x], so that f(ξ) = α and g(ξ) = β, and, furthermore,

f(ξk) = σk(α), and

g(ξk) = σk(β).
(32)

Dividing the polynomial f(x)g(x) by the p−th cyclotomic polynomial Φ(x) in the
polynomial ring Q[x], we get that

f(x)g(x) = h(x)Φ(x) + r(x) (33)

for some h(x), r(x) ∈ Q[x], such that deg r(x) < deg Φ(x) = p− 1. So r(x) is of the
form

r(x) = c0 + c1x+ · · ·+ cp−2x
p−2.

Then, since Φ(ξ) = 0, we get from the equation (33), that

αβ = f(ξ)g(ξ) = h(ξ)Φ(ξ) + r(ξ) = r(ξ) = c0 + c1ξ + · · ·+ cp−2ξ
(p−2). (34)

Since deg r(x) < p− 1, and Φ(ξk) = 0 because p ∤ k, we get from the equations (34),
(33), and (32), that

σk(αβ) = σk(r(ξ))

= r(ξk)

= h(ξk)Φ(ξk) + r(ξk)

= f(ξk)g(ξk)

= σk(α)σk(β),

so σk is multiplicative, and thus a homomorphism.
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From the fact that σk is a homomorphism when p ∤ k, we get the following result.

Corollary 7.13. If α ∈ A and p ∤ k, then σk(α) ∈ A.

Proof. Suppose α ∈ A, so that

0 = a0 + a1α + · · ·+ an−1α
n−1 + αn,

where a0, . . . , an−1 ∈ Z. By Theorem 7.12, the mapping σk is a homomorphism,
and, therefore,

0 = σk(a0 + a1α + · · ·+ αn)

= a0 + a1σk(α) + · · ·+ an−1σk(α)
n−1 + σk(α)

n,

hence σk(α) ∈ A.

Lemma 7.14. Let α = a0 + a1ξ + · · ·+ ap−2ξ
p−2 ∈ Q(ξ). Then

p−1∑︂
k=1

σk(α) = pa0 − (a0 + a1 + · · ·+ ap−2).

Proof. For k = 1, . . . , p− 1, we have that

Φ(ξk) = 1 + ξk + ξ2k + · · ·+ ξ(p−1)k = 0,

and
σk(α) = a0 + a1ξ

k + a2ξ
2k + · · ·+ ap−2ξ

(p−2)k,

hence

σ1(α) + σ2(α) + · · ·+ σp−1(α) =

p−2∑︂
i=0

aiξ
i +

p−2∑︂
i=0

aiξ
2i + · · ·+

p−2∑︂
i=0

aiξ
(p−1)i

= (p− 1)a0 +

p−2∑︂
i=1

ai(ξ + ξ2 + · · ·+ ξp−1)

= (p− 1)a0 +

p−2∑︂
i=1

ai(−1)

= pa0 − (a0 + a1 + · · ·+ ap−2).

We use the following notation. Let

α = a0 + a1ξ + · · ·+ ap−2ξ
p−2 ∈ Q(ξ).

Let us denote
S(α) = a0 + a1 + · · ·+ ap−2, (35)

which is the sum of the coe�cients, ai ∈ Q, in the canonical presentation of α, as
de�ned in De�nition 7.1.
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Concerning the mapping σk of Theorem 7.12, we have, for any k1, k2 > 0 that
may be multiples of p, that

σk1(σk2(α)) = σk1k2(α).

And, if k1 ≡ k2 (mod p), then

σk1(α) = σk2(α).

In the case that p | k, we have that σk(α) = σp(α) = S(α). Note, that σp is not a
homomorphism. Indeed, σp is not multiplicative, since, for example, we have that

σp(ξ)σp(ξ
p−2) = S(ξ)S(ξp−2) = 1 · 1 = 1,

but for the product

ξ · ξp−2 = ξp−1 = −1− ξ − · · · − ξp−2,

we have that

σp(ξ · ξp−2) = σp(−1− ξ − · · · − ξp−2)

= S(−1− ξ − · · · − ξp−2)

= −1− · · · − 1

= −(p− 1) ̸= 1.

But σp is additive. Indeed, for any α, β ∈ Q(ξ), we have that

σp(α) + σp(β) = S(α) + S(β) = S(α + β) = σp(α + β).

Lemma 7.15. Let α = a0 + a1ξ + · · · + ap−2ξ
p−2 ∈ Z[ξ], n > 0, and let q > 2 be a

prime number, not necessarily di�erent di�erent from p, and let (q) be the principal
ideal of Z[ξ] generated by q. Then

αqn ≡ σqn(α) (mod (q)).

Proof. Let us �rst show that αq ≡ σq(α) (mod (q)), by induction on 0 ≤ k ≤ p− 2
in

α = a0 + a1ξ + · · ·+ akξ
k ∈ Z[ξ].

Note, that if a, b ∈ Z, and
a ≡ b (mod q)

in the ordinary integers, then also

a ≡ b (mod (q)).

This is due to the fact that qZ ⊆ qZ[ξ] = (q). For k = 0, α = a0 is an ordinary
integer, so by Fermat's Little Theorem, we have that

αq = aq0 ≡ a0 = σq(α) (mod q),
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in the ordinary integers. By the earlier remark, the same congruence holds in
Z[ξ]/(q), so we have that

αq ≡ σq(α) (mod (q)).

Next, suppose that 0 ≤ k ≤ p− 3, and that the element

α = a0 + a1ξ + · · ·+ akξ
k ∈ Z[ξ]

satis�es
αq ≡ σq(α) (mod (q)).

Now, by the binomial theorem, we have that

(α + ak+1ξ
k+1)q =

q∑︂
i=0

(︃
q

i

)︃
αi(ak+1ξ

k+1)q−i.

Since q is a prime, q divides
(︁
q
i

)︁
for i = 1, . . . , q−1. Recall that σq is additive even if

q = p. By the induction hypothesis, and by Fermat's Little Theorem, we have that

q∑︂
i=0

(︃
q

i

)︃
αi(ak+1ξ

k+1)q−i ≡ αq + (ak+1ξ
k+1)q (mod (q))

≡ σq(α) + ak+1ξ
q(k+1) (mod (q))

≡ σq(α) + σq(ak+1ξ
k+1) (mod (q))

= σq(α + ak+1ξ
k+1) (mod (q)).

Thus αq ≡ σq(α) (mod (q)) for every α ∈ Q(ξ). Now, if we have for some n > 0
that

αqn ≡ σqn(α) (mod (q)),

then
αqn+1

= (αqn)q ≡ (σqn(α))
q ≡ σq(σqn(α)) = σqn+1(α) (mod (q)).

Lemma 7.16. Let α ∈ Z[ξ], and let q be a prime, and n > 0. If q | αn, then q | α,
or q = p.

Proof. Let
α = a0 + a1ξ + · · ·+ ap−2ξ

p−2 ∈ Z[ξ],

and let q ̸= p be a prime, such that q | αn. Let us show that q divides α. By
Fermat's Little Theorem, we have that qn(p−1) ≡ 1 (mod p). Since qn(p−1) − n > 0,
and q | αn, we have that

αqn(p−1)

= αnαqn(p−1)−n ≡ 0 (mod (q)).

Moreover, by Lemma 7.15, we have that

αqn(p−1) ≡ σqn(p−1)(α) ≡ α (mod (q)),

since qn(p−1) ≡ 1 (mod p). Thus q | α.
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Lemma 7.17. Let

α = a0 + a1ξ + · · ·+ ap−2ξ
p−2 ∈ Q(ξ),

and let n > 0. Let

S(α) = a0 + a1 + · · ·+ ap−2,

as de�ned in the equation 35. Then

S(ξα) = S(α)− pap−2,

and
p−1∑︂
k=1

σk(ξα) = −S(α).

Proof. Since

ξp−1 = −(1 + ξ + · · ·+ ξp−2),

we get that

ξα = ξ(a0 + a1ξ + · · ·+ ap−2ξ
p−2)

= a0ξ + a1ξ
2 + · · ·+ ap−3ξ

p−2 + ap−2(−(1 + ξ + · · ·+ ξp−2))

= −ap−2 + (a0 − ap−2)ξ + (a1 − ap−2)ξ
2 + · · ·+ (ap−3 − ap−2)ξ

p−2.

Hence

S(ξα) = −ap−2 + (a0 − ap−2) + (a1 − ap−2) + · · ·+ (ap−3 − ap−2)

= a0 + a1 + · · ·+ ap−3 + (p− 1)(−ap−2)

= −pap−2 + a0 + a1 + · · ·+ ap−3 + ap−2

= −pap−2 + S(α).

Writing the statement of Lemma 7.14 in terms of S, we have that

p−1∑︂
k=1

σk(ξα) = p(−ap−2)− S(ξα)

= p(−ap−2)− (S(α)− pap−2)

= −S(α).

Theorem 7.18. A ⊆ Z[ξ].

Proof. Suppose on the contrary that there exists α ∈ A, such that α ∈ Q(ξ) \ Z[ξ],
so that α is of the form

α =
a0
b0

+
a1
b1
ξ + · · ·+ ap−2

bp−2

ξp−2,
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where ai, bi are relatively prime integers, and bi ̸= 0, and for some index i, we have
that ai

bi
̸∈ Z. Thus, let q be a prime divisor of a bi, that satis�es

ai
bi

̸∈ Z. Let d be
non-zero integer, such that

dα = β +
γ

q
,

where β, γ ∈ Z[ξ], and

γ = c0 + c1ξ + · · ·+ cp−2ξ
p−2 , cj ∈ Z

where cj = 0 or q ∤ cj, with at least one cj being non-zero. By Theorem 7.10, A is a
ring, hence dα, β ∈ A, and consequently, we have that γ′ = γ

q
= dα− β ∈ A, where

γ′ =
c0
q
+

c1
q
ξ + · · ·+ cp−2

q
ξp−2.

Since A is a ring, γ′ξ−k is in A for every k ∈ Z, so we may assume that the coe�cient
c0 is non-zero, and thus not a multiple of q, by assumption. Since γ′ = γ

q
∈ A, we

have that

0 = m0 +m1
γ

q
+ · · ·+mn−1

(︃
γ

q

)︃n−1

+

(︃
γ

q

)︃n

(36)

for some n > 0 and m0, . . . ,mn−1 ∈ Z. Multiplying the equation (36) by qn−1, we
get that

0 = m0q
n−1 +m1q

n−2γ + · · ·+mn−1γ
n−1 +

γ

q

n

.

Hence γn

q
∈ Z[ξ], which means that q | γn. By Lemma 7.16, this implies that q | γ

or q = p. If q | γ, then, by Lemma 7.6, we have that q | cj for j = 0, . . . , p− 2, but
this is false, since q ∤ c0. Thus q = p, so that

γ′ =
c0
p
+

c1
p
ξ + · · ·+ cp−2

p
ξp−2.

By Lemma 7.17, we have that

p−1∑︂
i=1

σi(γ
′) = p

c0
p
− (

c1
p
+ · · ·+ cp−2

p
) (37)

= c0 − (
c1
p
+ · · ·+ cp−2

p
)

= c0 −
c1 + · · ·+ cp−2

p
.

By Corollary 7.13, the sum on the left-hand side of the equation (37), is in A, hence

p−1∑︂
i=1

σi(γ
′)− c0 = −c1 + · · ·+ cp−2

p
∈ A.

Thus
c1 + · · ·+ cp−2

p
∈ A ∩Q,

36



so that c1+···+cp−2

p
is necessarily an integer, by Theorem 7.5, which means that

c1 + · · ·+ cp−2 ≡ 0 (mod p). (38)

Using the S notation as de�ned in the equation (35), we have that

S(γ) = c0 + c1 + · · ·+ cp−2,

and, by the equation (38), we get that

S(γ)− c0 ≡ 0 (mod p). (39)

On the other hand, we have, by Lemma 7.17, that

p−1∑︂
i=1

σi(ξγ
′) = −S(γ′)

= −(
c0
p
+

c1
p
+ · · ·+ cp−2

p
)

= −c0 + c1 + · · ·+ cp−2

p
,

and this sum is, again, an element of A, by Corollary 7.13. As before, it follows
from Theorem 7.5, that

c0 + c1 + · · ·+ cp−2

p
∈ Z,

hence
c0 + c1 + · · ·+ cp−2 = S(γ) ≡ 0 (mod p).

But, since S(γ) ≡ c0 (mod p) by the equation (39), we have, by the above congru-
ence, that

0 ≡ S(γ) ≡ c0 (mod p),

which is false, since it was assumed that p ∤ c0.

Theorem 7.19. A = Z[ξ].

Proof. Theorem 7.18 states that A ⊆ Z[ξ], and Theorem 7.11 states that A ⊆ Z[ξ],
hence A = Z[ξ].

7.2 Ideals

Next are some de�nitions concerning ideals, and some of their properties.

� Subset I of Q(ξ) is said to be a fractional ideal if I has the following three
properties.

1. α− β ∈ I for every α, β ∈ I

2. αI ⊆ I for every α ∈ A

3. there exists a non-zero α ∈ A, such that αI ⊆ A.
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� If I is a fractional ideal such that I ⊆ A, then I is said to be an integral ideal.

� If an integral ideal is proper subset of A, then I is said to be proper ideal.

� For fractional ideals I, J , let us de�ne the multiplication between ideals,

IJ =

{︄
n∑︂

i=1

aibi

⃓⃓⃓⃓
⃓n > 0, ai ∈ I, bi ∈ J for i = 1, . . . , n

}︄
.

Clearly IJ = JI, and IJ satis�es the conditions 1−3, so that IJ is a fractional
ideal. In the case that I and J are both integral ideals, then it follows from
the de�nition that IJ ⊆ I, and IJ ⊆ J , hence IJ ⊆ I ∩ J .

� For α ∈ Q(ξ), denote (α) = αA, which clearly satis�es the conditions 1 − 3,
so that (α) is a fractional ideal, and it's called the principal fractional ideal
generated by α. (1) = A is called the unit ideal, since AI = I, and (0) = {0}
is the zero ideal.

� It it said that a fractional ideal I divides a fractional ideal J , if there exists
an integral ideal L such that J = LI, which is denoted by I | J .

� A proper integral ideal I is said to be maximal, if I is not a proper subset of
any integral ideal, other than A.

Example 7.20. Let Z be the ring of integers with the usual multiplication and
addition. Then (2) is a maximal ideal of Z. Indeed, if I is an ideal of Z such that
the inclusion (2) ⊆ I is proper, then I contains at least one odd integer, 2n+1 ∈ I.
Since 2n ∈ (2) ⊆ I, it follows that (2n + 1) − 2n = 1 ∈ I, hence I = Z, so (2) is
maximal.

Next are some properties of fractional ideals.

Theorem 7.21. If I, J are fractional ideals then I ∩ J is a fractional ideal.

Proof. If α ∈ I ∩ J then α ∈ I, α ∈ J , and −α = (−1)α where −1 ∈ A, so −α ∈ I
and −α ∈ J , so −α ∈ I ∩ J .

If α, β ∈ I ∩ J then α + β ∈ I and α + β ∈ J , so α + β ∈ I ∩ J .
Since I and J are fractional ideals, there exists γ1, γ2 ∈ A such that αγ1 ∈ A for

all α ∈ I and βγ2 ∈ A for all β ∈ J . Then γ1γ2α ∈ A for all α ∈ I ∩ J , so I ∩ J is a
fractional ideal.

Theorem 7.22. If I and J are fractional ideals, then

I + J = {α + β|α ∈ I, β ∈ J}

is a fractional ideal.

Proof. Let us check that I + J satis�es the fractional ideal postulates 1-3. Let
α + β ∈ I + J , where α ∈ I and β ∈ J , and let γ ∈ A. Then γα ∈ I and γβ ∈ J ,
hence γ(α + β) = γα + γβ ∈ I + J , so condition 2 holds.
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Let

α1 + β1 ∈ I + J, where α1 ∈ I, β1 ∈ J , and

α2 + β2 ∈ I + J, where α2 ∈ I, β2 ∈ J.

Then α1 − α2 ∈ I, and β1 − β2 ∈ J , so we have that

(α1 + β1)− (α2 + β2) = (α1 − α2) + (β1 − β2) ∈ I + J,

so condition 1 holds.
Since I and J are fractional ideals, there exists η1, η2 ∈ A, such that

η1I ⊆ A, and

η2J ⊆ A.

Then, for α + β ∈ I + J , where α ∈ I and β ∈ J , we have that

η1η2(α + β) = η2(η1α) + η1(η2β),

where η1α ∈ A and η2β ∈ A, hence η2(η1α) + η1(η2β) ∈ A. Thus η1η2(I + J) ⊆ A,
so condition 3 holds. So I + J is a fractional ideal.

Theorem 7.23. If M is a maximal ideal, then for an integral ideal I, such that
I ̸⊆ M , we have that M + I = A.

Proof. By Theorem 7.22, we have that M + I is an integral ideal. Since I \ M is
non-empty, the inclusion M ⊆ M + I is proper, which means that M + I is an ideal
containing M , such that M + I ̸= M . By the de�nition of maximality, this implies
that I +M = A.

The next result is one immediate consequence of Theorem 7.23.

Corollary 7.24. If M is a maximal ideal, and I is an integral ideal, such that
I ̸⊆ M , then

α + β = 1

for some α ∈ M and β ∈ I.

Proof. By Theorem 7.23, we have that M + I = A, hence 1 ∈ M + I, which means
that α + β = 1 for some α ∈ M and β ∈ I.

Next are some properties of principal fractional ideals.

Theorem 7.25. If α, β ∈ Q(ξ) \ {0}, then the following conditions hold.

1. (αβ) = (α)(β), and

2. (α) = (1) if and only if α is a unit of A, and

3. (α) = (β) if and only if α ∼ β.
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Proof. Let us prove condition 1. By the de�nition of the principal ideal, we have
that

(αβ) = {xαβ|x ∈ A} ,

and, by the de�nition of the product of ideals, we have that

(α)(β) =

{︄
n∑︂

i=1

yiβziα

⃓⃓⃓⃓
⃓n > 0, yi, zi ∈ A

}︄

=

{︄
n∑︂

i=1

xiαβ

⃓⃓⃓⃓
⃓n > 0, xi ∈ A

}︄

=

{︄
αβ

n∑︂
i=1

xi

⃓⃓⃓⃓
⃓n > 0, xi ∈ A

}︄
= {αβx|x ∈ A}
= (αβ).

Let us prove condition 2. Let (α) = (1). Thus α ∈ A, and αγ = 1 for some
γ ∈ A, so that α is a unit of A. Conversely, if α is a unit of A, then αγ = 1 for
some γ ∈ A, and, therefore, γα = 1 ∈ (α). Since α ∈ A, we have that (α) ⊆ (1),
and from the fact that 1 ∈ (α), we get that (1) ⊆ (α), hence (α) = (1).

Let us prove condition 3. Let (α) = (β). Then α ∈ (β), and β ∈ (α), so that,
for some γ1, γ2 ∈ A, we have that α = βγ1 and β = αγ2, hence α | β and β | α, so
that by Theorem 7.4, α ∼ β. Conversely, if α ∼ β, so that α = ηβ where η ∈ A is a
unit, then by conditions 1 and 2, we have that (α) = (ηβ) = (η)(β) = (β).

We now de�ne the concept of a prime ideal.

De�nition 7.9. A proper, non-zero, integral ideal P is called a prime ideal, if the
following condition holds for all α, β ∈ A.

If αβ ∈ P , then α ∈ P or β ∈ P.

Theorem 7.26. If M is a maximal integral ideal, then M is a prime ideal.

Proof. Suppose on the contrary that M is not prime, meaning that, for some α, β
not in M , we have that αβ ∈ M . Thus (α) and (β) are not subsets of M , and,
therefore, by Corollary 7.24, we have for some γ1, γ2 ∈ A and η1, η2 ∈ M , that

αγ1 + η1 = 1, and

βγ2 + η2 = 1.

Hence

1 = (αγ1 + η1)(βγ2 + η2)

= αγ1βγ2 + αγ1η2 + η1βγ2 + η1η2 ∈ M.

So 1 ∈ M , meaning that M = A, which is a contradiction. Thus M is prime.
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Since Q(ξ) is a �eld, we may consider the residue ring Q(ξ)/I for fractional ideals
I, with the equivalence relation

α ≡ β if and only if α− β ∈ I

for α, β ∈ Q(ξ), and we denote this by

α ≡ β (mod I).

Theorem 7.27. A non-zero, integral ideal P is prime, if and only if the residue ring
A/P is an integral domain.

Proof. Let P be a prime ideal. Suppose that in the residue ring A/P , we have that

αβ ≡ 0 (mod P ),

where α, β ∈ A. Then, by the assumption that P is prime, we have that α ∈ P , or
β ∈ P , ie.

α ≡ 0 (mod P ), or β ≡ 0 (mod P ),

in the residue ring, which is the de�nition of an integral domain.
Conversely, suppose that A/P is an integral domain, meaning that

if αβ ≡ 0 (mod P ), then α ≡ 0 (mod P ), or β ≡ 0 (mod P ).

But, this is the same as saying that whenever αβ ∈ P , we have that α ∈ P , or
β ∈ P , which is the de�nition of a prime ideal.

The next theorem is from [2].

Theorem 7.28. If I is a non-zero, integral ideal, then there exists a non-zero integer
k ∈ I ∩ Z.

Proof. Let I ̸= (0) be an integral ideal and let α ∈ I \ {0}. Since I ⊆ A, α is a root
of some monic polynomial with integer coe�cients

0 = b0 + b1α + · · ·+ bn−1α
n−1 + αn (40)

where n ≥ 1 and b0, . . . bn−1 ∈ Z.
Suppose that I∩Z = {0}. By (40), b0 ∈ I, so b0 = 0. If n = 1 then 0 = b0+α = α,

which is a contradiction, so n ≥ 2.
Suppose bk = 0 for all k = 0, . . . , i where 0 ≤ i ≤ n− 2. Now

0 = bi+1α
i+1 + · · ·+ bn−1α

n−1 + αn

= αi+1(bi+1 + · · ·+ bn−1α
n−1−(i+1) + αn−(i+1)).

Since α ̸= 0 it follows that

0 = bi+1 + · · ·+ bn−1α
n−1−(i+1) + αn−(i+1) ≡ bi+1 (mod I),

which implies bi+1 = 0. But then b1, . . . , bn−1 = 0, so αn = 0, which is a contradic-
tion.
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Theorem 7.29. If I is an integral ideal then the residue ring A/I is �nite.

Proof. By Theorem 7.28, there exists k ∈ I ∩Z, k ̸= 0. We may assume k > 0 since
−k ∈ I. Thus kα ≡ 0 (mod I) for all α ∈ A, so that in the sum

a0 + a1ξ + · · ·+ ap−2ξ
p−2, a1, . . . , ap−2 ∈ Z

the coe�cients satisfy ai ≡ 0, 1, . . . , k − 1 (mod I) for i = 0, . . . , p − 2, so the sum
has at most kp−1 possible residues modulo I, and hence A/I is �nite.

Theorem 7.30. Let P be a proper, non-zero integral ideal. Then P is prime if and
only if there exists k > 0, such that αk − 1 ∈ P for all α ∈ A \ P .

Proof. Let P be a prime ideal, and let α ∈ A \P . Then α is non-zero. By Theorem
7.29, the order of A/P = d is �nite, so that

αn ≡ αm (mod P )

for some 0 < n < m. Hence

αn(αm−n − 1) ≡ 0 (mod P ).

P is prime, so αn ̸∈ P , hence αm−n − 1 ∈ P . Thus the order of every non-zero
element of A/P is �nite. Let n1, . . . , nd−1 be the orders of the d − 1 di�erent non-
zero residues β1, . . . , βd−1 of A modulo P . Let k = n1 · · ·nd−1. Then α ≡ βi (mod P )
for some i, and, therefore,

αk ≡ βk
i ≡ (βni

i )kn
−1
i ≡ 1 (mod P ).

Thus αk − 1 ∈ P .
Suppose that P is not prime, so that αβ ∈ P for some α, β ∈ A \ P . Suppose

on the contrary, that αk − 1, βk − 1 ∈ P for some k > 0, hence

0 ≡ (αk − 1)(βk − 1) ≡ −αk − βk + 1 (mod P )

≡ −αk − (βk − 1) (mod P )

≡ −αk (mod P ).

Thus αk ∈ P , but, since it was assumed that αk−1 ∈ P , we get that 1 ∈ P , meaning
that P = (1), which is a contradiction.

Theorem 7.31. Prime ideals are maximal.

Proof. Let P be a prime ideal. Suppose on the contrary, that there exists a proper
integral ideal I, such that the inclusion P ⊆ I is proper, so that there exists α ∈ I\P .
By Theorem 7.30, we have that αk − 1 ∈ P ⊆ I for some k > 0, which implies that
αk − (αk − 1) = 1 ∈ I, hence I = (1), which is a contradiction.

Thus, we have the following characterization for prime ideals.

Theorem 7.32. Integral ideal I is maximal if and only if I is prime.

Proof. By Theorem 7.26, every maximal ideal is prime, and by Theorem 7.31, every
prime ideal is maximal.
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7.3 Dedekind domain

In this section we de�ne the concept of Dedekind domain, and show that the ring
of integers of Q(ξ), which is denoted by A, is a Dedekind domain. This will be used
to show that every integral ideal of A has a decomposition into prime ideals in a
unique way. First, we will establish some preliminary notions. This section is based
on [2] and [6].

De�nition 7.10. Let D be an integral domain. The smallest �eld which contains
D is called the �eld of fractions of D.

Theorem 7.33. The �eld of fractions of A is Q(ξ). Moreover, the elements in
Q(ξ) \ A are of the form

α

d
∈ Q(ξ) \ A,

where α ∈ A, and d is an integer that is relatively prime with α, meaning that, if a
prime number q | n, then α

q
̸∈ A.

Proof. Let us denote by F the �eld of fractions of A, so that

F =

{︃
α

β

⃓⃓⃓⃓
α, β ∈ A, β ̸= 0

}︃
⊆ C.

Let us show that Q(ξ) ⊆ F . Let α ∈ Q(ξ), so α is of the form

α =
a0
b0

+
a1
b1
ξ + · · ·+ ap−2

bp−2

ξp−2,

where ai, bi ∈ Z, and bi ̸= 0. We may assume that ai, bi are relatively prime, and that
bi = 1 for indexes with ai = 0. Let d be the least common multiple of b0, . . . , bp−2.
Thus d ̸= 0, and we have that

ai
bi

=
1

d
ai(db

−1
i ),

where db−1
i ∈ Z. Let us denote

α =
β

d
.

If q is a prime number, such that q | d, then q ∤ β. Indeed, let us suppose on the
contrary, that q | β. Then, by Lemma 7.6, we have that

q | db−1
i

for every i, meaning that
dq−1b−1

i ∈ Z

for every i. But then the integer dq−1 is a common multiple of the integers b0, . . . , bp−2,
which is false, since d was the least common multiple.

Since β ∈ A and d ∈ A, we have that α = β
d
∈ F , which shows that Q(ξ) ⊆ F .

Next, let us show that F ⊆ Q(ξ). Since A ⊆ Q(ξ), and Q(ξ) is a �eld, it follows
that α

β
∈ Q(ξ) for α, β ∈ A, when β ̸= 0, so that F ⊆ Q(ξ). Hence F = Q(ξ).
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De�nition 7.11. An integral domain D is said to be integrally closed if every
element of the �eld of fractions of D which is integral over D is in D.

For a ring R, denote by
R[X1, . . . , Xn]

the polynomial ring whose indeterminates are X1, . . . , Xn, and whose coe�cients
are in R. Thus, we have that

(R[X1, . . . , Xn−1])[Xn] = R[X1, . . . , Xn].

Theorem 7.34. Let B ⊆ C be two rings, such that x1, . . . , xn ∈ C are integral over
B. Then B[x1, . . . , xn] is a �nitely generated B-module.

Proof. Let us proceed by induction on n. Let x ∈ C be integral over B, so that

0 = b0 + b1x+ · · ·+ xm,

where bi ∈ B, hence

xm = −(b0 + b1x+ · · ·+ bn−1x
m−1),

from which we get that

B[x] =
{︁
y0 + y1x+ · · ·+ ym−1x

m−1
⃓⃓
yi ∈ B

}︁
,

so B[x] is a �nitely generated B-module. Suppose that n ≥ 1 and that x1, . . . , xn ∈
C are integral over B, and that B[x1, . . . , xn] is a �nitely generated B-module. Let
z1, . . . , zr ∈ B[x1, . . . , xn] be the generators, so that

B[x1, . . . , xn] = {y1z1 + · · ·+ yrzr| yi ∈ B} .

Let x ∈ C be integral over B, so that, as before, we have that

B[x] =
{︁
y0 + y1x+ · · ·+ ym−1x

m−1
⃓⃓
yi ∈ B

}︁
.

Then

B[x1, . . . , xn, x] = (B[x1, . . . , xn])[x]

=
{︁
S0 + S1x+ · · ·+ Sm−1x

m−1
⃓⃓
Si = yi1z1 + · · ·+ yirzr, where yij ∈ B

}︁
=

{︄
m−1∑︂
i=0

r∑︂
j=1

uijx
izj

⃓⃓⃓⃓
⃓uij ∈ B

}︄

which is a B-module, generated by the elements xizj ∈ B[x1, . . . , xn, x], where 0 ≤
i ≤ m− 1, and 1 ≤ j ≤ r.

The following theorem is from [6].

Theorem 7.35. Let B ⊆ C ⊆ D be three rings. If C is integral over B, and D is
integral over C, then D is integral over B.
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Proof. Let x ∈ D. Since D is integral over C, we have that

0 = c0 + c1x+ · · ·+ cn−1x
n−1 + xn,

where ci ∈ C. Let
C1 = B[c0, . . . , cn−1].

Since c0, . . . , c−1 ∈ C are integral over B, then, by Theorem 7.34, the ring C1 is
a �nitely generated B-module. Since c0, . . . , cn−1 ∈ C1, we have that x is integral
over C1, and, therefore, C1[x] is a �nitely generated C1-module, by Theorem 7.34 (by
setting ”B” = C1, ”C” = D). From the fact that C1 is a �nitely generatedB-module,
it follows that C1[x] is a �nitely generated B-module. Moreover, xC1[x] ⊆ C1[x], so
that, by Theorem 7.8, x is integral over B.

Theorem 7.36. A is integrally closed.

Proof. Since the �eld of fractions of A is Q(ξ) by Theorem 7.33, we need to show
that if α ∈ Q(ξ) is integral over A, then α ∈ A. Let us denote by B the integral
closure of A in Q(ξ). By Theorem 7.9, B is a ring, so that we have the inclusion

Z ⊆ A ⊆ B,

for the three rings, and, therefore, by Theorem 7.35, we have that B is integral over
Z. But then B ⊆ A, since by de�nition A is the set of elements of Q(ξ) which are
integral over the integers. Thus B = A, and A is integrally closed.

Next we de�ne the concept of Noetherian domain, and present some facts about
them.

De�nition 7.12. An integral domain D is called a Noetherian domain if every
chain of ideals of D,

I1 ⊆ I2 ⊆ . . . ,

terminates, meaning that for some n > 0, we have that In = In+i for all i ≥ 0.

Theorem 7.37. Z is Noetherian.

Proof. Let I be an ideal of Z. Let us �rst show that I = (m) for some m ∈ Z. Let
m ≥ 1 be the smallest integer that divides every element of I, so that I ⊆ (m),
and let nm ∈ I be the smallest positive multiple of m in I. Let am ∈ I, and
let gcd (a, n) = d. Then there exists x, y ∈ Z such that d = ax + ny, hence
xam + ynm = m(ax + ny) = md ∈ I. Hence d = gcd (a, n) ≥ n, since nm was
the smallest positive multiple of m in I. But then n | a. Hence mn divides every
element of I, so that n = 1, since m was the smallest such integer. Then m ∈ I,
and (m) ⊆ I, hence I = (m). Let us show that Z is Noetherian. Let

(m1) ⊆ (m2) ⊆ . . .

be a chain of ideals of Z. Since mi ∈ (mi) ⊆ (mi+1), there exists an integer n such
that mi = nmi+1, hence mi+1 | mi. Thus, if the inclusion (mi) ⊆ (mi+1) is proper,
we have that |mi+1| < |mi|. Hence the sequence

|m1| , |m2| , . . .
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is decreasing, which means that it terminates, so that from some index k > 0
onwards, we have that |mk| = |mk+j|, hence (mk) = (mk+j) for all j ≥ 0. Thus the
chain (m1) ⊆ (m2) ⊆ . . . terminates, so Z is Noetherian.

De�nition 7.13. Let R be a ring. If M is an R-module, such that every chain of
submodules of M ,

N1 ⊆ N2 ⊆ . . . ,

terminates, then M is called a Noetherian R-module.

Lemma 7.38. Let R be a ring, and let N ⊆ M be two R-modules, and in the
quotient group M/N , let us de�ne an R-action by

a(m+N) = am+N

for a ∈ R,m ∈ M . Then the following conditions hold.

1. M/N is a R-module.

2. If B is an M submodule, then the set

I = {m+N ∈ M/N |m ∈ B}

is an M/N submodule.

3. If I is an M/N submodule, then the set

B = {m ∈ M |m+N ∈ I}

is an M submodule.

Proof. Let us prove 1 by verifying the module postulates RM0-RM4 of the De�nition
7.5 for M/N with the R-action a(m + N) = rm + N ∈ M/N for a ∈ R,m ∈ M .
Let a, b ∈ R and x+N, y +N ∈ M/N . Then

a(x+N) = ax+N ∈ M/N,

so RM0 is satis�ed. Since M is an R-module, we have that

a(x+N)+a(y+N) = (ax+N)+(ay+N) = (ax+ay)+N = a(x+y)+N = a((x+y)+N),

so RM1 is satis�ed, and

(a+ b)(x+N) = (a+ b)x+N = (ax+ bx) +N = (ax+N) + (bx+N),

so RM2 is satis�ed, and

(ab)(x+N) = (ab)x+N = a(bx) +N = a(bx+N) = a(b(x+N)),

so RM3 is satis�ed, and

1(x+N) = 1x+N = x+N,

so RM4 is satis�ed. Thus M/N is an R-module.
Let us prove 2. LetB be anM submodule, and let I = {m+N ∈ M/N |m ∈ B}.

Let us show that I is anM/N submodule by checking the submodule criterion AM1-
AM3 of Theorem 7.7, which are
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AM1. I ̸= ∅, and

AM2. if x, y ∈ I then x+ y ∈ I, and

AM3. if a ∈ R and x ∈ I, then ax ∈ I.

Since B is a submodule of M , B ̸= ∅, hence I ̸= ∅, so AM1 is satis�ed. Let
x+N, y +N ∈ I, where x, y ∈ B. Then x+ y ∈ B, so that

(x+N) + (y +N) = (x+ y) +N ∈ I,

so AM2 is satis�ed. Let a ∈ R. Since B is an R-module, we have that ax ∈ B,
hence

a(x+N) = ax+N ∈ I,

so AM3 is satis�ed, hence I is an M/N submodule.
Let us prove 3. Let I be anM/N submodule, and let B = {m ∈ M |m+N ∈ I}.

Let us show that B is anM submodule by using the submodule criterion of Theorem
7.7, which requires that

AM1. B ̸= ∅, and

AM2. if x, y ∈ B then x+ y ∈ B, and

AM3. if a ∈ R and x ∈ B, then ax ∈ B.

Since I is an M/N submodule, I ̸= ∅, hence B ̸= ∅, so AM1 is satis�ed. If x, y ∈ B
then x+N, y +N ∈ I, so that, since I is a submodule of M/N , we have that

(x+N) + (y +N) = (x+ y) +N ∈ I,

hence x + y ∈ B, so AM2 is satis�ed. If a ∈ R, then, from the fact that I is an
R-module, we have that

a(x+N) = ax+N ∈ I,

so that ax ∈ B, so AM3 is satis�ed, thus B is an M submodule.

Theorem 7.39. Let R be a ring, M an R-module, and N ⊆ M an M -submodule.
Then M is a Noetherian R-module if and only if both N and the quotient group
M/N , with the R-action

a(m+N) = am+N ∈ M/N

for a ∈ R,m ∈ M , are Noetherian R-modules.

Proof. Let M be a Noetherian R-module, and let N be a submodule of M . Let

N1 ⊆ N2 ⊆ . . .

be a chain of submodules of N . Then it is also a chain of submodules of M , so that
the chain terminates, since M is Noetherian, hence N is Noetherian. Next, let us
show that the quotient group M/N is Noetherian. Let

I1 ⊆ I2 ⊆ . . . (41)
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be a chain of submodules of M/N . Let us de�ne

Bi = {m ∈ M |m+N ∈ Ii} .

By Lemma 7.38, the sets Bi are M submodules. Since Ii ⊆ Ii+1, we have that
Bi ⊆ Bi+1. Thus

B1 ⊆ B2 ⊆ . . .

is a chain of M submodules. Since M is Noetherian, the chain terminates, and,
consequently, the chain (41) terminates, hence M/N is Noetherian.

Suppose that N and M/N are Noetherian R-modules. Let us show that M is a
Noetherian R-module. Suppose on the contrary, that there exists a non-terminating
chain of M submodules,

M1 ⊆ M2 ⊆ . . . .

Since the chain does not terminate, we may assume each inclusion is proper, and
choose from each Mi an element mi that is not a member of the preceding module.
Let

Ii = {m+N |m ∈ Mi} ,
which is a submodule of M/N by Theorem 7.38, and Ii ⊆ Ii+1, since Mi ⊆ Mi+1.
Since N is Noetherian, the chain

I1 ⊆ I2 ⊆ . . .

terminates, which means that from some index n ≥ 0 forward, the residues of the
sets Mi modulo N are identical. Thus, for the element mi ∈ Mi \Mi−1 in particular,
when i ≥ n, there exists x ∈ Mi−1, such that

mi +N = x+N ∈ M/N,

hencemi−x ∈ N∩Mi. Ifmi−x ∈ Mi−1, thenmi ∈ Mi−1, since x is inMi−1 which is
an additive group, which contradicts the fact that mi ̸∈ Mi−1. Hence mi−x ̸∈ Mi−1,
so that the inclusion (N ∩Mi−1) ⊆ (N ∩Mi) is proper from index n onwards, and
since the intersection of two modules is a module, we have a non-terminating chain
of submodules of N ,

(N ∩M1) ⊆ (N ∩M2) ⊆ . . . ,

which is a contradiction. Thus M is Noetherian.

Theorem 7.40. If R is a Noetherian ring, then any �nitely generated R-module is
Noetherian.

Proof. Let M be a �nitely generated R-module, so that for some n > 0 and
m1, . . . ,mn ∈ M , we have that

M = {r1m1 + · · ·+ rnmn| ri ∈ R} .

Let m = mi be one of the generators of M , where 1 ≤ i ≤ n, and let

N = {rm| r ∈ R} .

Let us show that N is a Noetherian M submodule. First, let us prove that N is an
M submodule by the submodule criterion of Theorem 7.7, which requires that
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AM1. N ̸= ∅, and

AM2. if x, y ∈ N then x+ y ∈ N , and

AM3. if a ∈ R and x ∈ N , then ax ∈ N .

Since 1m = m ∈ N , N is non-empty. If rm ∈ N and r′m ∈ N , then, since M is an
R-module and N ⊆ M , we have that rm+ r′m = (r+ r′)m ∈ N . If r′ ∈ R, then for
rm ∈ N , we have that r′(rm) = (r′r)m ∈ N , since M is an R-module and N ⊆ M .
Thus N satis�es the submodule criterion, so that N is an M submodule. Let

N1 ⊆ N2 ⊆ . . .

be a chain of submodules of N . Since N is generated by m ∈ M , the elements of Ni

are of the form rm, where r ∈ R. Let us de�ne

Ii = {r ∈ R| rm ∈ Ni} ,

and let us show that Ii is an ideal of R. Let us show that Ii is an additive subgroup
of R by the subgroup criterion. Since Ni is non-empty as a submodule of N , it
follows that Ii is non-empty. Let r1, r2 ∈ Ii, so that r1m, r2m ∈ Ni. Then, since Ni

is an R-module, we have that −r2m ∈ Ni, hence r1m − r2m = (r1 − r2)m ∈ Ni,
which means that r1 − r2 ∈ Ii. Thus Ii is an additive subgroup of R. Let us show
that Ii is closed under multiplication by R. Let r ∈ Ii, hence rm ∈ Ni, so that
for any a ∈ R, we have that a(rm) = (ar)m ∈ Ni, since Ni is an R-module. Thus
ar ∈ Ii, so we have that Ii is an ideal of R. Since R is Noetherian, the chain of
ideals

I1 ⊆ I2 ⊆ . . .

terminates, hence the chain N1 ⊆ N2 ⊆ . . . terminates. Thus N is Noetherian.
Let us proceed by induction on the number of generators of M . We already

showed that if n = 1 then M is Noetherian. Suppose that for some k ≥ 1

Mk = {r1m1 + · · ·+ rkmk| ri ∈ R}

is Noetherian. Let us show that

Mk+1 = {r1m1 + · · ·+ rkmk + rk+1mk+1| ri ∈ R}

is Noetherian. Let N = {rmk+1| r ∈ R}, so that N is a Noetherian submodule of
Mk+1, since N is generated by a single element. Now we have that

Mk+1/N = {m+N |m ∈ Mk+1}
= {m+N |m ∈ Mk}
= Mk/N.

Since Mk is Noetherian, then, by Theorem 7.39, the quotient Mk/N is Noetherian,
hence Mk+1/N is Noetherian. Since N is a Noetherian Mk+1 submodule, we have,
by Theorem 7.39, that Mk+1 is Noetherian.
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Theorem 7.41. A is a Noetherian ring.

Proof. By Theorem 7.19, A = Z[ξ], and by Theorem 7.3, Z[ξ] is generated by
the elements 1, ξ, . . . , ξp−2 over Z, hence Z[ξ] is a �nitely generated Z-module. By
Theorem 7.37, Z is a Noetherian ring, hence, by Theorem 7.40, Z[ξ] is Noetherian.

Theorem 7.42. Let R be a ring, and let M be a Noetherian R-module. Then every
M submodule is �nitely generated.

Proof. Let N ⊆ M be an M submodule. Suppose on the contrary that N is not
�nitely generated, so that for every k > 0 we have that, for any x1, . . . xk ∈ N , the
R-module

Nk = {r1x1 + · · ·+ rkxk| ri ∈ R}

does not contain N , hence exists xk+1 ∈ N such that xk+1 ̸∈ Nk. Then the inclusion
between the two M submodules

Nk ⊆ Nk+1 = {r1x1 + · · ·+ rkxk + rk+1xk+1| r ∈ R}

is proper, hence the chain of M submodules

N1 ⊆ N2 ⊆ . . .

does not terminate, which contradicts the Noetherian property of M . Thus N is
�nitely generated.

The following lemma will be often used in the proofs concerning Noetherian
rings, mainly A in our case.

Lemma 7.43. If R is a Noetherian ring, and ∆ is any non-empty collection of
ideals of R, then ∆ contains a maximal element, meaning that there exists an ideal
M ∈ ∆, such that M is not a proper subset of any other ideal in ∆.

Proof. Suppose on the contrary, that ∆ contains no maximal element. Let I ∈ ∆.
By assumption, I is not maximal, so that there exists I ′ ∈ ∆, such that the inclusion
I ⊆ I ′ is proper. But then, we get, inductively, a non-terminating chain of ideals of
∆,

I ⊆ I ′ ⊆ I ′′ ⊆ . . . ,

which is a contradiction, since R is Noetherian.

From Theorem 7.42 we get the following result.

Theorem 7.44. Every integral ideal is �nitely generated as an A-module.

Proof. Since A is a Noetherian ring, and A is itself an Amodule, Theorem 7.42 states
that every submodule of A is �nitely generated. Integral ideals are A-modules, hence
�nitely generated.

We de�ne Dedekind domain in the following way.
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De�nition 7.14. Dedekind domain is an integral domain D that satis�es the fol-
lowing conditions.

� D is a Noetherian domain,

� D is integrally closed, and

� every prime ideal of D is maximal.

Theorem 7.45. A is a Dedekind domain.

Proof. By Theorem 7.41, A is Noetherian. By Theorem 7.36, A is integrally closed,
and by Theorem 7.32, every prime ideal of A is maximal, hence A is a Dedekind
domain.

7.4 Ideal prime decomposition, and the ideal class group

In this section we will show that every integral ideal of A can be expressed as the
product of prime ideals in a unique way. For this we need a few results. First, we
have the following theorem, which is from [7].

Theorem 7.46. If P is a prime ideal and I1 · · · In ⊆ P for integral ideals Ii, then
Ii ⊆ P for some i.

Proof. Suppose on the contrary that there exists αi ∈ Ii \ P for i = 1, . . . , n. Then
α1 · · ·αn ∈ I1 · · · In ⊆ P , but none of the factors αi are in P , which is a contradiction,
since P is a prime ideal. Hence Ii ⊆ P for some i.

Theorem 7.47. If I is an integral ideal, then I ⊆ P for some prime ideal P .

Proof. Let ∆ be the set of all proper integral ideals that are not subsets of any prime
ideals. Suppose on the contrary that ∆ is non-empty. Then, by Theorem 7.43, ∆
contains a maximal element, say M ∈ ∆. The set ∆ contains no prime ideals, so
that M is not prime, hence M is not maximal in A, since A is a Dedekind domain,
by Theorem 7.45. Then there exists an integral ideal M ′, such that the inclusion,

M ⊆ M ′,

is proper. Since M is a member of ∆, M is not a subset of a prime ideal, thus M ′

cannot be a subset of a prime ideal. Then, by the construction of ∆, we have that
M ′ ∈ ∆, which is a contradiction, since M is maximal in ∆.

The following lemma is from [7].

Lemma 7.48. Every non-zero integral ideal contains a product of prime ideals.

Proof. Let ∆ be the set of non-zero, proper integral ideals that do not contain any
products of prime ideals. Then, especially, ∆ contains no prime ideals. Suppose
on the contrary, that ∆ is non-empty. By Theorem 7.43, ∆ contains a maximal
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element, say M ∈ ∆. Since ∆ contains no prime ideals, M is not prime, hence
xy ∈ M for some x, y ∈ A \M . By Theorem 7.22, the sets

M + (x), and M + (y)

are ideals, and, moreover, the inclusions

M ⊆ M + (x), and

M ⊆ M + (y)

are proper, hence neither ideal is in∆, sinceM is maximal in∆. By the construction
of ∆, this means that for some prime ideals P1, . . . , Pn, Q1, . . . , Qk, we have that

P1 · · ·Pn ⊆ M + (x), and

Q1 · · ·Qk ⊆ M + (y).

Hence
P1 · · ·PnQ1 · · ·Qk ⊆ (M + (x))(M + (y)).

Let

m1 + a1x ∈ M + (x), and

m2 + a2y ∈ M + (y).

Since xy ∈ M , we get that

(m1 + a1x)(m2 + a2y) = m1m2 +m1a2y + a1xm2 + a1xa2y ∈ M,

Thus, all the �nite sums of the elements of this form are in M , hence

(M + (x))(M + (y)) ⊆ M.

But then M contains the product of the prime ideals P1 · · ·PnQ1 · · ·Qk, which is
a contradiction. Thus ∆ is empty, so that every non-zero integral ideal contains a
product of prime ideals.

Lemma 7.49. Let I be a proper, non-zero integral ideal, and let x ∈ Q(ξ). If

xI ⊆ I,

then x ∈ A.

Proof. By Theorem 7.44, I is a �nitely generated A-module, and, therefore, since
xI ⊆ I and I ̸= (0), we have by Theorem 7.8, that x is integral over A. By Theorem
7.45, A is a Dedekind domain, hence integrally closed, so x ∈ A.

From the fact that A is a Dedekind domain, we get the following result, which
is from [7].

Theorem 7.50. If P is a prime ideal of A, then

P = {x ∈ Q(ξ)|xP ⊆ A}

is a fractional ideal, such that PP = (1). Moreover, P \ A is non-empty.
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Proof. Let P be as described. Let us show that PP = (1). First, let us check that
P is a fractional ideal. Let d ∈ P be a non-zero element of P , which exists, since P
is prime, and by de�nition non-zero. Let x ∈ P , so that dx ∈ A by the de�nition of
P , hence dP ⊆ A. Let m ∈ P , and y ∈ P . Then (x − y)m = xm − ym ∈ A, since
xm, ym ∈ A, hence x − y ∈ P . For a ∈ A, we have that axm ∈ A, since xm ∈ A,
hence ax ∈ P . So P is a fractional ideal.

Since P is a fraction ideal, we have that the product PP is a fractional ideal, and
by the de�nition of P , we have that PP ⊆ A, hence PP is an integral ideal. Since
1 ∈ P , we have that P ⊆ PP ⊆ A and A ⊆ P . Since A is a Dedekind domain, its
prime ideals are maximal, hence the inclusion of the integral ideals P ⊆ PP ⊆ A,
implies that PP = P or PP = A. Suppose that PP = P , and let us show that this
is impossible.

Let x ∈ P . From the assumption that P = PP , we get that xP ⊆ P , which
implies that x ∈ A, by Theorem 7.49. So we have that P ⊆ A, hence

P = A.

Let a ∈ P be non-zero. By Theorem 7.48, (a) contains a non-empty product of
prime ideals, so that

P1 · · ·Pn ⊆ (a),

for some prime ideals P1, . . . , Pn, n > 0. Let us choose the smallest n > 0 for which
such a product of primes is contained in (a). Since a ∈ P , we have that

P1 · · ·Pn ⊆ (a) ⊆ P.

By Theorem 7.46, we have that Pi ⊆ P for some 1 ≤ i ≤ n. We may assume that
P1 ⊆ P , whereby P1 = P , since P1 is prime, and, therefore, maximal. Denote

B = P2 · · ·Pn.

Since n was the least number of primes whose product is in (a), we have thatB ̸⊆ (a).
In the case that n = 1, and B = (1), then this is also true, since (a) ⊆ P ̸= A.
Hence, there exists b ∈ B \ (a). Since

PB ⊆ (a),

we get that, in particular,
bP ⊆ (a),

hence, for every p ∈ P , there exists az ∈ (a), z ∈ A, such that bp = az, meaning
that bpa−1 = z ∈ A. So, we have that

ba−1P ⊆ A.

Then ba−1 ∈ P , by the de�nition of P . Since, by assumption, P = A, we have that
ba−1 ∈ A. Thus, there exists z ∈ A such that ba−1 = z, meaning that b = az ∈ (a),
which is a contradiction, since b is not in (a). So, P ̸= A, and, therefore, P ̸= PP ,
so that PP = A is the only remaining option.
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The next Theorem is from [7].

Theorem 7.51. If I is a proper integral ideal, then

I = P1 · · ·Pn

for some prime ideals P1, . . . , Pn. Furthermore, this representation of I as the prod-
uct of prime ideals is unique.

Proof. Let ∆ be the set of proper integral ideals that are not �nite products of prime
ideals. Suppose on the contrary, that ∆ is non-empty. By Theorem 7.43, ∆ contains
a maximal element, say M ∈ ∆. Let P be a prime ideal containing M , which exists
by Theorem 7.47. Since M is not a prime ideal, we have that the inclusion

M ⊆ P

is proper, and, moreover, P ̸∈ ∆, since P is a product of itself. Let P be the inverse
fractional ideal of P , which exists by Theorem 7.50. From the fact that M ⊆ P , we
get that

MP ⊆ PP = A,

hence MP is an integral ideal. Since 1 ∈ P , we have that

M ⊆ MP.

Let us show that the inclusion is proper. Suppose on the contrary, that

M = MP.

Let x ∈ P \ A, which exists by Theorem 7.47. Then we get from the assumption
M = MP , that xM ⊆ M , hence x ∈ A, by Theorem 7.49, which is a contradiction,
since x ̸∈ A. Hence the inclusion M ⊆ MP is proper. Since M is maximal in ∆, it
follows that MP ̸∈ ∆, so that, by the construction of ∆, we have that

MP = P1 · · ·Pn

for some prime ideals P1, . . . , Pn, n > 0. Multiplying by P , we get that

M = PP1 · · ·Pn,

which is a contradiction. Hence ∆ is empty, meaning that every proper integral
ideal is the product of �nitely many primes.

Let us show that this expression of an integral ideal as the product of prime
ideals is unique. Let

I = P1 · · ·Pn.

Suppose on the contrary, that I can be expressed in another way as the product of
prime ideals,

QJ = P1 · · ·Pn,

where Q ̸= Pi for every i = 1, . . . , n. Hence

P1 · · ·Pn = QJ ⊆ Q,
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so that, by Theorem 7.46, we have that Pi ⊆ Q for some i, which is a contradiction,
since primes are maximal in A, due to the fact that A is Dedekind domain, by
Theorem 7.45.

Theorem 7.52. Let I and J be integral ideals. Then I | J if and only if J ⊆ I.

Proof. If I | J , then J = II ′ for some integral ideal I ′, whereby J = II ′ ⊆ I.
Let J ⊆ I, and let

J = Q1 · · ·Qn

be the prime ideal decomposition of J . Let P be some prime factor of I. Then
I ⊆ P , and, therefore,

J = Q1 · · ·Qr ⊆ I ⊆ P.

Then, by Theorem 7.46, we have for some i, that Qi ⊆ P , hence Qi = P , so that
P | J . Thus every prime factor P of I divides J , which means that I divides J .

Non-zero integral ideals I and J are said to be relatively prime if the only integral
ideal dividing both I and J is the unit ideal (1) = A, which is denoted by gcd (I, J) =
1.

Theorem 7.53. Integral ideals I and J are relatively prime if and only if α+β = 1
for some α ∈ I and β ∈ J .

Proof. Suppose that α + β = 1 for some α ∈ I and β ∈ J . Let us show that I and
J are relatively prime. Suppose on the contrary, that a prime ideal P divides both
I and J . Then, by Theorem 7.52, we have that I ⊆ P and J ⊆ P in which case
α + β = 1 ∈ P , so P = (1), which is a contradiction.

Suppose that I and J are relatively prime. Let us show that 1 ∈ I + J . If I or
J is the unit ideal (1), then the claim is true, so we may assume that both I and J
are proper ideals. Let

J = Q1 · · ·Qr

be the prime ideal factorization of J . Since Qi ∤ I, by Theorem 7.52, we have that
I ̸⊆ Qi, so I \Qi ̸= ∅. So we may choose αi ∈ I \Qi for each i. By Theorem 7.30,
there exists, for every Qi, an integer ki > 0 such that αki

i − 1 ∈ Qi. Let

β =
r∏︂

i=1

(αki
i − 1).

Then β ∈ Q1 · · ·Qr = J , and β ≡ ±1 (mod I), so that β ∓ 1 ∈ I, and, therefore,
∓β + 1 ∈ I. Now, we have that

±β + (∓β + 1) = 1 ∈ J + I.

Theorem 7.54. If q is a prime number di�erent from p then

(q) = Q1 · · ·Qn

where Q1, . . . , Qn are distinct prime ideals.
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Proof. Let q ̸= p. Suppose on the contrary, that

(q) = Q2I,

where Q is a prime ideal and I is an integral ideal. Then we have that

(q) ⊆ Q2 ⊆ Q. (42)

Recall the inverse fractional ideal of Q, as de�ned in Theorem 7.50,

Q = {x ∈ Q(ξ)|xQ ⊆ A} ,

which satis�es QQ = A, and, moreover, the set Q \ A is non-empty. Then we may
choose x ∈ Q \ Q. Since x ∈ Q(ξ) \ A, we have, by Theorem 7.33, that x is of the
form

x =
α

n
,

where α ∈ A, and, moreover, α
r
̸∈ A for any prime divisor r of n. Then, since x ∈ Q,

and (q) ⊆ Q, we get that,
x(q) ⊆ xQ ⊆ A,

so that, in particular, we have that

xq =
αq

n
∈ A.

So, n | qα. Let
α = a0 + a1ξ + · · ·+ ap−2ξ

p−2

be the canonical presentation of α. Since n ∤ α, we have for some index i, by Lemma
7.6, that

ai
n

̸∈ Z.

But, since n | qα, we have, by Lemma 7.6, that

aiq

n
∈ Z.

Hence q | n, so that n = mq, and, therefore,

x =
α

mq
.

Since q is factor of n, we have that q ∤ α. Now, multiplying (42) by Q
2
, we get that

Q
2
(q) ⊆ A.

Thus, from the fact that x ∈ Q, and q ∈ (q), we get that

x2q =

(︃
α

mq

)︃2

q =
α2

m2q
∈ Q

2
(q) ⊆ A.

So, we have that q | α2. But, since q ∤ α, we have necessarily, by Theorem 7.16, that
q = p, which is a contradiction.
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The statement of Theorem 7.54 is equivalent to saying that, for any prime number
q di�erent from p, we have that

q ̸∈ Q2,

for every prime ideal Q. Indeed, q ∈ Q2 is equivalent to (q) ⊆ Q2, which is equivalent
to Q2 | (q), by Theorem 7.52, and this was shown to be false in Theorem 7.54. The
next theorem gives an equivalent de�nition for the prime ideal.

Theorem 7.55. Let P be a proper, non-zero integral ideal. Then P is prime if and
only if the following condition holds for every integral ideal I.

If I | P , then I = (1) or I = P . (43)

Proof. Suppose that P is prime, and that P = IJ for some integral ideals I and J .
Then I and J are non-zero. By Theorem 7.51, the prime ideal P cannot be expressed
as the product of prime ideals in any other way, so that, from the equation P = IJ ,
we have exactly two possibilities for the prime ideal factorizations of I and J . Either

I = P, and J = (1),

or
I = (1), and J = P,

since, otherwise, P would have an alternate expression as the product of primes.
Hence P satis�es the condition (43).

Suppose that P satis�es the condition (43). Let

P = Q1 · · ·Qn

be the prime ideal factorization of P , which exists by Theorem 7.51. Then Qi | P ,
so by assumption Qi = (1) or Qi = P . Since Qi is a prime ideal, only Qi = P is
permissible, in which case P is prime.

Let us make a brief overview of the class group. The following facts are from [2].

De�nition 7.15. It is said that fractional ideals I and J are equivalent, if

I = (α)J

for some α ∈ Q(ξ), which is denoted by I ∼ J .

Theorem 7.56. The relation ∼ between non-zero fractional ideals is an equivalence
relation.

Proof. Let I, J , and L be non-zero fractional ideals. Since I = (1)I, we have that
I ∼ I, so the relation ∼ is re�exive.

Let I ∼ J , meaning that
I = (α)J

for some non-zero α ∈ Q(ξ). Then

J = (α−1)I,

57



hence J ∼ I, so the relation ∼ is re�exive.
If I ∼ J ∼ L, then I = (α)J , and J = (β)L for some non-zero α, β ∈ Q(ξ), so

we get that
I = (αβ)L,

hence I ∼ L, so the relation ∼ is transitive, and an equivalence relation.

We may now consider the resulting equivalence classes, denoted by [I],

[I] = {J | J ∼ I} .

Let us de�ne a multiplication between equivalence classes, as

[I] · [J ] = [IJ ].

Since the ordinary ideal multiplication is associate, so is the multiplication between
equivalence classes. Moreover, if I ∼ I ′, and J ∼ J ′, so that I = (α)I ′ and
J = (β)J ′, then

IJ = (αβ)I ′J ′,

hence IJ ∼ I ′J ′. From this, we get that

[I][J ] = [IJ ] = [I ′J ′] = [I ′][J ′],

which shows that the multiplication is well-de�ned. For all non-zero α ∈ Q(ξ), we
get from the equation (α) = (α)(1), that (α) ∼ (1). Thus, for any I, we have that

I = (1)I ∼ (α)I,

and, therefore,
[I] = [(α)I] = [(α)][I],

Hence, the equivalence class [(α)] = [(1)] is the unit with respect to the multiplica-
tion. Let us show that each equivalence class has an inverse. Let I be a non-zero
fractional ideal. By de�nition, there exists α ∈ A such that (α)I is an integral ideal.
Let

(α)I = P1 · · ·Pn

be the prime ideal decomposition of (a)I, which exists by Theorem 7.51. By Theorem
7.50, there exists, for each Pi, an inverse fractional ideal Pi, such that PiPi = (1).
Hence

[I][(α)P1 · · ·Pn] = [(α)IP1 · · ·Pn] = [P1 · · ·PnP1 · · ·Pn] = [(1)],

so that [(α)P1 · · ·Pn] is the inverse of [I]. We have shown that the set of equivalence
classes is a group.

De�nition 7.16. The set of equivalence classes of non-zero fractional ideals, under
the multiplication [I][J ] = [IJ ], form a group, called the (ideal) class group, denoted
by Cl(Q(ξ)).

Let hp denote the order of the ideal class group. The following Theorem is from
[7], page 58.
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Theorem 7.57. The order of the class group hp is �nite.

Since hp is �nite, so we have the following consequence.

Lemma 7.58. Let k > 0 be such that gcd (k, hp) = 1. If I is a fractional ideal, such
that

Ik = (α),

where α ∈ Q(ξ), then
I = (βαn)

for some β ∈ Q(ξ), and n > 0.

Proof. Since gcd (k, hp) = 1, there exists n > 0 such that

kn = mhp + 1,

where m > 0. Since Ik = (α), we have that Ikn = (αn), hence

[(αn)] = [Ikn] = [I]kn = [I]mhp+1 = [I][I]mhp = [I].

Thus I ∼ (αn), so there exists β ∈ Q(ξ), such that

I = (β)(αn) = (βαn).

Let p be an odd prime and recall that ξ denotes the p-th root of unity.

Lemma 7.59. The elements

1− ξk

1− ξ
= 1 + ξ + · · ·+ ξk−1, and 1 + ξk

are units of A for k = 1, . . . , p− 1.

Proof. Let 1 ≤ k ≤ p − 1. Then p ∤ k, so there exists an integer n > 0 such that
nk = mp+ 1 for some m. Now

1 + ξk + (ξk)2 + · · ·+ (ξk)n−1 =
1− ξnk

1− ξk
=

1− ξmp+1

1− ξk
=

1− ξ

1− ξk
∈ A,

hence 1−ξk

1−ξ
is a unit of A. Let us show that 1+ ξk is a unit. Since p is odd, we have

for the p-th cyclotomic polynomial Φ that

Φ(ξk) = 0 = 1 + ξk + (ξk)2 + · · ·+ (ξk)p−1

= (1 + ξk)[1 + (ξk)2 + (ξk)4 + · · ·+ (ξk)p−3] + (ξk)p−1

= (1 + ξk)

p−3
2∑︂

n=0

(ξk)2n + (ξk)p−1

so that

1

1 + ξk
= −ξk

p−3
2∑︂

n=0

(ξk)2n ∈ A,

hence 1 + ξk is a unit of A.

59



Lemma 7.60. 1− ξ and 1− ξk are associate for k = 1, . . . , p− 1.

Proof. In the equation

1− ξk = (1− ξ)
1− ξk

1− ξ

the factor 1−ξk

1−ξ
is a unit by Lemma 7.59, so 1 − ξ and 1 − ξk are associate for

k = 1, . . . , p− 1.

Lemma 7.61. (p) = (1− ξ)p−1

Proof. Since

Φ(x) = 1 + x+ · · ·+ xp−1 = (x− ξ) · · · (x− ξp−1),

we have, by setting x = 1, the equality

p = Φ(1) = (1− ξ) · · · (1− ξp−1).

By Lemma 7.60 the factors are associate, so that there exist a unit α ∈ A, such that
p = α(1− ξ)p−1, and, therefore,

(p) = (α(1− ξ)p−1) = (1− ξ)p−1.

Lemma 7.62. (1− ξ) is a prime ideal.

Proof. Let us �rst show that (1− ξ) ̸= (1). By Lemma 7.61, we have that

(p) = (1− ξ)p−1.

By Theorem 7.5, we have that 1
p
̸∈ A, so p is not a unit, hence

(1) ̸= (p) = (1− ξ)p−1,

from which we get that (1− ξ) ̸= (1).
Denote I = (1− ξ), and let us show that I is prime. Let α, β ∈ A, with

α = a0 + a1ξ + · · ·+ ap−2ξ
p−2, and

β = b0 + b1ξ + · · ·+ bp−2ξ
p−2.

Since 1− ξ ∈ I, we have that
ξ ≡ 1 (mod I),

hence

α ≡ a0 + a1 + · · ·+ ap−2 = a (mod I), and

β ≡ b0 + b1 + · · ·+ bp−2 = b (mod I),

where a, b ∈ Z. Suppose that αβ ∈ I, and let us show that either α or β belongs in
I. So, we have that

αβ ≡ ab ≡ 0 (mod I),
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hence ab ∈ I ∩ Z. By Lemma 7.61, we have that p ∈ I. If p ∤ ab in Z, then there
exists x, y ∈ Z ⊆ A such that

xp+ yab = 1 ∈ I,

hence I = (1), which is a contradiction. Thus, we have that p | ab in Z. Then p | a
or p | b in Z. We may assume that a = dp, and, since p ∈ I, we get that

α ≡ a = dp ≡ 0 (mod I),

so α ∈ I. Thus I is prime.

The next theorem is by Kummer. A proof of the Theorem is in [8], page 3.

Theorem 7.63. Every unit of A is of form

ξkη

where 1 ≤ k ≤ p − 1 and η ∈ A is a real unit, meaning the imaginary part of η
equals 0.

Next we introduce the concept of a norm for an element of Q(ξ).

De�nition 7.17. Let α ∈ Q(ξ). Let σk be the homomorphism of Theorem 7.12,
for k = 1, . . . , p− 1, and let us de�ne the norm of α as

N(α) =

p−1∏︂
k=1

σk(α).

It turns out that the norm is always a rational number. For this, we need a few
lemmas. The norm is also multiplicative:

Theorem 7.64. For α, β ∈ Q(ξ), we have that N(αβ) = N(α)N(β).

Proof. The claim follows from the fact that σk is a homomorphism, and, therefore,
σk(α)σk(β) = σk(αβ) for k = 1, . . . , p− 1. Thus

N(α)N(β) =

(︄
p−1∏︂
k=1

σk(α)

)︄(︄
p−1∏︂
k=1

σk(β)

)︄

=

p−1∏︂
k=1

σk(α)σk(β)

=

p−1∏︂
k=1

σk(αβ)

= N(αβ).
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Lemma 7.65. Let α ∈ Q(ξ), α ̸∈ Q. If p ∤ j, and σi+j(α) = σi(α), then there exists
an integer n, n ̸≡ 1 (mod p), such that

σn(α) = α.

Proof. Let us �rst note that σj(α) is not in Q. Since the rational coe�cients ri ∈ Q
in the canonical presentation of α are unique,

α = r0 + r1ξ + · · ·+ rp−2ξ
p−2,

and by assumption α ̸∈ Q, it follows that rs ̸= 0 for some 1 ≤ s ≤ p− 2. Thus

σj(α) = r0 + r1ξ
j + r2ξ

2j + · · ·+ rp−2ξ
j(p−2)

is not in Q, since rsξ
js ̸= 0.

If p | i, i = dp, then

σi(α) = σdp(α) = r0 + · · ·+ rp−2 ∈ Q,

which contradicts the fact that

σi(α) = σj+i(α) = σj+dp(α) = σj(α) ̸∈ Q

as noted in the beginning. Thus p ∤ i. So, there exists an integer l such that
li ≡ −j (mod p), and we have the congruence

l(i+ j) ≡ li+ lj ≡ −j + lj = j(l − 1) (mod p).

Taking σl of the equation σi+j(α) = σi(α), we get that

σj(l−1)(α) = σj(−1)(α). (44)

Let hj ≡ −1 (mod p). Taking σh of the equation (44), we get that

σ1−l(α) = α.

If 1 − l ≡ 1 (mod p), then p | l, but this is a contradiction, since li ≡ −j (mod p),
and by assumption p ∤ j. So, we may choose n = 1− l.

Lemma 7.66. Let α ∈ Q(ξ), α ̸∈ Q. If σi(α) = σi+j(α), p ∤ j, then the elements

ξα = σ1(ξα), σ2(ξα), . . . , σp−1(ξα)

are pairwise distinct.

Proof. From the assumption that σi(α) = σi+j(α), p ∤ j, we have by Lemma 7.65,
that

σn(α) = α (45)
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for some n, n ̸≡ 1 (mod p). We may assume n to be the smallest such integer.
Suppose on the contrary, that there exists integers u,m such that 1 ≤ u < u+m ≤
p− 1, that satisfy the equation

σu(ξα) = σu+m(ξα).

Since p ∤ m, we have, by Lemma 7.65, that

σm(ξα) = ξα (46)

for some integer m, m ̸≡ 1 (mod p). Here, too, we take the smallest such m.
Multiplying the equation (45) by ξn, we get that

ξnα = ξnσn(α) = σn(ξα), (47)

using the fact that σn is multiplicative, and σn(ξ) = ξn. Recall that σn ◦ σm = σnm.
Applying σn to the equation (46), and σm to the equation (47), we get two new
equations,

σnm(α) = σn(ξα) = ξnσn(α) = ξnα, (48)

and
σnm(α) = σm(ξ

nα) = ξnmσm(α) = ξ(n−1)mξmσm(α)

= ξ(n−1)mσm(ξα) = ξ(n−1)mξα.
(49)

Hence
ξnα = ξ(n−1)mξα,

so that ξn = ξ(n−1)mξ, which implies that

n− 1 ≡ (n− 1)m mod p,

and, therefore, p | (n− 1)(m− 1), which is impossible, since by assumption n,m ̸≡
1 (mod p). So, we have necessarily that the elements

ξα = σ1(ξα), σ2(ξα), . . . , σp−1(ξα)

are pairwise distinct.

Theorem 7.67. For α ∈ Q(ξ), let µ(α)(x) ∈ Q[x] denote the minimal polynomial
of α over Q. Then one of the following is true.

1. µ(α)(x) = (x− σ1(α))(x− σ2(α)) · · · (x− σp−1(α)), or

2. µ(αξ)(x) = (x− σ1(αξ))(x− σ2(αξ)) · · · (x− σp−1(αξ)).

Proof. For any α ∈ Q(ξ), we have that deg µ(α) ≤ deg Φ(x) = p − 1. Since α is a
zero of µ(α) by de�nition, and σk is a homomorphism, we have that σk(α) is a zero
of µ(α) for k = 1, . . . , p− 1, by the same argument as in Corollary 7.13.

Let us �rst suppose that the elements

α = σ1(α), σ2(α), . . . , σp−1(α),
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are distinct, and let us show that the case 1 of the claim is true. Since the polynomial

(x− σk(α)) ∈ Q(ξ)[x]

divides µ(α) in the polynomial ring Q(ξ)[x] for k = 1, . . . , p− 1, and since σk(α) are
distinct by assumption, we have that the polynomial

f(x) = (x− σ1(α))(x− σ2(α)) · · · (x− σp−1(α)) ∈ Q(ξ)[x]

divides µ(α)(x) in Q(ξ)[x]. Since deg f = p − 1 ≥ deg µ(α) and both f and µ(α)
are monic polynomials, it follows that f = µ(α), so the case 1 is true.

Next, let us suppose that

σn(α) = σn+m(α)

for some 1 ≤ n < n+m ≤ p− 1. Lemma 7.66 states that σ1(αξ), . . . , σp−1(αξ) are
distinct. As these are all zeros of the minimal polynomial of ξα, µ(ξα), we have case
2 by what was shown before.

Theorem 7.68. If α ∈ Q(ξ), then N(α) ∈ Q, and if α ∈ A, then N(α) ∈ Z.

Proof. Let α ∈ Q(ξ), and let us show that N(α) ∈ Q. By Theorem 7.67, at least
one of the following is true of the minimal polynomials of α and ξα:

1. µ(α)(x) = (x− σ1(α))(x− σ2(α)) · · · (x− σp−1(α)), or

2. µ(αξ)(x) = (x− σ1(αξ))(x− σ2(αξ)) · · · (x− σp−1(αξ)).

Suppose that the case 1 is true. For x = 0, we get that

µ(α)(0) = (−σ1(α)) · · · (−σp−1(α))

= (−1)p−1

p−1∏︂
k=1

σk(α)

=

p−1∏︂
k=1

σk(α)

= N(α).

Since µ(α) ∈ Q[x], we have that µ(α)(0) ∈ Q, hence N(α) ∈ Q.
Next, let us suppose that case 2 is true. Similarly as in the �rst case, by setting

x = 0 in µ(ξα), we get that

µ(ξα)(0) = (−σ1(ξα)) · · · (−σp−1(ξα))

= (−1)p−1ξ1+2+···+p−1

p−1∏︂
k=1

σk(α)

= ξ
p(p−1)

2

p−1∏︂
k=1

σk(α)

=

p−1∏︂
k=1

σk(α)

= N(α).
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Like in the �rst case, since µ(ξα) ∈ Q[x], we have that µ(ξα)(0) ∈ Q, and conse-
quently N(α) ∈ Q as claimed.

Let α ∈ A, and let us show that N(α) ∈ Z. We already showed that N(α) ∈ Q.
Since α ∈ Z[ξ], and, therefore, αk(α) ∈ Z[ξ] for every k, we have that the rational
number

N(α) =

p−1∏︂
k=1

σk(α)

must be an integer.

Using the properties of the norm, we have the following result about the units
of A.

Theorem 7.69. If α ∈ A is a unit, then N(α) = ±1.

Proof. By Theorem 7.64, the norm is multiplicative. By Theorem 7.68, we have
that N(α), and N(α−1) are integers. Since N(1) = 1, and since α−1 ∈ A, we get
that

1 = N(1) = N(αα−1) = N(α)N(α−1),

meaning N(α) = ±1.

7.5 Theorem of Inkeri

The next lemma is by Inkeri and the proof is from [1].

Lemma 7.70. Let p ̸= q be odd primes and x, y ≥ 3 integers such that xp− yq = 1.
If q ∤ hp then there exists real units ϵ, η ∈ A such that{︄

ϵp = αq + αq

ηx = βq + β
q

where α, β ∈ A are not units.

Proof. Let ξ denote the p-th root of unity and A = Z[ξ]. By Lemma 6.1 there exists
an integer u such that

puq =
xp − 1

x− 1
= 1 + x+ · · ·+ xp−1 = Φ(x) = (x− ξ) · · · (x− ξp−1).

As mentioned in Theorem 6.3, u > 1. Since p = Φ(1) = (1 − ξ) · · · (1 − ξp−1), we
may write

uq =
(x− ξ) · · · (x− ξp−1)

(1− ξ) · · · (1− ξp−1)
=

p−1∏︂
i=1

δi (50)

where for i = 1, . . . , p− 1

δi =
x− ξi

1− ξi
=

x− 1

1− ξi
+ 1. (51)
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Let us show that δi is in A for every i = 1, . . . p − 1. By Lemma 6.1, we have
that p2 | x− 1, so x− 1 = dp2, where d ∈ Z is non-zero. By Lemma 7.60 1− ξi and
1− ξ are associate for all i = 1, . . . , p− 1, i.e.,

1− ξi = αi(1− ξ)

where αi ∈ A is a unit. Thus

p = β(1− ξ)p−1,

where β ∈ A is a unit. Now we have, from the equation (51), that

δi =
x− 1

1− ξi
+ 1 =

dpβ(1− ξ)p−1

αi(1− ξ)
+ 1 = dpα−1

i β(1− ξ)p−2 + 1 ∈ A. (52)

Let us show that the ideals (δi) and (δj) are relatively prime for i < j. Suppose on
the contrary, that a prime ideal P divides both (δi) and (δj), so that there exists
integral ideals I, J such that

(δi) = PI, and

(δj) = PJ.

Then (δi), (δj) ⊆ P , so that δi, δj ∈ P . Hence

0 ≡ (1− ξj)δj − (1− ξi)δi = ξi − ξj = ξi(1− ξj−i) (mod P ),

where ξi(1−ξj−i) is associate with 1−ξ, so 1−ξ ∈ P . Thus, from the equation (52),
we get that δi ≡ 1 (mod P ). But δi ∈ P , hence 1 ∈ P , which is a contradiction,
since P is prime. So, (δi) and (δj) are relatively prime.

Let us show that (δi) are not unit ideals. Suppose on the contrary, that

(δi) =

(︃
x− ξi

1− ξi

)︃
= (1)

for some i. Then
(x− ξi) = (1− ξi),

meaning that x− ξi and 1− ξi are associate, ie.

x− ξi = η(1− ξi), (53)

where η ∈ A is a unit. By Theorem 7.69, the norm of a unit is ±1, so we have that
N(η) = ±1. Taking norms of the equation (53), we get that

N(x− ξi) = N(η(1− ξi)) = N(η)N(1− ξi) = ±N(1− ξi),

thus
p−1∏︂
k=1

σk(x− ξi) = ±1

p−1∏︂
k=1

σk(1− ξi)
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Dividing by the right-hand side of the equation, which is non-zero, since σk(1−ξi) ̸=
0 for k = 1, . . . , p− 1, we get that

±1 =

p−1∏︂
k=1

σk(x− ξi)

σk(1− ξi)
=

p−1∏︂
k=1

x− ξki

1− ξki
=

p−1∏︂
k=1

δk.

But this is a contradiction, since

p−1∏︂
k=1

δk = uq ̸= ±1.

So, necessarily (δi) ̸= (1).
Since (δi) and (δj) are relatively prime, and not unit ideals, it follows from the

equation (50), that (δi) = Jq
i for some non-unit integral ideal Ji. By assumption

q ∤ hp, so that, by Lemma 7.58, there exists αi ∈ A such that Ji = (αi). Since
Ji ̸= (1), αi is not a unit. Now (δi) = (αq

i ), so there exists a unit ϵi ∈ A such that

δi = ϵiα
q
i .

By Theorem 7.63, for every i = 1, . . . , p− 1,

ϵi = ξkiηi

where 1 ≤ ki ≤ p− 1 and ηi ∈ A is a real unit. Thus

x− ξi = ξkiηiα
q
i (1− ξi).

For i = 2
x− ξ2 = ξk2η2α

q
2(1− ξ2) = ξk2+1η2α

q
2(ξ

−1 − ξ). (54)

Since p ̸= q, there exists integers e, f such that ep+ fq = 1, such that

ξk2+1 = ξ(k2+1)(ep+fq) = ξ(k2+1)epξ(k2+1)fq = ξ(k2+1)fq.

Thus (54) becomes

x− ξ2 = ξ(k2+1)fqη2α
q
2(ξ

−1 − ξ) = η2γ
q(ξ−1 − ξ) (55)

where we write γ = ξ(k2+1)fα2 ∈ A. Since α2 is not a unit, γ is not a unit.
The complex conjugate satis�es for all z1, z2 ∈ C the identities

z1 + z2 = z1 + z2, z1z2 = z1 · z2, z1 · z1 = |z1|2 z1 = z1.

Then

ξ =
|ξ|2

ξ
=

1

ξ

so that we have the equalities

x− ξ2 = x− (ξ)2 = x− ξ−2
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and
ξ−1 − ξ = ξ−1 − ξ = ξ − ξ−1.

Now when taking complex conjugates of (55) we get that

x− ξ−2 = η2γ
q(ξ − ξ−1). (56)

Subtracting (55) from (56) we get that

ξ2 − ξ−2 = η2(γ
q + γq)(ξ − ξ−1)

and
ξ + ξ−1

η2
= γq + γq ∈ A ∩ R. (57)

By Lemma 7.60 1 − ξ2 and 1 − ξ4 are associate, so there exists a unit u ∈ A such
that 1− ξ4 = u(1− ξ2) whereby

ξ + ξ−1 =
ξ2 − ξ−2

ξ − ξ−1
=

ξ−2(ξ4 − 1)

ξ−1(ξ2 − 1)
= ξ−1u

is a unit. Then, from (57) we get that

η = γq + γq =
ξ + ξ−1

η2
∈ A ∩ R (58)

is a real unit. Let us write ϵ = ηe and α = η−fγ. Then ϵ is a real unit and α is not
a unit. Since ep+ fq = 1, ϵ and α satisfy

αq + αq = η−fqγq + η−fqγq

= ηep−1(γq + γq)

= ηep

= ϵp.

Multiplying (55) by ξ−2 we get that

ξ−2x− 1 = η2γ
q(ξ−1 − ξ)ξ−2.

Let β = ξ−2fγ. Then β is not a unit since γ is not a unit, and

ξ−2x− 1 = η2β
q(ξ−1 − ξ). (59)

Taking conjugates of (59) implies that

ξ2x− 1 = η2β
q
(ξ − ξ−1). (60)

Subtracting (59) from (60) gives us the identity

(ξ2 − ξ−2)x = η2(ξ − ξ−1)(βq + β
q
)

and, therefore,

x =
η2(β

q + β
q
)

ξ + ξ−1
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so that by (58) we get that

ηx =
ξ + ξ−1

η2
· η2(β

q + β
q
)

ξ + ξ−1
= βq + β

q
.

Theorem 7.71. Let a, b ∈ Z. If b | a in A, then b | a in Z. That is, if a = γb, where
γ ∈ A, then γ ∈ Z.

Proof. Let a, b ∈ Z, and let a = γb, where γ ∈ A. Then γ = a
b
∈ A ∩ Q. Theorem

7.5 states that A ∩Q = Z, hence γ ∈ Z, so that b | a in Z.

The next theorem, the rule of lifting the exponent, is from [3].

Theorem 7.72. Let a, b be integers and let p be a prime number. If ap ≡ bp (mod p)
then ap ≡ bp (mod p2).

Proof. Let ap ≡ bp (mod p). By Fermat's Little Theorem

ap ≡ a (mod p)

bp ≡ b (mod p).

Hence a ≡ b (mod p). Thus in the factorization

ap − bp = (a− b)

p∑︂
i=1

ap−ibi−1

we have a− b ≡ 0 (mod p) and

p∑︂
i=1

ap−ibi−1 ≡
p∑︂

i=1

ap−1 = pap−1 ≡ 0 (mod p)

whereby p2 | ap − bp.

The next lemma and its proof are from [4].

Lemma 7.73. If x, y are non-zero integers and p ̸= q are odd primes such that
xp − yq = 1, then

x ≡ −(pq−1 − 1) (mod q2), y ≡ qp−1 − 1 (mod p2) (61)

so that
x ≡ 0 (mod q2) if and only if pq−1 − 1 ≡ 0 (mod q2)

y ≡ 0 (mod p2) if and only if qp−1 − 1 ≡ 0 (mod p2).
(62)
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Proof. By Cassels' Theorem 5.6, q | x and p | y. By Lemma 6.1 the following
equations hold

x− 1 = pq−1aq

y + 1 = qp−1bp

and
x = (pq−1 − 1)aq + aq + 1 ≡ 0 (mod q), and

y = (qp−1 − 1)bp + bp − 1 ≡ 0 (mod p).
(63)

By Fermat's Little Theorem

pq−1 − 1 ≡ 0 (mod q) and

qp−1 − 1 ≡ 0 (mod p)

and using the equations (63) we get that

x ≡ aq + 1 ≡ 0 (mod q) and

y ≡ bp − 1 ≡ 0 (mod p).

Hence
aq ≡ −1 = (−1)q (mod q) and

bp ≡ 1 = 1p (mod p).

By the rule of lifting the exponent in Theorem 7.72 we get that

aq ≡ (−1)q ≡ −1 (mod q2) and

bp ≡ 1p ≡ 1 (mod p2).

Now equations (63) imply that

x ≡ −(pq−1 − 1) (mod q2) and

y ≡ (qp−1 − 1) (mod p2).
(64)

Lemma 7.74. If q is an odd prime, and x, y ∈ A, then

(x+ y)q = xq + qxy(x+ y)δ + yq,

where δ ∈ A.

Proof. Since q is odd, we have that q − 1 is even, so we may write

(x+ y)q =

q∑︂
k=0

(︃
q

k

)︃
xkyq−k

= xq + yq +

q−1∑︂
k=1

(︃
q

k

)︃
xkyq−k

= xq + yq +

q−1
2∑︂

k=1

(︃(︃
q

k

)︃
xkyq−k +

(︃
q

q − k

)︃
xq−kyk

)︃
. (65)
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The binomial coe�cient satis�es the identity,(︃
q

k

)︃
=

(︃
q

q − k

)︃
,

hence (︃
q

k

)︃
(xy)k =

(︃
q

q − k

)︃
(xy)k,

so that the equation (65) becomes

= xq + yq +

q−1
2∑︂

k=1

(︃
q

k

)︃
(xy)k

(︁
yq−2k + xq−2k

)︁
(66)

Here, q − 2k > 0 is odd, so that

xq−2k + yq−2k = xq−2k − (−y)q−2k = (x+ y)

q−2k∑︂
i=1

xq−2k−i(−y)i−1,

so we may write
xq−2k + yq−2k = (x+ y)Sk.

Since q is prime, we have that q |
(︁
q
k

)︁
for 1 ≤ k ≤ q − 1. Thus, the equation (66)

becomes

= xq + yq +

q−1
2∑︂

k=1

(︃
q

k

)︃
(xy)k(x+ y)Sk

= xq + yq + qxy(x+ y)

q−1
2∑︂

k=1

(︃
q

k

)︃
q−1(xy)k−1Sk

= xq + yq + qxy(x+ y)δ.

The next theorem is by Inkeri and its proof is from [1].

Theorem 7.75. Let p ̸= q be odd primes and x, y non-zero integers such that
xp − yq = 1 and hp and hq be the orders of the ideal class groups of the p-th and
q-th cyclotomic �elds. Then the following implications hold.

i) If q ∤ hp, then q2 | x and pq−1 ≡ 1 (mod q2).

ii) If p ∤ hq, then p2 | y and qp−1 ≡ 1 (mod p2).

Proof. Let us prove i). Suppose that q ∤ hp. By Lemma 7.70, we have that

ηx = βq + β
q
,

where η ∈ A is a unit, and β ∈ A. By Lemma 7.74, we have that

βq + β
q − (β + β)q = qββ(β + β)δ,
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where δ ∈ A. Then

ηx = βq + β
q
= (β + β)q + q(ββ)(β + β)δ. (67)

By Cassels' Theorem 5.6, we have that q | x, hence q | (β + β)q. Then, by Theorem
7.25, we have that

(q) | (β + β)q.

Let
(q) = Q1 · · ·Qn

be the prime ideal factorization of (q). So, we have that

(β + β)q = Q1 · · ·QnI,

where I is an integral ideal. Since q ̸= p, we have that the prime ideals Qi dividing
(q) are distinct, by Theorem 7.54. Since q is not a unit, due to A ∩ Q = Z, then
(β + β)q is not the unit ideal, hence (β + β) is not the unit ideal. Let

β + β = P a1
1 · · ·P am

m

be the prime ideal factorization of β + β, where Pi are distinct prime ideals, and
ai > 0. From Qi | (β + β)q, it follows that Qi = Pmi

, where 1 ≤ mi ≤ m. Since the
ideals Qi are distinct, we get that

Q1 · · ·Qn | P1 · · ·Pm,

and, therefore,
(q) | (β + β).

Thus q | β + β, by Theorem 7.25, so that, certainly, q2 | (β + β)q. Then we get,
from the equation (67), that q2 | ηx. Since q | x, we may write x = dq. From the
fact that q2 | ηx, we get that

ηx = ηdq = q2γ,

where γ ∈ A, so that
d = qγη−1,

where η is a unit by assumption, hence γη−1 ∈ A. Thus q | d in A, so by Theorem
7.71, we have that q | d in Z, and, therefore, q2 | x in Z. Then, by Lemma 7.73, we
have that

pq−1 − 1 ≡ 0 (mod q2),

which completes the proof of i).
The second claim, ii), follows from i): From the equation xp − yq = 1, we get

that (−y)q − (−x)p = 1. Applying the �rst result, i), we get that p2 | −y, hence
p2 | y, and

qp−1 − 1 ≡ 0 (mod p2).

Consequence 7.76. The equations x5 − y7 = ±1 have no non-zero solutions.

72



Proof. Suppose that x5 − y7 = 1. By Table 1, we have that 7 ∤ h5 = 1, so we get
from Theorem 7.75 condition i) (where q = 7 and p = 5), that 57−1 ≡ 1 (mod 72),
which is false.

Let us next suppose that x5 − y7 = −1. Then y7 − x5 = 1, so by Theorem
7.75 condition ii) (where q = 5 and p = 7), we also get that either 7 | h5 = 1 or
57−1 ≡ 1 (mod 72), both of which are false.

The next theorem involving the class number of Q(
√
−p) is by Inkeri and it's

from [1].

Theorem 7.77. Let p, q > 3 be odd primes and integers x, y ̸= 0 such that xp−yq =
1 and let H(−p) denote the class number of Q(

√
−p). Then the following condition

are true.

i) If p ≡ 3 (mod 4) and q ∤ H(−p), then pq−1 ≡ 1 (mod q2), q2 | x, and y ≡
−1 (mod q2p−1).

ii) If q ≡ 3 (mod 4) and p ∤ H(−q), then qp−1 ≡ 1 (mod p2), p2 | y, and x ≡
1 (mod p2q−1).

iii) If 3 < q < p, p ≡ q ≡ 3 (mod 4), and q ∤ H(−p), then pq−1 ≡ 1 (mod q2),
qp−1 ≡ 1 (mod p2), p2 | x, q2 | y, x ≡ 1 (mod p2q−1), and y ≡ −1 (mod q2p−1).

Inkeri's Theorems 7.77 and 7.75 enabled the following result which gives the
non-existence of non-zero solutions (x, y) for xp−yq = 1 for a large number of prime
pairs (p, q).

Theorem 7.78.

i) If p ≡ q ≡ 3 (mod 4) and 5 ≤ p, q < 104 then xp−yq = 1 has no non-zero solutions
(x, y), with possible exceptions being

(p, q) = (83, 4871), (4871, 83).

ii) If p ≡ 3 (mod 4), q ≡ 1 (mod 4) and 5 ≤ p, q < 500 then xp − yq = 1 has non
non-zero solutions (x, y), with possible exceptions being

(p, q) = (19, 137), (223, 349), (251, 421), (419, 173), (419, 349), (499, 109).

Proof. Note that a solution in integers for xp−yq = 1 implies a solution for xq−yp =
1. We begin by giving the strategy for the proof to make it easier to follow:

1) First we show that there are no solutions when⎧⎪⎨⎪⎩
5 ≤ p < 73

5 ≤ q < 104

p ≡ q ≡ 3 (mod 4)

which implies that there are no solutions when⎧⎪⎨⎪⎩
5 ≤ p < 104

5 ≤ q < 73

p ≡ q ≡ 3 (mod 4).
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Then we show that when ⎧⎪⎪⎪⎨⎪⎪⎪⎩
5 ≤ p < 73

5 ≤ q < 500

p ≡ 3 (mod 4)

q ≡ 1 (mod 4)

there are no solutions with possible exceptions of (p, q) = (19, 137).
2) Next we show that when⎧⎪⎨⎪⎩

73 ≤ p < 104

73 ≤ q < 104

p ≡ q ≡ 3 (mod 4)

there are no solutions with possible exception of

(p, q) ∈ {(83, 4871), (4871, 83)} .

3) Lastly we show that when ⎧⎪⎪⎪⎨⎪⎪⎪⎩
73 ≤ p < 500

5 ≤ q < 500

p ≡ 3 (mod 4)

q ≡ 1 (mod 4)

there are no solutions with the possible exception of

(p, q) ∈ {(223, 349), (251, 421), (419, 173), (419, 349), (499, 109)} .

These parts together give the result.
For odd primes p, q, let hq denote the class number of the q-th cyclotomic �eld

Q(ξq), and let H(−p) denote the class number of the imaginary quadratic �eld
Q(

√
−p). We use values for hq for primes q < 100 in Table 1, which is from [5], and

values for H(−p) for primes p < 104 with p ≡ 3 (mod 4) in Table 4. We also use
the solutions of the congruence pq−1 ≡ 1 (mod q2) for primes p < 1000 and q < 104

in Table 3.
Suppose xp − yq = 1 has a non-trivial solution.
Let us prove the step 1). Let 5 ≤ p < 73 and 5 ≤ q < 104 with p ≡ 3 (mod 4). Let

us show that pq−1 ≡ 1 (mod q2). Suppose that pq−1 ̸≡ 1 (mod q2). Then by Theorem
7.77 q | H(−p). By Table 4 the only candidates are (p, q) ∈ {(47, 5), (71, 7)}. For
these candidates Table 1 gives h5 = h7 = 1, hence p ∤ hq, in which case Theorem 7.75
implies qp−1 ≡ 1 (mod p2). However, by Table 3 neither pair (p, q) = (47, 5), (71, 7)
satis�es qp−1 ≡ 1 (mod p2), which is a contradiction. Hence pq−1 ≡ 1 (mod q2).

By Table 3 the solutions of pq−1 ≡ 1 (mod q2) with 5 ≤ p < 73, 5 ≤ q < 104 and
p ≡ 3 (mod 4) are

(p, q) ∈ {(7, 5), (11, 71), (19, 7), (19, 13),
(19, 43), (19, 137), (23, 13), (31, 7), (31, 79),

(31, 6451), (43, 5), (43, 103), (59, 2777),

(67, 7), (67, 47), (71, 47), (71, 331).}

(68)
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Let us �rst consider pairs with q ≡ 3 (mod 4):

(p, q) ∈ {(11, 71), (19, 7),
(19, 43), (31, 7), (31, 79),

(31, 6451), (43, 103),

(67, 7), (67, 47), (71, 47), (71, 331).}

For there pairs, we see from Table 4 that p ∤ H(−q), and, therefore, by Theorem
7.77 qp−1 ≡ 1 (mod p2), but this is not true as seen in Table 4 for the pairs with
q < 103. The remaining pair (31, 6451) is outside the range of Table 4, but by direct
calculation we have that 645131−1 ≡ 621 ̸≡ 1 (mod 312).

Now consider the remaining pairs in (68) with q ≡ 1 (mod 4):

(p, q) ∈ {(7, 5), (19, 13),
(19, 137), (23, 13),

(43, 5), (59, 2777).}

From Table 1 we see that p ∤ hq except possibly with (p, q) ∈ {(19, 137), (59, 2777)}
(the latter pair of which is out of our range of interest of this theorem). Therefore,
by Theorem 7.75, qp−1 ≡ 1 (mod p2), which is false as seen from Table 3. This
concludes the proof of part 1).

Let us prove the step 2). Let 73 ≤ p < 104 and 73 ≤ q < 104 with p ≡ q ≡
3 (mod 4). Let us show that q ∤ H(−p). Suppose on the contrary that q | H(−p).
The class number H(−p) is small for p in our range, and we see from Table 4 that
with these constraints

(p, q) ∈ {(4391, 79), (5399, 79), (7127, 79), (3911, 83),
(5039, 83), (8423, 83), (8231, 107), (9239, 139)}

Since the class number satis�es H(−q) < q, we have with these candidates H(−q) <
q < p hence p ∤ H(−q), and, therefore, by Theorem 7.77 qp−1 ≡ 1 (mod p2).
From Table 3 we see that this is not true. Hence q ∤ H(−p), so by Theorem 7.77
pq−1 ≡ 1 (mod q2). Since a solution for xp−yq = 1 implies a solution for xq−yp = 1,
we have also qp−1 ≡ 1 (mod p2) by the same proof as above. From Table 2 the only
pair satisfying both of these congruences is (p, q) = (83, 4871), which also satis�es
83 ≡ 4871 ≡ 3 (mod 4). Then so does (p, q) = (4871, 83) as desired. This concludes
part 2).

Finally, let us prove the step 3). Let 73 ≤ p < 500, 5 ≤ q < 500, p ≡ 3 (mod 4),
and q ≡ 1 (mod 4). Let us show that q ∤ H(−p). Suppose on the contrary that
q | H(−p). With these constraints it is seen from Table 4 that

(p, q) ∈ {(79, 5), (103, 5), (127, 5), (131, 5), (179, 5),
(191, 13), (227, 5), (239, 5), (263, 13), (347, 5),

(383, 17), (439, 5), (443, 5), (479, 5)}.

For these pairs Table 1 shows that p ∤ hq. Therefore, by Theorem 7.75, qp−1 ≡
1 (mod p2), but Table 3 shows that this is false. Hence q ∤ H(−p). Now by

75



Theorem 7.77 pq−1 ≡ 1 (mod q2). From Table 3, with the conditions 73 ≤ p < 500,
5 ≤ q < 500, p ≡ 3 (mod 4), q ≡ 1 (mod 4), the only pairs satisfying the congruence
pq−1 ≡ 1 (mod q2) are

(p, q) ∈ {(107, 5), (107, 97), (131, 17), (151, 5),
(179, 17), (191, 13), (199, 5), (223, 349), (239, 13),

(251, 5), (251, 17), (251, 421), (307, 5), (419, 173),

(419, 349), (443, 5), (467, 29), (487, 41),

(499, 5), (499, 109)}.

Of these pairs with q < 100 Table 1 shows that p ∤ hq, and, therefore, by Theorem
7.75, qp−1 ≡ 1 (mod p2), but as seen from Table 3 this is not true. So the possible
exceptions are the pairs with q ≥ 100:

(p, q) ∈ {(223, 349), (251, 421), (419, 173), (419, 349), (499, 109)}.
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Table 1: hq, 3 ≤ q ≤ 100

q hq q hq

3 1 43 211
5 1 47 5 · 139
7 1 53 4889
11 1 59 3 · 59 · 233
13 1 61 41 · 1861
17 1 67 67 · 12739
19 1 71 7 · 7 · 79241
23 3 73 89 · 134353
29 2 · 2 · 2 79 5 · 53 · 377911
31 9 83 3 · 279405653
37 37 89 113 · 118401449
41 11 · 11 97 577 · 3457 · 206209

Table 2: 2 ≤ p ≤ 103, 3 ≤ q ≤ 104 such that pq−1 ≡
1 (mod q2) and qp−1 ≡ 1 (mod p2)

Base p Solutions q
2 1093
83 4871
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Table 3: 2 ≤ p ≤ 103, 3 ≤ q ≤ 104 such that pq−1 ≡
1 (mod q2)

Base p Solutions q Solutions q Base p Solutions q Solutions q
≡ 3 ≡ 3 ≡ 1 ≡ 1 ≡ 3 ≡ 1 (mod 4)
3 11 2 3511 1093
7 5 5
11 71 13 863
19 3 7 43 13 137 17 3
23 13 29
31 7 79 6451 37 3
43 103 5 41 29
47 53 3 47 59 97
59 2777 61
67 7 47 73 3
71 3 47 331 89 3 13
79 7 263 3037 97 7
83 4871 101 5
103 109 3
107 3 5 97 113
127 3 19 907 137 59 29
131 17 149 5
139 157 5
151 2251 5 173 3079
163 3 181 3 101
167 193 5
179 3 17 197 3 7 653
191 13 229 31
199 3 5 233 3 11 157
211 241 11 523 1163
223 71 349 257 359 5
227 7 269 3 11 83
239 11 13 277 1993
251 3 11 5 17 421 281
263 7 23 251 293 7 19 83 5
271 3 313 7 41 149 181
283 317 107 349
307 3 19 487 5 337 13
311 349 5 197 433
331 211 359 353
347 373 7 113
359 3 23 307 389 19 373
367 43 2213 397 3
379 3 401 83 347 5
383 409
419 983 173 349 421 1483 101
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Base p Solutions q Solutions q Base p Solutions q Solutions q
≡ 3 ≡ 3 ≡ 1 ≡ 1 ≡ 3 ≡ 1 (mod 4)
431 3 433 3
439 31 79 449 3 5 1789
443 5 457 11 919 5
463 1667 461 1697
467 3 743 29 509 7 41
479 47 521 3 7 31 53
487 3 11 23 41 1069 541 3
491 7 79 557 3 7 23 5
499 5 109 569 7 263
503 3 659 17 229 577 3 71 13 17
523 3 593 3 5
547 31 601 5 61
563 613 3
571 23 29 617 1087 101
587 7 31 13 641 43
599 5 653 19 13 17 1381
607 7 5 661
619 7 73 673 61
631 3 1787 677 211 13
643 307 859 5 17 701 3 5
647 3 23 709 199 1663 17
659 23 131 733 17
683 3 1279 757 3 71 5 17
691 1091 37 509 761 907 41
719 3 41 769
727 11 773 3
739 3 797
743 5 809 3 59
751 151 5 409 821 19 83 233 293 1229
787 37 41 829 3 17
811 3 211 853
823 13 857 5 41 157
827 3 17 29 877
839 881 3 7 23
859 71 929
863 3 7 23 467 937 3 41 113 853
883 3 7 941 11 1499
887 11 607 953 3
907 5 17 977 11 239 17 109 401
911 127 997 1223 197
919 3
947
967 11 19
971 3 11 401
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Base p Solutions q Solutions q Base p Solutions q Solutions q
≡ 3 ≡ 3 ≡ 1 ≡ 1 ≡ 3 ≡ 1 (mod 4)
983
991 3 431 13
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Table 4: H(−p), p ≡ 3 (mod 4), 3 ≤ p ≤ 104

p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
3 1
7 1
11 1
19 1
23 3 3 3
31 3 3 3
43 1
47 5 5 5
59 3 3 3
67 1
71 7 7 7
79 5 5 5
83 3 3 3
103 5 5 5
107 3 3 3
127 5 5 5
131 5 5 5
139 3 3 3
151 7 7 7
163 1
167 11 11 11
179 5 5 5
191 13 13 13
199 9 3 · 3 3
211 3 3 3
223 7 7 7
227 5 5 5
239 15 3 · 5 3 5
251 7 7 7
263 13 13 13
271 11 11 11
283 3 3 3
307 3 3 3
311 19 19 19
331 3 3 3
347 5 5 5
359 19 19 19
367 9 3 · 3 3
379 3 3 3
383 17 17 17
419 9 3 · 3 3 3
431 21 3 · 7 3 7
439 15 3 · 5 3 5
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
443 5 5 5
463 7 7 7
467 7 7 7
479 25 5 · 5 5
487 7 7 7
491 9 3 · 3 3 3
499 3 3 3
503 21 3 · 7 3 7
523 5 5 5
547 3 3 3
563 9 3 · 3 3 3
571 5 5 5
587 7 7 7
599 25 5 · 5 5
607 13 13 13
619 5 5 5
631 13 13 13
643 3 3 3
647 23 23 23
659 11 11 11
683 5 5 5
691 5 5 5
719 31 31 31
727 13 13 13
739 5 5 5
743 21 3 · 7 3 7
751 15 3 · 5 3 5
787 5 5 5
811 7 7 7
823 9 3 · 3 3
827 7 7 7
839 33 3 · 11 3 11
859 7 7 7
863 21 3 · 7 3 7
883 3 3 3
887 29 29 29
907 3 3 3
911 31 31 31
919 19 19 19
947 5 5 5
967 11 11 11
971 15 3 · 5 3 5
983 27 3 · 3 · 3 3
991 17 17 17
1019 13 13 13
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
1031 35 5 · 7 7 5
1039 23 23 23
1051 5 5 5
1063 19 19 19
1087 9 3 · 3 3
1091 17 17 17
1103 23 23 23
1123 5 5 5
1151 41 41 41
1163 7 7 7
1171 7 7 7
1187 9 3 · 3 3 3
1223 35 5 · 7 7 5
1231 27 3 · 3 · 3 3
1259 15 3 · 5 3 5
1279 23 23 23
1283 11 11 11
1291 9 3 · 3 3 3
1303 11 11 11
1307 11 11 11
1319 45 3 · 3 · 5 3 5
1327 15 3 · 5 3 5
1367 25 5 · 5 5
1399 27 3 · 3 · 3 3
1423 9 3 · 3 3
1427 15 3 · 5 3 5
1439 39 3 · 13 3 13
1447 23 23 23
1451 13 13 13
1459 11 11 11
1471 23 23 23
1483 7 7 7
1487 37 37 37
1499 13 13 13
1511 49 7 · 7 7
1523 7 7 7
1531 11 11 11
1543 19 19 19
1559 51 3 · 17 3 17
1567 15 3 · 5 3 5
1571 17 17 17
1579 9 3 · 3 3 3
1583 33 3 · 11 3 11
1607 27 3 · 3 · 3 3
1619 15 3 · 5 3 5
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
1627 7 7 7
1663 17 17 17
1667 13 13 13
1699 11 11 11
1723 5 5 5
1747 5 5 5
1759 27 3 · 3 · 3 3
1783 17 17 17
1787 7 7 7
1811 23 23 23
1823 45 3 · 3 · 5 3 5
1831 19 19 19
1847 43 43 43
1867 5 5 5
1871 45 3 · 3 · 5 3 5
1879 27 3 · 3 · 3 3
1907 13 13 13
1931 21 3 · 7 3 7
1951 33 3 · 11 3 11
1979 23 23 23
1987 7 7 7
1999 27 3 · 3 · 3 3
2003 9 3 · 3 3 3
2011 7 7 7
2027 11 11 11
2039 45 3 · 3 · 5 3 5
2063 45 3 · 3 · 5 3 5
2083 7 7 7
2087 35 5 · 7 7 5
2099 19 19 19
2111 49 7 · 7 7
2131 13 13 13
2143 13 13 13
2179 7 7 7
2203 5 5 5
2207 39 3 · 13 3 13
2239 35 5 · 7 7 5
2243 15 3 · 5 3 5
2251 7 7 7
2267 11 11 11
2287 29 29 29
2311 29 29 29
2339 19 19 19
2347 5 5 5
2351 63 3 · 3 · 7 3 7
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
2371 13 13 13
2383 29 29 29
2399 59 59 59
2411 23 23 23
2423 33 3 · 11 3 11
2447 37 37 37
2459 19 19 19
2467 7 7 7
2503 21 3 · 7 3 7
2531 17 17 17
2539 11 11 11
2543 35 5 · 7 7 5
2551 41 41 41
2579 21 3 · 7 3 7
2591 57 3 · 19 3 19
2647 15 3 · 5 3 5
2659 13 13 13
2663 43 43 43
2671 23 23 23
2683 5 5 5
2687 51 3 · 17 3 17
2699 15 3 · 5 3 5
2707 7 7 7
2711 53 53 53
2719 41 41 41
2731 11 11 11
2767 21 3 · 7 3 7
2791 39 3 · 13 3 13
2803 9 3 · 3 3 3
2819 21 3 · 7 3 7
2843 15 3 · 5 3 5
2851 11 11 11
2879 57 3 · 19 3 19
2887 25 5 · 5 5
2903 59 59 59
2927 31 31 31
2939 29 29 29
2963 13 13 13
2971 11 11 11
2999 73 73 73
3011 21 3 · 7 3 7
3019 7 7 7
3023 47 47 47
3067 7 7 7
3079 41 41 41
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
3083 13 13 13
3119 69 3 · 23 3 23
3163 9 3 · 3 3 3
3167 53 53 53
3187 7 7 7
3191 69 3 · 23 3 23
3203 11 11 11
3251 31 31 31
3259 9 3 · 3 3 3
3271 27 3 · 3 · 3 3
3299 27 3 · 3 · 3 3 3 3
3307 9 3 · 3 3 3
3319 41 41 41
3323 17 17 17
3331 15 3 · 5 3 5
3343 19 19 19
3347 11 11 11
3359 69 3 · 23 3 23
3371 21 3 · 7 3 7
3391 37 37 37
3407 57 3 · 19 3 19
3463 19 19 19
3467 19 19 19
3491 23 23 23
3499 11 11 11
3511 41 41 41
3527 65 5 · 13 5 13
3539 23 23 23
3547 9 3 · 3 3 3
3559 45 3 · 3 · 5 3 5
3571 15 3 · 5 3 5
3583 29 29 29
3607 19 19 19
3623 45 3 · 3 · 5 3 5
3631 43 43 43
3643 9 3 · 3 3 3
3659 29 29 29
3671 81 3 · 3 · 3 · 3 3
3691 13 13 13
3719 67 67 67
3727 31 31 31
3739 11 11 11
3767 39 3 · 13 3 13
3779 31 31 31
3803 15 3 · 5 3 5
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
3823 29 29 29
3847 23 23 23
3851 25 5 · 5 5 5
3863 61 61 61
3907 7 7 7
3911 83 83 83
3919 39 3 · 13 3 13
3923 23 23 23
3931 11 11 11
3943 27 3 · 3 · 3 3
3947 17 17 17
3967 33 3 · 11 3 11
4003 13 13 13
4007 57 3 · 19 3 19
4019 19 19 19
4027 9 3 · 3 3 3
4051 11 11 11
4079 85 5 · 17 5 17
4091 33 3 · 11 3 11
4099 15 3 · 5 3 5
4111 39 3 · 13 3 13
4127 49 7 · 7 7
4139 19 19 19
4159 31 31 31
4211 23 23 23
4219 15 3 · 5 3 5
4231 51 3 · 17 3 17
4243 9 3 · 3 3 3
4259 35 5 · 7 7 5
4271 65 5 · 13 5 13
4283 21 3 · 7 3 7
4327 19 19 19
4339 17 17 17
4363 9 3 · 3 3 3
4391 79 79 79
4423 33 3 · 11 3 11
4447 17 17 17
4451 29 29 29
4463 55 5 · 11 11 5
4483 9 3 · 3 3 3
4507 13 13 13
4519 29 29 29
4523 21 3 · 7 3 7
4547 17 17 17
4567 33 3 · 11 3 11
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
4583 61 61 61
4591 49 7 · 7 7
4603 7 7 7
4639 51 3 · 17 3 17
4643 13 13 13
4651 17 17 17
4663 33 3 · 11 3 11
4679 91 7 · 13 7 13
4691 21 3 · 7 3 7
4703 75 3 · 5 · 5 3 5
4723 9 3 · 3 3 3
4751 91 7 · 13 7 13
4759 55 5 · 11 11 5
4783 23 23 23
4787 25 5 · 5 5 5
4799 63 3 · 3 · 7 3 7
4831 33 3 · 11 3 11
4871 91 7 · 13 7 13
4903 27 3 · 3 · 3 3
4919 91 7 · 13 7 13
4931 35 5 · 7 7 5
4943 55 5 · 11 11 5
4951 31 31 31
4967 59 59 59
4987 9 3 · 3 3 3
4999 33 3 · 11 3 11
5003 15 3 · 5 3 5
5011 21 3 · 7 3 7
5023 25 5 · 5 5
5039 83 83 83
5051 29 29 29
5059 19 19 19
5087 69 3 · 23 3 23
5099 39 3 · 13 3 13
5107 7 7 7
5119 39 3 · 13 3 13
5147 19 19 19
5167 33 3 · 11 3 11
5171 35 5 · 7 7 5
5179 11 11 11
5227 15 3 · 5 3 5
5231 75 3 · 5 · 5 3 5
5279 87 3 · 29 3 29
5303 55 5 · 11 11 5
5323 15 3 · 5 3 5
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
5347 13 13 13
5351 93 3 · 31 3 31
5387 23 23 23
5399 79 79 79
5407 43 43 43
5419 13 13 13
5431 57 3 · 19 3 19
5443 9 3 · 3 3 3
5471 71 71 71
5479 43 43 43
5483 17 17 17
5503 25 5 · 5 5
5507 23 23 23
5519 97 97 97
5527 19 19 19
5531 23 23 23
5563 15 3 · 5 3 5
5591 99 3 · 3 · 11 3 11
5623 33 3 · 11 3 11
5639 87 3 · 29 3 29
5647 21 3 · 7 3 7
5651 31 31 31
5659 19 19 19
5683 11 11 11
5711 109 109 109
5743 29 29 29
5779 13 13 13
5783 53 53 53
5791 33 3 · 11 3 11
5807 65 5 · 13 5 13
5827 15 3 · 5 3 5
5839 37 37 37
5843 25 5 · 5 5 5
5851 21 3 · 7 3 7
5867 21 3 · 7 3 7
5879 101 101 101
5903 73 73 73
5923 7 7 7
5927 71 71 71
5939 35 5 · 7 7 5
5987 15 3 · 5 3 5
6007 27 3 · 3 · 3 3
6011 27 3 · 3 · 3 3 3 3
6043 9 3 · 3 3 3
6047 71 71 71
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
6067 15 3 · 5 3 5
6079 57 3 · 19 3 19
6091 15 3 · 5 3 5
6131 31 31 31
6143 41 41 41
6151 59 59 59
6163 11 11 11
6199 39 3 · 13 3 13
6203 17 17 17
6211 15 3 · 5 3 5
6247 43 43 43
6263 77 7 · 11 7 11
6271 51 3 · 17 3 17
6287 51 3 · 17 3 17
6299 43 43 43
6311 89 89 89
6323 21 3 · 7 3 7
6343 33 3 · 11 3 11
6359 101 101 101
6367 37 37 37
6379 17 17 17
6427 9 3 · 3 3 3
6451 17 17 17
6491 31 31 31
6547 11 11 11
6551 117 3 · 3 · 13 3 13
6563 23 23 23
6571 15 3 · 5 3 5
6599 109 109 109
6607 45 3 · 3 · 5 3 5
6619 13 13 13
6659 23 23 23
6679 55 5 · 11 11 5
6691 21 3 · 7 3 7
6703 23 23 23
6719 105 3 · 5 · 7 3 7 5
6763 9 3 · 3 3 3
6779 39 3 · 13 3 13
6791 81 3 · 3 · 3 · 3 3
6803 19 19 19
6823 33 3 · 11 3 11
6827 17 17 17
6863 81 3 · 3 · 3 · 3 3
6871 45 3 · 3 · 5 3 5
6883 9 3 · 3 3 3
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
6899 35 5 · 7 7 5
6907 17 17 17
6911 87 3 · 29 3 29
6947 29 29 29
6959 95 5 · 19 19 5
6967 33 3 · 11 3 11
6971 45 3 · 3 · 5 3 3 5
6983 57 3 · 19 3 19
6991 71 71 71
7019 43 43 43
7027 11 11 11
7039 43 43 43
7043 23 23 23
7079 85 5 · 17 5 17
7103 77 7 · 11 7 11
7127 79 79 79
7151 85 5 · 17 5 17
7159 65 5 · 13 5 13
7187 25 5 · 5 5 5
7207 29 29 29
7211 35 5 · 7 7 5
7219 15 3 · 5 3 5
7243 13 13 13
7247 47 47 47
7283 25 5 · 5 5 5
7307 25 5 · 5 5 5
7331 33 3 · 11 3 11
7351 33 3 · 11 3 11
7411 25 5 · 5 5 5
7451 35 5 · 7 7 5
7459 15 3 · 5 3 5
7487 65 5 · 13 5 13
7499 33 3 · 11 3 11
7507 11 11 11
7523 35 5 · 7 7 5
7547 15 3 · 5 3 5
7559 115 5 · 23 23 5
7583 63 3 · 3 · 7 3 7
7591 65 5 · 13 5 13
7603 11 11 11
7607 89 89 89
7639 31 31 31
7643 29 29 29
7687 29 29 29
7691 43 43 43
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
7699 27 3 · 3 · 3 3 3 3
7703 81 3 · 3 · 3 · 3 3
7723 9 3 · 3 3 3
7727 81 3 · 3 · 3 · 3 3
7759 49 7 · 7 7
7823 75 3 · 5 · 5 3 5
7867 11 11 11
7879 49 7 · 7 7
7883 17 17 17
7907 21 3 · 7 3 7
7919 97 97 97
7927 47 47 47
7951 51 3 · 17 3 17
7963 13 13 13
8011 25 5 · 5 5 5
8039 113 113 113
8059 21 3 · 7 3 7
8087 81 3 · 3 · 3 · 3 3
8111 121 11 · 11 11
8123 21 3 · 7 3 7
8147 37 37 37
8167 33 3 · 11 3 11
8171 21 3 · 7 3 7
8179 25 5 · 5 5 5
8191 55 5 · 11 11 5
8219 35 5 · 7 7 5
8231 107 107 107
8243 21 3 · 7 3 7
8263 43 43 43
8287 45 3 · 3 · 5 3 5
8291 47 47 47
8311 61 61 61
8363 35 5 · 7 7 5
8387 21 3 · 7 3 7
8419 19 19 19
8423 83 83 83
8431 59 59 59
8443 11 11 11
8447 99 3 · 3 · 11 3 11
8467 15 3 · 5 3 5
8527 43 43 43
8539 17 17 17
8543 97 97 97
8563 9 3 · 3 3 3
8599 63 3 · 3 · 7 3 7
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
8623 51 3 · 17 3 17
8627 21 3 · 7 3 7
8647 31 31 31
8663 67 67 67
8699 35 5 · 7 7 5
8707 15 3 · 5 3 5
8719 53 53 53
8731 17 17 17
8747 21 3 · 7 3 7
8779 15 3 · 5 3 5
8783 73 73 73
8803 9 3 · 3 3 3
8807 81 3 · 3 · 3 · 3 3
8819 49 7 · 7 7 7
8831 109 109 109
8839 77 7 · 11 7 11
8863 29 29 29
8867 27 3 · 3 · 3 3 3 3
8887 43 43 43
8923 19 19 19
8951 135 3 · 3 · 3 · 5 3 5
8963 29 29 29
8971 19 19 19
8999 99 3 · 3 · 11 3 11
9007 35 5 · 7 7 5
9011 33 3 · 11 3 11
9043 15 3 · 5 3 5
9059 39 3 · 13 3 13
9067 9 3 · 3 3 3
9091 21 3 · 7 3 7
9103 57 3 · 19 3 19
9127 57 3 · 19 3 19
9151 67 67 67
9187 21 3 · 7 3 7
9199 51 3 · 17 3 17
9203 31 31 31
9227 25 5 · 5 5 5
9239 139 139 139
9283 11 11 11
9311 97 97 97
9319 41 41 41
9323 29 29 29
9343 51 3 · 17 3 17
9371 49 7 · 7 7 7
9391 55 5 · 11 11 5
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p H(−p) Factorization Factors q ≡ 3 (mod 4) Factors q ≡ 1 (mod 4)
9403 11 11 11
9419 35 5 · 7 7 5
9431 91 7 · 13 7 13
9439 75 3 · 5 · 5 3 5
9463 45 3 · 3 · 5 3 5
9467 41 41 41
9479 101 101 101
9491 45 3 · 3 · 5 3 3 5
9511 69 3 · 23 3 23
9539 55 5 · 11 11 5
9547 13 13 13
9551 129 3 · 43 3 43
9587 23 23 23
9619 19 19 19
9623 95 5 · 19 19 5
9631 77 7 · 11 7 11
9643 11 11 11
9679 71 71 71
9719 133 7 · 19 7 19
9739 13 13 13
9743 105 3 · 5 · 7 3 7 5
9767 89 89 89
9787 11 11 11
9791 119 7 · 17 7 17
9803 37 37 37
9811 21 3 · 7 3 7
9839 91 7 · 13 7 13
9851 45 3 · 3 · 5 3 3 5
9859 21 3 · 7 3 7
9871 49 7 · 7 7
9883 17 17 17
9887 75 3 · 5 · 5 3 5
9907 15 3 · 5 3 5
9923 25 5 · 5 5 5
9931 23 23 23
9967 39 3 · 13 3 13
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