
Comparison of edge computing platforms
for hardware acceleration of AI: Kria
KV260, Jetson Nano and RTX 3060

Master of Science in Technology Thesis
University of Turku
Department of Computing
Robotics and Autonomous Systems
Turku Intelligent Embedded and Robotic
Systems (TIERS) Lab
2024
Sergio Aranda Lizano

Supervisors:
MSc. Minh Nguyen
Prof. Tomi Westerlund

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

SERGIO ARANDA LIZANO: Comparison of edge computing platforms for hardware ac-
celeration of AI: Kria KV260, Jetson Nano and RTX 3060

Master of Science in Technology Thesis, 51 p.
Robotics and Autonomous Systems
Turku Intelligent Embedded and Robotic Systems (TIERS) Lab
May 2024

As edge computing platforms become more extense and newer companies join the field,
it becomes harder to know which platform to use in any specific case. These systems
are often packed with a broad array of different computation architectures and different
hardware acceleration technologies, this can be confusing at the moment of the election
to integrate them as hardware accelerators in larger designs. Due to the efficiency of
these platforms, they often enable creative problem-solving approaches to robotics and
other fields where computation on the edge was not common that long ago. This thesis
delves into leading hardware accelerators, analyzing the performance and power usage of
three platforms: Kria KV260, Jetson Nano and RTX 3060. Experiments were conducted
with two neural network models-ResNet-50 and YOLO-trained for image identification
tasks. Our findings highlight the FPGA-based platform’s superior efficiency in terms of
inference speed per watt compared to the other platforms.

Keywords: Edge Computing, Hardware Acceleration, IoT, ASIC, FPGA, AI, DNN, GPU

Contents

List Of Acronyms 1

1 Introduction 3

1.1 Significance and Motivation . 5

1.2 Related works . 5

1.3 Contribution . 6

1.4 Structure . 6

2 Background 8

2.1 Hardware accelerators . 8

2.2 FPGAs . 8

2.3 Graphical Processing Units . 11

2.3.1 GPUs architecture . 12

2.4 ASICs . 15

2.5 Deep Neural Network Models (DNN) 17

3 Design overview 19

3.1 FPGA preparation . 19

3.2 AI Models . 27

3.2.1 You only look once (YOLO) . 28

3.2.2 ResNet . 29

i

4 Implementation and Platform Characteristics 31

5 Experimental Results 37

6 Conclusion 47

6.1 Discussion . 47

6.2 Future works . 50

References 52

List of Figures

1.1 Edge computing paradigm [3] . 4

2.1 FPGAs implementation process [13] . 9

2.2 FPGAs different architectures [13] . 10

2.3 Internal structure of FPGA’s Control logic block 11

2.4 Insides of an SM [15] . 12

2.5 Thread architecture of CUDA [15] . 13

2.6 Memory hierarchy of CUDA [16] . 14

2.7 (a) Construction of larger blocks with custom cells. (b) Over-the-cell rout-

ing [17] . 15

2.8 V5-TPU architecture [19] . 16

2.9 Basic vector unit operation . 17

2.10 Basic backpropagation [22] . 18

3.1 Vitis AI [23] . 20

3.2 DPU for Zynq UltraScale+ [23] . 21

3.3 Pruning [23] . 22

3.4 Pruning process flow [25] . 23

3.5 Evolution of accuracy and parameter reduction over iterations in the prun-

ing process [23] . 24

3.6 Quantization process [23] . 24

3.7 Quantization flow [23] . 25

iii

3.8 Compilation flow [23] . 26

3.9 CUDA compilation flow . 27

3.10 YOLO version history [30] . 28

3.11 YOLOv3 architecture [30] . 29

3.12 Residual learning [32] . 29

4.1 System workflow . 32

4.2 KV260 as edge computing . 33

5.1 YOLO inference all platforms . 38

5.2 Resnet-50 inference all platforms . 38

5.3 Memory Usage Comparison . 40

5.4 Delta W comparison . 42

5.5 FPS per W . 43

5.6 Temperature comparison . 44

5.7 FPS per euro . 46

6.1 Time of development . 48

6.2 Pentagram comparison between the three platforms 49

List of Tables

3.1 ResNet versions [33] . 30

4.1 Voltage of platforms . 32

4.2 Platform OS . 33

5.1 Total memory usage . 39

5.2 Power consumption of the platforms . 41

v

List Of Acronyms

APU Application Processing Unit

ASIC Application-Specific Integrated Circuit

BRAM Block Random Access Memory

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DNN Deep Neural Network

FPGA Field Programmable Gate Array

FPS Frames Per Second

GPU Graphical Processing Unit

HDL Hardware Description Language

HLS High-Level Synthesis

LUT Look Up Tables

FF Flip Flop

MUX Multiplexer

SSI Small Scale Integration Chip

PROM Programmable Read-Only Memory

FA Full Adder

DSP Digital Signal Processor

SM Streaming Multiprocessors

PLD Programmable Logic Device

CHAPTER 0. LIST OF ACRONYMS 2

YOLO You Only Look Once

ResNet Residual Learning Model

CMOS Complementary Metal-Oxide-Semiconductor

PCI Peripheral Component Interconnect

RTX Ray Tracing

CRT Cathode-Ray Tube

INT8 8-bit integer

1 Introduction

The Internet of Things has evolved and nowadays more and more devices are being con-

nected to the network and have small computing capabilities, these devices usually lever-

age the use of cloud computing, using cloud services to do the computation of the data

they receive from their sensors. But a lot of new applications that are being deployed need

the computation to be done at the edge, the connection between the network and the real

world, this need created edge computing.

Edge computing also focuses on the efficiency of processing the data at the edge of the

network instead of cloud computing, an example of this need was [1]. There are multi-

ple needs that edge computing solves, faster speed while processing the data rather than

using broadband to send the data to the cloud and wait for the compute. For example, an

autonomous vehicle generates a lot of data each second and it needs it to be processed in

real-time which means we cannot access cloud services for its processing [2].

Edge computing also solves the change from data consumer to producer, as more people

generate new data and not only consume it on their devices. In Fig 1.1, we describe in a

simple image the edge computing paradigm.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Edge computing paradigm [3]

Copyright © 2016, IEEE

The new advent of AI has also created the need for new hardware to process and train

the new AI models and also to acquire the data needed for this [4]. A lot of the new

models and autonomous systems require the computation to be done by edge computing,

so the new hardware has to comply with the edge computing paradigm and constraints

such as low power consumption, small size, and passive cooling.

With the advent of AI another field saw its rise, autonomous robots, we can see that the

creation of new AI models has helped robots to navigate and interpret the environment

faster and with better accuracy, with most models being able to be executed in real-time.

For this, we need the use of hardware accelerators for AI in edge computing.

This thesis aims to assess and contrast the new hardware intended for processing and

1.2 RELATED WORKS 5

training AI models in both edge computing and for autonomous robots, such as Field

Programmable Gate Arrays (FPGAs) and Graphic Processing Units (GPUs). Our base

criteria of evaluation focus on power consumption, efficacy, development process, time

of development and temperature of operation. In our work, we are going to use multiple

models to evaluate given that their intended application is in autonomous robotics and

their complexity.

1.1 Significance and Motivation

This thesis holds significance due to the need to acquire empirical data and evidence that

will support which hardware accelerator between the Kria KV260, Jetson Nano and RTX

3060 is best for the models in question and why it is better for those models, this will be

achieved with rigorous testing and evaluation of such platforms. The motivation of this

thesis was based on the high volume of research and development of edge computing and

autonomous robotics, and we will be addressing the next research questions:

1. What type of hardware accelerator to choose in a new development?

2. Can FPGAs perform better than GPUs in these types of tasks, based on our criteria

of evaluation?

3. How efficient are the three platforms in their tasks, can the difference in efficiency

modify the election between them?

1.2 Related works

The literature shows several studies that have mentioned or used different hardware accel-

erator platforms, including the work of a colleague [5], studies such as [6] which employ

different platforms than the ones for this thesis and [7] which employ similar platforms in

a different context.

1.4 STRUCTURE 6

Studies use tools dedicated to edge computing such as [8], which are tools we aim to use

in our research. Despite using the same tools their research is based on optimization, and

our main research point is the evaluation of the platforms and their efficiency with some

DNN models.

The platforms used in this thesis have appeared in multiple research papers with a similar

usage as our topic, for example, [9] shows the usage of the Kria KV260 as a hardware

accelerator for the random forest algorithm. In another instance [10] we observe how the

Jetson Nano performs real-time inference of the You Only Look Once (YOLO) model,

one of the models we will implement. In addition, we can see the usage of the RTX 3060

platform on a case of real-time inference in [11], which provides measurements similar to

our thesis.

1.3 Contribution

The purpose of this document is to detail the implementation of hardware accelerators for

AI in a way that is both instructive and delivers value to the reader. This research provides

the exploration of different edge computing platforms with different technologies and dif-

ferent DNN models that were used extensively in the research community. In particular,

we compare performance, power consumption, temperature during operation, efficiency,

performance-to-cost ratio, and more between three different hardware: a Jetson Nano, a

Kria KV260, and an RTX 3060.

1.4 Structure

The thesis follows this organization:

• Chapter 2 introduces the necessary knowledge and relevant literature on the topic.

• In chapter 3, we describe in detail the design followed for this process, going into

1.4 STRUCTURE 7

higher detail on the specialities of the FPGA platform and how it differs from the

rest of the hardware to evaluate.

• In chapter 4, we explain the implementation of the system.

• Chapter 5 presents the data re-collected during the experiment with ease-to-follow

graphs and the analysis of the collected data.

• And lastly, chapter 6 presents the conclusion and future work directions.

2 Background

The advance in edge computing has been incredible, with leaps in performance, but bat-

tery technologies have not been able to keep up, this has created a need for power-efficient

and specialised hardware, in our case in robotics, we have actuators, sensors and proces-

sors, we are going to dive into the solutions that specialise in robotics systems in this

context.

2.1 Hardware accelerators

Hardware accelerators are platforms designed to assist a specific purpose, improving the

performance in some parts of a process. Usually, these accelerators are designed to be the

target of offloading intensive computation and performing it in parallel and concurrently.

In this field different types of solutions have sprouted during the research, the most used

are GPUs, ASICs and FPGAs [12]. We will overview these different solutions in this next

section.

2.2 FPGAs

Programmable devices have been in digital design since the beginning of computing tech-

nologies, an example is a Programmable Read-Only Memory (PROM), the last evolution

of programmable device is called FPGA, which work in a variety of applications such as

the simulation of ASIC, implementation of Random Logic, Replacement of Small Scale

2.2 FPGAS 9

Integration (SSI) Chips for Random Logic, prototyping and in specific compute engines

for FPGAs [13]. The implementation process of FPGAs follows different steps, as shown

in Fig 2.1.

Figure 2.1: FPGAs implementation process [13]

Copyright © 1992, Springer Nature Switzerland AG. Part of Springer Nature.

The first step is to design the initial logic entry circuit, this can be done either with

a program to draw electronic schematics or with hardware design layer (HDL) program-

ming languages, such as VHDL or Verilog. After that, usually, the code expressions

2.2 FPGAS 10

are optimized by different tools which reduce the area and improve the speed of the cir-

cuit. Subsequently, it gets transformed into a circuit of FPGA logic blocks, this step is

called technology mapping. Last, we generate the placement of the logic blocks inside the

board and route the wires between logic blocks [13]. The routing depends on the differ-

ent types of architecture inside the FPGA, the most common ones are illustrated in figure

2.2, namely, Symmetrical array, Row-based, Sea-of-gates and Hierarchical Programmable

Logic Device (PLD).

Figure 2.2: FPGAs different architectures [13]

Copyright © 1992, Springer Nature Switzerland AG. Part of Springer Nature.

Within the logic blocks, there are various components, as illustrated in figure 2.3.

Specifically, it consists of Look-up Table (LUT), Flip-Flop (FF) to store the output of the

LUT, Multiplexer (MUX) to control signal routing, and specialized hardware technolo-

gies that enhance arithmetic operation throughput, such as a Full Adder (FA).

2.3 GRAPHICAL PROCESSING UNITS 11

Figure 2.3: Internal structure of FPGA’s Control logic block

Modern FPGAs not only include logic blocks, they also include other components

such as different I/O communication chips, for example USB ports, Serial protocols; dig-

ital signal processors (DSPs); Analog-digital converters; Block Random Access Memory

(BRAMs).

2.3 Graphical Processing Units

GPUs have a long history in computing architectures. At first, they were created to help

the system produce images and output them into cathode-ray tube (CRT) displays, as older

CPUs did not contain graphical units inside the silicon die. Since the display technology

became more advanced, GPUs needed to compute more advanced operations. With the

advances in architecture design, GPU can now support a wider range of operations[14].

Hence, it has provided engineers with the opportunity to employ those computation re-

sources for other tasks. For instance, it was thought that by offloading small and repeti-

tive tasks to the GPU, we can help relieve the stress on the CPU if those computations.

Moreover, it could offset the latency between components using the highly parallelism

capability of the GPUs.

This created the idea of General Purpose Computation using GPUs, in the beginning

of this idea, programming into a GPU was hard and tedious. Nowadays, there are a lot

of new platforms that provide ease of access to this domain. One of the most prominent

2.3 GRAPHICAL PROCESSING UNITS 12

vendor of GPU technology is Nvidia, which also provide a set of toolkits and libraries for

developers who use their graphic cards.

We are going to explain the architecture of the GPUs and the reason for their perfor-

mance in parallel computing.

2.3.1 GPUs architecture

The architecture of the GPU is constructed based on scalable arrays of Streaming Multi-

processors (SM) and the reason hardware parallelism is conquered is because the replica-

tion of this architectural block [15]. An SM contains a lot of components, as illustrated in

the figure 2.4: Compute Unified Device Architecture (CUDA) core, registers and shared

memory.

Figure 2.4: Insides of an SM [15]

This figure is reproduced with permission from the book Professional CUDA C Programming by Cheng et

al., publish by John Wiley & Sons

2.3 GRAPHICAL PROCESSING UNITS 13

Every SM within a GPU is designed to manage the simultaneous execution of hun-

dreds of threads. Generally, there are multiple SMs per GPU. Upon launching a kernel

grid, the thread blocks within that grid are allocated across the available SMs for execu-

tion. A thread block is formed by a specific number of threads, usually defined by the

specific architecture of the GPU, as shown in Fig 2.5.

Figure 2.5: Thread architecture of CUDA [15]

This figure is reproduced with permission from the book Professional CUDA C Programming by Cheng et

al., publish by John Wiley & Sons

CUDA follows a memory hierarchy, as demonstrated in the figure 2.6, where the

CUDA memory models create unity between separate host and device memory systems.

Additionally, the memory hierarchy can be modified for excellent performance. The lev-

els in the hierarchy of the memory model are:

1. Registers: Registers take action when a variable is declared in a kernel. These reg-

isters are private to each thread. They are scarce resources and they have small hardware

2.3 GRAPHICAL PROCESSING UNITS 14

limits.

2. Local memory: Variables that could be inside registers but do not fit anymore are

stored in local memory. An example of those variables could be large arrays.

3. Shared memory: Shared memory is on-chip and has a faster response time than

local memory. There is a small amount of shared memory for each SM. It is the base of

inter-thread communication, the access to it has to be synchronized.

4. Constant memory: Constant memory is part of the device memory and can be

cached to an SM constant cache. It is read-only and is usually utilized for mathematical

formulas with constants.

5. Texture memory: Texture memory is part of the device memory and can be cached

to SM read-only cache. It is optimized for 2D spatial locality.

6. Global memory: Global memory is part of the device memory and it contains other

parts such as:

- L1 Cache, is individual per each SM.

- L2 Cache, is shared by all SM.

Figure 2.6: Memory hierarchy of CUDA [16]

Copyright CC-2.0

2.4 ASICS 15

2.4 ASICs

ASIC is an IC designed for a particular application or end-use[17]. Different technologies

are applied in the development of an ASIC, as illustrated in the figure 2.7.

1. Full custom design: Each logic cell inside the ASIC is designed from the ground

up, starting at the transistor level to the higher level. In this case, the designer can exploit

the custom design by wiring areas between logic cells to create compact functions using

techniques such as over-the-cell routing.

Figure 2.7: (a) Construction of larger blocks with custom cells. (b) Over-the-cell routing

[17]

Copyright © 1996 West Virginia University

2. Standard-cell ASIC technology: This process uses predefined logic cells to create

the ASIC, the final quality of the cells will depend on the library used [17].

3. Gate array ASIC Technology: The gate array technology [18] uses prefabricated

wafers with simple gate cells, and the ASIC designer specifies the final metalization layer

added to customize the gate array. An evolution of this process is the sea-of-gates tech-

nology, in the sea-of-gates more waves and layers are used, creating a sea-of-gates.

4. Complementary Metal-Oxide-Semiconductor (CMOS) Circuits: With the increase

2.4 ASICS 16

of complexity in ASIC design, standard high-level functions have become more popular,

such as Peripheral Component Interconnect (PCI) interfaces, RAM arrays, etc. Using this

high-level functions to create a circuit takes advantage standard functions for an easier

desing process [17]. A case of modern ASIC design for AI processing and modelling

using the described technologies is the Tensor Processing Unit (TPU). In Fig 2.8 we can

see the latest TPU architecture, inside it contains a tensor core, this tensor core contains

multiple units:

Figure 2.8: V5-TPU architecture [19]

Copyright CC-4.0

Portions of this page are reproduced from work created and shared by Google and

used according to terms described in the Creative Commons 4.0 Attribution License.

1. Scalar Unit: Inside are performed scalar calculations, such as 2.1

a · b = |a| |b| cos θ (2.1)

2. Vector Unit: A vector unit is a structure that computes vector-specific operations, an

2.5 DEEP NEURAL NETWORK MODELS (DNN) 17

example in the figure 2.9. The most important part about vector units is that they operate

on the whole vector in one cycle, speeding up the computation.

Figure 2.9: Basic vector unit operation

3. Matrix multiplication unit: The matrix multiplication units follow the same idea

as a vector unit, but instead of containing multiple operations it focuses only on matrix

multiplication, which makes it fast and efficient.

2.5 Deep Neural Network Models (DNN)

DNNs are artificial neural networks engineered by adding a combination of layers of

neurons in different patterns of connection [20]. The layers are organized in a structure

that introduces the possibility of having an input layer, and an output layer. The different

layers take the raw data and extract relevant attributes. The neurons in the layers utilize

mathematical functions on the raw data to be able to extract those relevant attributes. An

example of one of these functions is combination (2.2).

2.5 DEEP NEURAL NETWORK MODELS (DNN) 18

Combination =
n∑︂

i=1

((Inputsi ×Weightsi) + Bias) (2.2)

After the processing on each layer, it has an activation method, which is needed to have

non-linearity. There are different methods, some are SoftMax, Sigmoid, and Rectified

Linear Units (ReLU) [21]. The sigmoid (2.3) function uses exponentiation, which is quite

resource-heavy. In the equation of ReLU (2.4), activation goes in a different direction,

opting for a less resource-consuming operation.

Sigmoid(x) =
1

1 + e−x
(2.3)

ReLU(x) = max(0, x) (2.4)

After all layers have produced their output, we apply backpropagation to correct the

errors. There exists different types of backpropagations, in here we show its basic pro-

cedure in figure 2.10 . Usually, we configure how much we want to depend on back-

propagation and how much we want to keep the output by using different weights during

training.

Figure 2.10: Basic backpropagation [22]

Copyright CC-4.0

3 Design overview

The objective of this chapter is to outline the design of the systems intended for evaluating

the hardware accelerators. For the purpose of comparison across different platform, we

implemented on there different setup: (1) the first system will use a Nvidia RTX-3060,

which is a general purpose GPU; (2) the second system will use a Jetson Nano; and (3)

the third system will use a AMD Xilinx Kria KV260 platform. We have chosen these

platforms for three reasons: (1) The Kira KV260 and the Jetson Nano are both edge

computing platforms that were specialised for acceleration, with the first being an FPGA

and the second a GPU-based platform; (2) the difference between both is what motivates

us to make the comparison; and furthermore (3), we chose the RTX 3060 as a comparison

between a consumer platform against the other specialised platforms.

3.1 FPGA preparation

We use the unified software platform for FPGAs to assist with the development of the

KV260. That unified software platform is called Vitis, and it has been developed by

Xilinx.

This platform has multiple components:

1. Vitis accelerated libraries: Xilinx provides them to support the implementation,

some of these libraries are Solver, DSP, Sparse, and Basic Linear Algebra Subroutines

(BLAS)[23].

2. Vitis Core Development Kit: This kit includes tools required for compiling, analyz-

3.1 FPGA PREPARATION 20

ing and debugging.

3. Xilinx Runtime library: The XRT allows communication between applications on

host machine and accelerator.

4. Vitis AI: This tool 3.1 is used for AI inference development. This encompasses

DPUs uniquely optimized for neural network computations and accelerating deep learn-

ing.

Figure 3.1: Vitis AI [23]

© 2024 Advanced Micro Devices, Inc.

The Kria KV260 speciality is the possibility of generating a Deep Learning Processor

Unit (DPU), shown in figure 3.2, as the FPGA instead of designing it from scratch using

HDL. Inside the DPU we can find different elements similar to the elements that you

could find inside an FPGA design, such as DPS, BRAM, UltraRAM, LUTs, and FFs.

This speciality enables importing an AI engine from AMD sources and connecting it to

the DPU design.

The platform also makes it available to have multiple DPU instances and transforms

the size of the DPUs.

3.1 FPGA PREPARATION 21

Figure 3.2: DPU for Zynq UltraScale+ [23]

© 2024 Advanced Micro Devices, Inc.

Both edge computing platforms are developed and optimized for implementing DNN

models, however the RTX-3060 is optimized for game and video processing performance.

The FPGA board, on the other hand, has extra optimization that we can implement due to

their reconfigurability. To achieve the optimization the FPGA will have multiple processes

used [23].The multiple steps that we followed are:

1- Pruning:

3.1 FPGA PREPARATION 22

Figure 3.3: Pruning [23]

© 2024 Advanced Micro Devices, Inc.

The AMD’s AI-Optimizer will obtain a neural network and use a pruning process

[24], as depicted in Fig 3.3. Initially, the optimizer conducts a sensitivity analysis aimed

at determining the extent to which each convolution kernel in every layer influences the

overall output [25]. Next, the kernel weights that are going to be pruned, i.e., zeroed. This

is made possible by evaluating the pre-trained model before removing any element. Then,

We adjusted the weights through several training epochs to regain accuracy. It usually

performs pruning in many iterations, for each, we can examine the state of the neural

network, the loss in accuracy and the number of selected neurons to prune. Depending on

the state, we can decide when to stop the pruning or roll back as needed [23].

After the last phase of the process, which erases the neurons elected for pruning,

we have a model with a smaller number of neurons and, thus, less computation. For

instance, a layer that previously necessitated computing 128 channels may now only need

to compute 87 channels after pruning [25]. Figure 3.4 shows a graphical idea of the flow

of pruning.

3.1 FPGA PREPARATION 23

Figure 3.4: Pruning process flow [25]

Copyright 2024 Advanced Micro Devices, Inc

Figure 3.5 shows the accuracy and parameter reduction modification during the loop

of pruning.

3.1 FPGA PREPARATION 24

Figure 3.5: Evolution of accuracy and parameter reduction over iterations in the pruning

process [23]

© 2024 Advanced Micro Devices, Inc.

2 - Quantization [26]:

Figure 3.6: Quantization process [23]

© 2024 Advanced Micro Devices, Inc.

This method enhances deployment efficiency by employing integer quantization to

minimize data path bandwidth, energy consumption, and memory usage [26].

In this case, we leverage INT8-quantization of the previously pruned network. The

Vitis AI Quantizer first realizes a calibration step, where it takes a small part of the training

samples, and then pushes them through the network to observe the activation of each

3.1 FPGA PREPARATION 25

channel. The weights and activations were then quantized as 8-bit integers. We usually

call this step Post-Training Quantization [27].

In Fig 3.7 we can observe the flow of the quantization process.

Figure 3.7: Quantization flow [23]

© 2024 Advanced Micro Devices, Inc.

3. Compilation:

After the quantization, the compilation process is needed. The compiler is employed

to implement various optimizations; for example, batch normalization operations are

fused with convolution when the convolution operator precedes the normalization op-

erator. Given that the DPU accommodates multiple dimensions of parallelism, effective

instruction scheduling is crucial for harnessing the innate parallelism and maximizing

data reuse potential within the graph [25].

Figure 3.8 shows the compiler flow:

3.1 FPGA PREPARATION 26

Figure 3.8: Compilation flow [23]

© 2024 Advanced Micro Devices, Inc.

The Jetson Nano is provided with an image prepared for running inference manifesting

the ease of use of the platform. On the other hand, to be able to perform inference in the

RTX 3060 the Nvidia toolkit is necessary, it prepares models and runs them in consumer

graphic cards. Figure 3.9 we can see how the compilation process works for any .cu file

that we are going to use in development.

3.2 AI MODELS 27

Figure 3.9: CUDA compilation flow

© Copyright 2024, NVIDIA

3.2 AI Models

We have discussed all preparations for running models. In this section, we discuss the

models that were implemented to evaluate.

3.2 AI MODELS 28

3.2.1 You only look once (YOLO)

Real-time object detection became a core piece on multiple applications, such as au-

tonomous vehicles, robotics, video surveillance, and augmented reality.

There have been a lot of different object detection algorithms, the You Only Look

Once (YOLO) model became popular for being a middle ground between performance

and precision [28]. The model has had multiple iterations improving performance or

adding new features as shown in Fig 3.10. The common dataset used for training this

model is the Microsoft Common Objects in Context (COCO) [29].

Figure 3.10: YOLO version history [30]

© Copyright 2024, ACM

The architecture of YOLO has been improved for each iteration, we include the

YOLOv3 architecture 3.11 as an example of the YOLO architecture.

3.2 AI MODELS 29

Figure 3.11: YOLOv3 architecture [30]

© Copyright 2024, ACM

3.2.2 ResNet

With the implementation of larger and larger deep learning models, previous research has

found more errors in training and loss of accuracy, to prevent this, residual learning was

created. As shown in Fig 3.12, residual learning improves inter-connectivity in the layers

and prevents degradation on the deep layers of the model [31].

Figure 3.12: Residual learning [32]

Copyright © 2015 arXiv

There are multiple models based on Resnet as shown in the table 3.1, the difference

between them is the number of layers and the dimension of their filters, we have chosen

3.2 AI MODELS 30

to show the layer conv4_x as it is the one with the biggest changes between versions. We

elected ResNet-50 as the model to use in the experiment due to it being the first to have a

bit more complexity in its layers yet not a lot of layers in comparison with other versions

such as ResNet-101 or bigger.

Layer ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152

conv4_x 2×

⎡⎢⎣ 3× 3, 256

3× 3, 256

⎤⎥⎦ 6×

⎡⎢⎣ 3× 3, 256

3× 3, 256

⎤⎥⎦ 6×

⎡⎢⎢⎢⎢⎣
1× 1, 256

3× 3, 256

1× 1, 1024

⎤⎥⎥⎥⎥⎦ 23×

⎡⎢⎢⎢⎢⎣
1× 1, 256

3× 3, 256

1× 1, 1024

⎤⎥⎥⎥⎥⎦ 36×

⎡⎢⎢⎢⎢⎣
1× 1, 256

3× 3, 256

1× 1, 1024

⎤⎥⎥⎥⎥⎦

Table 3.1: ResNet versions [33]

Copyright CC-4.0

4 Implementation and Platform

Characteristics

This system aims to identify the objects in front of the camera. We have used the COCO

dataset as explained before for training and calibration, steps previously presented in the

last chapter. This dataset contains 123.287 images which are already annotated and with

all the information prepared for training [34]. Moreover, this dataset is used plenty of

times in research endeavours. Subsequently, the models were trained using 100,000 im-

ages, while the remaining 23,287 were allocated for the calibration process conducted

during the quantization procedure.

In this experimental study, two deep neural network models, namely ResNet-50 and

YOLO, were utilized. These selections were made with the intention of encompassing

a spectrum of performance attributes and architectural complexities within the scope of

the investigation. Each system was subjected to testing using all models within a consis-

tent environment in three runs of 60 seconds, with longer runs of 20 minutes if anomalies

occurred.

The experimental procedures involved the utilization of three different hardware acceler-

ators, a single-board GPU-based Jetson Nano from NVIDIA, a Kria SOM KV260 FPGA-

based from AMD and a mobile RTX-3060. All accelerators were employed both as edge

computing devices and to run the OS necessary in each case. The reason we used them as

stand-alone devices arises from the need to properly evaluate the power consumption and

CHAPTER 4. IMPLEMENTATION AND PLATFORM CHARACTERISTICS 32

temperature of the devices without interference from other systems.

The only sensor deployed in this work was a webcam with a 1920x1080 resolution im-

plemented as an RGB camera. This camera was connected to each platform through a

USB port, the platform had to process the camera feed, realize the inference and display

the results in the display. This display was connected via HDMI to the platforms. All

platforms were AC-powered, all using barrel connectors, each with its specific voltage as

shown in table 4.1.

Platform Voltage

Jetson Nano 5V

Kria KV260 12V

RTX 3060 12V

Table 4.1: Voltage of platforms

Figure 4.1: System workflow

CHAPTER 4. IMPLEMENTATION AND PLATFORM CHARACTERISTICS 33

Figure 4.2: KV260 as edge computing

© 2024 Advanced Micro Devices, Inc.

The operating system installed on each of the platforms can be seen in the table 4.2.

Platform OS

Jetson Nano Ubuntu 20.04

Kria KV260 Petalinux

RTX 3060 Ubuntu 22.04

Table 4.2: Platform OS

CHAPTER 4. IMPLEMENTATION AND PLATFORM CHARACTERISTICS 34

Throughout the training phase, models previously trained on the extensive Microsoft

COCO dataset were employed [29]. Therefore, for the Kria KV260 we needed to perform

quantization employing Vitis AI. Essentially, within the Vitis AI environment, three dis-

tinct frameworks exist for deploying quantization: ONNX, TensorFlow, and PyTorch.

PyTorch was our selection due to the vast support and documentation for the frame-

work. Upon successfully deploying the PyTorch framework in the environment, we per-

formed the quantization process explained in the last chapter. This resulting model was

compiled within the corresponding environment for the DPU of KV260, whose name is

DPUCZDX8G due to naming convention. A more intrinsical illustration of the inference

process for Jetson Nano and KV260 is explained in Algorithms 1 and 2, the RTX 3060

follows the same process as the Jetson Nano.

CHAPTER 4. IMPLEMENTATION AND PLATFORM CHARACTERISTICS 35

Algorithm 1 Jetson Nano inference
1: model ← trained_model

2: device← cuda

3: Load model to device.

4: Initialize pipeline.

5: Get camera input as source.

6: Connect to the device and start the pipeline.

7: while True do

8: Convert the RGB frame to a PyTorch tensor.

9: Load the tensor to the GPU.

10: Perform inference using the model.

11: Calculate FPS.

12: if model == YOLO then

13: Identify object and draw a box.

14: else

15: if model == ResNet-50 then

16: Identify object.

17: end if

18: end if

19: end while

CHAPTER 4. IMPLEMENTATION AND PLATFORM CHARACTERISTICS 36

Algorithm 2 Kria KV260 inference
1: Load Xmodel.

2: Get camera input as batch of images.

3: while True do

4: Perform inference using the model.

5: Calculate FPS.

6: if model == YOLO then

7: Identify object and draw a box.

8: else

9: if model == ResNet-50 then

10: Identify object.

11: end if

12: end if

13: end while

To acquire experiment measurements such as temperature, power, and memory usage,

we employed tools provided by the platforms. In the case of both Jetson Nano and Kria

KV260, they contain specific ICs to measure these values and provide their API to allow

the user to access them through the preinstalled tools directly. However, in the case of

the RTX-3060, we used the NVIDIA docker which provides all the specific values that a

GPU reports.

5 Experimental Results

The outcomes depicted in this chapter were acquired through executing the inference of

the two DNN models on all platforms Jetson Nano, Kria KV260 and RTX 3060 using

the previously described system implementation. The models chosen for this experience

were Resnet-50 and YOLO and all the video sources have been inferred in 1920x1080

resolution. Fundamentally, we derived our assessments based on four metrics, namely

throughput, memory usage, delta of power and temperature.

Figures 5.1 and 5.2 illustrate the frames per second (FPS) of all the platforms during

inference. While the ResNet-50 outperformed YOLO when running on the Jetson Nano

with a maximum of 13 FPS, we consider the platform only suitable for running real-

time inference for fixed robots. Subsequently, ResNet-50 also outperformed YOLO when

running on the KV260 with a maximum of 33 FPS, we consider the platform suitable

for running real-time inference in fast-moving robots and slow or fixed. Last, the YOLO

outperformed ResNet-50 when running on the RTX 3060 with a maximum of 240 FPS, we

consider the platform suitable for running real-time inference in aerial robots, fast-moving

robots, and slow or fixed. The notable performance fluctuations that we can observe

among the accelerators with these DNN models may be attributed to variations in several

factors, including the number of convolutional layers, the complexity of the activation

functions employed, memory usage, and parameter magnitude. Also, we believe that

another factor of the overall lacklustre performance of all platforms is the big size of the

images, as the video feed was 1920x1080.

CHAPTER 5. EXPERIMENTAL RESULTS 38

Figure 5.1: YOLO inference all platforms

Figure 5.2: Resnet-50 inference all platforms

CHAPTER 5. EXPERIMENTAL RESULTS 39

The memory usage in MB of all the platforms while running the DNN models is

shown in the figure 5.3 and in the next table 5.1, we can see the memory usage in

comparison with the total memory available in each platform.

The Jetson Nano is an outlier, as it utilizes too much memory, and requires the swap

memory to be able to continue working during the inference. Furthermore, we believe

this to be another reason for the low inference throughput of the platform, as accessing

the swap memory incurs more latency due to the swap space being on a disk which is a lot

slower than RAM. Moreover, the table shows us how the quantification process followed

in the implementation reduced the memory usage of the KV260, which was only 14,91%.

The number of convolutional layers and magnitude of the parameters have contributed to

the usage of more memory in the Jetson Nano since the Jetson Nano uses floating-point

parameters.

Platform Total Memory/Used Memory (MB) % usage Need for swap memory

Jetson Nano 3956/3200 80,88 YES

Kria KV260 4023/600 14,91 NO

RTX 3060 6144/480 7,81 NO

Table 5.1: Total memory usage

C
H

A
PT

E
R

5.E
X

PE
R

IM
E

N
TA

L
R

E
SU

LT
S

40

Figure 5.3: Memory Usage Comparison

CHAPTER 5. EXPERIMENTAL RESULTS 41

Evidently, Kria KV260 has outperformed the Jetson Nano in previous metrics. How-

ever, before concluding which platform is most suitable for real-time edge computing

applications, three additional metrics need evaluation, namely, power consumption, tem-

perature of operation and performance per cost.

Platform Idle (W) Running inference (W)

Jetson Nano 1,90 9

Kria KV260 5,50 10,70

RTX 3060 10 45

Table 5.2: Power consumption of the platforms

While the power consumption of the Kria KV260 is higher than the Jetson Nano, it

attained a better efficiency and stability based on the ∆W [35], [36]:

∆W =
n∑︂
0

W

idle
(5.1)

Specifically, ∆W is the total power consumption (W) of the calculations with the

model parameters divided by the power consumption while the platform is in idle mode.

For a platform to achieve efficiency and stability, ∆W should be between 1 and 2, with 2

being the maximum allowed to consider the platform efficient, more than 2 will indicate

an issue with efficiency. Moreover, the system efficiency increases the closer that ∆W is

to 1 since the power consumption of the system running the model is relatively equal to

when it is idling. Furthermore, the Kria KV260 obtained, overall, a better performance

per watt than the Jetson Nano, as illustrated in figure 5.5. This means that together with

∆W we can conclude that the Kria KV260 is the most efficient platform in the experi-

ment, as the performance per watt measurement supports the efficiency comparison.

CHAPTER 5. EXPERIMENTAL RESULTS 42

Figure 5.4: Delta W comparison

CHAPTER 5. EXPERIMENTAL RESULTS 43

Figure 5.5: FPS per W

Temperature readings serve as a probing point into the platform’s operation. The

KV260 outperforms the rest, being the coolest as shown in the figure 5.6. We also found

that the Jetson Nano shows a continuous increase in temperature during the run, which

is an anomaly; this anomaly made us consider running a longer experiment to evaluate

the temperature in detail as we expected the platform to reach a thermal throttling state,

but the results of the long runs with the Jetson Nano showed the package temperature

rose to a dangerous 109ºC, and the GPU to 93ºC, both of these temperatures are danger-

ous for the silicon and indicates a missing thermal throttling feature. After the readings,

we can assure that the Jetson nano requires better optimization or the usage of smaller

computational models to run at its operation temperature range.

C
H

A
PT

E
R

5.E
X

PE
R

IM
E

N
TA

L
R

E
SU

LT
S

44

Figure 5.6: Temperature comparison

CHAPTER 5. EXPERIMENTAL RESULTS 45

The FPS per euro formula is a heavily used metric in evaluating the choice of the

accelerated hardware, especially for enthusiasts. As formulated in (5.2), this formula

can also measure the value per euro. In specific, this measurement provides us with

an overview of the performance in relation to the total cost. Moreover, this is another

aspect that research teams have to evaluate when choosing which platform to acquire for

development. Again, the Kria KV260 has the overall best performance per cost, with

an outlier in the RTX 3060 running the YOLO model, as shown in figure 5.7. This also

shows that the FPGA-based platform is the best value for money spent. Moreover, if we

have taken into account the other metrics mentioned previously, the Kria KV260 platform

is considered the most appropriate for real-time edge computing applications.

FPS

e
=

FPS

TotalCost
(5.2)

CHAPTER 5. EXPERIMENTAL RESULTS 46

Figure 5.7: FPS per euro

6 Conclusion

6.1 Discussion

Now that we have collected all the graphs and experiment results, we can answer the

questions we had at the beginning of the development of this thesis.

1. What type of hardware accelerator to choose in a new development?

2. Can FPGAs perform better than GPUs in running inference of YOLO and ResNet-

50 for object detection, based on our criteria of evaluation?

3. How efficient are the three platforms(Jetson Nano, Kria KV260, RTX 3060) in

running inference YOLO and ResNet-50 for object detection, can the difference in

efficiency modify the election between them?

The type of hardware accelerator to choose for development depends on five factors,

namely, performance (measured by FPS), power efficiency, time of development, unit

cost and the size of the device. We are going to explain our decision for each factor.

Firstly, if the development requires the best performance and there is no efficiency and

cost limit, the best choice would have been RTX 3060, as it performs the best in each task.

Secondly, if energy efficiency is the most essential target, then the best choice would be

the Kria KV260 as it performs the best in terms of FPS/W. Thirdly, if the development

cycle is limited, based on figure 6.1, the RTX-3060 is the most suitable, since it took one

day to deploy the system, whereas, with Kria KV260, it took 25 days to have the system

6.1 DISCUSSION 48

ready. However, if the aim of the design is to minimize the unit cost, then RTX-3060

would not be a suitable option. Lastly, considering that the RTX 3060 platform is a lot

bigger than the other two platforms, if the available size is smaller than a laptop, then

then decision is between the other two platforms, in that case, the lowest development

time was using the Jetson Nano.

Figure 6.1: Time of development

Figure 6.2 shows a summary of the five factors of each platform mentioned previously,

the closer to the centre of the pentagon, the worse that characteristic is, for example, the

RTX 3060 is the most expensive platform out of the three, this makes its graph closer to

the centre in the cost axis.

6.1 DISCUSSION 49

Figure 6.2: Pentagram comparison between the three platforms

Regarding the second research question: Can FPGAs perform better than GPUs in

running inference of YOLO and ResNet-50 for object detection? From the frame-rate

per wattage comparison in figure 5.5, we can see that the Kria KV260 has performed

comparably to the RTX3060 and better than the Jetson Nano. Moreover, in terms of

frame-rate per euro comparison in figure 5.7, we can also notice that the Kria KV260

performs better than the Jetson Nano and trades blows against the RTX3060. The last

research question brings us to the power efficiency of each platform and how it can modify

the election between them, we believe that the requirements for each environment and

experiment will modify which platform to choose. If the overall energy budget is low,

choosing a more energy-efficient platform will provide more headroom to power other

hardware needed or keep the experiment running for longer on a battery pack.

Reflecting from the development of the object-detection model, we would like to ad-

dress the following topics: Firstly, there is a lack of documentation and lack of mainte-

nance of the documentation of the Kria KV260. Thus, this has been the main challenge

that prolonged our development time with the KV260. Secondly, there was a lack of doc-

umentation on the object detection topic. We had to build our own specific solution to

6.2 FUTURE WORKS 50

address the research questions that have not been documented before, as compared to the

better-maintained platforms like the Jetson Nano or the RTX 3060. Evidently, if the team

that is going to work with the Kria KV260 is not an expert in this platform already, then

they will spend a long time to develop the system. Hence, this could be a impossible for

research teams that require short development cycle.

Concerning the topic of thermal dissipation and power consumption, the Jetson Nano,

as shown in figures 5.2 and 5.6, can reach temperatures higher than 100ºC and, moreover,

it can continue to increase the power drawn. This indicates a lack of a thermal throttling

feature, and hence, can potentially cause major damage as it does not include active cool-

ing either. Nonetheless, NVidia guarantees that it should be safe enough to run on passive

cooling without a fan.

6.2 Future works

The thesis has evaluated the performance and energy efficiency of the platforms Jetson

Nano, Kria KV260 and RTX 3060 running inference of the models YOLO and ResNet-50.

To have an even deeper insight on the different characteristics of the evaluated computing

platforms, the following steps should be performed:

First, the design of a new thermal-protective test suit, with its own temperature and

power readings based on different sensors and cameras, which will help diagnosing prob-

lems like overheating on the Jetson Nano. This test suit could include its own active

cooling system, with multiple fans or heat-dissipating components.

Second, the use of cameras would influence the ways of acquiring images for the in-

ference. In the context of this thesis, we implemented the system with a 1920x1080 RGB-

camera, which can provide the full details for the feature extraction during the training of

the DNN model. We could have alternatively used a camera with a different data transfer

method, such as using different type of communication bus, or camera sensors that pro-

6.2 FUTURE WORKS 51

vide allow adjustable resolution and quality, or cameras with built-in image pre-processor.

Thirdly, by adding more edge computing platforms to the evaluation, we could have

used two edge computing platforms and a normal user platform, but other platforms in

the research field are being used. Additionally, we could add more platforms to evaluate

using the previous techniques such as Google Coral [37] and Intel Movidius [38] since

they could provide a wider view of the current edge computing environment and which

platform to choose for each type of development.

References

[1] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The case for vm-based

cloudlets in mobile computing”, IEEE Pervasive Computing, vol. 8, pp. 14–23, 4

Oct. 2009, ISSN: 15361268. DOI: 10.1109/MPRV.2009.82.

[2] R. Hussain and S. Zeadally, “Autonomous cars: Research results, issues, and future

challenges”, IEEE Communications Surveys and Tutorials, vol. 21, pp. 1275–1313,

2 Apr. 2019, ISSN: 1553877X. DOI: 10.1109/COMST.2018.2869360.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and chal-

lenges”, IEEE Internet of Things Journal, vol. 3, pp. 637–646, 5 Oct. 2016, ISSN:

23274662. DOI: 10.1109/JIOT.2016.2579198.

[4] A. A. Samuel, A. A. Adeleke, E. N. Anosike-Francis, et al., “Advent of artifi-

cial intelligence in automotive engineering”, 2023 2nd International Conference

on Multidisciplinary Engineering and Applied Science, ICMEAS 2023, 2023. DOI:

10.1109/ICMEAS58693.2023.10429907.

[5] Y. Al.Amery, “Fpga-based hardware accelerators for deep learning in mobile robotics”,

UTU pub, 2023, [visited:07.05.2024]. [Online]. Available: https : / / www .

utupub.fi/handle/10024/176115.

[6] K. Karras, E. Pallis, G. Mastorakis, et al., “A hardware acceleration platform for

ai-based inference at the edge”, Circuits Syst Signal Process 39, 1059–1070 (2020),

[Online]. Available: https://doi.org/10.1007/s00034-019-01226-

7.

https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/COMST.2018.2869360
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/ICMEAS58693.2023.10429907
https://www.utupub.fi/handle/10024/176115
https://www.utupub.fi/handle/10024/176115
https://doi.org/10.1007/s00034-019-01226-7
https://doi.org/10.1007/s00034-019-01226-7

REFERENCES 53

[7] S. C. Magalhães, F. N. dos Santos, P. Machado, A. P. Moreira, and J. Dias, “Bench-

marking edge computing devices for grape bunches and trunks detection using ac-

celerated object detection single shot multibox deep learning models”, Engineering

Applications of Artificial Intelligence, vol. 117, p. 105 604, 2023, ISSN: 0952-1976.

DOI: https://doi.org/10.1016/j.engappai.2022.105604.

[8] P. Mousouliotis, S. Zogas, P. Christakos, et al., “Exploiting vitis framework for

accelerating sobel algorithm”, Institute of Electrical and Electronics Engineers

Inc., Jun. 2021, ISBN: 9780738133614. DOI: 10.1109/MECO52532.2021.

9460221.

[9] T. P. Dinh, C. Pham-Quoc, T. N. Thinh, B. K. D. Nguyen, and P. C. Kha, “A flexible

and efficient fpga-based random forest architecture for iot applications”, Internet of

Things, vol. 22, p. 100 813, 2023, ISSN: 2542-6605. DOI: https://doi.org/

10.1016/j.iot.2023.100813.

[10] S. Valladares, M. Toscano, R. Tufiño, P. Morillo, and D. Vallejo-Huanga, “Perfor-

mance evaluation of the nvidia jetson nano through a real-time machine learning

application”, in Intelligent Human Systems Integration 2021, D. Russo, T. Ahram,

W. Karwowski, G. Di Bucchianico, and R. Taiar, Eds., Cham: Springer Interna-

tional Publishing, 2021, pp. 343–349, ISBN: 978-3-030-68017-6.

[11] B. Yang, T. Chen, A. Chen, S. Duan, and L. Wang, “A lightweight cnn based

on memristive stochastic computing for electronic nose”, International Journal

of Bifurcation and Chaos, vol. 34, no. 03, p. 2 450 027, 2024. DOI: 10.1142/

S0218127424500275.

[12] F. Schirrmeister, “Multicore architectures”, Real World Multicore Embedded Sys-

tems, pp. 33–73, Jan. 2013. DOI: 10.1016/B978-0-12-416018-7.00003-

1.

https://doi.org/https://doi.org/10.1016/j.engappai.2022.105604
https://doi.org/10.1109/MECO52532.2021.9460221
https://doi.org/10.1109/MECO52532.2021.9460221
https://doi.org/https://doi.org/10.1016/j.iot.2023.100813
https://doi.org/https://doi.org/10.1016/j.iot.2023.100813
https://doi.org/10.1142/S0218127424500275
https://doi.org/10.1142/S0218127424500275
https://doi.org/10.1016/B978-0-12-416018-7.00003-1
https://doi.org/10.1016/B978-0-12-416018-7.00003-1

REFERENCES 54

[13] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-programmable gate

arrays - stephen d. brown, robert j. francis, jonathan rose, zvonko g. vranesic -

google libros 1992.

[14] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,

“Gpu computing”, Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

DOI: 10.1109/JPROC.2008.917757.

[15] T. McKercher, J. Cheng, and M. Grossman, “Professional cuda c programming”,

John Wiley & Sons, 2014.

[16] L. Hasan, M. Kentie, and Z. Al-Ars, “Dopa: Gpu-based protein alignment using

database and memory access optimizations”, BMC research notes, vol. 4, p. 261,

Jul. 2011, This work is licensed under the Creative Commons Attribution 2.0 Inter-

national License. To view a copy of this license, visit http://creativecommons.

org/licenses/by/2.0/. DOI: 10.1186/1756-0500-4-261.

[17] S. K. Tewksbury, “Application-specific integrated circuits (asics)”, 1996 West Vir-

ginia University.

[18] E. Hollis, Design of VLSI Gate Array ICs. Prentice-Hall, 1987, ISBN: 9780132019309.

[19] “TPU v5e”, Google Cloud. [visited 01.05.2024]. (), [Online]. Available: https:

//cloud.google.com/tpu/docs/v5e.

[20] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep learning”, Journal

of the American College of Radiology, vol. 17, pp. 637–638, 5 Jun. 2021, ISSN:

1558349X. DOI: 10.1016/j.jacr.2020.02.005.

[21] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural networks”,

Towards Data Sci, vol. 6, no. 12, pp. 310–316, 2017.

https://doi.org/10.1109/JPROC.2008.917757
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
https://doi.org/10.1186/1756-0500-4-261
https://cloud.google.com/tpu/docs/v5e
https://cloud.google.com/tpu/docs/v5e
https://doi.org/10.1016/j.jacr.2020.02.005

REFERENCES 55

[22] J. Han, D. Wang, Z. Li, N. Dey, and F. Shi, “An improved residual-network model-

based conditional generative adversarial network plantar pressure image classifica-

tion: A comparison of normal, planus, and talipes equinovarus feet”, ISSN: 2693-

5015 This work is licensed under the Creative Commons Attribution 4.0 Interna-

tional License. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/. DOI: 10.21203/rs.3.rs-262837/v1.

[23] “Vitis ai optimizer • vitis ai user guide (ug1414) • reader • amd technical infor-

mation portal”. [visited:22.04.2024]. (), [Online]. Available: https://docs.

amd.com/r/en-US/ug1414-vitis-ai/Vitis-AI-Optimizer.

[24] D. M. L. Barbato and O. Kinouchi, “Optimal pruning in neural networks”, Physical

Review E, vol. 62, no. 6, pp. 8387–8394, Dec. 2000, Publisher: American Physical

Society. DOI: 10.1103/PhysRevE.62.8387. (visited on 05/01/2024).

[25] Vitis ai optimizer, github.io documentation, [visited:02.04.2024]. [Online]. Avail-

able: https://xilinx.github.io/Vitis-AI/3.0/html/docs/

workflow-model-development.html?cv=1.

[26] R. Gray and D. Neuhoff, “Quantization”, IEEE Transactions on Information The-

ory, vol. 44, no. 6, pp. 2325–2383, 1998. DOI: 10.1109/18.720541.

[27] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen, and

T. Blankevoort, “A white paper on neural network quantization”, arXiv preprint

arXiv:2106.08295, 2021.

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-

fied, real-time object detection”, in 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), ISSN: 1063-6919, Jun. 2016, pp. 779–788. DOI:

10.1109/CVPR.2016.91.

[29] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft coco: Common objects in

context”, in Computer Vision–ECCV 2014: 13th European Conference, Zurich,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21203/rs.3.rs-262837/v1
https://docs.amd.com/r/en-US/ug1414-vitis-ai/Vitis-AI-Optimizer
https://docs.amd.com/r/en-US/ug1414-vitis-ai/Vitis-AI-Optimizer
https://doi.org/10.1103/PhysRevE.62.8387
https://xilinx.github.io/Vitis-AI/3.0/html/docs/workflow-model-development.html?cv=1
https://xilinx.github.io/Vitis-AI/3.0/html/docs/workflow-model-development.html?cv=1
https://doi.org/10.1109/18.720541
https://doi.org/10.1109/CVPR.2016.91

REFERENCES 56

Switzerland, September 6-12, 2014, Proceedings, Part V 13, Springer, 2014, pp. 740–

755.

[30] J. Terven and D. Cordova-Esparza, “A Comprehensive Review of YOLO Architec-

tures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS”, Machine

Learning and Knowledge Extraction, vol. 5, no. 4, pp. 1680–1716, Nov. 2023,

arXiv:2304.00501 [cs], ISSN: 2504-4990. DOI: 10.3390/make5040083.

[31] B. Koonce, “ResNet 50”, in Convolutional Neural Networks with Swift for Tensor-

flow: Image Recognition and Dataset Categorization, B. Koonce, Ed., Berkeley,

CA: Apress, 2021, pp. 63–72, ISBN: 978-1-4842-6168-2. DOI: 10.1007/978-

1-4842-6168-2_6.

[32] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recog-

nition, This work is licensed under the arxiv nonexclusive distribution. To view a

copy of this license, visit http://arxiv.org/licenses/nonexclusive-

distrib/1.0/, Dec. 2015. DOI: 10.48550/arXiv.1512.03385.

[33] “Resnet | pytorch”. [visited:25.03.2024] This work is licensed under the Creative

Commons Attribution 3.0 International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/3.0/. (), [Online].

Available: https://pytorch.org/hub/pytorch%5C_vision%5C_

resnet/.

[34] “Microsoft common objects in context dataset”. [visited:01.04.2024]. (), [Online].

Available: https://cocodataset.org/#explore.

[35] K. P., P. J., A. V., et al., “Definition and classification of power system stability

ieee/cigre joint task force on stability terms and definitions”, IEEE Transactions

on Power Systems, vol. 19, no. 3, pp. 1387–1401, 2004. DOI: 10.1109/TPWRS.

2004.825981.

https://doi.org/10.3390/make5040083
https://doi.org/10.1007/978-1-4842-6168-2_6
https://doi.org/10.1007/978-1-4842-6168-2_6
http://arxiv.org/licenses/nonexclusive-distrib/1.0/
http://arxiv.org/licenses/nonexclusive-distrib/1.0/
https://doi.org/10.48550/arXiv.1512.03385
http://creativecommons.org/licenses/by/3.0/
https://pytorch.org/hub/pytorch%5C_vision%5C_resnet/
https://pytorch.org/hub/pytorch%5C_vision%5C_resnet/
https://cocodataset.org/#explore
https://doi.org/10.1109/TPWRS.2004.825981
https://doi.org/10.1109/TPWRS.2004.825981

REFERENCES 57

[36] K. E. BIJKER, G. DE GROOT, and A. P. HOLLANDER, “Delta efficiencies of

running and cycling”, Medicine & Science in Sports & Exercise, vol. 33, no. 9,

pp. 1546–1551, 2001.

[37] J. Winzig, J. C. A. Almanza, M. G. Mendoza, and T. Schumann, “Edge ai-use

case on google coral dev board mini”, in 2022 IET International Conference on

Engineering Technologies and Applications (IET-ICETA), IEEE, 2022, pp. 1–2.

[38] S. Rivas-Gomez, A. J. Pena, D. Moloney, E. Laure, and S. Markidis, “Explor-

ing the vision processing unit as co-processor for inference”, in 2018 IEEE Inter-

national Parallel and Distributed Processing Symposium Workshops (IPDPSW),

2018, pp. 589–598. DOI: 10.1109/IPDPSW.2018.00098.

[39] L. Hasan, M. Kentie, and Z. Al-Ars, “Dopa: Gpu-based protein alignment using

database and memory access optimizations”, BMC Research Notes, vol. 4, pp. 1–

11, 1 Jul. 2011, ISSN: 17560500. DOI: 10.1186/1756- 0500- 4- 261/

TABLES/2.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion”, [visited:07.05.2024]. [Online]. Available: http://image-net.org/

challenges/LSVRC/2015/.

[41] T. Y. Lin, M. Maire, S. Belongie, et al., “Microsoft coco: Common objects in

context”, Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8693 LNCS,

pp. 740–755, PART 5 2014, ISSN: 16113349. DOI: 10.1007/978-3-319-

10602-1_48/COVER.

https://doi.org/10.1109/IPDPSW.2018.00098
https://doi.org/10.1186/1756-0500-4-261/TABLES/2
https://doi.org/10.1186/1756-0500-4-261/TABLES/2
http://image-net.org/challenges/LSVRC/2015/
http://image-net.org/challenges/LSVRC/2015/
https://doi.org/10.1007/978-3-319-10602-1_48/COVER
https://doi.org/10.1007/978-3-319-10602-1_48/COVER

	List Of Acronyms
	Introduction
	Significance and Motivation
	Related works
	Contribution
	Structure

	Background
	Hardware accelerators
	FPGAs
	Graphical Processing Units
	GPUs architecture

	ASICs
	Deep Neural Network Models (DNN)

	Design overview
	FPGA preparation
	AI Models
	You only look once (YOLO)
	ResNet

	Implementation and Platform Characteristics
	Experimental Results
	Conclusion
	Discussion
	Future works

	References

