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Matematiikka

Huhtikuu 2024

Catalanin otaksuma on viittdmai, jonka mukaan Catalanin yhtiloén z™ — y™ = 1,
missd z,y > 0 ja n,m > 1 ovat luonnollisia lukuja, ei ole muita ratkaisuja kuin
32 -2 =1.

Tassd tyossd tarkastellaan Catalanin otaksumaan liittyvid osittaisia tuloksia.
Catalanin otaksuma esitetddn, mutta sité ei todisteta.

Tutkielmassa todistetaan, ettd jos Catalanin yhtédlon ratkaisussa (z,y,n,m) y
on alkuluku, nimy=2jaz=3,n=2,m=3.

Lisaksi todistetaan Casselsin lause, mikd antaa jaollisuusehtoja sellaisille Cata-
lanin yhtélon ratkaisuille (z,y,n,m), missd n ja m ovat parittomia alkulukuja.

Casselsin lauseen avulla todistetaan lisdd jaollisuusehtoja sellaisille Catalanin
yhtélon ratkaisuille (z,y,n, m), missé n ja m ovat parittomia alkulukuja.

Tutkielman lopussa esitetddn tuloksia ympyrdkunnista ja niiden ihanteista ja
todistetaan Inkerin lause, minka avulla todistetaan, etta suurelle méaaralle alkulukuja
p,q > 2 yhtilolle 27 — y? = 1 ei ole ratkaisuja, missa x,y > 0.

Asiasanat: Catalanin otaksuma, ympyrikunta
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1 Introduction

Eugéne Catalan conjectured in 1844 that 23 and 3% are the only consecutive powers
of natural numbers. The conjecture was proved by Preda Mihailescu in 2002 by
applying results from the theory of cyclotomic fields.

Catalan’s Conjecture is among the famous problems in number theory that are
simple to state, but difficult to prove, as attested to by the fact that the conjecture
remained unsolved for some 150 years. We will present Catalan’s Conjecture, make
some immediate observations, and consider divisibility conditions for a solution to
the Catalan’s equation 2P — y? = 1, including Cassels’ theorem, and present tech-
niques that were invented in an attempt to prove the conjecture in the late 20th
century. In the end we prove partial results to the problem using results involving
cyclotomic fields, including Inkeri’s lemmas.

The actual proof of the conjecture, which is not presented in this work, examines
the properties of the group of units of the ring of integers of the p—th cyclotomic field
using properties of annihilators of ideals, eventually finding a property of that group
which is impossible, as discussed by Metsinkyld in his 2003 article on Catalan’s
conjecture in [3].

In this work we assume basic facts about modular arithmetic. Theory of cyclo-
tomic fields is covered as needed and no prior knowledge is assumed except arithmetic
of complex numbers. The thesis is based on Paulo Ribenboim’s book on Catalan’s
Conjecture [I], written at a time when the conjecture had not yet been proved.



2 Preliminaries

We will now gather facts which are used in the forthcoming chapters.
For a prime p and an integer n # 0, v, (n) denotes the p-adic valuation of n,
that is v, (n) = k if p* | n and p*™ { n. Let n,m be integers, it is immediate that

vp (mn) = vy (m) + v, (n) .
If v,(n) < v,(m) then
vp(n +m) = vp(n).

Define v, (0) = oo, and for n # 0, define v, () = v, (m) — v, (n). This is well
defined, because for any integer k£ # 0 we have

oy (5 ) = o ) = () = L (6) -+ (0] = o (8) + (0]

= 0y (m) = v, (n) = v, ().

n

For a prime ¢ and an integer n > 0, the g-adic expansion of n is
n=ay+aq+---+a,q"
where the integers a; satisfy 0 < a; < q¢—1for 0 <i < n.

Lemma 2.1. For coprime integers n and m, there exists an integer a > 0 such that
an =1 (mod m) and ged (a,m) = 1.

Proof. Since n and m are coprime, by Bézout’s identity, there exists integers a,b
such that
an +bm =1, (1)

which means that an = 1 (mod m). We may assume that a > 0: if a < 0, then for
an arbitrary integer k we get from the congruence an =1 (mod m) that

an + kmn = (a + km)n =1 (mod m)

whereupon the integer k£ may be chosen such that a+km > 0. Denote ged (a, m) = d.
Then, from equation (1)), d | an +bm = 1, hence d = 1. O

Let m > 0 and x be integers such that gcd (z,m) = 1. The order of x modulo
m, denoted by ord,, (), is the least integer k > 0 such that z* = 1 (mod m).

For a real number r, the floor function, |r], denotes the greatest integer k such
that k < r.



3 Catalan’s conjecture
Catalan’s conjecture states that the equation
" —ym =1 (2)

has no solution in natural numbers for z,y > 0 and n,m > 1 other than 3% —23 = 1.
To prove this conjecture, it suffices to show that

oy =1 )

has no solution for z, y > 0 and distinct prime exponents p and ¢ other than 32—23 =
1. This follows from the fact that if a solution exists to the equation then also

(a7)? = (yo)" =1
where primes p and ¢ are arbitrary prime factors of n and m, respectively. If p = ¢
we have

p
L=a? —yP=(z—y) ) "y,
=1

which leads to a contradiction, because

p

2
Zl,p—iyi—l > ZI2—Z‘yz‘—1 —z+y> 1.

i=1 i=1

So we may assume p # ¢ in what follows. Hence a solution to the equation (2)
implies that there is a solution to the equation . The contraposition leads to that
if the equation has no solutions then neither does the equation (2)).

The process of proving the non-existence of solutions to equation other than
3% — 23 = 1 may be divided into two cases according to the greatest common divisor

(gcd) of the integers z — 1 and m;:ll, which appear in the equation

P —1

r—1"

yl=a?—-1=(z—-1)

Case I is when the ged of x — 1 and % equals 1, and Case II is when this gcd
equals p. These are the only two possibilities which will be shown in the following
lemma. The lemma considers also the ged of the integers z + 1 and £t which will

417
be useful in the forthcoming chapter.

Theorem 3.1. Given a prime p and an integer x # £1, the gcd of the integers

P+ 1
41"

z + 1 and

is either 1 or p, and the gcd of the integers

P —1

x—1"

z — 1 and

is either 1 or p.



Proof. Let x # +1 be an integer. If p = 2 then

2 +1

rEt1— 1‘2]:{::&1—(352121)\:2,

T

so the gced is either 1 or 2 as desired. Let us suppose p is an odd prime. Noting that

p_1 PRV |
gcd(:z:—l,:lj 1>:gcd(—x+1,%>
x

—x+1

it suffices to prove the claim for the integers

P —1

xr —

z — 1 and

Let d be the ged of the above integers. Then z =1 (mod d) and

P —1 1
0= 151+x+---+xp = p (mod d).
x p—
Therefore d is a factor of p, which implies that d =1 or d = p. m

The following lemma states some necessary properties of a solution to the equa-
tion under certain restrictions, which will be useful in proving Cassels” Theorem
in chapter 5. The ultimate goal of considerations like these is to find properties that
a solution must possess, but which turn out to be impossible. We do not yet achieve
this ultimate goal, but the lemma provides useful conditions nonetheless.

Lemma 3.2. Let p, ¢ be distinct odd primes and x, y > 0 integers such that 2?7 —y? =
+1. If ¢ | z, then exists integers a, b such that

y+1=q¢" 'a?
yi+ 1

= qb?
y+1 1

where ¢ 10, gcd (a,b) = 1, z = qab.

Proof. Let q | . Then we get that 0 = 2P = y?+1 =y £ 1 (mod ¢), using Fermat’s

small theorem, and this implies ¢ | y = 1. Since y = F1 (mod ¢), we have that
¥+ 1
y+1

=1+ (Fy) + -+ (Fy)""

=1+ (FF)) + -+ (FFD)"! (mod q)
=1+ +---+(1)7'=¢=0 (mod q),

y*1 ) yEl
Then there exists integers a, b such that one of the following cases is true:

0 q | % By Theorem gcd (y +1, @) is 1 or ¢, hence gcd (y +1 yqil) =q.

y+t1=ql
y?i+1 " (4)
y+1 ’



or

y+£1=q" ta?

yrE1 (5)
= qb’

ETR

where ¢ 1 b, ged (a,b) = 1, x = gab. If the equations hold, then y = ¢b? F 1, so
that modulo ¢ we have the congruence

q

O=aP =y'+1= (P F1)'£1=) (Z) (gb")*(F1)7* £ 1 = ¢* (mod ¢*),
k=0

which is a contradiction, since g {1 b. Therefore the equations must hold. O

In Lemma [3.2]it was assumed that ¢ | z, but it will be shown later that this fact
already follows from the preceding assumptions of the lemma.



4 Special cases

Instead of trying to prove Catalan’s conjecture outright, we will now prove that if
n,m > 1 and z > 0 are integers and ¢ is a prime number such that

then 2" = 32 and ¢™ = 23. This will require a few preliminary lemmas.

Lemma 4.1. If ¢ is a prime number and n,m > 0 are integers such that
2" —q¢" =1,

then ¢ = 3 (mod 4) and m is odd.

Proof. Tt follows from the equation 2" — ¢™ = 1 that ¢ is odd. If n = 1 then
2—q™ = 1,80 q¢™ = 1, which is a contradiction since ¢ is a prime number and m > 0.
Therefore n > 2. Since ¢ is an odd prime, we have that ¢ = 1 or ¢ = 3 (mod 4).
Since n > 2, we have that

¢"=2"—1=3 (mod 4).
Therefore, ¢ = 3 (mod 4) with odd m. O
Lemma 4.2. If ¢ is prime number and n,m > 0 are integers such that
2" —q¢" =1,
then m = 1 and n is a prime number.

Proof. Suppose m = pk where p is prime. It follows from the equation 2" — ¢ =1
that ¢ is odd. By Lemma [4.1] pk is odd, so in particular p is odd. Now

2 = (-0 - VT

=—((=)" =11+ (=) + (=" + -+ (=)

where the integer
s =1+ (=) + ((=0)")" + -+ (=)

is odd since p is odd. Then s | 2" where s is odd, so necessarily s = 1 which implies
p = 1, which is a contradiction. Hence m = 1.

If n = 1 then from 2" — ¢™ = 1 and m = 1 we get that ¢ = 1, which is a
contradiction since ¢ is prime. Therefore n > 2, so we may write n = pk where p is
prime and k£ > 0. Now we have that

ok
» —1

q=(2"-1)

implying k = 1, since ¢ is prime, and therefore n = p.



Theorem 4.3. If ¢ is a prime number, z is an integer, and n,m > 2 are integers
such that

then 2" = 32 and ¢™ = 23.

Proof. Let us first show that it suffices to prove the claim for instances where n is
prime. Suppose the claim is true for all primes n. Suppose a > 2 is an integer such
that z* — ¢™ = 1. Let p be a prime factor of a. Now

(wr)P —q" =1
so by assumption (z7 )P = 2% = 32 and ¢™ = 23 as desired.
Let us suppose that 27 — ¢™ = 1 where ¢ is prime and p,m > 2. Then

P —1
rz—1

¢" = (x—1)

(6)

where by Theorem gcd (x -1, xp—1> is 1 or p. If the ged is 1, then from the fact

z—1
that both factors are powers of ¢, it follows that exactly one of them is equal to 1.

Since

-1 _ 221
r—1 = -1
it must be that x —1 = 1, hence x = 2. If the gcd is p, then from the equation @ it
follows that p | ¢", which implies p = ¢. Since the integers x — 1 and ”i: ’11 are both

zP—1 zP—1

) o1 ~— > — 1, it follows that * — 1 = ¢q.

=z+1>x—-1,

powers of ¢ and ged (m —1
Now we have that

):qand

(g+1)7—1=q"

Then using the binomial theorem we get that

q" = ;q; <Z> ¢ =q (1 +k212 (Z) qH) : (7)

If ¢ > 3 then ¢ divides (g), whereby ¢ divides the sum Y 7 _, (Z) ¢"2. But then the
factor 1+ >_7_, (7)¢"~? on the right-hand side of the equation (7)) is not a power of
q, which is a contradiction. Thus ¢ = 2. Hence 2™ = 3% and ¢™ = 23.

In the case of x = 2, it follows from lemma that m = 1, which contradicts
the assumption m > 2. O

The following theorem shows that if 27 — y9 = 1 for odd primes p, ¢ and integers
x,y > 0, then z and y cannot be successive integers except when 2’ = 3? and
yl = 23,

Theorem 4.4. If 27 — y? = 1 where x > 2 and y > 3 and p, ¢ are distinct odd
primes, then x Z 1 (mod y) and z # —1 (mod vy).

Proof. Assume first that z = —1 (mod y). Then 1 = 2 — y? = —1 (mod y), which
is a contradiction since y > 3. Next, assume that x = 1 (mod y). Now

P —1

z—1

(8)

y? = (v — 1)



where by Theorem the gcd of the factors on the right-hand side is either 1 or p.
Since x — 1 is a non-zero multiple of y, it must be that the gcd is p and

P —1
gcd<y, )Zp-
r—1

From this, and the fact that % | ¥? in equation , we have that

P —1

z—1

n—1

=P

zP—1

for some integer n > 2. Since gcd (m - 1,7

) = p, we may write
r—1=mp

where m > 0. Since p* | y?, we have that p*>  x — 1 = mp, and, therefore, p { m.
Now y? = p™m. Since p is prime, it satisfies p | (Z) for 0 < k < p. Now we have

O=a?P—1=mp+1)—-1= Z (i) (pm)* = p*m (mod p?),

k=1

which is a contradiction. ]



5 Theorem of Cassels

Cassels’ theorem provides further necessary conditions for a possible solution for
Catalan’s equation. In order to prove Cassels’ theorem, several lemmas are required.
The lemmas and their proofs are from [I] unless otherwise indicated.

Lemma 5.1. If n > 1 and x, y are non-zero relatively prime integers, then

xn_yn

r—y

n—2
n n—2—i_i
- <z‘)<x_y) v
i=0

Proof. Using Newton’s binomial formula, we get that

"y (- -y T Dy -y

=k(x—y)+ ny”_l

where

r—y r—y r—y
n—1 n—i 7, n—1
B > ico <z><x y) Z( ) yr- =iy
= Y
L= 1=

n—2 n
= (Z)(x— Ve ny™ T = k(r —y) + oyt

i=0

where £ is as claimed. O

Lemma 5.2. Let a,b,t be real numbers such that b > 0, ¢ > 1, and a + b* > 0 and
let fou(t) = (a+ b)Y/t Then

fap(t) > 0if and only if b’ log " > (a + b")log (a +b').
In particular, for real numbers m > n > 1 and z > 1 we have the inequalities

(Z"=1" < (" =1)"
"+ D" < "+ 1™

Proof. Let us denote f(t) = fu4(t). Now

a+b)i (blogh 1
ey = 5P (2B Dhog (o))

where a+b) > 0, and, therefore, f'(t) > 0 if and only if

blogh 1
— =1 bt
Y tog(a—i— ) >0,

which is equivalent to b'log b’ > (a + b') log (a + b').

9



Leta=—1,b=2z>1andt > 1,sothat a+b' = 2! —1 > 0. Now 2* > 2! -1 > 0,

using the monotony of the log function, we have that log z* > log (2" — 1) and now
we get that

Z'log (2) > (2" — 1) log (2" — 1).

This implies by the first claim that f’, (¢) > 0. Therefore, for for m >n > 1 we
have f_y.(n) < f_1.(m), that is,

0< (2" —1)% < (2™ —1)m.
Raising the inequality to the mn-th power gives
=" < (™= 1)
For the other case, let a =1, 2z > 1, b = %, and t > 1. Now 0 < % < 1, and
hence
1 1 1 1
z

which implies that f] .(¢) < 0. Then for m > n > 1 we have f, 1(m) < f, 1(n),
using the first claim, which implies

]

We will now prove a lemma concerning the p-adic valuation of a factorial, which
will be needed in the proof of Cassels’ theorem.

Lemma 5.3. Let ¢ be a prime number and R > 0 an integer. Let
R=Ry+ Riqg+ -+ R,q"
be the g-adic expansion of R, and let

S:R0+R1+—|—Rm

Then
R—s

vy(R!) = 1

Proof. Let us first show that the claim holds in the case of R = rq™ for m > 0 and

0<r<g—1 Thens=r. If m=0then R=r <qand v, (R) =0= =. Suppose
m > 1.

10



Let 1 <4 < m — 1. Then there are exactly r(¢ — 1)¢™ '~ integers n in the
interval 1 < n < rg™ such that ¢' | n, but ¢"** { n, which is to say that v,(n) = i.
Indeed, in this interval the multiples of ¢* are precisely the integers

1.qi’2'qi73_qi"“7rqm—i'qi7

which counts up to 7¢™ % numbers in total. Similarly, the multiples of ¢**! counts

up to r¢™ "1, which means that the number of integers 1 < n < r¢™ such that
vy(n) = i equals r¢™ " — rg™ "t = r(q — 1)¢™ '7". The multiples of ¢" in the
interval [1,7¢™] are ¢",2¢™, ..., rq™, which makes r numbers in total.
Now we may write
rq™ m
o lrg™ =) wm)=% > i
n=1 =1 vg(n)=t
1<n<rq™
m—1 m—1
= Z ir(g—1)¢™ 4+ rm=r(g—1) Z i 4 rm
i=1 i=1
q"—1—m(qg—1) rq™ —r
= —_ 1 —
rle=1) (¢—1)? L

so the claim holds for R = rq™.

Let us now proceed by induction. Suppose that the claim holds for R = R,,q" +
oo+ Rug™#£0, where l <n<m,and 0 < R; <qg—1fori=n,n+1,...,m. Let
s=R,+ Rpt1+ -+ Ry

Let us show that the claim holds for L = R,,_1¢" ' + R where 0 < R,,_; < ¢ — 1.
If R,_1 =0 then L = R. Hence suppose that R,_; > 0. Then the ¢-adic expansion
of Lis R,_1¢" '+ R,q" + -+ + R,,q™, and denote s’ = R,_; + s.

Now

(L) = v (B g™ + B)] = 0 (R) + v, [(R+ D(R+2)+ (R+ Romag™™)].

Since n < v,(R) < oo and ¢" 1 for 1 < i < R,_1¢" ', implying that v,(i) < n, it
follows that v, (R + 1) = v,(7) for 1 <i < R, _1¢"". Hence

n—1 n—1

Rnflq Rnflq

v [(R+A1)(R+2)- (R+Romag" )] = Y w(R+i)= > v,i)

=1 =1

= v, [(Rn_lqnfl)!} ,

and using the induction hypothesis, we have that

- R—-s R, 1¢"'-R,.1 L-5
vg(L}) = vg(RY) + v [(Rnag™ ! = q—1 " q—1 g1

O

Lemma 5.4. If r,m, n are positive integers and [ is a prime number such that [ { n,

then m rm m
v (r!) < [—(——1)---(——(70—1))]

n n n

11



Proof. Let a="2 (2 —1)--- (2 — (r—1)) and let vy(a) = e < co. Since I { n, by

n n

Lemma there exists n’ > 1, [ {n/, such that nn’ = 1 (mod [°™!). Let m' = mn’
and let ' = m/(m' —1)---(m' — (r — 1)). Now

= ivl(m — kn)
=3 [ulm — kn) + u ()]

where
m'(m —nn')---(m —nn'(r—1)=m/(m' —=1)---(m' — (r — 1)) = d (mod I°*),

which implies m/(m’ — nn')--- (m’ — nn'(r — 1)) = d’ + di°*! for some integer d.
Then

vy(a) = vy(a' + di*™).
If v(a’) > e+ 1 then e = v(a) = vy(a’ + di°*') > e + 1, which is a contradiction.
Thus v(a’) < e + 1, which implies v;(a) = v;(a’ + dI*™!) = v)(a’). Since ‘;—: = (";’l) is
an integer, we have that v (r!) < v (a’) = vi(a).

Lemma 5.5. If p > ¢ where p and ¢ are odd primes and x,y > 2 are integers such
that x? — y? = £1, then
(zF 1)pq(p—1)q > (y+1)7.

Proof. Since x F1> 5, 2P =y?+ 1> y—;, and y > %, we have the inequality

g)p y? (1)

p
(:B:F 1) 2 (2 op+1 op+q+1 °

Because p > ¢ are odd primes, clearly p > ¢ + 2, hence
P-1@-1)2@+1)g-1)=¢"~-1>2+¢

since ¢ > 3. Now (p — 1)g > p + ¢ + 1, implying ¢»~97 > 27441 and we get that
(oF 1) > 2

qP=Da»

which proves the claim. O

The following theorem is called Cassels’ Theorem. It was originally proved by
Cassels in 1960. We present the proof from [I].

12



Theorem 5.6 (Cassels” Theorem). If p, ¢ are distinct odd primes and z,y > 0 are
integers such that z? — y?9 = 41, then p | y and ¢ | .

Proof. We may assume p > g and x,y > 2: if the claim is true in the case of p > ¢,
then any odd primes ¢’ > p’ satisfying the equation 2 — y? = +1, where z,y > 0,
also satisfy y? — 2? = F1, so by assumption ¢’ | z and p' | y as desired. If 2 = 1,
then y? = 0 or 2, which is impossible. Likewise, if y = 1, then 2P = 0 or 2, which
similarly leads to a contradiction.

Let us show that ¢ | . Assume on the contrary that ¢ t z, which implies that

qfa? =y?+£1=(y+1)L= By Theorem , the ged (yi 1, y;ﬂ) =1or g, so

y+1 * +1
the ged must be 1. Then there exists an integer d > 0 such that y =1 = dP.
Case 1: suppose y +1 =dP. Then d > 2, and
P =yl4+1=(d"-1)7+1<d".

Therefore, < d? and, moreover, < d? — 1. Since ¢ < p, by Lemma [5.2| we have
the inequality (d? — 1)? < (d? — 1)?. Now

Y1 =aP < (d9— 1) < (d —1)7 =y,

which is a contradiction.
Case 2: suppose y — 1 = dP. Since ¢ < p, we have 2 < x <y, so d > 2. Now

W=y — 1= (P + 1) — 1> d™.

Therefore, x > d? and, moreover, x > d? + 1. Since ¢ < p, by Lemma [5.2] we have
the inequality (d” + 1)? < (d? + 1), so now

yl!—1=2> (d"+1)? > (d’ + 1)? = ¢“,

which is a contradiction. Therefore, ¢ | .
Let us show next that p | y. Since ¢ | x, by Lemma there exists integers
b,c > 0 such that

y£1=¢""0
Y+ 1 )

:qc
y+1

where ¢ t ¢ and x = gbc. We will prove next that ¢ > 1. The inequality

yqj:1>y3j:1
y+x1l = y+£1

=lFy+y’>y+l

holds whenever 1 F y + y? > y £ 1, which is equivalent with

+1-1
y>1+1+ : (9)
Y
which is true since y > 2 and the right side of the inequality @D is either 2 or —1.
Thus, if ¢ = 1, we have % = q > y+1 = ¢° ", which is a contradiction, so

necessarily ¢ > 1.

13



Next we show that ¢ = 1 (mod ¢”~!). By Lemma we have g = y;fll =
k(y £1) 4+ q where

k=§f@)win?*%ﬂﬂ

1=0

implying that ¢ | k. Therefore, ¢(c? — 1) = 0 (mod ¢”), which implies ¢# =
1 (mod ¢P71). If ¢ # 1 (mod ¢*71), then the order of ¢ modulo ¢?~! must be
properly greater than 1, that is, ord—1 (¢) = a > 1, and furthermore a | p, implying
that a = p. Then p | ©(¢" ') = ¢*"*(¢ — 1), which means that p | ¢ — 1. This
contradicts the assumption that ¢ < p. Hence ¢ =1 (mod ¢ 1).
We have now that z # ¢bsince ¢ # 1, and z = ¢b (mod ¢?) since ¢ = 1 (mod ¢P~1).
Let us suppose on the contrary that p{y. Then it follows from y? = (z F 1)ZEL

rF1
and Theorem that gcd (x F 1, %) = 1 and, therefore, there exists an integer

a > 1 such that

rF1=a’ (10)
By Lemma 5.5 we have

(y=1)7

e 7 q
q(P*l)q -

a’?’ = (z F1)P > ,
implying a > b.

Next we will prove that a? > %. Suppose on the contrary that a? < %. Since
x # gb and x = gb (mod ¢P), so |x — qb| > ¢*, we have the inequality

P
qu|x—qb[g]aqil—qb]gaq+qbi1<%+qbi1,

and, therefore, gb £1 > % > a?. On the other hand, since a > b, b > 2, and ¢ > 3,
we have that a? > 07 > gb+1 > ¢gb=+ 1, contradicting the previous inequality. Hence
al > <.

=2

Using equation , we get the lower bounds

2P = (a? £ 1)? > (a? — 1)?, and
yl=a2? Fl= (a2 1)’ F1> (a?—1)".

Next we show that (1—2)? > & by showing that (1 —3)? is increasing with respect
to p. Indeed, since

o2 2 4
BT
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we have that

9 p+1 ) 4 p+1
(=za) =[(-5) 5]

4 \PH! 2N\ [p+ 1 4 \PH 9\ P
(o) (32T <(-9)
2\ 4(p+1 2\"*!
> (1__) M+<1__)
3p 3p+1 3p
_ (4 2\"2(p+1) 2 2 - 2\"
B 3p 3 3p 3p 3p
Hence (1 - 2)? >1—2 =1, and
2\? 2\" 1 _1
l——=] >21l=—-—= >=2> -
q" 3P 37 ¢
which together with the inequality a? > % proved above gives
1)? 2\? P
min{z?, y?} > (a? — 1)? = a?? (1 — —) > aP? (1 - —) > —. (11)
al q° q
Next step is to prove an upper bound for Ta — y‘. Noting that
P (l’%)q N yq p ! p\? .
o) ) S )
T —y i=0
we get
P 1
Tra — y‘ fry 7 .
2 ()
Using inequality we have for each i = 0,1,...,¢q — 1 the inequality
e i\ [ b i a1\ [ arr\ T i\ T gD gplaD)
€T a yqi - > —_— - e —_— —_— e _ e g >
q g q q q q'T q
This gives us a useful upper bound
P 1 1
Ta — y‘ < D = D) (12)

q
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On the other hand, by Taylor,

i = (a’£1)s = i (§> (£1)7 (a")7 " = i(il)ﬁ <§ - 1> <§ o 1)> a’

r=0 r=0

Let us write for » > 0

- (il)ﬁ (i-1) (-6 -1) ) (13)

rl

so that -
vi=Y t,. (14)
r=0

Let | # q be a prime and r > 1. By Lemma |5.4] we have that

u(r) < E (2—1)...(75’—@—1))],

which means that for » > 1 we have that

)]

Ul(tr) = Ul(ap_TQ) + ]

Note that ty = aP, so the above inequality also holds in the case of r = 0.

Let
Sl
q qg—1

Then R > 5’5’, and, further, Rq > p.
For every r < R and prime [ # ¢ the inequality

v (tqu+paRq—p) > yy(a?") + Ul(aRq—p) _ Ul(a(R—r)q) >0
holds. In the case of [ = ¢, we have

Vg(tr) = vg(p(p — @) -+ (P — q(r = 1)) — vy(r!q") + vy(a"")
=0 — v,(rlq") + vy(a?™")

= —v,(r!) — r + v (a®"),
and, therefore, it holds for r < R that

Vg (g P) = =1 — (1) + vy (a”T) + R+ p 4 v, (a”77)
=R—1r+p—u,r!)+ (R —r)qu,(a)
>0

since by Lemmafuq(r!) = ;‘_;f < qTRl < p, where r = Ry + Riqg+ - - + Rinq™,
0<R <g—1l,ands=Ry+ Ry +---+ Rp.



Thus, forr = 0, 1,..., R, since the [-adic valuation of t,¢®*?a®4~? is non-negative
for every prime [, we conclude that t,¢%"*af~? is an integer. Then the number

[ = agftrgltte ((y—xZ) + Z tr) = g rghtte ( Zt ) (15)

r=R+1

is an integer since Rq —p > 0.
Let us show that I # 0. We write I = I; + I + I3 where

(Il _ aRq—qu-i-p <y . x%)
]2 = aRq_qu+ptR+1 7é 0

Iy = gRtapgltte Z t,.
\

r=R+2

(16)

Since R > §> if r > R then
n > 1 we have that

) (g—r) (g—(r+1))...(§—(r+n—1)> L<L<(2)n

(r+1)(r+2)---(r+n) ant " qra =\ gp

’é—(r—l—i)‘:T+i—§<r+z’+1foralli20. So for

trJrn
tr

. P
since a? > %-. Now

(e 9]

I3 tr tr
L] T:ZR;FQ tRy1 TZXR;F2 tr11
t t t
_ R+2 R+3 + R+4 _|_ o
tr41 TRyt tRy1
2\? 2\*
HONEE
qP qP q°
and
2+22+23+_2 LYo .2 2 1
qP qP q° g -2z -2 3 -2 10
Next we show that
1 1
< |aBHDa—ry < -, 17
q2(R+1)2 ‘ Rl‘—4 ( )

—1

Since R > §7 we have = %’ —1<R—ifori=0,1,..., R — 2, and, therefore,

o R )
SR(R—1>.--2’§—(R—1)H§— ’
:R(R—l)---2<§—(3—1))(R—§>

17



=

because (§ —(R— 1)) + (R— §> = 1 implies that their product is at most

Indeed, if real numbers u, v are such that v +v = 1, then wv = u(1 — u) = u — u?,

[\

which attains its highest value at u = %, hence uv = % — % = }1.
The above estimate gives
p B—1>~~-(2—R> _
ltrar] = — <‘1 1 qp—(B+1)q w_ (18)
(R+1)! ~ 4R+1)

On the other hand, since R—i = VE’J —(i—1)< §—(z‘—1) fort=1,2,...,R—1,
we have that

IR R St

:(R—1xR—2y~1<§—(R—U)(R—9>
(R—1)!
e
since R —2 > Yand 2 — (R—1) > % because the inequality 2 — (R — 1) > % is
q q q q q q

>

Y

equivalent to p — 1 > ¢ EJ. To see that this holds, let p = ug + v where u,v are
integers with 0 < v < ¢. Then

-1 —1 —1

q q q q q
Now
B<2_1><2_R> p—(R+1)q
q\q q _ a
¢ _ p—(R+l)g > = 19
tres (R+1)! ! ~ PR(R+1) (19)
By combining estimates (18] and (19)), we have proved that
1 1 1 1
< < laFHDar, | < —— < - 20
fm+n2—fm+nR—Vl Mﬂ—4R+U—4 (20)

Using this we will show that % < %. Indeed, by and we have that

P
ﬁ _ ra —y S :L‘g—y"QQ(R—Fl)%L(R—H)q_p
I tR+1 (21)
1 2 2 _(R+1)g—p _ q2(R + 1)2
Let us verify that
p—R—-—1>2 and R+1<p. (22)

Writing p = uq + v, where u, v are integers and 0 < v < ¢, we have that

p—R—1=p— V—?J —2=uqg+v—u—2=u(lg—1)+v—2
q

18



where u or v is even, and hence at least 2. If u > 2 then u(¢ — 1) +v -2 >
2:2+1—-2>2 andifv>2thenalsou(¢g—1)+v—-2>1-242—2>2. This
verifies the first claim in ([22)).

Now

R+1:{?J+2=u+2§uq§um+v=n
q

which is true, since 2 < u(q — 1), and we have verified the second claim in (22)).
Returning to , by the inequality a? > % and we now have that

9 2 p—R—1 9
(R+1) 2 2 2 2 2 2
o F S\ CEF) () ap

qp
2 2 2
_ () () o (20) oL
gp=1 ) — \3p-1) — \ 3¢ — 10
Moreover, since % < %o and % < %, we have that
I, I3 1 1
Il=\L+L+Ll=|L1+=+=|>|L([1-—-—
=10+t bl = il [t 3+ 2| 2 1 (1= - 5 ) #

Therefore, we have proved that I # 0, and since I is an integer, it holds that |I| > 1.
By and the inequality a? > %, we have

qR+P qR—l-p
|I| = }aRq—quertRH‘ — ‘a(RJrl)q—ptRHl <
ad 4a4
R+p R+p—p
< q _ q
- 2qP 2
Now
I, I qfttr—r 1 1 3 pi, _
1<|I|=|L||1+ —+—| < 14+ — 4+ — | = Zglttep L ltte—p,
S R A A "0 10) 54 q

Therefore, R4+ p — p > 0. Now if we write p = uq + v, where integers u, v are such
that and 0 < v < g and u > 1, we obtain

p EJ*l w1
R+p=|"|+14+|——|=u+1+
q qg—1 qg—1

1
gu—i—l—i—{%J <u+1+w+1)=2u+2
<3u-+1<qu-+v=np,

so R+ p—p <0, which is a contradiction. Therefore we have proved that p | y. O
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6 A Consequence of Cassels’ theorem

We use Cassels’ theorem to prove the following lemma which is from [IJ.

Lemma 6.1. If p,q are distinct odd primes and z,y > 1 are integers such that
2P —y? =1, then exists integers a, b, u, v such that

P —1 q
= pu

r—1 b
where p {u, ged (a,u) =1, y = pau, and

y+1=qg""t"

7+1

y'+ -

y+1

where ¢ t v, ged (b,v) =1, x = qbv.

Proof. By Theoremwe have p | y and ¢ | z. Since 2P —y? = 1 and y? — z? = —1,
the claim follows from Lemma 3.2 O

Next we study the properties of the integers a, b, u, v and z,y of Lemma [6.1| with
the aim of showing that such such integers cannot exist. It’s clear that if 2?7 —y? =1
then x < y if and only if ¢ < p.

Theorem 6.2. Let p,q,z,y,a,b,u,v be as in Lemma [6.1] Then u is odd.

Proof. Suppose u is even. Since ged(a,u) = 1 it follows that a is odd, hence
r —1 = p? a4 is odd whereby z is even. But
P —1
q _ 1) = pud(x — 1
="l ) =putte - 1)

which means y is even. This is a contradiction since x and y cannot have the same
parity. O

Theorem 6.3. Let p,q,z,y,a,b,u,v be as in Lemma [6.1 Then u has at least 1
prime factor which is > 7. If all prime factors of v are < 7 then p = 3.

Proof. By Theorem [6.2] v is odd, and necessarily u > 1 because in the case of u = 1
we have the inequality

l+a+- 422 T =up=p<p’la? =2 -1,

which is impossible. Let u = p;®' ... p,* be the canonical factorization of u. Then it
follows from 2P —y? = 1 that for each prime p;, 7 = 1,...,r, we have the congruence
2P =1 (mod p;). However, since z — 1 = p?~'a? and ged (ap,u) = 1, we must have
r # 1 (mod p;), which means ord,, (z) = p, so that p | p, — 1 and consequently
p; — 1 = 2kp for some integer k as both p; and p are odd. So now 2p < p;. Let us
denote > ), s; = c¢. Then (2p)® < pi®* ...p,* = u, so we have that

ul/c

5

p< (23)
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The inequality

1/c

2

is equivalent to u < 10¢, meaning that if each prime factor p’ of u satisfies p’ < 10
then p < %/L < 5 in which case p = 3. Similarly the forbidden inequality p < %/C <
3 holds whenever u < 6¢, thus v must have at least one prime factor p’ > 6. O

Theorem 6.4. Let p, ¢, z,y,a,b,u,v be as in Lemmal[6.1] If « is even then 4 | z. If
x is odd then 4 | y.

u

<5

Proof. Let z be even. Then y? = 2P — 1 = 3 (mod 4), so that y = 3 (mod 4). From
y+1=¢" 10", we have 0 = ¢""'0P, hence 4 | b as q is odd. Now 4 | gbv = z.

If z = gbv is odd then b is odd, hence y +1 = ¢?"'0? = 1 (mod 4), so that
y =0 (mod 4). O

Theorem 6.5. Let p,q,x,y,a,b,u,v be as in Lemma Then a > 1.
Proof. Suppose a = 1. Now x — 1 = p?~1a? = p?~!, hence
r—2=p 1= (T —1)(p"> +1)=0 (mod 4),
which means 2 | z and 4 { 2. But, by Theorem[6.4] 4 | z, which is a contradiction. [
Theorem 6.6. Let p,q,z,y,a,b,u,v be as in Lemma If x <y then 22 < u.

Proof. Since x < y we have ¢ < p. By Theorem [6.2u is odd, hence u # 2z. Suppose
u < 2x. Then pau = y < 2pax, so we have that

Yy < (2pax)?
-1 < (2pax)? — 2?
0 < (2pax)? — aP.

If 0 = (2pax)?—xP then p | z, which is false since z = 1 (mod p). Thus 2P < (2pax)9,
which implies

(2pa)? > P71 > 2% = (pT a4+ 1) > pHaD g2 — p2a=2,2
2pa > p2_§a2
2> pk%a >a
so a = 1, which is a contradiction since by Theorem a> 1. O]
Theorem 6.7. Let p,q,z,y,a,b,u,v be as in Lemma Then pa < |z —y|.
Proof. Suppose y < z. Now
lz—yl=2—y=p""a?+1—pau = pa(p? 2a?' —u) +1> pa

since p?2a?"! — u = 0 would imply p | u, which is a contradiction.
Suppose next that < y. By Theorem x < 2xr < u, so that

[z —yl=y—2>y—u=ulap—1) > ap

ap—1

a . 1 . . .
whenever u > —£ 1+ Py which is true since u > 2 by Theorem [
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Theorem 6.8. Let p,q,x,y,a,b,u,v be as in Lemma Then ap < u.

Proof. Suppose u < ap, hence u? < (ap)? = p(x — 1) < px, which implies
ulp=1+x+- -+ <plo <a?

since z—1 = p?~ta?, and, therefore, p> < z. Hence p—1 < 1, which is impossible. [J

A property of relatively prime positive integers, x and y satisfy |z —y| < z or
|z — y| < y. The next theorem considers the case of |z —y| < = .

Theorem 6.9. Let p, ¢, z,y,a,b,u,v be as in Lemma [6.1] Then |z — y| < z if and
only if y < x.

Proof. Let us suppose |z —y| < x. Thus (z — y)? = 2* — 2zy + y*> < 22, which
implies y < 2z. If x < y then by Theorem r < u, so that pau =y < 2z < 2u,
which is impossible, hence y < x.

Next let us suppose y < z. If © < |z — y| then both = and y are smaller than
|z — y|, which is impossible, so we must have |z — y| < z. O

Theorem 6.10. One of the following conditions is true for z and y as in Lemma

0. 1k
y<lz—yl<wz (24)
[z —yl<y<z (25)
r<l|lr—yl <y (26)

Proof. Inequalities and are the two possibilities of Theorem and the
equation (26)) is the only option in the case of = < y. n

Theorem 6.11. Let |x —y| < y < z. Then u® < " where r is the largest prime
divisor of wu.

Proof. Let |v —y| <y <. Thus p < ¢ and (x — y)? < y?, whereby z < 2y. Now
1 =2aP —y? < 2Py? — y9, hence 2Py? > y?. By Theorem a > 1, so we now have
20 > yi7P > 9% = (pau)? > (pa(2p)°)? > 2™ where c is as indicated in Theorem
6.3l Then

p>d(c+1). (27)

Consequently 4c < p < “12/6 by (23). so (8¢)¢ < u < r¢, hence

,
<= 28
<t (28)

which implies v < r¢ < 5. [
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7 Theorem of Inkeri

7.1 The p-th cyclotomic field

Next are some facts about cyclotomic fields relevant to the Theorem of Inkeri. Most
of these facts are from [I].
Let C be the field of complex numbers, and let i € C be the imaginary unit with
i? = —1. Let p be an odd prime and let
2r .. 27w
§ = cos — +isin —,
p
so £ is a point on the unit circle on the complex plane. By Euler’s formula, we have
that

27

{=er,
and, therefore, for a real number k,
k 2mik 271’]{,‘ L. 271’/{3
& =er =cos— +1isin —
p p

It follows that &8 = 1 if and only if % is an integer multiple of p. Hence k = p is the
smallest k& > 0 such that & = 1, and, consequently, 1,&,£2, ..., &P~ are distinct,
and they divide the unit circle into p equal parts. The complex number £ is called
the p-th root of unity, and its powers generate all p solutions to the equation 2 = 1,

namely z = 1,&,..., &P~ Tts complex conjugate ¢ satisfies
_ 2 2
&= cos X _jsin X = et
p p
since
— 2r . 27 2r . 27
&€ = | cos— +isin— | | cos — — isin —
p p p p
o (5) e (5)
=sm|— | +cos|—
p p
=1.

The field Q(&), where ¢ is adjoined to the field of rational numbers, is called the
p-th cyclotomic field. Let
¥ —1

R
r—1

O(x) =

The polynomial ®(z) is the p-th cyclotomic polynomial, and its zeros are £, £2 ... P71,
which are distinct as discussed before. It follows that the polynomial

fl@)=(@—-&@—¢&) - (z—¢&7)

divides ®(z) in the polynomial ring Q(&)[z], and, since the the leading term of f(z)
is #P~1, which is the same as the leading term of ®(z), we have necessarily that

B(r) = (¢ = (e — ) (s —€7)
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Furthermore, by substituting * = y + 1, and using the binomial theorem, we get
that

(+1P—1 _ Yl @y -1

. (p) yp7i717
Yy Yy i—0 \!

Dy +1) =y + (Ylj)yp_2+---+( b )y+p.
p—2

Let us show that ®(x) is irreducible over the rational numbers by using the Eisenstein
irreducibility criterion. As formulated in [2] on page 42, the Eisenstein criterion for
the polynomial ring Z[x] states the following: If p is a prime number, and

Plx)=D(y+1) =

hence

f(x)=ao+ax+-+a,_ 12" + 2"

is a polynomial in Z[z], such that p divides ag, ay, ..., a,_1, and p* does not divide
ag, then f(x) is irreducible in Q[x].

In the case of ®(y + 1), since p is prime, it satisfies p | (’Z’) when 1 <7 < p, and
p? 1 p. Therefore, by Eisenstein’s criterion, ®(y + 1) is irreducible over the rational
numbers, which implies that ®(x) is irreducible as well. Thus ®(z) is the minimal
polynomial of £ over Q, and the degree of the extension Q(£)/Q is the degree of
®(x), which is p — 1. Therefore, we have the following fact.

Theorem 7.1. The elements
1757"'7512_2
form a basis of Q(§) over Q, so that
Q€)= {ag+ @€+ +ap26""%a; € Q} .

Definition 7.1. Let a € Q(&). The presentation of « as the linear combination of
the elements 1,&, ..., P72 over the rationals,

a:ao—l—a1£+'--+ap,2£p*2,

is called the canonical presentation of o, and the coefficients, a; € Q, are unique, by
Theorem [7.1]

Definition 7.2. Let a € Q(§). If there exists an integer n > 1 and integers
ag, - - ., ay_1, sSuch that

ao + a1+ axd® + -+ ap_1a" +a" =0,

then « is called an integer of Q(&). This is equivalent to saying that there exists a
monic polynomial f(z) with integer coefficients, such that f(a) = 0.

Example 7.2. The p-th root of unity £ is an integer of Q(€), since the polynomial
P(z)=1+z+ - +a!

satisfies the equation
D) =1+E+---+ &7 =0
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Theorem 7.3. The set
Z[E] = {ao + a4t a, &+ an£”| n>0,a; € Z}
is a subring of Q(§), and, moreover, the elements
1,&,...,&72
form a basis of Z[¢] over Z.

Proof. By the subring criterion, Z[¢] is a subring of Q(£): indeed, Z[¢] is closed
under multiplication and subtraction, and contains the unit 1. Let a € Z[¢]. Then

a=ay+amé+ -+ a1+ a,&" (29)
where n > 0, and aq,...,a, € Z. Since & = 1, and
Fl=—1+&+ 48,
we get, from the equation ([29), that
o =Dby+ b€+ + b, o2
where by, ...,b,—o € Z. Thus, the elements
1., (30)

generate the ring Z[¢] over the integers. To form a basis, the elements must
also be linearly independent over the integers. By Theorem we have that the
elements are linearly independent over Q, hence are linearly independent
over Z. Thus the elements form a basis of Z[¢] over Z. O

Note, that when p > 3, Z[{] contains real numbers that are not integers. For
example, let £ > 0 be such that

2k =1 (mod p),

so that, since p is odd,
2k=(2n+1)p+1

where n € Z. Since € and €% are in Z[¢], and €7 = £k we have that the element

e84 ¢7F = 2Re(£%) = 2 cos (27%{)

is a real number in Z[¢]. And, since 2km = ((2n+ 1)p + 1)7, we get that

2aﬁ<&ﬁ):2msC@”+UP+Uﬂ)

D p

= 2cos <2np7r+7r + z)
p

= 2cos (7T + z)
p
= —2cos (I) ,
p
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Since p > 2, % is in the first quarter of the unit circle, and, therefore,

0 < cos (Z> <1,
p

T
—2 < —2cos8 (—) < 0.
p

From this, we get that, if ¥ + ¢7% is an integer, then necessarily

hence

8+ e7F = —9cos (g) =1,

so that

but this false, since ;{ is not of the form 27mm 4+ Z, where m € Z, because p > 3.

3 3
Thus, £* + €% is not an integer.
Let us denote by A the set of integers of Q(£). We make the following definitions.

o If o € A is such that af =1 for some 5 € A then « is said to be a unit of A,
or simply a unit.

o If o, € Q(&) and there exists 7 € A such that 5 = 7a, it is said that «
divides [, which is denoted by « | .

e If o, € Q) and v | B and B | a then « and 8 are said to be associate,
denoted by a ~ £3.

Theorem 7.4. Let a, 8 € Q(§). Then a ~ (3 if and only if a = 3, where v € A is
a unit.

Proof. Since a ~ 3, by definition there exists 7,7 € A, such that

a =~yf3, and
B=7a
Hence
a=78=77a,
from which we get that 1 = 74/, and, therefore, v is a unit of A. m

The purpose of the following set of results is to eventually establish that A = Z[¢].
The first theorem to that end shows that A does not contain non-integer rational
numbers.

Theorem 7.5. ANQ = Z.
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Proof. Since Z C A, it suffices to show that the only rational numbers in A are the
integers. Let a,b € Z be such that b # 0 and § € Z, so that we may assume that a
and b are relatively prime. Suppose on the contrary that § € A. Then there exists

n > 0 such that
0=ao+ar-++a <g)n_l+(g>n
— W0 lb n—1 b b

for some integers ao, . .., a,—;. Multiplying the equation by b" !, we get that

n

0=ab" P +a " 2a+ -+ a,_1a" + %,

hence % € Z, which is a contradiction, since it was assumed that ¢ ¢ Z, and
ged (a,b) = 1. O

Lemma 7.6. Let b € Z,b # 0, and let
o =ag+ Cllf —+ -+ ap,2£p72 - Z[ﬂ,
where ag,...,a,-2 € Z. Then b | a in Z[¢] if and only if b | a; for i =0,...,p — 2.

Proof. 1t b | a; for i =0,...,p — 2, then
ap 3] Ap—2
:b(— Yey P_p2>
Q b—l—bf—l— + b£ ,
where 3+ € Z for i =0,...,p — 2, hence

Qo

Yoy L2027

sob | a.
Let us now suppose that b | a, meaning that there exists § € Z[¢], such that
o = bp. Then
B=cot+ €+ +cpall?

for some ¢y, ..., cp—2 € Z, and, therefore,
= bB = bcy+ by + -+ + bep P72

By theorem this canonical presentation of « is unique, so the claim is true for
a.

0
Let us make the following definitions for the purpose of upcoming theorems.

Definition 7.3. Commutative, non-zero ring R is called an integral domain, if
ab # 0 for all non-zero a,b € R.

Definition 7.4. Let B C C be two rings. If x € C, and
0= b() + bll' <o bn_llEn_l + l’n,

for some n > 0, and by, ...,b, 1 € B, the element x € C is said to be integral over
B. A subset S C C'is likewise said to be integral over B if every x € S is integral
over B.
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For example, A is by its construction integral over Z. Let us recall the definition
of a module.

Definition 7.5. Let R be a ring. An Abelian group (M, +) is called an R-module,
if it satisfies the following postulates.

RMO. ax € M for all a € R,x € M,

RM1. a(x +vy) =ax +ay foralla € R, z,y € M,
RM2. (a+b)x = ax + bz for all a,b € R,x € M,
RM3. (ab)z = a(bx) for all a,b € R,x € M,
RM4. 1z =z for all z € M.

Definition 7.6. If M is an R-module, and a subset N C M is also an R-module,
then N is called a submodule of M.

Definition 7.7. An R-module M is called finitely generated, if for some n € N and
my...,m, € M, we have that

M = {T1m1+---+rnmn\ri S R}.
The following provides submodule criteria.

Theorem 7.7. Let M be an R-module. Then a subset N of M is an M submodule
if it satisfies the following conditions.

AML1. N #0,
AM2. if x,y € N thenx +y € N,
AM3. ifa € R and x € N, then ax € N.

The next theorem, which is from [6], will be used, among other things, to prove
that A is a ring.

Theorem 7.8. Let B C C be two rings. Then o € C'is integral over B if and only if
there exists a finitely generated, non-zero B—module M C C', such that aM C M.

Proof. Suppose that a € C' is integral over B, so that
0=wug+wa+---+a"
where n > 1 and u; € B. Let
M = {b0+bla—|—~--+bn_1a”_1‘b0,...,bn_1 € B}.
Thus M is a finitely generated B—module, and for 8 = by+bia+- - -+b,_1a" 1t € M,

we have that
af = a(by +bia+---+b,_0a" 2+ b,
= boOé + blOéQ + -+ bn,QOénil + bnflOén
= by + bra® + - A by_od™ by (—(ug Ut - F Uy )
= —bn,ﬂj/o —+ (bo — Ul)Oé + (b1 - UQ)OCQ + -+ (bnfg — un,l)anfl,
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so aff € M, hence aM C M. Suppose next that a € (', and that there exists a
finitely generated B—module

M = {b1x1+"'+bn~rn|b17"'7bnEB}>

where x; € C and n > 1, such that oM C M. From the condition that aM C M,
it follows that ax; € M for i = 1,...,n, and, therefore, aux; is of the form

axr; = bilill'l + -+ bml'n
where b;; € B. Thus, we get the equations

ary = by1xy + biogwe + - + b1y,

ATy = bgll'l + bQQIQ + -+ bznZI}n

ATy = bnlxl + bn2m2 + -+ bnnmn
Hence

0= (bn — a):cl + blgxz + -+ blnxn
0= bglﬂfl + (bzz — Oé)xg + -+ anLEn

0= bnlxl + bngﬂﬁg 4+ -+ (bnn — Oé)ZL'n.

Considering (x1, ... x,) as a solution to this homogeneous system of linear equations,
it follows that the determinant of the coefficient matrix is 0:

bll — b12 cee bln
b bao —a ... boy

21 22 2 —0.
bnl bn2 [P bnn —

When calculating the determinant, the coefficient of the leading term o™ is 1 (or —1,
in which case the result can be multiplied by —1 to get 1 as the coeflicient). This
gives a non-zero monic polynomial over B whose zero is «, and so, « is integral over

B.
[l

Definition 7.8. Let B C C be two rings. The set of all elements of C' which are
integral over B is called the integral closure of B in C.

Theorem 7.9. Let B C C' be two rings. The integral closure of B in C'is a ring.

Proof. Denote the integral closure of B in C' by R. Since R C C', we check that R
satisfies the subring criteria. Since B is a subring of C', 1 € B, and 1 is the zero of
the polynomial X — 1, so that 1 € R. Next, let us show that R is additively and
multiplicatively closed. Let z,y € R, hence we have the equations

0=ay+ax+---+ 2", and

m (31)
O=c+acay+---+y",
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where a;,c; € B and n,m > 1. Let

n—1 m—1
M = { biszyj
=0

1=0 j

bz‘jEB},

so that M is a finitely generated B-module. From the equations (31), we get that

n71>

" =—(ap+ a1 x4+ -+ a1 , and

y" = —(bg+ by + -+ bpyy™ ),

from which zyM C M and (z —y)M C M, so that, by Theorem [7.8) zy,z —y € R,
so R is a ring. O

Theorem 7.10. A is a ring.

Proof. By Theorem the integral closure of Z in Q(&) is a ring, which is A. O
From the fact that A is a ring, we have the following result.

Theorem 7.11. Z[§] C A.

Proof. Theorem m states that A is a ring, and since (¥ € A and a € A for all
k € Z and a € Z, it follows that all the linear combinations of 1,&, ..., &P~2 over the

integers are contained in A. Since the elements 1,&,...,P2 form a basis of Z[¢]
over the integers by Theorem we get that Z[¢] C A. O

From the fact that A is a ring, we may consider the residue ring A/I for an ideal
I of A. For a, 8 € A, let us denote

a=p,ifandonlyifa—pg el
so that the relation = is an equivalence relation, and we write
a= [ (mod I).

In some of the following theorems we consider A/(«), where o € A, and («) denotes
the principal ideal generated by «, that is

aA = {ax|z € A}.

More about ideals later.
The next theorem and its proof are from [6], and it will be used for showing that
the ring of integers A is contained in the ring Z[¢].

Theorem 7.12. When k > 0 is an integer such that p 1 k, the mapping
or : Q(§) — Q(¢),

with the rule
or(ag + a1€ + a4+ ap_2fp_2) = ag + a1 &F + CZQ(fk)g + -+ ap—z(fk)p_Q

where a; € Q, is a field homomorphism.
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Proof. For o to be a field homomorphism, it must be additive, multiplicative, and
satisfy ox(1) = 1. The last condition is satisfied, so next, let us show that oy is
additive. Let

a=ag+ar+ - +a, 26" € Q(), and
B=by+bi&+ - +b, 2772 € Q(E).

Now
a+pB=(a+bo)+ (a1 +b1)E+ -+ (qps + by2)E 2,

hence
ox(a+ ) = (ao +bo) + (a1 +b1)E" + - + (ap-y + bp2)€" P
= (ag + a1 6" 4 - + ap_ng'(p—2)) + (b + by &F 4+ + bp_ng(p—Q))
= oy(a) + oy (B).
Let us show that o} is multiplicative. Let
f(z) =ap+ax+ - +a, »2 2, and
g(x) =by + bz + -+ b, 92?72
be polynomials in Q[z], so that f(§) = « and ¢(§) = 8, and, furthermore,

f(§") = ox(a), and
9(€") = au(B).

Dividing the polynomial f(x)g(x) by the p—th cyclotomic polynomial ®(z) in the
polynomial ring Q[z], we get that

f(x)g(x) = h(x)®(x) + r(z) (33)
for some h(z),r(x) € Q[z], such that degr(z) < deg ®(x) = p— 1. So r(z) is of the

form

(32)

r(z) =co+ x4+ cpga? 2

Then, since ®(£) = 0, we get from the equation (33), that
aff = f(€)9(€) = h()PE) +7(&) =r(§) = o+ arf + - +6"2 (34)
Since degr(z) < p—1, and ®(£F) = 0 because p 1 k, we get from the equations ([34)),

7 and , that
ox(af) = ai(r(€))

r(€)

= h(E")D(E") +r(¢")
= f(€")g(€")
_Uk:(a)ff( )

so o0y is multiplicative, and thus a homomorphism.
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From the fact that oy is a homomorphism when p 1 k, we get the following result.
Corollary 7.13. If « € A and pt k, then ox(a) € A.
Proof. Suppose o € A, so that
0=uay+aa+--+a,_1a" L +a",

where ag,...,a,_1 € Z. By Theorem the mapping o is a homomorphism,
and, therefore,

0=or(ag+ara+---+a")

= ap+ a1ok(@) + -+ + ap_10 ()" + o ()",
hence o () € A. O
Lemma 7.14. Let o = ag + a1 + -+ + a,26P? € Q(&). Then
p—1

Zak(&) =pag — (ap + a1 + -+ -+ ap_2).
k=1

Proof. For k=1,...,p— 1, we have that
BE) =1+ +&% 4+ =0,

and
O'k(Oé) = Qo + al«Sk + a2§2k + -+ ap_gé(p_mk,

hence
p—2 p—2 p—2
o1(a) + o3(a) + -+ opr(@) = Y @l + > @l + -+ Y a PV
i=0 i=0 i=0

p—2
=(p—Dag+ Y a(§+ &+ +&7)
=1

= (p—Dao + Zaz‘(—l)

=pap— (ap+a; + -+ + a,_2).

O
We use the following notation. Let
a=ayg+aé+ - +a, 2677 €Q§).
Let us denote
S(a) =ao+ar+ -+ apo, (35)

which is the sum of the coefficients, a; € Q, in the canonical presentation of «, as
defined in Definition [Tl
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Concerning the mapping o of Theorem we have, for any ki, ky > 0 that
may be multiples of p, that

Ok, (0k2 (a)) = Okiky (a)
And, if k; = ko (mod p), then
Ok, (Oé) = Ok, (CY)

In the case that p | k, we have that oy(a) = 0,(a) = S(«). Note, that o, is not a
homomorphism. Indeed, o, is not multiplicative, since, for example, we have that

0p(§)op(€77) = S(§)S(€" %) =1-1=1,

but for the product

R St RPN S
we have that
op(€- ) =op(-1—E— - = &7
=Sl
N
=—(p-D#L

But o, is additive. Indeed, for any o, 8 € Q(§), we have that
op(@) +0,(8) = S(a) + S(B) = S(a+ B) = op(a+ B).

Lemma 7.15. Let a = ag+ a1€ 4+ -+ + a, 2672 € Z[¢], n > 0, and let ¢ > 2 be a
prime number, not necessarily different different from p, and let (¢) be the principal
ideal of Z[¢] generated by ¢. Then

n

" = 0 (@) (mod (g)).

Proof. Let us first show that a? = o,(a) (mod (¢)), by induction on 0 <k <p—2
in
a=ao+ amé+ -+ a’ € Z[E).

Note, that if a,b € Z, and
a=b (mod q)

in the ordinary integers, then also
a=0b (mod (q)).

This is due to the fact that ¢Z C ¢Z[¢] = (¢). For k = 0, a = ap is an ordinary
integer, so by Fermat’s Little Theorem, we have that

q

a? = ad = ap = o,4(a) (mod q),
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in the ordinary integers. By the earlier remark, the same congruence holds in
Z[£]/(q), so we have that
o' = 5,(a) (mod (g)).

Next, suppose that 0 < k£ < p — 3, and that the element
a=ag+aé+--+at" € L[
satisfies
0¥ = 0,(a) (mod (q)).
Now, by the binomial theorem, we have that

q

(@ + ap &)1 = Z (3) o' (@ £

i=0
Since ¢ is a prime, g divides (‘Z]) fori=1,...,¢—1. Recall that o, is additive even if
q = p. By the induction hypothesis, and by Fermat’s Little Theorem, we have that

q

3 (Z) & (ap € = o + (a4, (mod (q))

i=0
= 04(a) + 518V (mod (q))
= 0,(0) + 74(ax€") (mod ()
= og(a+ a1 (mod (q)).
Thus a? = o,(a) (mod (q)) for every o € Q(§). Now, if we have for some n > 0

that
a? = o (@) (mod (q)),

then

n+1 n

= (a®)? = (o4 () = o4(ogn () = Uq”“(a) (mod (q)).

ol
[

Lemma 7.16. Let o € Z[¢], and let ¢ be a prime, and n > 0. If ¢ | o", then ¢ |
or q = p.

Proof. Let
o = Qg —|—a1§+ cee +Gp72£p72 c Z[ﬂ,

and let ¢ # p be a prime, such that ¢ | o". Let us show that ¢ divides a. By
Fermat’s Little Theorem, we have that ¢""~1 =1 (mod p). Since ¢"®~Y —n > 0,
and ¢ | o™, we have that

a?" "7V = gtV = (mod (q)).
Moreover, by Lemma we have that
aq”(P*U

= O-qn(pfl)(a) =« (mOd (Q))a

since ¢"®~Y =1 (mod p). Thus q | . O
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Lemma 7.17. Let
o = ag + a1€ + -+ ap72£p72 € Q(g),

and let n > 0. Let
S(a) =ao+ar+ -+ apo,

as defined in the equation [35] Then
S(8a) = S(@) — pap—s,

and

p—1

Zok(fa) = —5(a).

k=1
Proof. Since

=148+ +87),
we get that
foz = f(ao + CL1£ + -+ ap72§p72>

=apl + a1+ +ap 3Pt a, o(—(1+E+ - +£P72))
= o (0 — ) (01— )€ (g — 1y )

Hence

Sa) = —ap2+ (a0 — ap—2) + (a1 — ap-2) + - + (ap-3 — ap_2)
=ap+a+--+aps3+(p—1)(—ay_s)
= —pap,g + Qo —+ aq + -+ CLpfg + ap,g
= —pay— + 5(a).

Writing the statement of Lemma [7.14] in terms of S, we have that

S on(€a) = pl—ay2) — S(€a)

= p(—ap—2) — (S(@) — pa,»)
= —5(a).

Theorem 7.18. A C Z[¢].

Proof. Suppose on the contrary that there exists o € A, such that o € Q(&) \ Z[¢],
so that « is of the form

Qo aq Ap—2 .9
o= ey B2
by = b by
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where a;, b; are relatively prime integers, and b; # 0, and for some index 7, we have
that Z— ¢ 7. Thus, let ¢ be a prime divisor of a b;, that satisfies Z— ¢ 7. Let d be
non-zero integer, such that

do=f+7,
q
where 3,y € Z[¢], and
7260+C15+"‘+Cp_2€p_2 ,CjGZ

where ¢; = 0 or ¢ { ¢;, with at least one ¢; being non-zero. By Theorem Alsa
ring, hence da, 5 € A, and consequently, we have that ~' = g =da — € A, where

Cp
=2 ey 22
q q

Since A is aring, 7/ 7% is in A for every k € Z, so we may assume that the coefficient
o is non-zero, and thus not a multiple of ¢, by assumption. Since v = % € A, we

have that .
q q q

for some n > 0 and my, ..., m,—1 € Z. Multiplying the equation by ¢"1, we

get that
0= mog" ™ mig" Py 4

Hence % € Z[¢], which means that ¢ | 4. By Lemma [7.16] this implies that ¢ | v
or ¢ =p. If ¢ | 7, then, by Lemma [7.6] we have that ¢ | ¢; for j =0,...,p — 2, but
this is false, since q 1 ¢p. Thus ¢ = p, so that

Co C1 Cp—2
o) =p2 = (L T (37)
;; p P p
C _
p
c1+ -+ Cp—2

By Corollary the sum on the left-hand side of the equation , isin A, hence

—_

p—

1+ -+ cp2
Uz‘(V')—COZ— P
1 p

€ A

i

Thus i L
C P C _
! P2 ¢ ANQ,
p
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so that % is necessarily an integer, by Theorem which means that
1+ -+ cp2 =0 (mod p). (38)
Using the S notation as defined in the equation , we have that
S(y)=co+c1+ -+ cpa,
and, by the equation (38)), we get that
S(y) — co =0 (mod p). (39)

On the other hand, we have, by Lemma [7.17], that

Y€)= -S()

o ¢ Cp_
:_(_0_|__1_|_...+p_2)
p p p
_Co+01+"'+cp_2
p )
and this sum is, again, an element of A, by Corollary [7.13] As before, it follows
from Theorem [7.5] that

Co+Cl—|—"'+Cp_2
p

€,

hence
cot+cr+--+cpo=5(y) =0 (mod p).

But, since S(y) = ¢p (mod p) by the equation (39), we have, by the above congru-
ence, that
0= 5(1) = ¢y (mod p),

which is false, since it was assumed that p 1 co.

Theorem 7.19. A = Z[¢].

Proof. Theorem states that A C Z[¢], and Theorem states that A C Z[¢],
hence A = Z[¢]. O

7.2 Ideals

Next are some definitions concerning ideals, and some of their properties.

e Subset I of Q(¢) is said to be a fractional ideal if I has the following three
properties.

1. a—p el forevery a,f €1
2. al C I for every a € A

3. there exists a non-zero a € A, such that ol C A.
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e If I is a fractional ideal such that I C A, then [ is said to be an integral ideal.
e If an integral ideal is proper subset of A, then [ is said to be proper ideal.
e For fractional ideals I, J, let us define the multiplication between ideals,

=1

n>0,aiGl,biGJforizl,...,n}.

Clearly I.J = JI, and IJ satisfies the conditions 1—3, so that I.J is a fractional
ideal. In the case that I and J are both integral ideals, then it follows from
the definition that IJ C I, and IJ C J, hence IJ C I NJ.

e For a € Q(§), denote (a) = A, which clearly satisfies the conditions 1 — 3,
so that («) is a fractional ideal, and it’s called the principal fractional ideal
generated by a. (1) = A is called the unit ideal, since AI = I, and (0) = {0}
is the zero ideal.

e [t it said that a fractional ideal I divides a fractional ideal J, if there exists
an integral ideal L such that J = LI, which is denoted by I | J.

e A proper integral ideal I is said to be mazimal, if I is not a proper subset of
any integral ideal, other than A.

Example 7.20. Let Z be the ring of integers with the usual multiplication and
addition. Then (2) is a maximal ideal of Z. Indeed, if I is an ideal of Z such that
the inclusion (2) C [ is proper, then [ contains at least one odd integer, 2n+1 € I.
Since 2n € (2) C I, it follows that (2n+ 1) —2n =1 € I, hence I = Z, so (2) is
maximal.

Next are some properties of fractional ideals.
Theorem 7.21. If I, J are fractional ideals then I N J is a fractional ideal.

Proof. WaelINnJthena€l, a€ J,and —a = (—1)a where —1 € A, so —a € [
and —a € J,so —a€INnJ.
fa,pelnNnJthena+pgelanda+peJ,soa+pelnJ.
Since I and J are fractional ideals, there exists 7;,72 € A such that avy; € A for
all o € I and By € Aforall g € J. Then vy oo € AforallaeINJ,solNJisa
fractional ideal. O

Theorem 7.22. If I and J are fractional ideals, then
I+ J={a+placl pel}
is a fractional ideal.

Proof. Let us check that I + J satisfies the fractional ideal postulates 1-3. Let
a+pel+J, where o € [ and f € J, and let v € A. Then ya € [ and v € J,
hence y(a + ) = ya+p € I + J, so condition 2 holds.
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Let

ar 4+, € I +J, where ay € 1,6, € J, and
a9+ o € I + J, where ag € 1,85 € J.

Then a; — ag € I, and [y — [y € J, so we have that

(Oél—i-ﬁl)—(az—f—BQ):(&1—042>+(ﬁ1—ﬁ2)€[+J,

so condition 1 holds.
Since I and J are fractional ideals, there exists 1,7, € A, such that

ml C A, and
neJ C A.

Then, for o + 8 € I + J, where a € I and 3 € J, we have that

mne(a+ B) = na(ma) + m(n206),

where mya € A and 8 € A, hence na(ma) + ni(n2f8) € A. Thus mne(I + J) C A,
so condition 3 holds. So [ 4 J is a fractional ideal. O]

Theorem 7.23. If M is a maximal ideal, then for an integral ideal I, such that
I & M, we have that M + I = A.

Proof. By Theorem we have that M + [ is an integral ideal. Since I\ M is
non-empty, the inclusion M C M + [ is proper, which means that M + [ is an ideal
containing M, such that M + I # M. By the definition of maximality, this implies
that I + M = A. O

The next result is one immediate consequence of Theorem [7.23]

Corollary 7.24. If M is a maximal ideal, and [ is an integral ideal, such that
I ¢ M, then
a+pf=1

for some o € M and 3 € 1.

Proof. By Theorem we have that M + 1 = A, hence 1 € M + I, which means
that o + 5 =1 for some o € M and § € 1. H

Next are some properties of principal fractional ideals.

Theorem 7.25. If o, 5 € Q(§) \ {0}, then the following conditions hold.

I (af) = (a)(8), and
2. (a) = (1) if and only if « is a unit of A, and

3. (o) = (p) if and only if o ~ B.
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Proof. Let us prove condition 1. By the definition of the principal ideal, we have
that

(af) = {zaf|z € A},

and, by the definition of the product of ideals, we have that

(0)(8) = {Z yiBza

i=1

S
_ {aﬁle

= {afz|z € A}
= (af).

Let us prove condition 2. Let (o) = (1). Thus a € A, and ay = 1 for some
v € A, so that « is a unit of A. Conversely, if « is a unit of A, then ay = 1 for
some v € A, and, therefore, v = 1 € (a). Since a € A, we have that (o) C (1),
and from the fact that 1 € («), we get that (1) C («), hence (o) = (1).

Let us prove condition 3. Let (a) = (8). Then « € (8), and 8 € («), so that,
for some 71,7, € A, we have that o = 5y, and 8 = ays, hence a | 5 and § | o, so
that by Theorem a ~ (. Conversely, if a ~ (3, so that o = nf8 where n € A is a
unit, then by conditions 1 and 2, we have that («) = (n8) = (n)(5) = (B). O

n>0,yi,zi GA}

n>0,xi€A}

n>0xleA}

We now define the concept of a prime ideal.

Definition 7.9. A proper, non-zero, integral ideal P is called a prime ideal, if the
following condition holds for all o, 5 € A.

If af € P, then a € P or g € P.

Theorem 7.26. If M is a maximal integral ideal, then M is a prime ideal.

Proof. Suppose on the contrary that M is not prime, meaning that, for some «, 5
not in M, we have that a5 € M. Thus («) and () are not subsets of M, and,
therefore, by Corollary we have for some 7,7, € A and 1,1, € M, that

ayy +m =1, and
By2+mn =1

Hence

1= (ay1 +m)(By2 + m2)
= a1 By + aying + By +mne € M.

So 1 € M, meaning that M = A, which is a contradiction. Thus M is prime. n
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Since Q(&) is a field, we may consider the residue ring Q(§)/! for fractional ideals
I, with the equivalence relation

a=pfifandonlyifa—pel
for a, 5 € Q(£), and we denote this by
a = (mod I).

Theorem 7.27. A non-zero, integral ideal P is prime, if and only if the residue ring
A/P is an integral domain.

Proof. Let P be a prime ideal. Suppose that in the residue ring A/P, we have that
af =0 (mod P),

where o, 8 € A. Then, by the assumption that P is prime, we have that o € P, or
B € P, ie.

a =0 (mod P), or =0 (mod P),

in the residue ring, which is the definition of an integral domain.
Conversely, suppose that A/P is an integral domain, meaning that

if «f =0 (mod P), then & =0 (mod P), or 8 =0 (mod P).

But, this is the same as saying that whenever aff € P, we have that o € P, or
B € P, which is the definition of a prime ideal. ]

The next theorem is from [2].

Theorem 7.28. If I is a non-zero, integral ideal, then there exists a non-zero integer
kelNZ.

Proof. Let I # (0) be an integral ideal and let o € I\ {0}. Since I C A, « is a root
of some monic polynomial with integer coefficients

0=by+ba+-+b, 10" +a" (40)

where n > 1 and bg,...b,_1 € Z.

Suppose that INZ = {0}. By (40), by € I,s0by = 0. If n = 1 then 0 = by+a = a,
which is a contradiction, so n > 2.

Suppose by =0 for all k =0,...,7 where 0 <7 <n—2. Now

0= bi+1ai+1 R bn—lan_l + a”

_ Qi+1(bi+1 T bnflOén_l_(H_l) + Oén_(i+l)).
Since « # 0 it follows that
0= bi—i—l 44 bn_lan—l—(i+l) + an—(i+1) = bi+1 (HlOd ])7

which implies ;.1 = 0. But then by,...,0,_1 = 0, so o™ = 0, which is a contradic-
tion. [
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Theorem 7.29. If [ is an integral ideal then the residue ring A/ is finite.

Proof. By Theorem [7.28] there exists k € INZ, k # 0. We may assume k > 0 since
—k € I. Thus ka =0 (mod I) for all a € A, so that in the sum

a0+a1£—0—--~+ap,2§p*2, CLI,...,CLP,QGZ

the coefficients satisfy a; = 0,1,...,k — 1 (mod I) for i = 0,...,p — 2, so the sum
has at most kP! possible residues modulo I, and hence A/ is finite. O

Theorem 7.30. Let P be a proper, non-zero integral ideal. Then P is prime if and
only if there exists k > 0, such that o —1 € P foralla € A\ P.

Proof. Let P be a prime ideal, and let « € A\ P. Then « is non-zero. By Theorem
the order of A/P = d is finite, so that

a” =a™ (mod P)
for some 0 < n < m. Hence

a"(@™™™ —1) =0 (mod P).

P is prime, so o™ ¢ P, hence o™ — 1 € P. Thus the order of every non-zero

element of A/P is finite. Let nq,...,nq_1 be the orders of the d — 1 different non-
zero residues (1, ..., 841 of Amodulo P. Let k =nq---ng_1. Then a = ; (mod P)
for some 7, and, therefore,

of = pF = (ﬁ?")knfl =1 (mod P).

Thus o — 1 € P.
Suppose that P is not prime, so that af € P for some «, 5 € A\ P. Suppose
on the contrary, that o* — 1, 3¥ — 1 € P for some k > 0, hence

0= (-1 -1)=-a*—- 3" +1 (mod P)
= —a"— (" - 1) (mod P)
= —a” (mod P).

Thus o* € P, but, since it was assumed that o* —1 € P, we get that 1 € P, meaning
that P = (1), which is a contradiction. O

Theorem 7.31. Prime ideals are maximal.

Proof. Let P be a prime ideal. Suppose on the contrary, that there exists a proper
integral ideal I, such that the inclusion P C [ is proper, so that there exists o € I\ P.
By Theorem we have that af —1 € P C I for some k > 0, which implies that
a® — (a® — 1) =1 € I, hence I = (1), which is a contradiction. O

Thus, we have the following characterization for prime ideals.
Theorem 7.32. Integral ideal [ is maximal if and only if I is prime.
Proof. By Theorem every maximal ideal is prime, and by Theorem [7.31], every

prime ideal is maximal. O
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7.3 Dedekind domain

In this section we define the concept of Dedekind domain, and show that the ring
of integers of Q(&), which is denoted by A, is a Dedekind domain. This will be used
to show that every integral ideal of A has a decomposition into prime ideals in a
unique way. First, we will establish some preliminary notions. This section is based
on [2] and [6].

Definition 7.10. Let D be an integral domain. The smallest field which contains
D is called the field of fractions of D.

Theorem 7.33. The field of fractions of A is Q(£). Moreover, the elements in
Q(&) \ A are of the form

Z€QO\A

where o € A, and d is an integer that is relatively prime with «, meaning that, if a
prime number ¢ | n, then % ¢ A.

Proof. Let us denote by F' the field of fractions of A, so that

F:{E

Let us show that Q(&) C F. Let a € Q(€), so « is of the form

a,ﬁeA,ﬁ;«éO}gC

Qg a1 Ap—2 .o
a=—+—&+-+ ,

bo b1€ bp,gg
where a;,b; € Z, and b; # 0. We may assume that a;, b; are relatively prime, and that
b; = 1 for indexes with a; = 0. Let d be the least common multiple of by, ..., b,_2.
Thus d # 0, and we have that

a; 1

_z = — U db-ﬁl
b da ( [ )7

%

where db; ' € Z. Let us denote
a-B
7
If ¢ is a prime number, such that ¢ | d, then ¢ { 5. Indeed, let us suppose on the

contrary, that ¢ | 5. Then, by Lemma , we have that

q | db;"
for every 7, meaning that
dg 'b;' € Z
for every i. But then the integer dg~' is a common multiple of the integers by, . . . , by_a,

which is false, since d was the least common multiple.

Since § € A and d € A, we have that a = g € F, which shows that Q(¢) C F.
Next, let us show that FF C Q(&). Since A C Q(&), and Q(&) is a field, it follows
that 5 € Q(¢) for o, f € A, when 3 # 0, so that ' C Q({). Hence FF'=Q(¢). O
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Definition 7.11. An integral domain D is said to be integrally closed if every
element of the field of fractions of D which is integral over D is in D.

For a ring R, denote by
R[X1,..., X,

the polynomial ring whose indeterminates are Xi,...,X,, and whose coefficients
are in R. Thus, we have that

(R[X1,..., X 1])[X0n] = R[Xy, ..., X,

Theorem 7.34. Let B C C' be two rings, such that zq,...,x, € C are integral over
B. Then Blzy,...,x,] is a finitely generated B-module.

Proof. Let us proceed by induction on n. Let x € C be integral over B, so that
0=by+bix+---+2™,
where b; € B, hence
™ = —(by+byx + -+ by 2",
from which we get that
Blz] = {yg +yr+---+ ym_lxm_l‘ y; € B} ,

so B[x] is a finitely generated B-module. Suppose that n > 1 and that z4,...,x, €
C' are integral over B, and that B[zq,...,x,] is a finitely generated B-module. Let
21y .., 20 € Blxy,...,x,] be the generators, so that

Blzy, ..., o] = {121 + - +yrze|yi € B}
Let z € C' be integral over B, so that, as before, we have that
Blz] = {yo+pz+- + ym12™ | y; € B}.
Then

B[x17"'7$n7x] = (B[$1’7$n])[$]
= {SQ + 511’ + -+ Sm_ll'm_l} Sz' = Y121+ F YirZe, where Yij S B}

m—1 r
= {Z Zuij:cizj Uyj € B}

i=0 j=1
which is a B-module, generated by the elements z'z; € By, ..., x,, z], where 0 <
1<m-—1,and 1 <5 <.

[l
The following theorem is from [6].

Theorem 7.35. Let B C C' C D be three rings. If C is integral over B, and D is
integral over ', then D is integral over B.
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Proof. Let x € D. Since D is integral over C, we have that
O=co+crx+ -+ cpqz" L+ 2",

where ¢; € C. Let
Cl = B[CO7 o ;Cn—l]'

Since cg,...,c_1 € C are integral over B, then, by Theorem [7.34] the ring C; is
a finitely generated B-module. Since cg,...,c,_1 € C}, we have that x is integral
over C, and, therefore, C[z] is a finitely generated C}-module, by Theorem[7.34] (by
setting”B” = C1,”C” = D). From the fact that C} is a finitely generated B-module,
it follows that C}[z] is a finitely generated B-module. Moreover, zC}[z] C Cy[z], so
that, by Theorem x is integral over B. O

Theorem 7.36. A is integrally closed.

Proof. Since the field of fractions of A is Q(§) by Theorem we need to show
that if o € Q(&) is integral over A, then o € A. Let us denote by B the integral
closure of A in Q(§). By Theorem [7.9] B is a ring, so that we have the inclusion

7 C ACB,

for the three rings, and, therefore, by Theorem we have that B is integral over
Z. But then B C A, since by definition A is the set of elements of Q(&) which are

integral over the integers. Thus B = A, and A is integrally closed.
O

Next we define the concept of Noetherian domain, and present some facts about
them.

Definition 7.12. An integral domain D is called a Noetherian domain if every
chain of ideals of D,
LCLC...

Y

terminates, meaning that for some n > 0, we have that [, = I,,,,; for all ¢« > 0.
Theorem 7.37. Z is Noetherian.

Proof. Let I be an ideal of Z. Let us first show that [ = (m) for some m € Z. Let
m > 1 be the smallest integer that divides every element of I, so that I C (m),
and let nm € I be the smallest positive multiple of m in I. Let am € I, and
let gcd(a,n) = d. Then there exists x,y € Z such that d = ax + ny, hence
zam + ynm = m(ax + ny) = md € I. Hence d = ged(a,n) > n, since nm was
the smallest positive multiple of m in I. But then n | a. Hence mn divides every
element of I, so that n = 1, since m was the smallest such integer. Then m € I,
and (m) C I, hence I = (m). Let us show that Z is Noetherian. Let

be a chain of ideals of Z. Since m; € (m;) C (m;11), there exists an integer n such
that m; = nm;,1, hence m;,1 | m;. Thus, if the inclusion (m;) C (m;41) is proper,
we have that |m;.1| < |m;|. Hence the sequence

|m1\,\m2],...
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is decreasing, which means that it terminates, so that from some index k£ > 0
onwards, we have that |my| = |my4;|, hence (my) = (myy;) for all j > 0. Thus the
chain (my) C (mg) C ... terminates, so Z is Noetherian. O

Definition 7.13. Let R be a ring. If M is an R-module, such that every chain of
submodules of M,
Ny C Ny C o

terminates, then M is called a Noetherian R-module.

Lemma 7.38. Let R be a ring, and let N C M be two R-modules, and in the
quotient group M /N, let us define an R-action by

alm+ N)=am+ N
for a € R,m € M. Then the following conditions hold.
1. M/N is a R-module.
2. If B is an M submodule, then the set
I'={m+ N e M/N|me B}
is an M /N submodule.
3. If I is an M/N submodule, then the set
B={meM|m+ N €I}
is an M submodule.

Proof. Let us prove 1 by verifying the module postulates RM0-RM4 of the Definition
[7.5] for M/N with the R-action a(m + N) = rm+ N € M/N for a € R,m € M.
Let a,b € Rand 2+ N,y + N € M/N. Then

a(r+ N)=ax+ N € M/N,
so RMO is satisfied. Since M is an R-module, we have that
a(z+N)+a(y+N) = (az+N)+(ay+N) = (ax+ay)+N = a(z+y)+N = a((z+y)+N),
so RM1 is satisfied, and
(a+b)(x+N)=(a+bzx+ N = (ax+bxr)+ N = (ax+ N) + (bx + N),
so RM2 is satisfied, and
(ab)(x + N) = (ab)x + N = a(bz) + N = a(bx + N) = a(b(x + N)),
so RM3 is satisfied, and
l{(x+N)=1x+N=z+N,

so RMA4 is satisfied. Thus M/N is an R-module.

Let us prove 2. Let B be an M submodule, and let I = {m + N € M/N|m € B}.
Let us show that I is an M /N submodule by checking the submodule criterion AM1-
AMS3 of Theorem which are

46



AM1. T # 0, and
AM2. if x,y € I then x +y € I, and
AM3. ifa € R and x € I, then azx € [.

Since B is a submodule of M, B # (), hence I # (), so AM1 is satisfied. Let
x+ N,y+ N €1, where z,y € B. Then x + y € B, so that

(r+N)+(y+N)=(r+y)+ N €1,

so AM?2 is satisfied. Let a € R. Since B is an R-module, we have that ax € B,
hence
a(t+ N)=ax+ N €1,

so AM3 is satisfied, hence I is an M /N submodule.

Let us prove 3. Let I be an M /N submodule, and let B = {m € M|m + N € I}.
Let us show that B is an M submodule by using the submodule criterion of Theorem
7.7}, which requires that

AM1. B # 0, and
AM2. if x,y € B then z +y € B, and
AM3. if a € R and x € B, then ax € B.

Since I is an M /N submodule, I # (), hence B # (), so AM1 is satisfied. If z,y € B
then x + N,y + N € I, so that, since [ is a submodule of M /N, we have that

(r+N)+(y+N)=(zr+y)+ N €,

hence x + y € B, so AM2 is satisfied. If a € R, then, from the fact that I is an
R-module, we have that
a(r+ N)=ax+ N €1,

so that ax € B, so AM3 is satisfied, thus B is an M submodule. O

Theorem 7.39. Let R be a ring, M an R-module, and N C M an M-submodule.
Then M is a Noetherian R-module if and only if both N and the quotient group
M/N, with the R-action

a(m+ N)=am+ N € M/N
for a € R,m € M, are Noetherian R-modules.
Proof. Let M be a Noetherian R-module, and let N be a submodule of M. Let
N, C N, C...

be a chain of submodules of N. Then it is also a chain of submodules of M, so that
the chain terminates, since M is Noetherian, hence N is Noetherian. Next, let us
show that the quotient group M /N is Noetherian. Let

LCLC... (41)
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be a chain of submodules of M/N. Let us define

By Lemma the sets B; are M submodules. Since I; C I;;;, we have that
Bi g BH—l' Thus
B, C By C...

is a chain of M submodules. Since M is Noetherian, the chain terminates, and,
consequently, the chain terminates, hence M /N is Noetherian.

Suppose that N and M /N are Noetherian R-modules. Let us show that M is a
Noetherian R-module. Suppose on the contrary, that there exists a non-terminating
chain of M submodules,

M1 Q MQ g e

Since the chain does not terminate, we may assume each inclusion is proper, and
choose from each M; an element m; that is not a member of the preceding module.
Let

I ={m+ N|m € M},

which is a submodule of M/N by Theorem and I; C [;,q, since M; C M.
Since N is Noetherian, the chain

LCLC...

terminates, which means that from some index n > 0 forward, the residues of the
sets M; modulo N are identical. Thus, for the element m; € M;\ M;_; in particular,
when ¢ > n, there exists x € M;_q, such that

TTLZ—FN:ZE—FNGM/N,

hence m;—x € NNM;. if m;—x € M;_q, then m; € M;_1, since x is in M;_; which is
an additive group, which contradicts the fact that m; € M; 1. Hence m; —x & M, 4,
so that the inclusion (N N M;_1) C (N N M;) is proper from index n onwards, and
since the intersection of two modules is a module, we have a non-terminating chain
of submodules of N,

(NOM) S (NNMs) €.,

which is a contradiction. Thus M is Noetherian. O

Theorem 7.40. If R is a Noetherian ring, then any finitely generated R-module is
Noetherian.

Proof. Let M be a finitely generated R-module, so that for some n > 0 and
mq,...,m, € M, we have that

M = {rimy + -+ rpmy|r; € R}.
Let m = m; be one of the generators of M, where 1 <i < n, and let
N = {rm|r € R}.

Let us show that NV is a Noetherian M submodule. First, let us prove that N is an
M submodule by the submodule criterion of Theorem which requires that
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AMI1. N # 0, and
AM2. if x,y € N then x +y € N, and
AM3. if a € R and x € N, then ax € N.

Since 1m =m € N, N is non-empty. If rm € N and 'm € N, then, since M is an
R-module and N C M, we have that rm+r'm = (r+r")m € N. If ' € R, then for
rm € N, we have that 7’(rm) = (r'r)m € N, since M is an R-module and N C M.
Thus N satisfies the submodule criterion, so that N is an M submodule. Let

N, C N, C...

be a chain of submodules of N. Since N is generated by m € M, the elements of N;
are of the form rm, where r € R. Let us define

I; ={r € Rlrm € N;},

and let us show that [; is an ideal of R. Let us show that I; is an additive subgroup
of R by the subgroup criterion. Since N; is non-empty as a submodule of N, it
follows that I; is non-empty. Let rq,79 € I;, so that rym,rom € N;. Then, since N;
is an R-module, we have that —rem € N;, hence rym — rom = (ry — r9)m € N,
which means that r; — ro € I;. Thus [; is an additive subgroup of R. Let us show
that [; is closed under multiplication by R. Let r € I;, hence rm € N;, so that
for any a € R, we have that a(rm) = (ar)m € Nj, since N; is an R-module. Thus
ar € I;, so we have that [; is an ideal of R. Since R is Noetherian, the chain of
ideals
L CLC...

terminates, hence the chain Ny C N, C ... terminates. Thus N is Noetherian.
Let us proceed by induction on the number of generators of M. We already
showed that if n = 1 then M is Noetherian. Suppose that for some k£ > 1

Mk = {r1m1+~~~+rkmk|n S R}
is Noetherian. Let us show that
Mk+1 = {rlml + -4 TR + Tk+1mk+1\ T; - R}

is Noetherian. Let N = {rmy 1|7 € R}, so that N is a Noetherian submodule of
M1, since N is generated by a single element. Now we have that

={m+ N|m € M;}
— My/N.

Since My, is Noetherian, then, by Theorem [7.39] the quotient My /N is Noetherian,
hence My,1/N is Noetherian. Since N is a Noetherian My, ; submodule, we have,
by Theorem [7.39, that M is Noetherian. O
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Theorem 7.41. A is a Noetherian ring.

Proof. By Theorem [7.19) A = Z[¢], and by Theorem Z[€] is generated by
the elements 1,¢,...,£P72 over Z, hence Z[¢] is a finitely generated Z-module. By
Theorem Z is a Noetherian ring, hence, by Theorem Z[¢] is Noetherian.

]

Theorem 7.42. Let R be aring, and let M be a Noetherian R-module. Then every
M submodule is finitely generated.

Proof. Let N C M be an M submodule. Suppose on the contrary that N is not
finitely generated, so that for every k > 0 we have that, for any zq,...z, € N, the
R-module

Ny, = {rix1 + -+ rpap|r; € R}
does not contain N, hence exists xp,1 € N such that z,,1 € Nj. Then the inclusion
between the two M submodules

Ni € Niy1 = {rios + - + 7e2p + Tp1Tp4a| 7 € R}
is proper, hence the chain of M submodules
N1 C Ny C...

does not terminate, which contradicts the Noetherian property of M. Thus N is
finitely generated. O

The following lemma will be often used in the proofs concerning Noetherian
rings, mainly A in our case.

Lemma 7.43. If R is a Noetherian ring, and A is any non-empty collection of
ideals of R, then A contains a mazimal element, meaning that there exists an ideal
M € A, such that M is not a proper subset of any other ideal in A.

Proof. Suppose on the contrary, that A contains no maximal element. Let I € A.
By assumption, [ is not maximal, so that there exists I’ € A, such that the inclusion
I C I’ is proper. But then, we get, inductively, a non-terminating chain of ideals of
A

J

Icrcr'c...,
which is a contradiction, since R is Noetherian. O]
From Theorem we get the following result.

Theorem 7.44. Every integral ideal is finitely generated as an A-module.

Proof. Since A is a Noetherian ring, and A is itself an A module, Theorem [7.42|states
that every submodule of A is finitely generated. Integral ideals are A-modules, hence
finitely generated. O

We define Dedekind domain in the following way.
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Definition 7.14. Dedekind domain is an integral domain D that satisfies the fol-
lowing conditions.

e D is a Noetherian domain,

e D is integrally closed, and

e cvery prime ideal of D is maximal.
Theorem 7.45. A is a Dedekind domain.

Proof. By Theorem A is Noetherian. By Theorem A is integrally closed,
and by Theorem every prime ideal of A is maximal, hence A is a Dedekind
domain. O

7.4 Ideal prime decomposition, and the ideal class group

In this section we will show that every integral ideal of A can be expressed as the
product of prime ideals in a unique way. For this we need a few results. First, we
have the following theorem, which is from [7].

Theorem 7.46. If P is a prime ideal and [y --- I, C P for integral ideals I;, then
I; C P for some 1.

Proof. Suppose on the contrary that there exists ; € I; \ P fori =1,...,n. Then
ay-ap € I --- 1, € P, but none of the factors «; are in P, which is a contradiction,
since P is a prime ideal. Hence I; C P for some 1. O

Theorem 7.47. If I is an integral ideal, then I C P for some prime ideal P.

Proof. Let A be the set of all proper integral ideals that are not subsets of any prime
ideals. Suppose on the contrary that A is non-empty. Then, by Theorem [7.43] A
contains a maximal element, say M € A. The set A contains no prime ideals, so
that M is not prime, hence M is not maximal in A, since A is a Dedekind domain,
by Theorem [7.45] Then there exists an integral ideal M’, such that the inclusion,

MC M,

is proper. Since M is a member of A, M is not a subset of a prime ideal, thus M’
cannot be a subset of a prime ideal. Then, by the construction of A, we have that
M' € A, which is a contradiction, since M is maximal in A.

]

The following lemma is from [7].
Lemma 7.48. Every non-zero integral ideal contains a product of prime ideals.

Proof. Let A be the set of non-zero, proper integral ideals that do not contain any
products of prime ideals. Then, especially, A contains no prime ideals. Suppose
on the contrary, that A is non-empty. By Theorem A contains a maximal
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element, say M € A. Since A contains no prime ideals, M is not prime, hence
zy € M for some x,y € A\ M. By Theorem the sets

M + (z), and M + (y)
are ideals, and, moreover, the inclusions

M C M+ (z), and
M C M+ (y)

are proper, hence neither ideal is in A, since M is maximal in A. By the construction
of A, this means that for some prime ideals P, ..., P,,Q1,...,Q, we have that

P ---P, C M+ (), and
Qi Qu M+ (y).

Hence
P PQu - Qr C (M + (2))(M + (y))
Let

my + ax € M + (x), and
my + azy € M + (y).

Since zy € M, we get that
(m1 + a12)(mg + asy) = myims + myiasy + a;xms + a1xasy € M,
Thus, all the finite sums of the elements of this form are in M, hence
(M + (2))(M + (y)) € M.

But then M contains the product of the prime ideals P;--- P,Q; - - - Q, which is
a contradiction. Thus A is empty, so that every non-zero integral ideal contains a
product of prime ideals. O

Lemma 7.49. Let I be a proper, non-zero integral ideal, and let z € Q(§). If
xl C 1,
then x € A.

Proof. By Theorem [7.44] [ is a finitely generated A-module, and, therefore, since
xI C I and I # (0), we have by Theorem [7.8] that z is integral over A. By Theorem
7.45] A is a Dedekind domain, hence integrally closed, so z € A. m

From the fact that A is a Dedekind domain, we get the following result, which
is from [7].

Theorem 7.50. If P is a prime ideal of A, then
P={zecQ()|zP C A}

is a fractional ideal, such that PP = (1). Moreover, P\ A is non-empty.
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Proof. Let P be as described. Let us show that PP = (1). First, let us check that
P is a fractional ideal. Let d € P be a non-zero element of P, which exists, since P
is prime, and by definition non-zero. Let = € P, so that dz € A by the definition of
P, hence dP C A. Let m € P, and y € P. Then (z — y)m = am — ym € A, since
xm,ym € A, hence z —y € P. For a € A, we have that azm € A, since zm € A,
hence ax € P. So P is a fractional ideal.

Since P is a fraction ideal, we have that the product PP is a fractional ideal, and
by the definition of P, we have that PP C A, hence PP is an integral ideal. Since
1 € P, we have that P C PP C A and A C P. Since A is a Dedekind domain, its
prime ideals are maximal, hence the inclusion of the integral ideals P C PP C A,
implies that PP = P or PP = A. Suppose that PP = P, and let us show that this
is impossible.

Let z € P. From the assumption that P = PP, we get that 2P C P, which
implies that x € A, by Theorem . So we have that P C A, hence

P=A.

Let a € P be non-zero. By Theorem [7.48] (a) contains a non-empty product of
prime ideals, so that
Py - P, C(a),

for some prime ideals P, ..., P,, n > 0. Let us choose the smallest n > 0 for which
such a product of primes is contained in (a). Since a € P, we have that

P ---P,C(a) CP

By Theorem we have that P, C P for some 1 <7 < n. We may assume that
P, C P, whereby P, = P, since P is prime, and, therefore, maximal. Denote

B=PF---PF,.

Since n was the least number of primes whose product is in (a), we have that B Z (a).
In the case that n = 1, and B = (1), then this is also true, since (a) C P # A.
Hence, there exists b € B\ (a). Since

PB C (a),

we get that, in particular,
bP C (a),

hence, for every p € P, there exists az € (a),z € A, such that bp = az, meaning
that bpa—! = 2 € A. So, we have that

ba 'P C A.

Then ba~' € P, by the definition of P. Since, by assumption, P = A, we have that
ba~' € A. Thus, there exists z € A such that ba™! = 2, meaning that b = az € (a),
which is a contradiction, since b is not in (a). So, P # A, and, therefore, P # PP,
so that PP = A is the only remaining option. m
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The next Theorem is from [7].

Theorem 7.51. If I is a proper integral ideal, then
I=P---P,

for some prime ideals P, ..., P,. Furthermore, this representation of I as the prod-
uct of prime ideals is unique.

Proof. Let A be the set of proper integral ideals that are not finite products of prime
ideals. Suppose on the contrary, that A is non-empty. By Theorem [7.43] A contains
a maximal element, say M € A. Let P be a prime ideal containing M, which exists
by Theorem [7.47 Since M is not a prime ideal, we have that the inclusion

MCP

is proper, and, moreover, P ¢ A, since P is a product of itself. Let P be the inverse
fractional ideal of P, which exists by Theorem [7.50] From the fact that M C P, we
get that

MP C PP = A,

hence M P is an integral ideal. Since 1 € P, we have that
M C MP.

Let us show that the inclusion is proper. Suppose on the contrary, that
M = MP.

Let * € P\ A, which exists by Theorem m Then we get from the assumption
M = MP, that M C M, hence z € A, by Theorem w, which is a contradiction,
since © € A. Hence the inclusion M C MP is proper. Since M is maximal in A, it
follows that M P ¢ A, so that, by the construction of A, we have that

MP=P,---P,
for some prime ideals Py, ..., P,, n > 0. Multiplying by P, we get that
M =PP,---P,,

which is a contradiction. Hence A is empty, meaning that every proper integral
ideal is the product of finitely many primes.
Let us show that this expression of an integral ideal as the product of prime
ideals is unique. Let
I=P P,

Suppose on the contrary, that I can be expressed in another way as the product of

prime ideals,
QJ = Pl e P’na

where () # P, for every i = 1,... n. Hence
P---P,=QJCQ,
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so that, by Theorem we have that P; C () for some 7, which is a contradiction,
since primes are maximal in A, due to the fact that A is Dedekind domain, by
Theorem [7.45]

]

Theorem 7.52. Let [ and J be integral ideals. Then I | J if and only if J C .

Proof. If 1| J, then J = II’ for some integral ideal I, whereby J = I’ C I.
Let J C I, and let

J=Qi Q.
be the prime ideal decomposition of J. Let P be some prime factor of /. Then

I C P, and, therefore,
J=0Q--Q, CICP

Then, by Theorem [7.46], we have for some ¢, that ); C P, hence ); = P, so that
P | J. Thus every prime factor P of I divides .J, which means that I divides J. [

Non-zero integral ideals I and J are said to be relatively prime if the only integral
ideal dividing both I and J is the unit ideal (1) = A, which is denoted by ged (I, J) =
1.

Theorem 7.53. Integral ideals I and J are relatively prime if and only if a4+ 5 =1
for some v € [ and 3 € J.

Proof. Suppose that o + 5 =1 for some o € I and § € J. Let us show that [ and
J are relatively prime. Suppose on the contrary, that a prime ideal P divides both

I and J. Then, by Theorem [7.52] we have that / C P and J C P in which case
a+pf=1€ P,so P=(1), which is a contradiction.

Suppose that I and J are relatively prime. Let us show that 1 € I + J. If I or
J is the unit ideal (1), then the claim is true, so we may assume that both I and J
are proper ideals. Let

J=Qi Q.

be the prime ideal factorization of J. Since Q; t I, by Theorem we have that
I'Z Q50 1\Q;#0. Sowe may choose a; € I\ Q; for each i. By Theorem [7.30]
there exists, for every ();, an integer k; > 0 such that ozf" —1€Q;. Let

g =Tt =)

Then € Q1---Q, = J, and = 1 (mod I), so that 8 F 1 € I, and, therefore,
FB+ 1€ I. Now, we have that

+8+ (F8+1)=1€J+ 1.

Theorem 7.54. If ¢ is a prime number different from p then

(@) =Q1 - Qn

where @1, ...,Q, are distinct prime ideals.
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Proof. Let ¢ # p. Suppose on the contrary, that
(q) = QI
where () is a prime ideal and [ is an integral ideal. Then we have that

(0) CQ*CQ. (42)
Recall the inverse fractional ideal of @), as defined in Theorem [7.50]

Q={r€Q¥)]zQ C A},

which satisfies QQ = A, and, moreover, the set Q \ A is non-empty. Then we may
choose z € Q \ Q. Since x € Q(¢) \ A, we have, by Theorem m that z is of the
form
r= —,
n
where o € A, and, moreover, % ¢ A for any prime divisor r of n. Then, since x € Q,
and (¢) C @, we get that,

2(q) € 2Q C A,
so that, in particular, we have that
a
rq = a4 € A
n

So, n | ga. Let
o = CLO+(115+ "'—|—Clp_2§p_2

be the canonical presentation of «. Since n t «, we have for some index i, by Lemma

[7.6 that
Q;
% gy,
n

But, since n | g, we have, by Lemma that

a;q
n

€ Z.

Hence g | n, so that n = mgq, and, therefore,

T =—":
mq

Since ¢ is factor of n, we have that ¢ ¥ «. Now, multiplying by Q°, we get that

Q'(g) C A,

Thus, from the fact that 2 € Q, and q € (q), we get that

2
v’ = (i) (= eQgca

mq

So, we have that ¢ | a®. But, since ¢ { a, we have necessarily, by Theorem that
q = p, which is a contradiction. O
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The statement of Theorem is equivalent to saying that, for any prime number
q different from p, we have that

q¢Q°,
for every prime ideal Q. Indeed, ¢ € Q?* is equivalent to (¢) C Q?, which is equivalent

to @2 | (¢), by Theorem [7.52] and this was shown to be false in Theorem [7.54] The
next theorem gives an equivalent definition for the prime ideal.

Theorem 7.55. Let P be a proper, non-zero integral ideal. Then P is prime if and
only if the following condition holds for every integral ideal I.

If I|P,thenl=(1)orl=P. (43)

Proof. Suppose that P is prime, and that P = IJ for some integral ideals I and J.
Then I and J are non-zero. By Theorem [7.51], the prime ideal P cannot be expressed
as the product of prime ideals in any other way, so that, from the equation P = I.J,
we have exactly two possibilities for the prime ideal factorizations of I and J. Either

I'=P and J = (1),

or

I=(1), and J = P,

since, otherwise, P would have an alternate expression as the product of primes.
Hence P satisfies the condition (43)).
Suppose that P satisfies the condition . Let

P=QiQ,

be the prime ideal factorization of P, which exists by Theorem [7.51] Then Q; | P,
so by assumption @); = (1) or ; = P. Since @); is a prime ideal, only @Q; = P is
permissible, in which case P is prime. ]

Let us make a brief overview of the class group. The following facts are from [2].

Definition 7.15. It is said that fractional ideals [ and J are equivalent, if
I=(a)J
for some a € Q(§), which is denoted by I ~ J.

Theorem 7.56. The relation ~ between non-zero fractional ideals is an equivalence
relation.

Proof. Let I,J, and L be non-zero fractional ideals. Since I = (1)1, we have that
I ~ I, so the relation ~ is reflexive.
Let I ~ J, meaning that

I=(a)J

for some non-zero o € Q(§). Then
J=(a" NI,
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hence J ~ I, so the relation ~ is reflexive.
If I ~J~ L, then I = («a)J, and J = (B)L for some non-zero a, 8 € Q(&), so
we get that
I=(ap)L,

hence I ~ L, so the relation ~ is transitive, and an equivalence relation. O

We may now consider the resulting equivalence classes, denoted by [I],
] =A{J|J ~ I}
Let us define a multiplication between equivalence classes, as
] - [J] = [1J].

Since the ordinary ideal multiplication is associate, so is the multiplication between
equivalence classes. Moreover, if I ~ I’ and J ~ J', so that [ = (a)l’ and
J = (B)J’, then

IJ=(af)I'J,

hence I.J ~ I'J'. From this, we get that
[J] = 1] = [I'J] = [I][J],

which shows that the multiplication is well-defined. For all non-zero o € Q(§), we
get from the equation () = (a)(1), that () ~ (1). Thus, for any I, we have that

[ =) ~ (),

and, therefore,

1] = [(a)]] = [()][1],
Hence, the equivalence class [(a)] = [(1)] is the unit with respect to the multiplica-
tion. Let us show that each equivalence class has an inverse. Let I be a non-zero
fractional ideal. By definition, there exists a € A such that («)/ is an integral ideal.
Let

() =P, ---P,

be the prime ideal decomposition of (a)I, which exists by Theorem[7.51} By Theorem
m, there exists, for each P;, an inverse fractional ideal P;, such that PP, = (1).
Hence

()PP = [(a)IP -+ P) = [P+ PP+ P = (1),

so that [(a)P; - - - P,] is the inverse of [I]. We have shown that the set of equivalence
classes is a group.

Definition 7.16. The set of equivalence classes of non-zero fractional ideals, under
the multiplication [/][J] = [ J], form a group, called the (ideal) class group, denoted

by Ci(Q(8)).

Let h, denote the order of the ideal class group. The following Theorem is from
[7], page 58.
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Theorem 7.57. The order of the class group h, is finite.
Since h,, is finite, so we have the following consequence.

Lemma 7.58. Let k£ > 0 be such that ged (k, h,) = 1. If I is a fractional ideal, such
that
I* = (o),
where a € Q(§), then
I = (Ba")
for some € Q(§), and n > 0.

Proof. Since ged (k, h,) = 1, there exists n > 0 such that
kn = mh, + 1,
where m > 0. Since I* = (a), we have that I*" = (a"), hence
((a™)] = [I*] = [1]* = [1]™"» % = (1)) = [1].
Thus I ~ (a™), so there exists § € Q(), such that
I=(B)(a") = (Ba").

Let p be an odd prime and recall that £ denotes the p-th root of unity.
Lemma 7.59. The elements

1—¢&*

1-¢

are units of Afor k=1,....,p— 1.

=148+ +&7 and 1+ ¢

Proof. Let 1 < k < p—1. Then p 1 k, so there exists an integer n > 0 such that
nk = mp + 1 for some m. Now

ko (k2 N e S Tl AR Sl
1+€+(5)+"'+(5) _1_€k_ 1_€k _1_5‘1@

€ A,

hence T—ék is a unit of A. Let us show that 14 ¢* is a unit. Since p is odd, we have

for the p-th cyclotomic polynomial & that

D) =0 =1+ + (€7 + -+ (")
=(1+ML+EP+HE) +- -+ (EPP+ (!

= (14 €9 (R + (€
n=0
so that »
1 = .
n=0
hence 14 £ is a unit of A. ]
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Lemma 7.60. 1 — ¢ and 1 — £ are associate for k=1,...,p — 1.

Proof. In the equation

1—¢&F
1-&=(1-
= (1-97=
the factor 11__’5; is a unit by Lemma [7.59, so 1 — ¢ and 1 — £* are associate for
k=1,....p— 1. O

Lemma 7.61. (p) = (1 — &P !
Proof. Since
Pr)=1+z+ -+l =& - (z - &1,
we have, by setting x = 1, the equality
p=0(1)=(1-¢)--(1-¢).

By Lemma the factors are associate, so that there exist a unit o € A, such that
p=a(l — &P and, therefore,

(p) = (a1 =) =1 -

Lemma 7.62. (1 —¢) is a prime ideal.

Proof. Let us first show that (1 — &) # (1). By Lemma we have that
(p)=(1—&" "

By Theorem we have that ]% ¢ A, so p is not a unit, hence

1) # @) =0-8"",

from which we get that (1 — &) # (1).
Denote I = (1 — £), and let us show that I is prime. Let a, 8 € A, with

a=ay+aé+ -+ a, "7 and
B=0by+bi&+ -+ b, o2

Since 1 — ¢ € I, we have that
¢=1 (mod I),

hence

a=ay+a+---+a,2=a (mod ), and
B=by+b+--+0byo=0>0(mod I),

where a,b € Z. Suppose that aff € I, and let us show that either o or 8 belongs in
1. So, we have that
af =ab=0 (mod I),
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hence ab € I NZ. By Lemma we have that p € I. If p { ab in Z, then there
exists x,y € Z C A such that

xp+yab=1¢€l,

hence I = (1), which is a contradiction. Thus, we have that p | abin Z. Then p | a
or p | bin Z. We may assume that a = dp, and, since p € I, we get that

a=a=dp=0(mod I),
so a € I. Thus [ is prime. O
The next theorem is by Kummer. A proof of the Theorem is in [8], page 3.
Theorem 7.63. Every unit of A is of form
&n

where 1 < kK < p—1and n € A is a real unit, meaning the imaginary part of n
equals 0.

Next we introduce the concept of a norm for an element of Q(¢).

Definition 7.17. Let o € Q(§). Let o4 be the homomorphism of Theorem [7.12]
for k=1,...,p— 1, and let us define the norm of « as

N(a) = 1:[ or(a).

It turns out that the norm is always a rational number. For this, we need a few
lemmas. The norm is also multiplicative:

Theorem 7.64. For «, 5 € Q(§), we have that N(af) = N(a)N(B).

Proof. The claim follows from the fact that o, is a homomorphism, and, therefore,
or(a)op(B) = op(ap) for k=1,...,p — 1. Thus

N(@)N(5) = (H ak<a>> (H akw))

k=1
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Lemma 7.65. Let a € Q(&), a ¢ Q. If p{ j, and 0,4,(a) = 0;(x), then there exists
an integer n, n # 1 (mod p), such that

on(a) = a.

Proof. Let us first note that o;(a) is not in QQ. Since the rational coefficients r; € Q
in the canonical presentation of o are unique,

a=rg+r€+-+rp a8
and by assumption a € Q, it follows that r, # 0 for some 1 < s < p — 2. Thus
oj(a) = 1o+ & + 1l 4+ 4 rp,gfj(p”)

is not in Q, since r,&7¢ # 0.
If p|i, i =dp, then

oi(a) =ogp(a) =19+ +1p_0 € Q,
which contradicts the fact that
oi(a) = 0ji(a) = ojap(a) = 0;(a) € Q

as noted in the beginning. Thus p 1 ¢. So, there exists an integer [ such that
li = —j (mod p), and we have the congruence

li+j)=li+lj=—j+1j=7(l—-1) (mod p).
Taking o; of the equation 0,4 ;(a) = 0;(«), we get that
oja-1(a) = oj(a). (44)
Let hj = —1 (mod p). Taking oy, of the equation (44), we get that
o1-(a) = a.

If 1 =1 =1 (mod p), then p | [, but this is a contradiction, since li = —j (mod p),
and by assumption p{ j. So, we may choose n =1 — [.
m

Lemma 7.66. Let a € Q(¢), a € Q. If 0,(a) = 044;(a), p 1 j, then the elements
{a = 01(§a), 02(la), ..., 0p1(Ea)
are pairwise distinct.

Proof. From the assumption that o;(a)) = 0,4;(a), p 1 j, we have by Lemma
that

on(a) =« (45)
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for some n, n Z 1 (mod p). We may assume n to be the smallest such integer.
Suppose on the contrary, that there exists integers u, m such that 1 <u <u+m <
p — 1, that satisty the equation

ou(éa) = opim(&a).
Since p ¥ m, we have, by Lemma that
om(§a) = &a (46)

for some integer m, m # 1 (mod p). Here, too, we take the smallest such m.
Multiplying the equation by ", we get that

"a= "o, (a) = on(éa), (47)

using the fact that o, is multiplicative, and o, (§) = £". Recall that o, 0 0,,, = Tpm.
Applying o, to the equation (46)), and o, to the equation (47), we get two new
equations,

Tpm (@) = o (§) = "o () = "o, (48)
and
Onm (@) = 0, (") = "oy () = f(n_l)mfmam(a) (49)
=m0y, (€a) = € IMea.
Hence

£a =€ Imea,
so that &" = £=DUm¢ which implies that
n—1=(n—1)m mod p,

and, therefore, p | (n — 1)(m — 1), which is impossible, since by assumption n,m #
1 (mod p). So, we have necessarily that the elements

505 = 0'1<§Oé), 0-2(504)7 s 70—?—1(504)

are pairwise distinct. O

Theorem 7.67. For o € Q(&), let u(a)(z) € Q[x] denote the minimal polynomial
of a over Q. Then one of the following is true.

L ple)(z) = (z = or(@))(x = 03(a)) - - (& = opa (@), or
2. pag)(z) = (z = o1(af))(x — 03(af)) - - (# = gp-1(af))-

Proof. For any a € Q(&), we have that deg p(a) < deg®(xz) = p — 1. Since « is a
zero of pu(«) by definition, and oy, is a homomorphism, we have that oy («) is a zero
of u(a) for k=1,...,p— 1, by the same argument as in Corollary [7.13|

Let us first suppose that the elements

a=oi(a),o(a),...,0p1(),
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are distinct, and let us show that the case 1 of the claim is true. Since the polynomial

( — ox(a)) € Q(§)[]

divides p(«) in the polynomial ring Q(§)[x] for k =1,...,p—1, and since oy () are
distinct by assumption, we have that the polynomial

f(z) = (z = or(@))(x = 03(a)) - - (& = 0pa(a)) € Q(§)[x]

divides p(a)(z) in Q(&)[z]. Since deg f = p — 1 > degpu(«) and both f and u(«a)
are monic polynomials, it follows that f = u(a), so the case 1 is true.
Next, let us suppose that

UH(O‘> = On+m (a)

for some 1 <n <n+m < p-—1. Lemma states that o1(af), ..., 0p-1(af) are
distinct. As these are all zeros of the minimal polynomial of £a, p(€), we have case
2 by what was shown before. O

Theorem 7.68. If o € Q(&), then N(«a) € Q, and if o € A, then N(a) € Z.

Proof. Let a € Q(€), and let us show that N(a) € Q. By Theorem [7.67, at least
one of the following is true of the minimal polynomials of o and £a:

L ple)(z) = (z = or(@))(x = 03(a)) - - (& = opa (@), or

2. plag)(x) = (z — 01(af))(z — 02(af)) - - - (x — op-1(S)).
Suppose that the case 1 is true. For x = 0, we get that

(a)(0) = (=01(@)) - - - (=op-1(a))
= (=17 [ ox(a)
k=1

= ow@)
k=1
= N(a).

Since u(a) € Q[z], we have that p(a)(0) € Q, hence N(a) € Q.
Next, let us suppose that case 2 is true. Similarly as in the first case, by setting
r=01in p(€a), we get that

p(Ea)(0) = (=or(€a)) -+ (=0pms(60)
= (e [T o)

-1 2=
— ¢ [ ovla)
k=1

= 1:[ or(a)

k=

= N(a).
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Like in the first case, since p(§a) € Q[z], we have that p(€a)(0) € Q, and conse-
quently N(a) € Q as claimed.

Let a € A, and let us show that N(a) € Z. We already showed that N(a) € Q.
Since a € Z[¢], and, therefore, oy (o) € Z[¢] for every k, we have that the rational
number

p—1
N(a) = [T ow(@)
k=1
must be an integer. O]

Using the properties of the norm, we have the following result about the units
of A.

Theorem 7.69. If o € A is a unit, then N(a) = £1.

Proof. By Theorem the norm is multiplicative. By Theorem we have
that N(a), and N(a™') are integers. Since N(1) = 1, and since a~! € A, we get
that

1=N(1)= N(aa™) = N(a)N(a™),

meaning N («) = +1. O

7.5 Theorem of Inkeri

The next lemma is by Inkeri and the proof is from [1].

Lemma 7.70. Let p # ¢ be odd primes and z,y > 3 integers such that z? —y? = 1.
If ¢ 1 h, then there exists real units e, € A such that

e’ =l +af
e =0+ 5

Proof. Let & denote the p-th root of unity and A = Z[¢]. By Lemma [6.1] there exists
an integer u such that

where «, § € A are not units.

put = T = = 0(0) = (- ) (- )

As mentioned in Theorem u>1. Since p=d(1) = (1 —&)--- (1 — &), we
may write

uq_(x—O"'(x—gp_l)_[ﬁdi (50)

(1=&)--- (=1 5

where fort=1,...,p—1

_a:—{i_ r—1
1= 1-¢
65

5 41 (51)




Let us show that 9; is in A for every ¢ = 1,...p — 1. By Lemma [6.1} we have
that p? | x — 1, so # — 1 = dp?, where d € Z is non-zero. By Lemma 1— ¢ and
1 — & are associate for alli =1,...,p—1, i.e.,

1—¢ =a,(1-¢)
where «; € A is a unit. Thus
p=p01-&r,
where $ € A is a unit. Now we have, from the equation , that

_al L dpp— g
1=¢ a;(1 = ¢)
Let us show that the ideals (6;) and (§;) are relatively prime for ¢ < j. Suppose on

the contrary, that a prime ideal P divides both (J;) and (d;), so that there exists
integral ideals I, J such that

5i +1=dpa;'B1—-EP2+1€ A (52)

(0;) = PI, and
(0;) = PJ.

Then (4;), (0;) C P, so that ¢;,9; € P. Hence
0= (1— )5 — (1— €)= & — & = £(1— &) (mod P),

where £'(1—¢&77%) is associate with 1—¢, so 1 —¢ € P. Thus, from the equation (52)),
we get that §; = 1 (mod P). But §; € P, hence 1 € P, which is a contradiction,
since P is prime. So, (d;) and (9;) are relatively prime.

Let us show that (J;) are not unit ideals. Suppose on the contrary, that

- (1=%) -

(2 —&)=01-¢),

meaning that x — £ and 1 — &' are associate, ie.

for some 7. Then

z—&=n1-¢), (53)

where 7 € A is a unit. By Theorem [7.69] the norm of a unit is £1, so we have that
N(n) = £1. Taking norms of the equation (53]), we get that

N(z—¢&)=Nn(l—¢) =NmNQ1-¢£)=+N1-¢),
thus

p—1 p—1
[[or@—¢)==x1]]or(1-¢)
k=1 k=1
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Dividing by the right-hand side of the equation, which is non-zero, since o3(1—¢&") #
O0fork=1,...,p— 1, we get that

- m_gz b~ 1$—€ki p—1
H WL — &) Hl_szi:Hék'
k=1 =1 k=1

But this is a contradiction, since

p—1
[]0r = u# 1.
k=1

So, necessarily (d;) # (1).

Since (0;) and (J;) are relatively prime, and not unit ideals, it follows from the
equation (50)), that (6;) = J for some non-unit integral ideal J;. By assumption
q 1 hy, so that, by Lemma there exists a; € A such that J; = (q;). Since
J; # (1), a; is not a unit. Now (8;) = (), so there exists a unit ¢; € A such that

— q
(Si = 0.

By Theorem foreveryi=1,....,p—1,
= Fiy;
where 1 < k; <p—1 and n; € A is a real unit. Thus
r—&=ghpal(1-¢).
For i =2
r— & =1 - ) = = Mppag(et - ¢). (54)
Since p # ¢, there exists integers e, f such that ep + fq = 1, such that

ghatl — glatl)(eptfa) — elhatlepg(kat)fa — ¢(kat1)fg
Thus becomes

x— & =06 — &) = (¢ =€) (55)

where we write v = £#2+Dfq, € A. Since oy is not a unit, 7 is not a unit.
The complex conjugate satisfies for all z;, 2o € C the identities

21+ 20 = Z1 + Za, 2122 = 21 * 22, Z1 -2 = |z 1= 21.

Then

so that we have the equalities
T —r— () —a—g
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and L
ETg=tT-g=c-¢
Now when taking complex conjugates of we get that
r—E7 =yl (E— &), (56)
Subtracting from we get that
&= =m0 +7)E -7

and
§+&
Uy
By Lemma 1 — &2 and 1 — &% are associate, so there exists a unit u € A such
that 1 — &* = u(1 — £?) whereby

=91 +77€ ANR. (57)

R S S i () R
S T Tee-y o
is a unit. Then, from (57)) we get that
—1
UZWLHW:gzg € ANR (58)
2

is a real unit. Let us write € = 7° and a = n~/v. Then ¢ is a real unit and « is not
a unit. Since ep + fqg =1, € and « satisfy

ol +al = nffq,yq 4 nffqiq
=17 (v +77)
= ’[’]ep
= €.
Multiplying by €72 we get that
7% — 1= =

Let = &2/, Then S is not a unit since ~ is not a unit, and
8 8

% — 1=mpB1(E7" = &) (59)
Taking conjugates of implies that
Er—1=mfE-¢"). (60)

Subtracting from gives us the identity
(€ =€z =m(E - (B + 5
and, therefore,

- n2( B +Bq)
E+e
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so that by we get that

_ T m(pr+ B

werer T

nx

]

Theorem 7.71. Let a,b € Z. If b | ain A, then b | a in Z. That is, if a = vb, where
v € A, then v € Z.

Proof. Let a,b € Z, and let a = vb, where v € A. Then v = § € AN Q. Theorem
states that AN Q = Z, hence v € Z, so that b | a in Z. O

The next theorem, the rule of lifting the exponent, is from [3].

Theorem 7.72. Let a, b be integers and let p be a prime number. If ¢ = P (mod p)
then a? = b (mod p?).

Proof. Let a? = P (mod p). By Fermat’s Little Theorem

a? = a (mod p)
b’ = b (mod p).
Hence a = b (mod p). Thus in the factorization
p . .
a’? — b’ = (a—0) Z aP~ip !
i=1
we have a — b = 0 (mod p) and
P . P
Zap”bl’l = Zap’I = pa’~! =0 (mod p)

i=1 =1

whereby p? | a? — 1.

The next lemma and its proof are from [4].

Lemma 7.73. If z,y are non-zero integers and p # ¢ are odd primes such that
2P —y? =1, then

z=—(p"" —1) (mod ¢, y=¢""' -1 (mod p*) (61)
so that

=0 (mod ¢?) if and only if p? ! —1 =0 (mod ¢*)

62
y = 0 (mod p?) if and only if ¢* "' — 1 =0 (mod p?). (62)
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Proof. By Cassels’ Theorem q | r and p | y. By Lemma the following

equations hold

r—1=pital

y+1=¢""v"

and
z=(p"' —1)a’+a’+1=0 (mod q), and

y= (""" =1+ —1=0 (mod p).
By Fermat’s Little Theorem
p? ! —1=0 (mod ¢) and
@' —1=0 (mod p)

and using the equations we get that

r=a?’+1=0 (mod ¢) and
y=0—1=0 (mod p).

Hence
a’=—1=(—1)? (mod ¢) and

¥ =1=17 (mod p).

By the rule of lifting the exponent in Theorem we get that
a? = (—1)? = —1 (mod ¢°) and
W =17 =1 (mod p?).

Now equations imply that

—(p? ' —1) (mod ¢*) and
(¢"" = 1) (mod p?).

x

)

Lemma 7.74. If ¢ is an odd prime, and x,y € A, then
(z+y)" =2+ qry(z +y)o +y7,

where § € A.

Proof. Since ¢ is odd, we have that ¢ — 1 is even, so we may write

(x+y) = Zq: (i) ahyt

k=0

q—1
= x4 + yq + (Z) $kyq_k
k

[l
==

2
=94y + <(Z> ahy i 4 ( 1 k:) :L‘q_kyk> .
k=1 1=
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The binomial coefficient satisfies the identity,

(0)=(%)
(Dt = (")

so that the equation becomes

hence

=27 +y + ) (Z)(xy)k(yq‘Zkﬁ-lﬂ‘Qk) (66)
k=1

Here, ¢ — 2k > 0 is odd, so that

q—2k

:Eq_% + yq—2kz _ .CEq_Zk o (_y)q—Qk _ (m + y) Z {L’q_%_i(—y)i_l,
=1

SO We may write
21 4y = (1 4 )5

Since ¢ is prime, we have that ¢ | ({) for 1 < k < ¢ — 1. Thus, the equation
becomes

=274y + Z (Z) (zy)*(x + y) Sk
k=1

q—1

2

=ty gate ) Y (1) ) s,

k=1
=27+ y? + quy(r + y)o.

The next theorem is by Inkeri and its proof is from [I].

Theorem 7.75. Let p # ¢ be odd primes and x,y non-zero integers such that
2P —y? =1 and h, and h, be the orders of the ideal class groups of the p-th and
g-th cyclotomic fields. Then the following implications hold.

i) If ¢ 1 hy, then ¢* | z and p? ' = 1 (mod ¢?).
ii) If pt hy, then p? | y and ¢?~' =1 (mod p?).
Proof. Let us prove i). Suppose that ¢ { h,. By Lemma we have that
ne = p1+ 5",
where n € A is a unit, and 8 € A. By Lemma we have that
BT+ 5"~ (B +B) = aBB(B + B)S,

71



where 6 € A. Then
ne =B+ 5" = (8+B)"+ q(BB)(B + B)d. (67)

By Cassels’ Theorem , we have that ¢ | z, hence q | (3 + 8)?. Then, by Theorem
we have that

(@) | (B+5)7.
Let
(@) =Q1--Qn

be the prime ideal factorization of (¢). So, we have that

(B_I'B)q:QlQnIa

where [ is an integral ideal. Since ¢ # p, we have that the prime ideals @; dividing
(¢) are distinct, by Theorem [7.54, Since g is not a unit, due to AN Q = Z, then
(6 + £)9 is not the unit ideal, hence (8 + () is not the unit ideal. Let

be the prime ideal factorization of § + B, where P; are distinct prime ideals, and
a; > 0. From Q; | (5 + B8)4, it follows that Q; = P,,,, where 1 < m; < m. Since the
ideals (); are distinct, we get that

Qi Qu| P Py,

and, therefore,

(@) | (B+B).

Thus ¢ | 8 + 3, by Theorem so that, certainly, ¢° | (8 + 5)?. Then we get,
from the equation , that ¢* | nx. Since ¢ | x, we may write © = dg. From the
fact that ¢ | nz, we get that
ne = ndg = ¢*y,
where v € A, so that
d=qm ',

where 7 is a unit by assumption, hence yn~! € A. Thus ¢ | d in A, so by Theorem
we have that ¢ | d in Z, and, therefore, ¢* | x in Z. Then, by Lemma we
have that

p7' —1=0 (mod ¢?),

which completes the proof of i).

The second claim, ii), follows from i): From the equation ¥ — y? = 1, we get
that (—y)? — (—z)? = 1. Applying the first result, i), we get that p*> | —y, hence
P | y, and

@' —1=0 (mod p?).

Consequence 7.76. The equations 2°> — y” = 1 have no non-zero solutions.
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Proof. Suppose that z° —y” = 1. By Table [I, we have that 71 hs = 1, so we get
from Theorem condition i) (where ¢ = 7 and p = 5), that 5°"* = 1 (mod 7?),
which is false.

Let us next suppose that 2° —y” = —1. Then y” — 2° = 1, so by Theorem
condition ii) (where ¢ = 5 and p = 7), we also get that either 7 | hs = 1 or
51 =1 (mod 7?), both of which are false. O

The next theorem involving the class number of Q(y/—p) is by Inkeri and it’s
from [I].

Theorem 7.77. Let p, ¢ > 3 be odd primes and integers x,y # 0 such that 2P —y? =
1 and let H(—p) denote the class number of Q(y/—p). Then the following condition
are true.

i) If p =3 (mod 4) and ¢ ¥ H(—p), then p?!' = 1 (mod ¢*), ¢* | z, and y =
—1 (mod ¢?71).

ii) If ¢ = 3 (mod 4) and p t H(—q), then ¢! = 1 (mod p?), p* | y, and = =
1 (mod p?71).

iii) f 3 < g < p, p=q=3 (mod 4), and ¢ ¥ H(—p), then p! = 1 (mod ¢?),
@1 =1 (mod p?), p* |z, ¢* | y, z =1 (mod p*~1), and y = —1 (mod ¢*71).

Inkeri’s Theorems [7.77] and [7.75| enabled the following result which gives the

non-existence of non-zero solutions (z,y) for 27 —y? = 1 for a large number of prime
pairs (p, q)-

Theorem 7.78.

i) If p=¢g=3(mod4)and5 < p, ¢ <10% then 27 —y9 = 1 has no non-zero solutions
(z,y), with possible exceptions being

(p,q) = (83,4871), (4871, 83).

ii) If p = 3 (mod 4), ¢ =1 (mod 4) and 5 < p,q < 500 then 2P — y? = 1 has non
non-zero solutions (z,y), with possible exceptions being

(p,q) = (19,137), (223, 349), (251, 421), (419, 173), (419, 349), (499, 109).

Proof. Note that a solution in integers for x? —y? = 1 implies a solution for 7 —yP =
1. We begin by giving the strategy for the proof to make it easier to follow:
1) First we show that there are no solutions when

5<p<T73
5<q< 10
p=q=3(mod4)
which implies that there are no solutions when
5<p<10*
5<qg< T3
p=g¢q=3(mod4).
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Then we show that when
5 <p<T73

5 < g <500
p =3 (mod 4)
¢ =1 (mod 4)
there are no solutions with possible exceptions of (p, q) = (19, 137).
2) Next we show that when

73 <p< 10
73 < ¢ < 10*
p=q=3(mod 4)

there are no solutions with possible exception of
(p.q) € {(83,4871), (4871,83)} .
3) Lastly we show that when

73 < p < 500
5 < g <500

p =3 (mod 4)
g=1 (mod 4)

there are no solutions with the possible exception of
(p,q) € {(223,349), (251,421), (419, 173), (419, 349), (499, 109) } .

These parts together give the result.

For odd primes p, g, let h, denote the class number of the ¢-th cyclotomic field
Q(&,), and let H(—p) denote the class number of the imaginary quadratic field
Q(v/—p). We use values for h, for primes ¢ < 100 in Table (1, which is from [5], and
values for H(—p) for primes p < 10* with p = 3 (mod 4) in Table [4f We also use
the solutions of the congruence p?~! =1 (mod ¢?) for primes p < 1000 and ¢ < 10*
in Table 3

Suppose P — y? = 1 has a non-trivial solution.

Let us prove the step 1). Let 5 < p < 73 and 5 < ¢ < 10? with p = 3 (mod 4). Let
us show that p?~* = 1 (mod ¢?). Suppose that p?~! # 1 (mod ¢?). Then by Theorem
q | H(—p). By Table [l the only candidates are (p,q) € {(47,5),(71,7)}. For
these candidates Table [l gives hs = hy = 1, hence p 1 h,, in which case Theorem
implies ¢! = 1 (mod p?). However, by Table [3| neither pair (p,q) = (47,5), (71,7)
satisfies ¢?~! = 1 (mod p?), which is a contradiction. Hence p?~! =1 (mod ¢?).

By Table |3| the solutions of p?~* = 1 (mod ¢?) with 5 < p < 73,5 < ¢ < 10* and
p =3 (mod 4) are

(p,q) € {(7,5), (11,71), (19, 7), (19, 13),

(19,43), (19, 137), (23, 13), (31, 7), (31, 79),
(31,6451), (43,5), (43, 103), (59, 2777),
(67,7), (67,47), (71,47), (71,331).}
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Let us first consider pairs with ¢ = 3 (mod 4):

(p,q) € {(11,71),(19,7),
(19,43), (31,7), (31, 79),
(31,6451), (43,103),
(67,7), (67,47), (71,47), (71,331).}

For there pairs, we see from Table 4| that p { H(—¢), and, therefore, by Theorem
m ¢! =1 (mod p?), but this is not true as seen in Table |4 for the pairs with
q < 103. The remaining pair (31,6451) is outside the range of Table [4] but by direct
calculation we have that 64513~ = 621 # 1 (mod 31?).

Now consider the remaining pairs in with ¢ = 1 (mod 4):

(p,q) € {(7.5),(19,13),
(19,137), (23,13),
(43,5), (59, 2777).}

From Table [1| we see that p { h, except possibly with (p, q) € {(19,137), (59,2777)}
(the latter pair of which is out of our range of interest of this theorem). Therefore,
by Theorem m ¢! = 1 (mod p?), which is false as seen from Table This
concludes the proof of part 1).

Let us prove the step 2). Let 73 < p < 10% and 73 < ¢ < 10* with p = ¢ =
3 (mod 4). Let us show that ¢ t H(—p). Suppose on the contrary that q | H(—p).
The class number H(—p) is small for p in our range, and we see from Table [4] that
with these constraints

(p,q) € {(4391,79), (5399, 79), (7127, 79), (3911, 83),
(5039, 83), (3423, 83), (8231, 107), (9239, 139)}

Since the class number satisfies H(—q) < ¢, we have with these candidates H(—q) <
q < p hence p { H(—q), and, therefore, by Theorem [7.77] ¢"~* = 1 (mod p?).
From Table [3] we see that this is not true. Hence ¢ { H(—p), so by Theorem [7.77]
p? 1 =1 (mod ¢?). Since a solution for 2 —y? = 1 implies a solution for z9—y? = 1,
we have also ¢?~! = 1 (mod p?) by the same proof as above. From Table [2| the only
pair satisfying both of these congruences is (p,q) = (83,4871), which also satisfies
83 = 4871 = 3 (mod 4). Then so does (p, q) = (4871,83) as desired. This concludes
part 2).

Finally, let us prove the step 3). Let 73 < p < 500, 5 < ¢ < 500, p = 3 (mod 4),
and ¢ = 1 (mod 4). Let us show that ¢ { H(—p). Suppose on the contrary that
q | H(—p). With these constraints it is seen from Table 4 that

(p,q) € {(79,5), (103,5), (127,5), (131,5), (179, 5),
(191,13), (227,5), (239, 5), (263, 13), (347, 5),
(383, 17), (439, 5), (443, 5), (479, 5)}.

For these pairs Table [1| shows that p { h,. Therefore, by Theorem a—
1 (mod p?), but Table 3| shows that this is false. Hence ¢ { H(—p). Now by
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Theorem [7.77 p?~! = 1 (mod ¢?). From Table [3 with the conditions 73 < p < 500,
5 < q <500, p=3(mod4),qg=1(mod 4), the only pairs satisfying the congruence
p? ' =1 (mod ¢?) are

(p,q) € {(107,5), (107,97), (131,17), (151,5),
(179,17), (191, 13), (199, 5), (223, 349), (239, 13),
(251,5), (251, 17), (251, 421), (307, 5), (419, 173),
(419, 349), (443, 5), (467, 29), (487, 41),
(499, 5), (499, 109)}.

Of these pairs with ¢ < 100 Table [I| shows that p { h,, and, therefore, by Theorem
7.75, ¢°"1 = 1 (mod p?), but as seen from Table 3| this is not true. So the possible
exceptions are the pairs with ¢ > 100:

(p,q) € {(223,349), (251,421), (419, 173), (419, 349), (499, 109)}.
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Table 1: hy, 3 < g <100

q | hq q | hg

311 43 [ 211

501 A7 | 5139

71 53 | 4889

1|1 59 | 3-59-233
131 61 | 41 - 1861

1711 67 | 6712739
1911 71 7-7-79241

23 |3 73 | 89 - 134353

29 [2-2-2| 79| 5-53-377911
3119 83 | 3279405653
37| 37 89 | 113 - 118401449
41 | 11-11 || 97 | 577 - 3457 - 206209

Table 2: 2 < p < 103, 3 < ¢ < 10* such that p?~! =
1 (mod ¢?) and ¢?~* =1 (mod p?)

Base p ‘ Solutions ¢

2
83

1093
4871
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Table 3: 2 < p < 103, 3 < ¢ < 10* such that p?~! =

1 (mod ¢?)
Base p | Solutions ¢ Solutions ¢ Base p | Solutions ¢ Solutions ¢

=3|=3 =1 =1|=3 =1 (mod 4)

3111 2 | 3511 1093

7 5 5

11|71 13 | 863

1913 7 43 13 137 1713

23 13 29

3117 79 6451 3713

43 | 103 5 41 29
47 53 |3 47 59 97

59 2777 61

67 | 7 47 7313

7113 47 331 89 |3 13

907 263 3037 97 | 7

83 | 4871 101 5
103 109 | 3
107 | 3 5 97 113
127 (3 19 907 137 | 59 29
131 17 149 5
139 157 5
151 | 2251 ) 173 | 3079
163 | 3 181 | 3 101
167 193 5
179 | 3 17 19713 7 653
191 13 229 | 31
199 | 3 5 233 |3 11 157
211 241 | 11 523 1163
223 | 71 349 257 | 359 5
227 | 7 269 |3 11 83
239 | 11 13 277 1993
25113 11 5 17 421 281
263 |7 23 251 293 |7 19 83 5
271 1 3 313 | 7 41 149 181
283 317 | 107 349
30713 19 487 5 337 13
311 349 5 197 433
331 | 211 359 353
347 373 | 7 113
359 |3 23 307 389 | 19 373
367 | 43 2213 397 | 3
379 | 3 401 | 83 347 5
383 409
419 | 983 173 349 421 | 1483 101
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Base p | Solutions ¢ Solutions ¢ Base p | Solutions ¢ Solutions ¢
=3|=3 =1 =1|=3 =1 (mod 4)
431 | 3 433 | 3
439 | 31 79 449 | 3 5 1789
443 5 457 | 11 919 5
463 | 1667 461 1697
467 | 3 743 29 509 | 7 41
479 | 47 521 {3 7 31 53
48713 11 23 41 1069 541 | 3
49117 79 557 |3 7 23 5
499 5 109 569 | 7 263
503 | 3 659 17 229 577 |3 71 13 17
523 | 3 593 | 3 5
547 | 31 601 5 61
563 613 | 3
571 | 23 29 617 | 1087 101
587 | 7 31 13 641 | 43
599 5 653 | 19 13 17 1381
607 | 7 5 661
619 | 7 73 673 61
631 |3 1787 677 | 211 13
643 | 307 859 5 17 701 | 3 5
647 | 3 23 709 | 199 1663 17
659 | 23 131 733 17
683 | 3 1279 T3 Tl 5 17
691 | 1091 37 509 761 | 907 41
719 | 3 41 769
727 | 11 7733
739 | 3 797
743 5 809 |3 59
751 | 151 5 409 821119 83 233 293 1229
787 37 41 829 | 3 17
811 |3 211 853
823 13 857 5 41 157
827 | 3 17 29 877
839 81|13 7 23
859 | 71 929
83 |3 7 23 467 937 | 3 41 113 853
883 |3 7 941 | 11 1499
887 | 11 607 953 | 3
907 5 17 977 | 11 239 17 109 401
911 | 127 997 | 1223 197
919 | 3
947
967 | 11 19
97113 11 401
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Base p | Solutions ¢ Solutlons q Base p Solutlons q Solutions ¢
=3|=3 =1 =1 (mod 4)
983
991 | 3 431 13
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Table 4: H(—p), p =3 (mod 4), 3 <p < 10*

p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ = 1 (mod 4)
311
711
11 ] 1
1911
23 |3 3 3
31 |3 3 3
43 | 1
47 1 5 ) 5
59 | 3 3 3
67 |1
1|7 7 7
7915 ) 5
83 |3 3 3
103 | 5 ) 5
107 | 3 3 3
127 | 5 ) 5
131 | 5 ) >
139 | 3 3 3
151 | 7 7 7
163 | 1
167 | 11 11 11
179 | 5 ) 5
191 | 13 13 13
199 | 9 3-3 3
211 | 3 3 3
223 | 7 7 7
227 1 5 ) 5
239 | 15 3-5 3 ot
251 | 7 7 7
263 | 13 13 13
271 | 11 11 11
283 | 3 3 3
307 | 3 3 3
311 | 19 19 19
331 |3 3 3
347 15 ) 5
359 | 19 19 19
367 |9 3-3 3
379 | 3 3 3
383 | 17 17 17
419 1 9 3-3 3 3
431 | 21 3.7 3 7
439 | 15 3-5 3 >
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Factorization

Factors ¢ = 3 (mod 4)

Factors ¢ = 1 (mod 4)
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p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ =1 (mod 4)
1031 | 35 -7 7 ot
1039 | 23 23 23
1051 | 5 ) 5
1063 | 19 19 19
1087 | 9 3-3 3
1091 | 17 17 17
1103 | 23 23 23
1123 | 5 ) 5
1151 | 41 41 41
1163 | 7 7 7
1171 | 7 7 7
1187 | 9 3-3 3 3
1223 | 35 5.7 7 5
1231 | 27 3-3-3 3
1259 | 15 35 3 5
1279 | 23 23 23
1283 | 11 11 11
1291 | 9 3-3 3 3
1303 | 11 11 11
1307 | 11 11 11
1319 | 45 3-3-5 3 5
1327 | 15 35 3 >
1367 | 25 92-5 5
1399 | 27 3-3-3 3
1423 | 9 3-3 3
1427 | 15 35 3 >
1439 | 39 3-13 3 13
1447 | 23 23 23
1451 | 13 13 13
1459 | 11 11 11
1471 | 23 23 23
1483 | 7 7 7
1487 | 37 37 37
1499 | 13 13 13
1511 | 49 77 7
1523 | 7 7 7
1531 | 11 11 11
1543 | 19 19 19
1559 | 51 3-17 3 17
1567 | 15 3-5 3 5
1571 | 17 17 17
1579 | 9 3-3 3 3
1583 | 33 3-11 3 11
1607 | 27 3-3-3 3
1619 | 15 3-5 3 5
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p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ =1 (mod 4)
1627 | 7 7 7
1663 | 17 17 17
1667 | 13 13 13
1699 | 11 11 11
1723 | 5 ) >
1747 | 5 5) 5
1759 | 27 3-3-3 3
1783 | 17 17 17
1787 | 7 7 7
1811 | 23 23 23
1823 | 45 3-3-95 3 5
1831 | 19 19 19
1847 | 43 43 43
1867 | 5 ) 5
1871 | 45 3-3-5 3 5
1879 | 27 3-3-3 3
1907 | 13 13 13
1931 | 21 3.7 3 7
1951 | 33 3-11 3 11
1979 | 23 23 23
1987 | 7 7 7
1999 | 27 3-3-3 3
2003 | 9 3-3 3 3
2011 | 7 7 7
2027 | 11 11 11
2039 | 45 3-3-5 3 >
2063 | 45 3-3-5 3 ot
2083 | 7 7 7
2087 | 35 5.7 7 5
2099 | 19 19 19
2111 | 49 77 7
2131 | 13 13 13
2143 | 13 13 13
2179 | 7 7 7
2203 | 5 ) 5
2207 | 39 3-13 3 13
2239 | 35 27 7 ot
2243 | 15 35 3 ot
2251 | 7 7 7
2267 | 11 11 11
2287 | 29 29 29
2311 | 29 29 29
2339 | 19 19 19
2347 | 5 ) 5
2351 | 63 3-3-7 3 7
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p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ =1 (mod 4)
2371 | 13 13 13
2383 | 29 29 29
2399 | 59 29 59
2411 | 23 23 23
2423 | 33 3-11 3 11
2447 | 37 37 37
2459 | 19 19 19
2467 | 7 7 7
2503 | 21 3-7 3 7
2531 | 17 17 17
2539 | 11 11 11
2543 | 35 -7 7 ot
2551 | 41 41 41
2579 | 21 3-7 3 7
2591 | 57 3-19 3 19
2647 | 15 35 3 ot
2659 | 13 13 13
2663 | 43 43 43
2671 | 23 23 23
2683 | 5 ) 5
2687 | 51 317 3 17
2699 | 15 35 3 >
2707 | 7 7 7
2711 | 53 93 53
2719 | 41 41 41
2731 | 11 11 11
2767 | 21 3.7 3 7
2791 | 39 3-13 3 13
2803 | 9 3-3 3 3
2819 | 21 3-7 3 7
2843 | 15 35 3 5
2851 | 11 11 11
2879 | 57 3-19 3 19
2887 | 25 9-5 5
2903 | 59 29 59
2927 | 31 31 31
2939 | 29 29 29
2963 | 13 13 13
2971 | 11 11 11
2999 | 73 73 73
3011 | 21 3-7 3 7
3019 | 7 7 7
3023 | 47 47 47
3067 | 7 7 7
3079 | 41 41 41
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p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ =1 (mod 4)
3083 | 13 13 13
3119 | 69 3-23 3 23
3163 | 9 3-3 3 3
3167 | 53 93 53
3187 | 7 7 7
3191 | 69 3-23 3 23
3203 | 11 11 11
3251 | 31 31 31
3259 | 9 3-3 3 3
3271 | 27 3-3-3 3
3299 | 27 3-3-3 3 3 3
3307 | 9 3-3 3 3
3319 | 41 41 41
3323 | 17 17 17
3331 | 15 35 3 5
3343 | 19 19 19
3347 | 11 11 11
3359 | 69 3-23 3 23
3371 | 21 3-7 3 7
3391 | 37 37 37
3407 | 57 3-19 3 19
3463 | 19 19 19
3467 | 19 19 19
3491 | 23 23 23
3499 | 11 11 11
3511 | 41 41 41
3527 | 65 5-13 > 13
3539 | 23 23 23
3547 | 9 3-3 3 3
3559 | 45 3-3-5 3 5
3571 | 15 35 3 5
3583 | 29 29 29
3607 | 19 19 19
3623 | 45 3-3-5 3 5
3631 | 43 43 43
3643 | 9 3-3 3 3
3699 | 29 29 29
3671 | 81 3-3-3-3 3
3691 | 13 13 13
3719 | 67 67 67
3727 | 31 31 31
3739 | 11 11 11
3767 | 39 3-13 3 13
3779 | 31 31 31
3803 | 15 3-5 3 5
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p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ =1 (mod 4)
3823 | 29 29 29
3847 | 23 23 23
3851 | 25 9-5 5 5
3863 | 61 61 61
3907 | 7 7 7
3911 | 83 83 83
3919 | 39 3-13 3 13
3923 | 23 23 23
3931 | 11 11 11
3943 | 27 3-3-3 3
3947 | 17 17 17
3967 | 33 3-11 3 11
4003 | 13 13 13
4007 | 57 3-19 3 19
4019 | 19 19 19
4027 | 9 3-3 3 3
4051 | 11 11 11
4079 | 85 5-17 5 17
4091 | 33 3-11 3 11
4099 | 15 35 3 5
4111 | 39 3-13 3 13
4127 | 49 77 7
4139 | 19 19 19
4159 | 31 31 31
4211 | 23 23 23
4219 | 15 35 3 >
4231 | 51 317 3 17
4243 | 9 3-3 3 3
4259 | 35 5.7 7 5
4271 | 65 5-13 5 13
4283 | 21 3-7 3 7
4327 | 19 19 19
4339 | 17 17 17
4363 | 9 3-3 3 3
4391 | 79 79 79
4423 | 33 3-11 3 11
4447 | 17 17 17
4451 | 29 29 29
4463 | 55 o-11 11 5
4483 | 9 3-3 3 3
4507 | 13 13 13
4519 | 29 29 29
4523 | 21 3.7 3 7
4547 | 17 17 17
4567 | 33 3-11 3 11
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p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ =1 (mod 4)
4583 | 61 61 61
4591 | 49 77 7
4603 | 7 7 7
4639 | 51 3-17 3 17
4643 | 13 13 13
4651 | 17 17 17
4663 | 33 3-11 3 11
4679 | 91 7-13 7 13
4691 | 21 3-7 3 7
4703 | 75 3-5-5 3 5
4723 | 9 3-3 3 3
4751 | 91 7-13 7 13
4759 | 55 o-11 11 5
4783 | 23 23 23
4787 | 25 2-5 5 5
4799 | 63 3-3-7 3 7
4831 | 33 3-11 3 11
4871 | 91 7-13 7 13
4903 | 27 3-3-3 3
4919 | 91 7-13 7 13
4931 | 35 -7 7 >
4943 | 55 5-11 11 >
4951 | 31 31 31
4967 | 59 29 59
4987 | 9 3-3 3 3
4999 | 33 3-11 3 11
2003 | 15 35 3 ot
5011 | 21 3.7 3 7
5023 | 25 9-5 5
5039 | 83 83 83
5051 | 29 29 29
2059 | 19 19 19
o087 | 69 3-23 3 23
5099 | 39 3-13 3 13
5107 | 7 7 7
5119 | 39 3-13 3 13
0147 | 19 19 19
0167 | 33 3-11 3 11
5171 | 35 5.7 7 5
5179 | 11 11 11
5227 | 15 35 3 5
9231 | 75 3-5-5 3 >
2279 | 87 3-29 3 29
5303 | 55 5-11 11 5
5323 | 15 3-5 3 5
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p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ =1 (mod 4)
0347 | 13 13 13
5351 | 93 3-31 3 31
5387 | 23 23 23
5399 | 79 79 79
5407 | 43 43 43
0419 | 13 13 13
9431 | 57 3-19 3 19
5443 | 9 3-3 3 3
5471 | 71 71 71
0479 | 43 43 43
0483 | 17 17 17
9503 | 25 95 ot
5507 | 23 23 23
5519 | 97 97 97
5527 | 19 19 19
9531 | 23 23 23
9563 | 15 35 3 ot
5591 | 99 3-3-11 3 11
5623 | 33 3-11 3 11
5639 | 87 3-29 3 29
0647 | 21 3.7 3 7
0651 | 31 31 31
5659 | 19 19 19
5683 | 11 11 11
5711 | 109 109 109
2743 | 29 29 29
2779 | 13 13 13
D783 | 53 53 93
5791 | 33 3-11 3 11
5807 | 65 5-13 5 13
2827 | 15 35 3 5
2839 | 37 37 37
0843 | 25 25 > 5
5851 | 21 3-7 3 7
5867 | 21 3.7 3 7
5879 | 101 101 101
2903 | 73 73 73
0923 | 7 7 7
5927 | 71 71 71
5939 | 35 5.7 7 5
5987 | 15 35 3 5
6007 | 27 3-3-3 3
6011 | 27 3-3-3 3 3 3
6043 | 9 3-3 3 3
6047 | 71 71 71
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p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ =1 (mod 4)
6067 | 15 35 3 ot
6079 | 57 3-19 3 19
6091 | 15 3-5 3 5
6131 | 31 31 31
6143 | 41 41 41
6151 | 59 29 29
6163 | 11 11 11
6199 | 39 3-13 3 13
6203 | 17 17 17
6211 | 15 35 3 5
6247 | 43 43 43
6263 | 77 7-11 7 11
6271 | 51 3-17 3 17
6287 | 51 3-17 3 17
6299 | 43 43 43
6311 | 89 89 89
6323 | 21 3.7 3 7
6343 | 33 3-11 3 11
6359 | 101 101 101
6367 | 37 37 37
6379 | 17 17 17
6427 | 9 3-3 3 3
6451 | 17 17 17
6491 | 31 31 31
6547 | 11 11 11
6551 | 117 3-3-13 3 13
6563 | 23 23 23
6571 | 15 3-5 3 ot
6599 | 109 109 109
6607 | 45 3-3-5 3 5
6619 | 13 13 13
6659 | 23 23 23
6679 | 55 5-11 11 5
6691 | 21 3-7 3 7
6703 | 23 23 23
6719 | 105 3-5-7 3 7 5
6763 | 9 3-3 3 3
6779 | 39 3-13 3 13
6791 | 81 3-3-3-3 3
6803 | 19 19 19
6823 | 33 3-11 3 11
6827 | 17 17 17
6863 | 81 3-3-3-3 3
6871 | 45 3-3-5 3 5
6883 | 9 3-3 3 3
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p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ =1 (mod 4)
6899 | 35 -7 7 ot
6907 | 17 17 17
6911 | 87 3-29 3 29
6947 | 29 29 29
6959 | 95 5-19 19 >
6967 | 33 3-11 3 11
6971 | 45 3-3-5 3 3 ot
6983 | 57 3-19 3 19
6991 | 71 71 71
7019 | 43 43 43
7027 | 11 11 11
7039 | 43 43 43
7043 | 23 23 23
7079 | 85 5-17 5 17
7103 | 77 7-11 7 11
7127 179 79 79
7151 | 85 517 > 17
7159 | 65 5-13 5 13
7187 | 25 9-5 5 5
7207 | 29 29 29
7211 | 35 -7 7 5
7219 | 15 35 3 >
7243 | 13 13 13
7247 | 47 47 47
7283 | 25 2-5 5 5
7307 | 25 9-5 5 5
7331 | 33 3-11 3 11
7351 | 33 3-11 3 11
7411 | 25 9-5 5 5
7451 | 35 5.7 7 5
7459 | 15 35 3 5
7487 | 65 5-13 > 13
7499 | 33 3-11 3 11
7507 | 11 11 11
7523 | 35 5-7 7 5
7547 | 15 35 3 5
7559 | 115 d-23 23 ot
7583 | 63 3-3-7 3 7
7991 | 65 5-13 5 13
7603 | 11 11 11
7607 | 89 89 89
7639 | 31 31 31
7643 | 29 29 29
7687 | 29 29 29
7691 | 43 43 43
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p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ =1 (mod 4)
7699 | 27 3-3-3 3 3 3
7703 | 81 3:3-3-3 3
772319 3-3 3 3
7727 | 81 3-3-3-3 3
7759 | 49 77 7
7823 | 75 3:-5-5 3 5
7867 | 11 11 11
7879 | 49 77 7
7883 | 17 17 17
7907 | 21 3-7 3 7
7919 | 97 97 97
7927 | 47 47 47
7951 | 51 3-17 3 17
7963 | 13 13 13
8011 | 25 2-5 5 5
8039 | 113 113 113
8059 | 21 3.7 3 7
8087 | 81 3-3-3-3 3
8111 | 121 11-11 11
8123 | 21 3-7 3 7
8147 | 37 37 37
8167 | 33 3-11 3 11
8171 | 21 3-7 3 7
8179 | 25 9-5 5 5
8191 | 55 o-11 11 5
8219 | 35 5.7 7 >
8231 | 107 107 107
8243 | 21 3.7 3 7
8263 | 43 43 43
8287 | 45 3-3-5 3 5
8291 | 47 47 47
8311 | 61 61 61
8363 | 35 2.7 7 ot
8387 | 21 3-7 3 7
8419 | 19 19 19
8423 | 83 83 83
8431 | 59 29 29
8443 | 11 11 11
8447 | 99 3-3-11 3 11
8467 | 15 3-5 3 5
8527 | 43 43 43
8539 | 17 17 17
8543 | 97 97 97
8563 | 9 3-3 3 3
8599 | 63 3-3-7 3 7
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p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ =1 (mod 4)
8623 | 51 317 3 17
8627 | 21 3.7 3 7
8647 | 31 31 31
8663 | 67 67 67
8699 | 35 5.7 7 >
8707 | 15 35 3 5
8719 | 53 53 93
8731 | 17 17 17
8747 | 21 3-7 3 7
8779 | 15 35 3 5
8783 | 73 73 73
8803 | 9 3-3 3 3
8807 | 81 3-3-3-3 3
8819 | 49 77 7T T
8831 | 109 109 109
8839 | 77 7-11 7 11
8863 | 29 29 29
8867 | 27 3-3-3 3 3 3
8887 | 43 43 43
8923 | 19 19 19
8951 | 135 3-3-3-95 3 >
8963 | 29 29 29
8971 | 19 19 19
8999 | 99 3-3-11 3 11
9007 | 35 5.7 7 5
9011 | 33 3-11 3 11
9043 | 15 35 3 ot
9059 | 39 3-13 3 13
9067 | 9 3-3 3 3
9091 | 21 3-7 3 7
9103 | 57 3-19 3 19
9127 | 57 3-19 3 19
9151 | 67 67 67
9187 | 21 3-7 3 7
9199 | 51 3-17 3 17
9203 | 31 31 31
9227 | 25 95 > 5
9239 | 139 139 139
9283 | 11 11 11
9311 | 97 97 97
9319 | 41 41 41
9323 | 29 29 29
9343 | 51 317 3 17
9371 | 49 77 T T
9391 | 55 o-11 11 5
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p | H(—p) | Factorization | Factors ¢ = 3 (mod 4) | Factors ¢ =1 (mod 4)

9403 | 11 11 11

9419 | 35 5.7 7 5

9431 | 91 7-13 7 13

9439 | 75 3:-5-5 3 5

9463 | 45 3-3-5 3 >

9467 | 41 41 41

9479 | 101 101 101

9491 | 45 3-3-5 3 3 5

9511 | 69 3-23 3 23

9539 | 55 5-11 11 5

9547 | 13 13 13

9551 | 129 3-43 3 43

9587 | 23 23 23

9619 | 19 19 19

9623 | 95 5-19 19 5

9631 | 77 7-11 7 11

9643 | 11 11 11

9679 | 71 71 71

9719 | 133 7-19 7 19

9739 | 13 13 13

9743 | 105 3:-5-7 3 7 >

9767 | 89 89 89

9787 | 11 11 11

9791 | 119 717 7 17

9803 | 37 37 37

9811 | 21 3.7 3 7

9839 | 91 7-13 7 13

9851 | 45 3-3-5 3 3 ot

9859 | 21 3-7 3 7

9871 | 49 77 7

9883 | 17 17 17

9887 | 75 3-5-5 3 ot

9907 | 15 35 3 ot

9923 | 25 9-5 5 5

9931 | 23 23 23

9967 | 39 3-13 3 13
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