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Abstract

Return forecasting and portfolio selection have fascinated financial academics and practi-
tioners alike for a long time. With the wake of artificial neural networks, and as importantly
the computational capacity to take advantage of such models, financial academics and prac-
titioners have turned their attention to more and more complex models to better understand
and predict the behaviour of financial markets.

In literature, often one, seldom two, and rarely more categories of variables are utilized in
return prediction. In this thesis, eight categories of variables are considered in return pre-
diction, as data has become more available and immediate, and as such taking a multifactor
approach was hypothesized to improve prediction accuracy. In literature when sophisti-
cated neural network predictions have been considered, portfolio selection has often been
simplified to equally weighted or similar approaches. In this thesis an error-GARCH-copula
approach was utilized with the multifactor neural network to improve portfolio performance,
as risk measures are just as important as returns in portfolio performance.

The combined methodology failed to consistently outperform market portfolios or portfo-
lios based on simple linear regression predictions. The main issue with performance was
seen to stem more from lack of informative predictions rather than the performance of the
copula. Although as the return prediction relied heavily on dispersion measures, the NN-
GARCH-copula portfolios also had worse risk measures than market portfolios. Based on
these findings, it is suggested that input selection, more sophisticated architectures, and dy-
namic informative prediction intervals should be considered when using multifactor NN-
copula approach.
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1 Introduction

1.1 Background

1.1.1 Modern Portfolio Theory

Before 1952, finance literature considered the portfolio optimization problem of risk-
return tradeoffs from an ad hoc perspective. In 1952 Harry Markowitz introduced what
came to be known as modern portfolio theory (MPT) in his research paper Portfolio Se-
lection (Markowitz 1952). MPT provided the notion that portfolio selection should be
viewed as a problem of mean-variance-optimization (MVO). In MVO the portfolio selec-
tion problem states that for a given target return, there exists a portfolio allocation that
achieves this target return in mean, while minimizing the variance of the portfolio. In the
MPT framework, all allocations with the same mean return, but with higher variances, are
deemed inefficient. (Kolm et al. 2014) Later Markowitz reflected on “why mean and vari-
ance” as the measures of expected return and risk (1999) and noted alternative approaches
to MVO, including the use of other measures of risk and/or return (2010).

Reflecting on MPT, several opportunities for methodological improvement can be
seen. Firstly, the use of historical mean, variance, and covariance as approximators of
future mean, variance, and covariance behaviour is problematic in both short- and long-
term. In the short-term, this has been shown numerous times, for example by Ledoit et al.
(2003) who conducted portfolio optimization between US, North America, European,
and World indices using a multivariate GARCH model and derived expected returns,
variances, and covariances, and found that the model outperformed a (sliding window)
historical mean, variance, and covariance approach. In the long term, the stationarity as-
sumptions are simply logically flawed for real-world financial instruments, as the pricing
dynamics of financial instruments are consequences of human society, which throughout
history has shown to be dynamic. As an example of this, Awokuse et al. (2008) stud-
ied the structural changes in market dependencies between Asian emerging markets and
the markets of more developed Japan, UK, and US, and they, unsurprisingly, found that
the cointegration structure of the markets was affected, both positively and negatively, by
financial liberalization policies.

Secondly, even if we could better define the expected return, variance, and covari-
ance structure, as Markowitz himself reflected, why specifically use them in portfolio
selection? In the traditional MPT-MVO framework, the portfolio level variance is an
additive function of variances and covariances in the selection group. Therefore if non-
linear dependencies exist they are incorrectly factored in the model. As an example of
non-linear dependencies existing, Kenourgious et al. (2010) investigated the dependency
structures between four emerging markets Brazil, Russia, India, and China and two devel-
oped markets US and UK. They found statistically significant non-linear and asymmetric
dependencies between the markets. Therefore, while covariance-based MVO may be an
easy implementation both analytically and computationally, it very well may not be op-
timal. Related to these covariance structures, there is the assumption that the returns are
normally distributed, which has also shown to be false with stock-returns, as they are
commonly seen to be fat-tailed and positively skewed (e.g. Kon 1984).
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1.1.2 Alternative approaches to portfolio optimization

Given the limitations of MPT, alternative approaches have been proposed to return pre-
diction and portfolio optimization.

Return prediction and forecasting has fascinated researchers and practitioners alike.
One of the most commonly used regression models is the Auto-Regressive Moving Aver-
age (ARMA), where the prediction is a linear additive function of the previous lags and
estimated errors. (Shah et al. 2019) Another often used model is the Threshold Auto-
Regressive (TAR), which is a non-linear model, where the prediction is conditioned on
some lagged variable(s) being within a certain range. The TAR-model is able to capture
non-linearity that a linear AR-model can not. (Hansen 2011) On top of these statistical
approaches, newer machine learning techniques have arised. These techniques include,
among others, template matching, support vector machines, random forests, deep neural
networks (DNNs), and recurrent neural networks (RNNs). (Shah et al. 2019) The input
data for these predictions can be divided into structured and unstructured. Structured in-
formation includes market information i.e. price movement, bid/ask spreads and volume
information, technical indicators, which can be divided into oscillators and momentum
indicators, and economic indicators, which include both macroeconomic and financial
statement information. Unstructured information can be derived from news channels, so-
cial networking sites and (micro)blogs. (Bustos and Pomares-Quimbaya 2020)

The MVO despite its flaws continues to see application in literature. However, there
have been advances, which include the inclusion of transaction costs, specified con-
straints, quantifying the impact of estimations errors and making the optimization problem
intertemporal. (Kolm et al. 2014) Artificial neural networks (ANNs) have also been uti-
lized in portfolio selection. ANN strategies have been combined with other machine learn-
ing methods, such as genetic algorithms, stochastic algorithms, Q-learning, and fuzzy
logic. There are two generally holding findings here. Firstly, ANN-based strategies per-
form better than traditional models such as MVO. Second, hybrid models, i.e those in
which more than one machine learning technique is adopted, perform even better than
simpler machine learning models. (Bahrammirzaee 2010) Another newer approach to
this problem is the copula-based approach. A copula is a function that is able to map the
marginal distributions of a vector of variables into a joint distribution. Copulas can be
used in portfolio optimization, as they are able to reproduce non-normal multivariate dis-
tributions. (Patton 2012) Highly related to the use of copulas is the estimation of Value at
risk (VaR) and Conditional VaR (CVaR) risk measures, as copulas are able to give better
predictions of the tail-end behaviour of portfolio distributions. (Low 2018)

1.2 Motivation
Given that financial literature has created the foundations for robust portfolio optimiza-
tion, I would like to expand on this and contribute to the growing domain. My aim is to in-
vestigate the possible performance of a neural network model that leverages multi-sourced
information, with a GARCH-copula-based portfolio optimization. The motivations of this
thesis are the following.

The first is the expansion of the NN-copula literature, which as of now is still fairly
limited, despite taking advantage of two methods which have been shown great interest
in financial literature over the past two decades. Previous studies have either focused on
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a small number of indices (e.g. Zhao et al. 2018) or on a limited number of stock assets
(e.g. Li and Muwafak 2021). In this thesis all stock which were a part of the S&P 500
during the entire period of 2015-2023 were used, totaling 329 stocks. The application
of the NN-copula framework to a large number of underlying instruments informs of the
applicability and generalizability of the methodology. The second major contribution to
the NN-copula literature is the examination of transaction costs, and their dynamic effect
on the model’s performance.

The second motivation is the investigation of a multifactor input space with state-
of-the-art neural network architectures. Previous studies using neural networks in stock
prediction have ignored this holistic approach, instead often focusing on one variable
category. While this is obviously a valuable approach, in a world of increased availability
of data, computational capacity, and artificial neural network knowledge, gaining insight
into possible methods to take advantage of that the vast data becomes of key importance,
to both academics and practitioners alike.

1.3 Research question
The research questions of this thesis is the following:

• How can a neural network model be effectively deployed to integrate multiple data
sources for predicting stock returns?

• How can copula-based mean-CVaR optimization be deployed using neural network
predictions for stock returns?

The secondary research questions are:

• How do transaction costs impact the returns of an NN-copula portfolio?

• How do the returns of NN-copula portfolios compare to those of market and risk-
naive portfolios?

2 Return forecasting

Whether forecasting future asset returns can be done is an everlasting and underlying
question for both practitioners and academics of finance. For practitioners, return fore-
casting provides an avenue to create overperformance compared to market competitors.
For academics, the forecastability of returns has implications on market modelling and
efficiency. (Rapach and Zhou, 2013)

2.1 Return forecasting and the Efficient Market Hypothesis
The efficient market hypothesis (EMH) states that “A market is efficient with respect to
information set Ωt , if it is impossible to make economic profits by trading on the basis of
Ωt .” Here it is important to note that economic profits are defined by risk adjusted returns.
The EHM can be divided into three different hypothesis: the weak form of the Efficient
Market Hypothesis (weak EMH). the semi-strong form of the Efficient Market Hypothesis
(semi-strong EMH), and the strong form Efficient Market Hypothesis (strong EMH) In the



4

weak EMH, thr information set Ωt is is assumed to be solely the information of past price
history available at time t. In the semi-strong EMH, Ωt is expanded to include all publicly
available information at time t. In the strong-EMH, Ωt is yet again expanded, this time to
include all information available at time t, including insider information. (Jensen, 1978)

Certainly one could argue that if return forecasting were possible, the EMH would
not even hold. This however may not be the case. The reasons for this stem from the
information set used in forecasting, time-varying risk premia, transaction costs and trading
restriction, intrinsic asset values and self-destruction of predictability. (Timmermann and
Granger, 2004)

2.1.1 Information set

Any forecasting model is an implicit test of the EMH. The form of the EMH tested de-
pends on the information set Ωt used when making predictions. If the information set used
only contains information on the past and current trading information, including price, re-
turn and volume, the forecasting model tests the weak-EMH. If the information set used
is expanded to contain other variables not explicitly included in the trading information,
the model can be seen as a test for the semi-strong EMH. In the most rare case, where
insider information is taken into account, the strong-EMH. In general, there has been ac-
ceptance of either weak- or semi-strong EMH, while strong-EMH has seen less support.
From a forecaster’s point of view, the cost of acquiring and difficulties in measuring in-
sider information is often considered to be reasons not to attempt to forecast with the full
information set. (Timmermann and Granger, 2004)

An underlying assumption regarding the information set is the general rationality and
symmetrically distributed irrationality of investors. The uniformity of information sets
held by market participants also requires uniformity in the processing of that information
for meaning. This however may not be the case, as studies in behavioural finance have
shown psychological biases to be present among investors, and these biases affect the
ways in which information is processed. Herding, the behaviour of imitating and follow-
ing the actions of others instead of conducting independent analysis. This may lead to
market prices failing to reflect all relevant information, resulting in inefficiency. Another
bias that impacts information processing is the availability heuristic, which refers to the
establishment of future scenario likelihoods based on the ease at which similar scenarios
can be recalled. Given that the ease of recalling is correlated among market participants,
the availability heuristic leads to investors overweighting more recent information and un-
derweighting less recent information. (Hon-Snir et al. 2012) Given that this availability
heuristic is similarily distributed amongst market participants, which seems reasonable as
all market participants are always operating in the same time period, this may very well
result in overall market inefficiency.

2.1.2 Time-varying risk premia

While EMH implies that there exists no arbitrage opportunity, this statement is equivalent
to there being no predictability in returns, the main reason being time-varying risk premia
of return. Time-varying risk premia means that there exists variation in the expected
excess returns over a risk-free rate. Here the difference between the EMH and the random
walk hypothesis becomes evident. The random walk hypothesis simply postulates that
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Pt+1 = µ +Pt + e, where e is i.i.d. with mean zero, µ is a drift constant, and E(Rt+1) =
µ , while in the EMH framework given a stochastic discount factor Qt+1 this does not
necessarily apply.

E[Rt+1|ωt ] =
−COV(Rt+1,Qt+1|ωt)

E(Qt+1|ωt)
.

This implies that the forecasted return need not be 0 or the mean drift coefficient, like the
random walk hypothesis implies, and e is not i.i.d.. (Timmermann and Granger, 2004)

However time varying risk premia fails to adequately explain return anomalies.
Lewellen and Nagel (2004) conducted a rolling window conditional CAPM analysis
on two well known anomalies, momentum and book-to-market. To test the momentum
anomaly, they constructed a portfolio that goes long on the top decile of stocks, and shorts
the bottom decile of stocks ranked by their performance over the past six months. To test
the book-to-market anomaly, they constructed a portfolio which goes long on the top
decile of stocks, and shorted the bottom decile of stocks ranked by their book-to-market
ratio. The stocks were from the NYSE and Amex during the period 1964 to 2001. While
they found considerable time-variability in the risk premium, the risk premiums failed to
fully explain the performance of two anomalous portfolios. Both of the portfolios created
unexplained positive returns when the portfolios were updated at a quarterly, semiannual
and annual frequency. All unexplained returns were above a level of two standard devia-
tions.

Adrian and Franzoni (2009) expanded the conditional CAPM and return anomaly lit-
erature, by creating a mean reverting Kalman conditional beta, and applying the model
to book-to-market portfolios constructed by pentiles of book-to-market and market capi-
talisation. With their new conditional CAPM, 9 of the 25 portfolios created statistically
significant (at over two deviations from zero) alpha, of which one, the portfolio from
the smallest pentile of both book-to-market and market capitalization, was negative. The
standard OLS conditional CAPM resulted in 12 of the 25 producing statistically signifi-
cant alphas. This means that while the beta can be better explained by more sophisticated
modelling, this does not remove the anomalous evidence for significant alpha. They also
provided conditioning variables, which included the consumption-wealth ratio (CAY),
high minus low (HML), term spread (TERM), and lagged market index (MRKT). What
they found was that the pricing error, alpha, did not deviate by over two standard de-
viations from zero at any point during their testing period, when conditioning the beta.
When taking into account both the new model and the conditioning variables, only one
of the 25 portfolios had statistically significant alpha. While the conditioning variables
obviously reduce the unexplained anomaly, the conditioning should not be necessary, as
the anomalies are explained by non-market risk factors.

Thus while time-varying market risk premia can be seen to explain some of the anoma-
lous excess returns, it fails to fully explain them in the cases of momentum and book-to-
market alpha.

2.1.3 Transaction costs and trading restrictions

Taking into account transaction costs and trading restrictions makes outperforming fore-
casting less likely even with significant predictable components in returns. Transaction
costs place a limit on the degree to which predictability in returns can be utilized. For ex-
ample, let’s say there were an accurate forecasting model, which would predict an excess
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return of 0.5 %, and the investor were to experience an expected 0.5 % transaction cost
in completing the trade, the inefficiency would not be exploitable, as the expected over-
performance would be zero. This means transaction costs limit the temporal inefficiency
in the market, as any inefficiency has to be greater than the transaction costs incurred
when entering trades where one would benefit from that inefficiency. Realistic trade re-
strictions also limit market inefficiency. These include limits to short-selling and position
sizes. Based on these, market inefficiencies which cannot be taken advantage of with-
out realistically infeasible positions in practice do not exist. (Timmermann and Granger,
2004)

An argument could be that the significance of transaction costs is constantly decreas-
ing, especially in high volume markets, like the stock market. Menkveld (2016) studied
the change in NYSE and NASDAQ transaction costs by comparing the years 2001 and
2011, which were meant to represent periods before and after high frequency trading be-
came common in the mentioned stock markets. What they found was that the effective
spread more than halved from around 20 basis points in 2001 to around 5 basis points in
2011. The commission experienced by retail investors also more than halved from around
45 to 20 basis points, and for institutional investors commission reduced from around 12
to 5 basis points. Between the periods, total volume also more than doubled. As Frazzini
et al. (2018), among others, have shown that transaction costs logarithmically increase as
a function of trade size compared to total daily volume, this would be expected.

Simply based on the increasing volume in the markets, without even accounting for
more efficient trading technology, one could surmise that transaction costs are constantly
decreasing, which decreases the level of overperformance required from predictions for
them to be economically viable. This would indicate that with transaction costs decreas-
ing, the opportunity to actually see predictive models utilized would be higher.

2.1.4 Intrinsic asset value

Intrinsic asset value is the theoretical notion of a correct valuation for an asset. Therefore
one could argue that if the price of an asset becomes dislocated from its intrinsic value, the
market is inefficient. Using this definition, the market does not align with the EMH if the
market price deviates from the true value in either degree or persistance. There is however
a major problem with this notion, which is that the intrinsic value, if even existing, is non-
observable or measurable. Therefore one could attempt to test this inefficiency, based
on whether there are persistent changes in the difference between economic output and
asset prices. Bubbles, where differences between asset prices and economic output come
apparent however do not necessarily disprove the EMH, given that the time-varying risk
premia reflect the market environment. (Timmermann and Granger, 2004)

While intrinsic asset value is unobservable, this has not stopped finance practitioners
and academics from trying to do so via fundamental analysis. In order for intrinsic asset
value based strategies conforming to efficient markets, the views of practitioners must
be both rational and symmetrically biased across investors. This however may not be
the case. For example the anomaly of post-earnings announcement drift, the continued
same direction price change drift following earning news, can be attributed to limited
attention. When investors fail to update their models based on the newest information,
instead opting to keep short-term estimates the same based on earlier analysis. When
there exists a cost to attention, this can result in investors not taking into account certain,
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especially new, information. (Hirshleifer et al. 2011) Another possible explanation to
the post-earning announcement drift is the relative activity of non-institutional investors.
This would indicate that non-sophisticated investors hold non-symmetric irrational views
which results in market inefficiency. (Bartov et al. 2000)

Thus there exists significant differences in the real long-term intrinsic values of assets
and the market valuation of those assets. This can especially be seen in over- and underre-
actions to earnings data, which may be caused by either lack of attention, attention costs,
or lack of investor sophistication.

2.1.5 Self-destruction of predictability

Even when assuming that the underlying reality driving price changes and dividends or
coupons remain stationary, the forecasting models applied need not be. Once the technol-
ogy and the capabilities to use that technology exist in forecasting, the possible outper-
forming model is unlikely to stay unique and likely becomes distributed amongst forecast-
ing market participants. This distribution then translates to changes in demand of assets
based on shared forecasting outcomes, which dissipates any outperformance related to the
utilization of that model. Out-of-sample testing, where the model is trained on a separate
sample and then its performance is tested on the sample not within the training sample, is
generally thought to be a robust way in which to evaluate the possible real or future per-
formance of the model. However out-of-sample testing does not remove the possibility
of the self-destruction of predictability, as other market participants are able to create the
very same models, which then in the deployment phase in the future, together eliminate
any prediction power the model had caused by changes in the demand from following the
model. Thus given enough symmetry in forecasting models across capital, forecasting
excess return is not feasible. (Timmermann and Granger, 2004)

McLean and Pontiff (2016) investigated the effect of academic publication on charac-
teristic portfolios had on the underlying characteristic portfolio post-publication perfor-
mance. They found that the post-publication excess return decay was about 35 %. The
decay of excess return was especially evident in characteristics, which had less arbitrage
costs. These included strategies, which included high market value, high liquidity, low id-
iosyncratic risk and dividend paying stocks. Post-publication, the volume, variance, short
interest, and correlation with other published characteristics increased. The study how-
ever only looked at published research, which means it omits the great amount of privately
conducted research done by market participants. It it also significant that while the excess
returns decreased, they did so on average only by roughly by a third, meaning there are
significant limits to the self-destruction of predictability, one of the reasons being limits
to arbitrage.

Despite the proposed self-destruction, as of 2010, only 22 % of equity mutual funds
were explicitly indexed, meaning the rest, 78 %, was being actively managed. (Cremers
et al. 2016) There is a great evidence that actively managed funds produce no different
return than the benchmarks on average (e.g. Fama and French 2010), and underperform
after expenses. There is however also evidence that supports active management. Cre-
mers and Petajisto (2009) examined the effect of the active share, the share of which an
equity mutual fund differs from benchmark index holdings, and found a positive relation-
ship between active shares and the overperformance of the funds. Elton et al. (2012)
found autocorrelation in the overperformance of mutual funds, which should not exist, if
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prediction were not possible. Lin (2014) studied equity sector mutual funds operated by
Fidelity Investments, and found that most funds which practiced active selection produced
both higher nominal returns and risk-adjusted returns.

While there is great evidence to support the self-destructibility of active management,
there is certainly a clear argument to be made that active management should exist in
equilibrium with passive management. As less active management there is in the market,
the less efficient the markets should be, and the more active management there is, the
less inefficiency there is and therefore the opportunity to create overperformance lessens,
making active management economically non-productive. Thus the existence of active
management is in itself evidence of predictability in the markets.

2.2 Historical price and return data
The two most prevalent historical return related forecasting strategies are mean-reversion
and momentum. Mean-reversion of returns refers to negative autocorrelation of returns,
and momentum refers to the phenomenon that assets which have done well historically
will also do so in the future. While these may appear contradictory the two are generally
apparent on different time horizons (Balvers and Wu, 2006)

One would assume that a dynamic autocorrelation structure, which would fit both
of these patterns, would be one that showcases more negative autocorrelation following
negative returns and more positive autocorrelation following positive returns. This how-
ever may not the case, at least at the first lag, as quantile regression models have shown
this to be either correct (Barnes and Hughes, 2002 (small companies)) or the very op-
posite (Barnes and Hughes, 2002 (large companies); Baur et al., 2012). As mentioned,
these quantile analyses only consider the latest lag, which means uncertainty in the co-
efficients does not indicate that the phenomena do not exist. Another way in which the
phenomena can be tested is via characteristic based portfolio selection. Balvers and Wu
(2006) conducted a portfolio selection strategy analysis on 18 developed country indices.
They constructed long and long-short portfolios made up of country indices based on the
ranking of expected return from momentum and mean-reversion. All portfolios produced
created excess mean returns, that were not explained by market risk or SMB and HML
factors. In their study, the key difference to the quantile regression models was the num-
ber of lags, as well as holding period used. Holding period ranged from one month to two
years, while observation periods (i.e. lags used) ranged from three months to two years.
Therefore while the momentum and mean-reversion may not hold at the one period level,
they are robust when utilizing longer past observation periods.

Volume data is often readily available with price data, and thus can be considered part
of basic historical price data. Chen et al. (2001) found evidence that detrended volume
Granger caused seven of nine developed country indices. Lee and Rui (2000) investigated
the Granger causality in Chinese stock indices, and found no significant relationship.
However, they found some evidence for cross-index Granger causality between volume
and returns. There was also evidence that volume Granger causes volatility, and this
relationship is bidirectional.
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2.3 Technical indicators
Technical indicators are compositions of available market data. (Shynkevich et al., 2017).
With increase in difficulty of statistically significant forecasting and greater computing
power, machine technical analysis in the form of using technical indicators has seen great
interest in financial literature (Kumbure et al. 2022). Shynkevich et al. (2017) utlized ten
different technical indicators to predict return direction. These ten indicators were

• Simple moving average (SMA)

• Exponential moving average (EMA)

• Average True Range (ATR)

• Average Directional Movement Index (ADMI)

• Commodity Channel Index (CCI)

• Price rate-of-change (ROC)

• Relative Strength Index (RSI)

• William’s %R oscillator

• Stochastic %K

• Stochastic %D

Using support vector machine (SVM) and neural network approaches, they found sig-
nificant overperformance when the horizon and input window time span were roughly
symmetrical. However, it is important to mention they used in-sample prediction, which
reduces the significance of this results. A literature review on the use of technical indica-
tors as input variables in forecasting return direction using deep neural networks found no
significant overperformance out-of-sample. The out-of-sample classification however was
still significant for some of the models out-of-sample, with a maximum accuracy around
65%. (Peng et al. 2021) Han et al. (2013) investigated the performance of portfolios
constructed by volatility deciles, and then either buying the decile if its equally weighted
price is above the moving average, and otherwise investing in a T-bill. They found that
strategies based on the ten day moving average performed especially well, creating excess
returns across all volatility deciles. This pattern was reproduced by 20 and 50 day moving
averages, although the significance of excess returns decreased.

Technical indicators provide statistical and machine learning models with prepro-
cessed information to help the model in forecasting. While there is still some doubt on
the efficaciousness of using technical indicators, they have seen great interest especially
in financial machine learning literature (Kumbure et al., 2022) A fairly exhaustive list of
technical indicators from the Ta-lib is shown in the Appendix.
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2.4 Pattern matching
Another aspect also utilized in technical analysis is chart pattern matching. Price change
patterns are distinctive formations of price movement, which are proposed to identify fu-
ture price movements. (Investopedia, 2023) While pattern matching is much less common
in financial machine learning literature, evidenced by lack of mention in literature reviews
on the topic, e.g. Kumbure et al. (2022), Pahwa et al. (2017), Strader et al. (2020), world-
wide Google engine searches for chart patterns have been greater than searches for funda-
mental analysis since the April of 2022 (Google Trends).This may indicate a significant
retail investor interest on the topic.

Nayak and Braak (2007) investigated the pattern matching strategies by using the cur-
rent window of price behaviour as template, and finding the closest matches by euclid-
ian distance to that sequence from historical data. The past query results under a given
threshold then provide the current sequence an expected return. They the applied a long-
short strategy given prediction over 1% and under -1 %. They however failed to produce
overperformance in their out-of-sample testing, getting negative performance in a highly
positive market. They attribute a part of this failure to testing each sequence, instead of
known patterns. Diggs and Povinelli (2003) used a genetic algorithm to find temporal
patterns, and ranked them on their ability to predict stock price movement. They applied
this method to predict five-day returns, and found after transaction costs weekly return in
excess of one percent, indicating great predictive and economic power. Povinelli (2000)
previously applied the same model to daily return, and also found great overperformance,
although this was without factoring in transaction costs, which they proposed to need to
under 0.02 % in order for the model to be feasible. Leight et al. (2007) tested the bull flag
chart pattern, and also found statistically significant excess returns.

While pattern matching literature is more sparse compared to technical analysis in the
form of technical indicators, there is promising results in the possibility to create alpha
using pattern matching. A fairly exhaustive list of candlestick pattern from Ta-lib is shown
in the Appendix.

2.5 Fundamental data
Fundamental analysis traditionally refers to the examination of a security’s intrinsic value
using both quantitative and qualitative information of the underlying asset. Quantita-
tive information generally refers to the reported financial information, whereas qualitative
information on the other hand utilizes human evaluation of such factors as competitive
advantage, management, and corporate governance. (Investopedia, 2023)

There is good evidence to show both qualitative and quantitative fundamentals can
be used to produce abnormal returns. In terms of qualitative fundamental analysis, Para-
toukas (2012) investigated the relationship between customer-base concentration of sup-
plier and economic output and stock returns. They found that higher customer-base con-
centration was causally linked to higher rates of return, and eventually that the markets
have not fully appreciated this information, leading to abnormal returns over a 30-year pe-
riod studied. Friede et al. (2015) completed a meta-analysis investigating the relationship
between ESG (environmental, social and governance) factors and financial performance.
They found that the majority of studies showed positive relationships with both corpo-
rate financial performance and returns. However, the relationship with returns was more
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positive with non-portfolio return studies, with a majority (56.7 %) of studies showing
a positive effect, where as with portfolio studies the majority of studies showed either
neutral (36.1 %) or mixed (37.4 %) results. Mayew and Venkatachalam (2012) studied
the relationship between manager affect on analyst calls, analyst recommendations, and
future stock earnings. They found that both were affected by managerial affect, estimated
with vocal emotion analysis. Both positive and negative affect of managers was statisti-
cally significant in predicting the next one and the next two quarter returns.

In terms of quantitative fundamental analysis, Bartram and Grinblatt (2018) investi-
gated the performance of peer-implied mispricings derived from regression analysis of
financial statement information and market prices. They termed this analysis agnostic
fundamental analysis, as it could be done by a statistician without sophisticated knowl-
edge of the underlying companies. They then constructed portfolios out of pentiles of
mispricing. They found that the differential alpha after factoring in an eight factor model
consisting of market risk free return, small-minus-big, momentum, short-term reversal,
long-term reversal, conservative minus aggressive and robust minus weak, the most un-
dervalued pentile continued to overperform the most overvalued pentile up to observation
delay of 34 months. While the most undervalued portfolio created consistently the highest
alpha, these alphas were not statistically significant. However, for all constructed portfo-
lios and factor models utilized, the differential alpha between the most over- and most
undervalued portfolios was statistically significant for all constructions and factor mod-
els. For overvalued assets, there was statistically significant negative alphas. Hanauer et
al. (2022) expanded on this analysis with a machine learning approach, and found that the
modelling of non-linearities allowed by machine learning approaches improved the result
of the original Bartram and Grinblatt (2018) paper. They were able to find standalone
statistically significant alphas after normalization with a six factor model. The difference
between the over- and undervalued portfolios remained significant. Thus there is good
evidence to show that financial statement based misevaluation estimates can produce out-
performance in stock markets, and this overperformance is robust to risk factors.

Yan and Zheng (2017) used a data-mining approach, and constructed 18 113 fun-
damental signals, i.e. individual pieces of accounting information some of which trans-
formed based on other accounting information and evaluated their effects on performance.
A total of 362 signals had a four-factor alpha with a t-statistic greater than 3. The most
significant signal was change in invested capital over lagged market capitalization, with
an alpha value of -0.75 percent per month with a t-statistic of -5.31.

Fundamental analysis, done both quantitatively and qualitatively, has shown to be
significant in producing information on future economic performance and future return
behaviour in stocks. This makes sense, considering fundamental analysis aims to gain
insight into the instrinsic value of the underlying company, and according to the efficient
market hypothesis the market valuation should reflect the intrinsic value.

2.6 Macroeconomic data
Considering that assets are generally a part of the larger economy, using macroeconomic
data to predict returns is reasonable. Rapach et al. (2005) investigated the relationship
between nine different macroeconomic variables and stock market returns in twelve in-
dustrialized countries. They conducted out-of-sample testing for their model, with predic-
tive time horizons of 1, 3, 12, and 24 months, and found statistically significant predictive
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power in 10 of the 12 countries for at least one of the horizons. Of the nine macroe-
conomic variables, none produced out-of-sample significant predictive power across all
countries. However, relative government bond yield produced statistically significant out-
of-sample predictive power in 10 of the 12 countries at the 1 month predictive horizon.
Broad money growth (first difference in log-levels of broadly defined money stock) pro-
duced statistically significant predictive power in 7 of 11 available countries for at least
one of the horizons.

Avramov and Chordia (2006) investigated the combined use of firm and macroeco-
nomic variables across 3123 NYSE-AMEX stock and cash. The macroeconomic vari-
ables were dividend yield, default spread, term spread, and the T-bill yield. They found
that their model produced abnormal return after adjusting for Fama-French plus momen-
tum factors. What they found was that utilizing the macroeconomic variables, that during
recessionary periods, the optimal predicted portfolio lessens exposure to momentum and
increases exposure to small-cap stocks. Tsai et al. (2011) used a machine learning ap-
proach also with firm and economic variables, except in the Taiwan stock market. Using
a classifying ensemble, they found their model overperformed a buy and hold index strat-
egy.

Macroeconomic based return forecasting has seen interest in fund portfolios. Avramov
et al. (2011) conducted an analysis of macroeconomic factor based hedge fund return
prediction. They used small cap minus large cap return, change in 10-year treasury yield,
change in spread between Moody’s Baa and 10-year treasury adjusted for duration, PTFs
bond, currency PTFS, and commodity PTFS, where PTFS is a primitive trend following
strategy. They found significant overperformance before adjusting for managerial skill.
However after adjusting for managerial skill in funds, the overperformance was even more
significant.

While the use of singular macroeconomic indicators is unlikely to have predictability
of returns, combining multiple indicators has been seen to create statistically significant
overperformance when applied trading strategies and portfolio construction. (Cakmakli
and van Dijk, 2010). Macroeconomic indicators have also seen usage with combinations
of other variables, like firm fundamental variables.

2.7 Sentiment data
Sentiment has a few different definitions, including “level of noise [in] traders’ beliefs
relative to Bayesian beliefs” (Tetlock, 2007), “common opinion amongst market partici-
pants” (Yu, 2014), and “belief about future cash flows and investment risks that is not justi-
fied by the facts at hand” (Baker and Wugler, 2007). Sentiment thus indicates held beliefs
concerning future returns, that may or may not be indicated by market data. Sentiment
and its usage in stock return prediction thus opposes the belief of EMH unemotional and
rational market participants (Baker and Wugler, 2007). One key part in sentiment based
forecasting, is that sentiment is not directly observable, and therefore different proxies
have been utilized to reflect sentiment.

Schmeling (2009) used consumer confidence as a proxy for sentiment across 18 indus-
trialized countries. While they found sentiment Granger caused returns across markets,
and vice versa, interestingly the coefficient for returns was significantly negative. This
held for different factor portfolios, including large stocks, small stocks and size premium.
While the Granger causality applied when using the whole dataset, aggregate market re-
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turns were not Granger caused in seven of the 18 countries. However for all statistically
significant countries, the mean coefficient for sentiment was negative, further supporting
their findings for the overall data. They considered the differences between countries to
stem from differences in herding behaviour across cultures.

Huang et al. (2015) used six factors to proxy sentiment, including close-end fund
discount rate, share turnover, number of IPOs, first day returns of IPOs, dividend pre-
mium, and equity share in new issues. They also found negative coefficients between
their best sentiment combination method from 1 to 12 month prediction horizons. Using
a 25 year out-of-sample period, they found their model created statistically significant
certainty equivalent returns and Sharpe ratios. They also found a statistically significant
negative relationship between their sentiment measure and future accounting information
up to a 12-month prediction horizon.

Non-financial sentiment proxies have also been utilized. Joseph et al. (2011) used
Google search intensity of S&P 500 stocks as a proxy for sentiment. With a weekly
investment horizon, they created portfolios of pentiles of search intensity, and found sta-
tistically significant four-factor alpha in the top four pentiles, with the highest pentile
containing producing the most overperformance. They also created deciles of volatility
sorted portfolios, and found that for the lower half the coefficient for sentiment was neg-
atively statistically significantly, while in top half the sentiment coefficient was positively
statistically significant. While the sentiment coefficient for the next week was positive,
the sentiment coefficient was negative when predicting returns over 5 to 8 week horizons,
exclusive of the first four. This indicates that there are overreaction and correction dy-
namics at play relating to sentiment. Ren et al. (2018) investigated the forecasting of SSE
50 index using basic historical price data and sentiment analysis of user generated content
on forums related to the discussion of the stock market. They predicted market direction,
and found that adding sentiment data improved the accuracy of forecasting by 18.6 %,
which translated into improved performance of the trading model, which overperformed
the market.

Analyst recommendations can be thought of as a special case sentiment, as it repre-
sents the sentiment held by specific finance professionals. Bordalo et al. (2019) found
that there was a negative relationship between analyst recommendations and one month
portfolio returns, constructed with deciles of analyst recommendations. They also found
that analyst recommendation deciles were positively related to market beta.

The relationship between future returns and sentiment is highly dependent on the
proxy being used. Traditional market and analyst based proxies for sentiment analyses
appear to be negatively relational to future returns, where as proxies of general (retail)
investor sentiment appear to be positively relational to future returns.

3 Copulas

A copula is a multivariate distribution function, that has standard uniform marginal dis-
tributions. Much of the literature of copulas has been limited to the inspection of the
bivariate case, as modelling multivariate copulas has proven to be a difficult task. With
this knowledge of the behaviour of bivariate copulas, an approach to creating multivari-
ate copulas via a approach of combining bivariate copulas called pair-copula construction
(PCC). (Aas and Berg 2010) The following presentation of PCC follows Aas et al. (2009).
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3.1 Pair-copula decomposition of multivariate distributions
Let there be a vector X = (X1, ...,Xn) of n random variables, which have the joint density
function f (x1, ...,xn). This density can be factorised in the following way:

f (x1, ...,xn) = fn(xn) · f (xn−1 | xn)

· f (xn−2 | xn−1,xn) · · · f (x1 | x2, ...,xn)},

which is a unique composition for every re-labelling or the ordering of variables. Accord-
ing to Sklar’s theorem (Sklar 1959), for every multivariate distribution F with marginals
F1(x1), ...,Fn(xn) there exists a copula function C such that

C{F1(x1), ...,Fn(xn)}= F(x1, ...,xn),

which can be written with respect to the marginals u as

C(u1, ...,un) = F{F−1
1 (u1), ...,F−1

n (un)},

Given that F is absolutely continuous and has strictly increasing and continuous marginal
densities F1, ...,Fn, applying the chain rule f (x1, ...,xn can be decomposed as

f (x1, ...,xn) = c1...n{F1(x1), ...,Fn(xn)} · f1(x1) · · · fn(xn),

When n = 3, this can be decomposed as, for example

f (x1 | x2,x3)) = c12|3{F(x1 | x3),F(x2 | x3)} · f (x1 | x3)

c13|2{F(x1 | x2),F(x3 | x2)} · f (x1 | x2)

c13|2{F(x1 | x2),F(x3 | x2)} · c12{F(x1),F(x2)} · f1(x1)

From this it is clear that a conditional marginal density can be decomposed with the gen-
eral formula

f (x | υ) = cxυ j|υ− j{F(x | υ− j),F(υ j | υ− j} · f (x | υ− j),

where j is an arbitrarily chosen conditioning component from υ , and − j indicates the
vector excluding it.

From this it can concluded, that under appropriate regularity conditions of the F and
f functions, a multivariate density can be expressed via pair-copulae. Joe (1996) showed
that the marginal conditional distribution for every j is

F(x | υ) =
∂Cx,υ j|υ−j{F(x | υ−j),F(υ | υ−j)}

∂F(υ | υ−j)
,

3.2 Vines
Considering that the number of possible pair-copulae constructions increases factorially
with dimensions, a method of graphically organizing them, has been introduced. In litera-
ture, three types of vines have gotten the most attention, D-vines and canonical (C-) vines
and regular (R-) vines.
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D-vine structure is illustrated in Figure 8. Following the example in the figure, a five-
dimensional D-vine. A D-vine consists of n−1 trees, denoted by Tj, j = 1, ...,4. Tree Tj
has n+1− j nodes and n− j edges. Each edge corresponds to a pair-copula density, e.g.
edge 13 | 2 corresponds to c13|2(·). The density of D-vine can be written as

f (x1, ...xn) =
n

∏
k=1

f (xk)
n−1

∏
j=1

n− j

∏
i=1

c{F(xi | xi+1, ...,xi+ j−1),F(xi+ j | xi+1, ...,xi+ j−1)},

where j is identifies the tree index, and i the edge index.

Figure 1: D-vine structure (Aas et al. 2009)

Inference of a D-vine copula in the empirical case, such as in finance, where the ex-
pected values and variances are autocorrelated, in order to model the D-vine structure,
instead of modelling the the time series copulas, it makes sense to model the standardized
residuals. Standardized residual are calculated by first retrieving conditional expected
values and variances, normalizing residuals based on these. Assuming the modelling is
successful, there should be no autocorrelations present in the error data, and their rela-
tionships can be modelled with the D-vine. The second step is to transform the error data
to an (approximately) uniform distribution, with the empirical distribution function

U(x) =
1
n

n

∑
j=1

I(x j < x),

where I(·) is an indicator function.
After this, the construction of the D-vine has to be determined. Considering that the

number of possible vines increases factorially, this has to be done with heuristics for even
moderate dimensions. A common approach is to use absolute Kendall’s tau to find the
most dependent structure, introduced by Dissmann et al. (2013). Considering that a D-
vine is defined by its first tree, this simplifies the selection process by quite a lot. However
with a given structure, the selection of the copula families has to be made. The selection
of these copula families can be done from a set of preselected copula families, such as
normal or T, or in a non-parametric way, showcased in Nagler et al. (2017). The inference
of a D-vine is done with Algorithm 1, in which Θ j,i are the parameters of copula density
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Algorithm 1 Likelihood Evaluation for a D-vine
log-likelihood = 0
for i = 1 to n do

v0,i = xi
end for
for i = 1 to n−1 do

log-likelihood = log-likelihood+L(v0,i,v0,i+1,Θ1,i)
end for
v1,1 = h(v0,1,v0,2,Θ1,1)
for k = 1 to n−3 do

v1,2k = h(v0,k+2,v0,k+1,Θ1,k+1)
v1,2k+1 = h(v0,k+1,v0,k+2,Θ1,k+1)

end for
v1,2n−4 = h(v0,n,v0,n−1,Θ1,n−1)
for j = 2 to n−1 do

for i = 1 to n− j do
log-likelihood = log-likelihood+L(v j−1,2i−1,v j−1,2i,Θ j,i)

end for
if j == n−1 then

Stop
end if
v j,1 = h(v j−1,1,v j−1,2,Θ j,1)
if n > 4 then

for i = 1,2, . . . ,n− j−2 do
v j,2i = h(v j−1,2i+2,v j−1,2i+1,Θ j,i+1)
v j,2i+1 = h(v j−1,2i+1,v j−1,2i+2,Θ j,i+1)

end for
end if
v j,2n−2 j−2 = h(v j−1,2n−2 j,v j−1,2n−2 j−1,Θ j,n− j)

end for
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Algorithm 2 Simulating from D-vine
Generate one sample X1, . . . ,Xn from the vine.
Sample W1, . . . ,Wn independently from a uniform distribution on [0,1].
X1 =V1,1 =W1
X2 =V2,1 = H−1(W2,V1,1,Θ1,1)
V2,2 = H(V1,1,V2,1,Θ1,1)
for I = 3 to N do

VI,1 =WI
for K = I −1, I −2, . . . ,2 do

VI,1 = H−1(VI,1,VI−1,2K−2,ΘK,I−K)
end for
VI,1 = H−1(VI,1,VI−1,1,Θ1,I−1)
XI =VI,1
if I == N then

Stop
end if
VI,2 = H(VI−1,1,VI,1,Θ1,I−1)
VI,3 = H(VI,1,VI−1,1,Θ1,I−1)
if I > 3 then

for J = 2,3, . . . , I −2 do
VI,2J = H(VI−1,2J−2,VI,2J−1,ΘJ,I−J)
VI,2J+1 = H(VI,2J−1,VI−1,2J−2,ΘJ,I−J)

end for
end if
VI,2I−2 = H(VI−1,2I−4,VI,2I−3,ΘI−1,1)

end for
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ci,1+ j|i+1,...,i+ j−1(·, ·), and h(·) is the given h-function of the distribution. Simulating from
the given D-vine can be seen in Algorithm 2.

Another possible vine construction is the canonical (C-) vine, which be used when a
particular variable is known to be key in governing interactions between other variables.
In Figure 2 this is done with variable 1 as the "root" of the vine.

Figure 2: C-vine structure (Aas et al. 2009)

As can be seen, compared to the D-vine, in the C-vine variable 1 is used in each
pair-copula construction within the vine, and as such its importance is highlighted.

Lastly, a regular (R-) vine decomposition, that is not D- nor C-vine, can be used when
one wants flexibility in the vine decompositions. An example of a R-vine that is neither a
D- nor C- vine is illustrated in Figure 3.

Figure 3: R-vine structure (Aas et al. 2009)

The example is neither a D-vine as there is a node that is connected to more than two
edges, or a C-vine, as node 3 in T1 is connected to 3 edges instead of 4. The flexibility
of D-vine decomposition is illustrated by the fact that in a five-dimensional case, both
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D- and C-vines have 60 possible decompositions, where as with a R-vine, there are 240
decompositions, including both the D- and C-vine decompositions.

The fitting of the best C- and R-vine largerly follows the same pattern as with a D-vine,
with the absolute Kendall’s tau heuristic proposed by Dissman et al. (2013), however with
the given limitations of C- or R-vine.

3.3 Parametric and non-parametric copulas
When modelling pair-copulas the most well researched option is to use parametric pair-
copulas to model dependence between variables. Below some of the most researched
copulas are described (see Aas et al., 2009)). Bivariate Gaussian copula is used when the
dependencies are symmetrical across the distribution. Bivariate Student’s t-copula is used
when there is symmetrically concentrated increased dependence in the tail-ends of the
distribution. Bivariate Clayton copula on the other hand is used when there is asymmetric
dependence with higher dependence in the lower tail, where as the Gumbel copula is the
opposite, with high dependence in the positive tail.

With non-parametric copulas, no assumptions are made in regards to the dependence
structure of the copulas. Instead, density estimators are made based on the available data,
allowing for greater flexibility in modelling. Non-parametric estimators for pair-copulas
include the empirical Bernstein copula, penalized Bernstein polynomials and B-splines,
and kernel weighted local likelihood. (Nagler et al., 2017)

4 Machine learning

4.1 Machine learning models

4.1.1 Multi Layer Perceptron

A Multi Layer Perceptron (MLP) is a basic multilayer neural network architecture. An
MLP learns to map from a fixed-size input to a fixed size output. When moving from one
layer to another, a set of units calculates a weighted sum from the units of the previous
layer. These units themselves include an activation function, which determines the units
output. The current dominating activation function in MLPs is the rectified linear unit
function (ReLU), which has the function form f (z) = max(z,0) , where z is the input
from the previous layer. The MLP has the basic form of an input layer, which is made of
input units, an output layer, which is made of output units, and the possible layers between
them, called hidden layers, are made up of hidden units. (LeCun et al. 2015) This basic
architecture with two hidden layers can be seen illustrated in Figure 4.
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Figure 4: DMLP architecture (LeCun et al. 2015)

Figure 5: MLP backpropagation (LeCun et al. 2015)

An MLP can be trained via stochastic gradient descent. This can be done by back-
propagating through the network from the received output errors, and partially derivating
the errors first with respect to the outputs of the units, and from this deriving the error
partial derivative with respect to weights of the network. With known partial derivatives
with respect to weights, a gradient descent, meaning absolute minimization of the partial
derivatives can be conducted. This process is stochastic, as the derivatives are computed
at random instances of the weight updating process. (LeCun et al. 2015) This process is
illustrated in Figure 5.

4.1.2 Convolutional Neural Network

Convolutional neural networks (ConvNets or CNNs) are a subtype of Feed Forward Neu-
ral Networks (FFNNs), but instead of all adjacent layer units having full connectivity, as
seen with MLPs, the architecture includes filters, which allocate units to local patches
of the feature map. A ConvNet architecture is typically structured in a series of stages.
The first two stages are called convolutional layers and pooling layers. A convolutional
layer involves the organization of units of a new layer into feature maps from the previous
layers local patches via a set of weights called the filters. The local weighted sum is then
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processed through a non-linear activation function, such as ReLU. After these separate
feature maps are created from the previous layer, a pooling layer is applied. A pooling
layer merges similar feature maps. A typical pooling unit takes the maximum of a local
patch of units in a feature map(s) from the preceding convolutional layer. Neighboring
pooling units also take input from shifted local patches. This configuration of convolu-
tion, non-linearity, and pooling is then often stacked to create a deep ConvNet. At the
end of a ConvNet is usually a fully-connected layer to produce outputs. Optimization of a
ConvNet is done the same way as in MLPs through backpropagation. (LeCun et al. 2015)
ConvNet architecture is illustrated in Figure 6.

Figure 6: 2D ConvNet architecture (Albelwi and Mahmood 2017)

4.1.3 Recurrent Neural Network

Recurrent neural networks (RNNs) process an input statement one element at a time,
while storing in their hidden units a state vector that contains information about past states
of the sequence. RNNs are applicable when the input and output vectors are sequential
in nature. RNNs can also be trained with the backpropagation method. A popular RNN
architecture that creates an explicit memory process for the state vector is called the long
short-term memory (LSTM) network. The LSTM model uses memory filters to train the
model on how it should memorize past information. (LeCun et al. 2015) The structure of
the LSTM unit can be seen in Figure 7.



22

Figure 7: LSTM architecture (Qiu et al. 2020)

Following Qiu et al. (2020), the LSTM structure can be written out in the following
way, starting with the first step

ft = σ(Wf ∗ [ht−1,xt ]+b f ),

where ft is the first step of process, σ is a logistic sigmoid function, Wf is the weight
vector for ft , ht−1 is the output from the previous time step, xt is the new information at
time t and [ht−1,xt ] a concatenated long vector combining them, and b f is a bias vector.
The next step it is calculated by

it = σ(Wi ∗ [ht−1,xt ]+bi),

after which a candidate vector Ĉt , where Ct is the reserved information vector to be passed
on to the next moment, is calculated by

Ĉt = tanh(Wc ∗ [ht−1,xt ]+bc),

where tanh is the hyperbolic tangent function. After this, the actual Ct is computed by

Ct = ft ∗Ct−1 + it ∗Ĉt .

Now with Ct defined, the output ht can be computed as:

ht = σ(Wo ∗ [ht−1,xt ]+bo)∗ tanh(Ct)

A Bidirectional LSTM (BiLSTM) is essentially a dual LSTM architecture, that does
a forwards pass through the data, just like a regular LSTM, however an additional and
seperate backwards pass through the data is made. Bidirectional RNNs were originally
proposed by Schuster and Paliwal (1997). They proposed that the bidirectional model is
better able to minimize objective functions by taking advantage of immeadiate informa-
tion. The BiLSTM architecture is shown in Figure 8.
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Figure 8: BiLSTM architecture (Adytia et al., 2022)

4.1.4 Restricted Boltzmann Machine

Restricted Boltzmann Machines (RBMs) are an artificial neural network model used to
learn probability distributions of the input space. An RBM is a a bipartite and undirected
graph, with two layers, a visible and a hidden one. The units of layer are not connected
to one another. The probability distribution of an RBM with binarily valued visible and
hidden units can be defined using the energy function

E(v,h) =−aT
υ −bT h−υ

TWh,

where υ and h denote the vectors of the visible and hidden units, respectively, W denotes
the matrix of weights between the layers and a and b denote the biases of the visible
and hidden units respectively. Using the energy function, the partition function Z and the
probability semantics of the RBM can be calculated:

Z = ∑
υ

∑
h

exp(−E(υ ,h)),

P(υ ,h) =
1
Z

exp(−E(υ ,h)).

The RBM is trained by the contrastive divergence algorithm, which gives the stochas-
tic approximation of the distance between the reconstruvted and actual probabbility dis-
tributions. (Sezer et al. 2020) An RBM architecture can be seen visualized in Figure
9.

Figure 9: RBM architecture (Qiu et al. 2014)
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4.1.5 Deep Belief Network

Deep Belief Networks (DBNs) are a stacked RBM architecture. DBNs training is often
conducted in two phases, first the unsupervised phase where the probability distribution is
approximated using the RBMs, and then a supervised learning phase, where the network
is trained in a classification problem. The probability of generating a given visible vector
is:

p(υ) = ∑
h

p(h |W )p(υ | h,W ).

The optimization is done first via the contrastive divergence algorithm of the RMBs and
then via backpropagation. (Sezer et al. 2020) The architecture is illustrated in Figure 10.

Figure 10: RBM architecture (Sezer et al. 2020)

4.1.6 Autoencoders

Autoencoder (AE) networks are an unsupervised learning model, that is used to reduce
dimensionality and exract features of the original input dataset. AEs contain an input
layer, output layer, and a one or more hidden layers. Between the input and a hidden layer
there is an encoder encoder,which is reductive in dimensions, and between the hidden
layer and an output layer there is a decoder, which return the encoded matrix into its
original dimension. A simple AE can be defined by the following process:

h = f (x) = σ1(W1x+b1),

r = g(h) = σ2(W2xh+b1),

where f (x) is the encoding function, g(h) is the decoding function, Wi is the weight ma-
trix, x is the input matrix, and bi are bias vectors. The loss function

L(x,r) = ∥x− r∥2
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is minimized in order to retain the most information. (Sezer et al. 2020) AE structure can
be seen illustrated in Figure 11.

Figure 11: AE architecture (Liu et al. 2019)

(de Santana Correia and Colombini, 2022)

4.1.7 Deep reinforcement learning

Reinforcement learning (RL) is a machine learning method, that aims to train an agent
to learn the action that gives the maximum reward given some environment. RL is based
on the Markov Decision Process (MDP), where the process is made up of five tuples:
state, action, reward, state probability transition matrix, and a discount factor. The agent’s
expected outcomes can be described by two function, the state-value function vπ(s), which
is the expected return given a state s and following policy π , and the action-value function
qπ(s,a), which is the expected value of taking action a:

vπ(s) = Eπ [Gt | St = s] = Eπ [
∞

∑
k=0

γ
kRt+k+1 | St = s],

qπ(s,a) = Eπ [Gt | St = s,At = a],

where Gt is the discounted reward function, Rt is the reward at time t and γ is the discount
factor of future rewards.

A popular method of RL is Q-learning, where Q refers to the action value function.
Q-learning is a model-free and value-based RL method, where instead of a predetermined
policy, it learns from applying different actions. The Q-learning model is SARSA model
(state St , action At , reward Rt , (future) state St+1, and (future) action At+1). The updating
of a SARSA action value is done with the function

Q(St ,At) = Q(St ,At)+α [R(t +1)+ γQ(St+1,At+1)−Q(St ,At)] ,
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where α is the learning rate. In the Q-learning method, the model is updated with

Q(St ,At) = Q(St ,At)+α

[
R(t +1)+ γ max

a′
Q(St+1,a′)−Q(St ,At)

]
,

Where a denotes action and the best action is denoted by maxa . (Sezer et al. 2020)

4.1.8 Attention

Attention is a key part of human cognition. The concept of attention has also been applied
to neural networks, where attention modules are able to guide the neural network to exam-
ine data in greater detail. (Zagoruyko and Komodakis, 2016) Attention mechanisms can
be categorized into three categories: Global attention, local attention, and self-attention.

Global attention, or soft attention, assigns inputs a weight between 0 and 1. This done
with a softmax function

s(xi) =
exi

∑
n
j=1 ex j

which means global attention can easily be applied to models trained by stochastic dif-
ferentation. Global attention can be used for both temporal and spatial data. (de Santana
Correia and Colombini, 2022)

Local attention, or hard attention, assigns inputs a weight of either 0 or 1, and thus
determines wheter a input is either used or not. Local attention thus is effectively a condi-
tional indicator function, which is non-differentiable. Thus when applying local attention
to a model, the model has to be trained through reinforcement learning. Like global at-
tention, local attention is can be applied to both temporal and spatial data. (de Santana
Correia and Colombini, 2022)

Self-attention uses simple matrix calculations to quantify interdependencies between
input elements. Some of the main advantages of self-attention are computational cost and
availability of parallel computing, as self-attention uses relatively simple matrix operators.
(de Santana Correia and Colombini, 2022) The matrix operators used include, but are not
limited to dot product, Hadamard product, star product, and concatenation. It is also
possible to add an additional activation layer(s) to the activation function. (Zhao et al.
2020)

4.1.9 Deep learning models in finance

Deep machine learning models have gotten great attention in financial literature. The
areas of application include stock market forecasting and algorithmic trading, credit risk
assessment of individuals, companies and banks, fraud detection, portfolio allocation,
derivative pricing, and sentiment analysis, although this list is not exhaustive. (Ozbayoglu
et al. 2020) Considering the scope of thesis, the focus here will be on the stock forecasting
and portfolio allocation applications.

Stock price forecasting is the most frequent application of deep learning in financial
literature. In literature stock forecasting has been studied at different time-scales from
high frequencies to month ahead predictions. Use of different deep learning method-
ologies has also had great scope, as MLP, CNN, RNN, AE, and DBNs have all seen
application in forecasting. There is however a clear trend of RNN being the most popular
methodology, with the LSTM architecture dominating as the chosen specific architecture.
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It is also noteworthy however, that hybrid models, where more than one deep learning
technique is used, have also seen some prominence, with examples such as hybrid CNN-
LSTM (e.g. Liu et al. 2017), and DBN-MLP (e.g. Batres-Estrada 2015) models. Input
data used has also varied, as raw price data, technical indicators, (macro)economic data,
news, and investor sentiment have all seen usage in literature. In general, deep learn-
ing methods outperformed traditional statistical models and other benchmarks, although
in many cases the difference in performance has been seen to either negligible, or even
worse than in traditional machine learning models. (Sezer et al. 2020)

Recent portfolio management literature has increasingly focused on deep reinforce-
ment learning (RL) as the preferred method of machine learning. This can be seen from
comparing a fairly recent 2020 literature review by Sezer et al. to a 2022 literature review
by Olorunnimbe and Viktor (OV). While there are differences in the research paper filtra-
tion process, as OV include the inclusion of the term "back-testing" in their criteria, they
found three out of four papers used RL, while Sezer et al. indicate only one of 24 port-
folio management research papers included the use of RL. Comparing the two reviews,
Sezer et al. reference such papers as Takeuchi et al. (2013), Grace (2017), Zhou (2019),
where the portfolio weights are determined by the price change prediction, meaning these
are clearly more heuristic approaches to the portfolio selection problem, rather than find-
ing optimums. (It is noteworthy that research papers, which also analyze the dependence
structure are present in the literature review.) This is contrasted by the RL research papers
highlighted by OV, Park et al. (2020), Liang et al. (2018), and Guo et al. (2018), which
directly try to learn the best portfolio weight change actions via their RL methodologies.
Overall however, both literature reviews, Sezer et al. (2020) and Olorunnimbe and Viktor
(2022) find that deep learning approaches to portfolio selection provide overperformance
compared to benchmarks.

4.2 Machine learning-Copula models in portfolio management
Searching with the term "( neural AND network ) OR ( deep AND learn* ) AND copula
AND portfolio" in Scopus (scopus.com) nets four (from nine total) relevant search results.
Here relevancy was determined by the presence of a hybrid model, where returns were
predicted with a machine learning model and portfolio optimization was done utilizing
said predictions and copula-based dependencies.

The first research paper combining deep learning with copulas in portfolio selection
was Zhao et al. (2018). Their dataset included three American ETFs. They predicted
return by either a special kind of FFNN called Psi-Sigma network introduced by Shin and
Ghosh (1991) or a RNN, and a multivariate skew T -distribution with correlation struc-
ture predicted by either dynamic conditional correlation (DCC), asymmetric conditional
dynamic correlation, or the generalized autoregrssive model (GAS). They conducted port-
folio optimization either through MVO or with mean-CVaR optimization. They compared
their prediction methods, with ARMA-based return predictions and found that the NN ap-
proaches beat the ARMA-approaches in all return and risk measures, except maximum
drawdown, with two to four fold realized returns.

Yu et al. (2019) created an MLP with economic indicators to predict the returns of six
Vanguard indices. They then employed a GARCH-copula model to get normalized errors,
and using a simulations determined the best mean-CVaR portfolio. They compared their
results, with an equally weighted portfolio, a historical return-based mean-CVaR opti-
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mization and the GARCH-copula model without the MLP return predictions. They found
that the MLP-GARCH-copula hybrid model performed the best in their dataset lasting
from 2007 to 2018. This was true for all used measures, annualized returns, volatility,
Sharpe ratio, maximum drawdown and 99% VaR. Yu and Chang (2020) was essentially
an identical paper, except the testing time period was from 2002 to 2019. The results were
similar, except that the historically-based and the GARCH-copula model itself had lower
volatility than the combined MLP-GARCH-copula. The MLP-GARCH-copula model
was still clearly overall the best performing model.

Li and Muwafak (2021) used a GARCH-copula nested in a hidden Markov model
(HMM) to study risk dependencies in four financial industries. Their HMM had two
states, a high and low dependency state. They then studied the implied tail dependence
structures of the model, and using these created simulation studies of VaR for equally
weighted portfolios. They also then separately created stock price predictions based on a
RNN model constructed from their HMM. They conclude that the HMM-copula approach
is effective in modelling risk contagion and stock predictions.

Xu and Cao (2023) used a hybrid LSTM-based variational AE model and modelled the
dependence structure of latent variables with a weighted partial regular vine copula. They
used eight indices and compared the performance with an ARMA-GARCH, a Gaussian
process volatility model, CNN, LSTM, and a variational LSTM models, and found that
their WPVC-VLSTM model outperformed the controls in annualized return, precision,
recall, and accuracy.

Overall, the combination of deep learning and copulas, despite variations in specific
methodology has produced better approximations of risk and better return and risk be-
haviour when applied to the portfolio selection process.



29

5 Empirical analysis

5.1 Data
The stock index investigated is the S&P 500. The start of the training period is 2016
and the end of testing is the end of 2023. This timespan is proposed to be reflective of
a stock market, where machine learning is already present. While the study of machine
learning methods began in the 1950s (Fradkov, 2020), a literature review on machine
learning in the stock market conducted by Kumvure et al. (2022) found that more than
50% of relevant articles between 2000 and 2019 were published between 2015 and 2019.
Based on this, and the principle of conservatism, the year 2016 reflects a starting point
which is still far back enough that there is a significant amount of data, but not so far
back that machine learning did not affect the markets, making the data less representative
for training purposes. The training period is set to be from 2016 to 2021. The validation
period is the year 2022 and testing is conducted with the year 2023. This represents a
75-12.5-12.5 split.

The data includes all stocks which are present at the beginning of 2015 and the end of
2023. The year 2015 is used, as at the beginning of 2016, lagged variables are based on
data from 2015. This elimination has the benefit of all stocks being available throughout
the dataset, which makes computations easier, however with the drawback of introducing
bias. To mitigate the effect of this bias, index benchmarking is conducted with the set
of selected stocks, as opposed to the actual index. The survivorship bias is also reduced
by the fact, that the elimination of stocks could be done as an ad hoc rule that states
that methodology only applies to stocks which have been present in the index for six
years, although this does not factor in survivorship during the last year, the test period.
The total number of stocks included based on this elimination is 329. The list of stocks
was retrieved from https://github.com/fja05680/sp500. The full list of stocks included is
reported in the appendix.

Price and volume is represented by five variables, close, open, high, low, and volume.
These variables are transformed as percentage change, calculated by (Xt −Xt−1)/Xt−1.
Price and volume data is retrieved from Yahoo Finance (2024) using the yfinance
(Aroussi, 2024) python library.

Technical indicators are used to potentially aid the model in extracting information
from the price and volume history, The indicators considered are the following:

• Smooth Moving Average (SMA)

• Exponential Moving Average (EMA)

• Relative Strength Index (RSI)

• Normalized Average True Range
(NATR)

• Average Directional Movement Index
(ADX)

• Commodity Channel Index (CCI)

• Chande Momentum Oscillator (CMO)

• William’s %R oscillator (%R)

• Aroon Oscillator (AO)

• Weighted Moving Average (WMA)

• Money Flow Index (MFI)

• Chaikin A/D Oscillator (CAD)

• Resistance level (RL)

• Support level (SL)

• Bollinger Bands (BB)

• Volatility (V)
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All of the above technical indicators have the number of lookback periods as a hy-
perparameter. For each variable, the number of look back periods for which the indica-
tor is computed are 5, 7, 14, 21, 50, 100, 252. The SMA, EMA, WMA, RL, SL, and
BB variables are non-stationary, and a price relational transformation is calculated by
(Xt −Ct)/Ct , where Xt is the technical indicator and Ct is the closing price. Volatility is
normalized as Xt/Ct . Chailkin A/D Oscillator is Z-score normalized with the training data
stock-wise.

Pattern matching is conducted with the Ta-lib (2024) Python library. All available
candlestick patterns are utilized. The patterns used are listed in the appendix. Ta-lib
checks if a pattern in the data matches that of a given pattern and then outputs 100 if
the pattern matched indicates a bullish signal and -100 if it indicates a bearish signal. 0
indicates no match at all. Considering the number of patterns, and the relative rarity of
signals, the outputs are transformed to summarizing variables. These transformations are
percentage of indicators bullish and percentage of indicators bearish.

Fundamental data used comes from the income statement, balance sheet and cash
flow statement. This is done to give a full view of a company’s quantitative fundamentals.
Fundamental variables used are listed below:

• Market cap

• Revenue

• Gross profit

• Net income

• Research and development costs

• Interest expense

• Current assets

• Non-current assets

• Current liabilities

• Long-term debt

• Operating cash flow

• Investing cash flow

• Financing cash flow

Fundamental data was retrieved from Polygon.io (2024).
Macroeconomic data used is listed below:

• Index return

• Change in CBOE crude oil volatility index

• Change in CBOE gold volatility index

• CBOE Volatility Index

• Change in CBOE Interest Rate 10 Year T No

• Change in CBOE 13 Week Treasury Bill Yield Index

• Change in unemployment

• Change in consumer price index

• Change in GDP



31

• Change in industrial production

The macroeconomic data is based on the United States, as the S&P 500 is as well. Unem-
ployment, consumer price index, and industrial production are lagged two months from
observation, and GDP two quarters. Index return refers to the equally weighted average
return across the 329 stocks. Macroeconomic data was retrieved from FRED (2024), and
the index prices were retrieved from Yahoo Finance (2024) using the yfinance (Aroussi,
2024) python library.

Sentiment:

• Google Trends

Market sentiment:

• American Association of Individual Investors Bearish index

• American Association of Individual Investors Bullish Index

• Percentage index advances daily

• Percentage index declines daily

• Percentage index new highs past five days over one year

• Percentage index new lows past five days over one year

Google Trends data is based on the company data, as opposed to search term or topic
and lagged one week. The American Association of Individual Investors (AAII) conducts
weekly surveys amongst its members. The survey question asks participants how they
view the stock market to move in the next six months. There are three possible answers,
bullish, neutral or bearish. Only the bearish and bullish indexes, referring to the percent-
age of answers being bearish or bullish respectively, are included, as the neutral index
can be constructed from the two other indices. AAII data is lagged one day from day of
reporting. Index movements are calculated with the price data for the 329 stocks.

A dummy variable indicating the sector the stock belongs to is used. Sector data is
retrieved from Yahoo Finance (2024) using the yfinance (Aroussi, 2024) Python library,
and the sector for each stock is assumed to be the current one. This means if a stock’s
sector has changed, this is not reflected in the data.

5.2 Model
The model construction is done in four phases. In the first phase agnostic fundamental
analysis is conducted with reference to Bartram and Grinblatt’s (2018), yielding implied
returns from over/under-valuation. In the second phase, an evolutionary algorithm is used
to determine the best set of technical indicators. In the third phase regression neural
networks are trained to predict returns. In the fourth phase, copulas are fitted on GARCH-
standardized return errors. Given simulated returns, the optimal portfolio weights are
determined using mean-CVar optimization. The methodology is summarized below.

1) Input: Gather and format data.
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a) Conduct agnostic fundamental analysis to get mispricing signals.

b) Conduct genetic algorithm selection over technical indicators and their hyper-
parameters.

2) Neural Networks: Train neural networks to predict five-day ahead returns using
input data.

a) Obtain prediction errors.

3) GARCH-Copula Portfolio Optimization:

a) Train GARCH models to predict five-day volatility

(i) Normalize neural network prediction errors with GARCH-volatility

b) Fit a copula on normalized prediction errors.

c) Simulate 1000 instances from the fitted copula.

d) Conduct mean-CVaR optimization:

(i) Mean is defined by neural network predictions.
(ii) Losses for CVaR are defined by return predictions and simulated errors

denormalized with predicted volatilities.

5.2.1 Agnostic fundamental analysis

In the first phase, data preparation regarding agnostic fundamental analysis is conducted.
The rationale for this is both the univariate predictive power, demonstrated by Bartram and
Grinblatt (2018), and the hypothesized cross-dependence with other time-series variables.

The analysis is conducted with a MLP, differing from both the Bartram and Grinblatt’s
(2018) and Hanauer et al. (2022). Input variables are the two most current reported pe-
riods of accounting numbers, as well as a sector dummy. Accounting numbers include
variables from income statements, balance sheets and cash flow statements. The out-
put variable is the market capitalization of the firm. The model is trained monthly with
data available at the beginning of the month. Each training of the model is independent,
which allows the model to capture time-variability in market pricing behaviour. The es-
timated outputs are then compared with the actual market valuation and the difference is
computed as the percentage difference to the real market capitalization. The real market
capitalization is updated daily using closing prices.

In choosing the model hyperparameters, a secondary regression analysis is conducted
using predictions and the following five-day returns throughout the training data. The hy-
perparameter set is chosen by maximizing the variance explained by the model, consist-
ing of a constant and the model implied mispricing. This is done as opposed to validation
error minimization, as the purpose of the prediction is to be economically meaningful,
rather than necessarily the one with lowest error, and due to the relatively low amount
of dependent data compared to the size of the input space. The model and mean square
computation is computed with Keras API (Chollet et al., 2015) and linear regression is
conducted with statsmodels Python library (Seabold and Perktold, 2010).

The best model chosen for the agnostic fundamental analysis was a two hidden layer
MLP, with 100 neurons in the first hidden layer, and 50 in the second, with rectified
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linear unit activation and no dropout. The output layer contained one neuron, with linear
activation. The model was trained on an Adam optimizer with a mean average percentage
error, with a maximum of 1000 epochs and a loss patience of 10. Batch size used was 110,
with random sampling from the data. All variables, except for dummies, were transformed
by multiplying them by 1e-11. This was done to help numerical convergence. The model
architecture is described in Table 1.

Table 1: FFNN for agnostic fundamental analysis

Layer Output shape Param Connected to

Input (None, 34) 0

Hidden 1 (None, 100) 3500 Input

Hidden 2 (None, 50) 5050 Hidden 1

Output (None, 1) 51 Hidden 2

5.2.2 Technical indicator input selection

Considering that there are 16 technical indicators with seven different input parameters,
totalling 112 variables, reducing dimensions is necessary for optimal model fitting and the
removal of redundant information. This input selection is done with a genetic algorithm.
A genetic algorithm is inspired by evolutionary processes seen in nature. The procedure
used largely follows that described by Haldurai et al. (2016):

Algorithm 3 Genetic Algorithm
Initialization:
Create a random population of chromosomes
Stop condition is not reached Fitness:
Fit predictive models of return using random forest regression based on the chromosomes
Calculate average validation error for each chromosome
Selection:
Select p parent chromosomes with the lowest prediction error
Crossover:
Create offspring chromosomes using uniform crossover from parent chromosomes Re-
sulting in o number of offspring
Mutation:
Apply mutation operator to each chromosome with a certain probability Change the gene
at any given locus across all its genes
Replace:
Replace the old population with the population of offspring
Loop:
Restart the process from the Fitness step until a stop condition is reached Choose the best
chromosome throughout the procedure

The genetic algorithm is conducted with the scikit-learn library (Pedgerosa et al.
2011).



34

Technical indicator selection was conducted with an evolutionary algorithm utilizing
a random forest regression. The evolutionary algorithm had a population size of 250, with
a maximum of 20 features, and independent crossover probability of 0.9 and a mutation
probability of 0.025. A random population of 10 chromosomes was used after population
generation. Five-fold cross-validation within the training data was utilized in choosing
the best fit model, with a patience for no change in cross-validation error of two. The
random forest regressor used 5 estimators and had a minimum leaf size of 10 percent of
all data.

5.2.3 Neural network models

There are three possible model architectures utilized which are BiLSTM, CNN-BiLSTM,
and CNN-BiLSTM-Attention. BiLSTM is used instead of the LSTM, as it has shown
better performance in stock prediction (Siami-Namini et al., 2019).

The BiLSTM model has three layers: the BiLSTM layer, a dense layer, and an ouput
layer. For the dense layer, a ReLU activation function is used, and the output layer uses a
linear activation function. For the models utilizing CNN, before the BiLSTM layer, a 1-
dimensional CNN layer is applied to the input, followed by a pooling layer. This pooled
ouput is then given as the input to the BiLSTM layer. In the CNN-BiLSTM-Attention
model after the BiLSTM layer, a scaled dot-product attention layer is applied before the
final dense layer. Hyperparameters are optimized over validation period mean square
error.

All neural network models are trained with Keras API (Chollet et al., 2015), and the
OLS estimation is conducted with the statsmodels Python library (Seabold and Perktold,
2010).

The models were trained on all stocks at once. All variables, except for dummies, were
Z-score normalized based on training mean and standard deviation, including the returns.
Return outputs were afterwards inversely transformed. The input space included data
from periods t to t −9. Return output was calculated as (Ct+5 −Ct)/Ct . All models were
trained using mean square error optimization and the Adam optimizer with a learning
rate of 0.001. All models were trained using a batch size of 10 percent of all training
data. After choosing the best hyperparameters based on validation mean square error,
an added selection criteria was considered. This was that the models produced at least
one prediction over one percent in 100 of the 252 validation period days. This was done
to ensure a balance between accuracy and usefullness in portfolio selection. All models
were trained five times, and final output was determined by the average of those prediction
outputs.

The BiLSTM models were trained with one BiLSTM layer, followed by a dropout
layer, a dense layer, and the final output layer. The BiLSTM layer had 54 neurons with
dropout and recurrent dropout of 0.7. The layer outputted 54 variables, to which a 0.9
dropout rate was used before a 54 neuron ReLU layer. The final output layer had one
neuron with linear activation. The models were trained with 50 epochs. The model archi-
tecture is described in Table 2.
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Table 2: BiLSTM architecture

Layer Output shape Param Connected to

Input (None, 10, 54) 0

BiLSTM (None, 54) 17712 Input

Hidden (None, 54) 2970 BiLSTM

Output (None, 1) 55 Hidden

The CNN-BiLSTM models were trained with convolutional layers with 54 filters, ker-
nel size of four and same padding. The activation function used was a leaky rectified
linear unit, with an alpha value of four. Average pooling with a pool size of three and
same padding was used. A dropout of 0.1 was applied to the output. Following this, a
BiLSTM layer with 54 neurons, with dropout and recurrent dropout of 0.6 was used. A
dropout of 0.9 was applied on the output of the layer before a dense layer of 54 neurons,
with ReLU activation. The final output layer used linear activation. The models were
trained with 50 epochs. The model architecture is described in Table 3.

Table 3: CNN-BiLSTM architecture

Layer Output shape Param Connected to

Input (None, 10, 54) 0

Conv1D (None, 4, 54) 11718 Input

Average Pooling (None, 4, 54) 0 Conv1D

BiLSTM (None, 54) 17712 Average Pooling

Hidden (None, 54) 2970 BiLSTM

Output (None, 1) 55 Hidden

The CNN-BiLSTM-Attention model was otherwise identical to the CNN-BiLSTM
model, except after the BiLSTM layer, an attention layer was applied. However much
higher dropouts were used, with a 0.85 dropout rate after the pooling layer, 0.9 dropout
and recurrent dropout in the BiLSTM layer, and after the attention layer a dropout of 0.9
was used. The models were trained with 25 epochs.
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Table 4: CNN-BiLSTM-Attention architecture

Layer Output shape Param Connected to

Input (None, 10, 54) 0

Conv1D (None, 4, 54) 11718 Input

Average Pooling (None, 4, 54) 0 Conv1D

BiLSTM (None, 54) 17712 Average Pooling

Reshape 1 (None, 54, 1) 0 BiLSTM

Attention (None, 54, 1) 0 Reshape 1

Reshape 2 (None, 54) 0 Attention

Hidden (None, 54) 2970 Reshape 2

Output (None, 1) 55 Hidden

On top of the three architectures used, a fourth model was created from using all three
of the model outputs, named the All ensemble model.

5.2.4 Feature importance

Feature importance was done by categorizing the variables into eight categories: Basic
variables, technical indicators, candlestick indicators, agnostic fundamental analysis, sen-
timent variables, market sentiment variables, macroeconomic indicators, and sector dum-
mies. Permutation feature importance analysis was conducted by randomly permuting the
variables within a category during the testing period, and comparing the permuted mean
square error to the actual mean square error. The feature importance analysis follows that
proposed by Fisher et al. (2019), decribed in Algorithm 4, where f̂ is the function for an
NN-model.

Algorithm 4 Feature importance analysis

1: Estimate the original model error eoriginal = MSE(y, f̂ (X))
2: for each feature i ∈= {1, ...,n} do
3: Generate a a new feature matrix Xpermutation from Xoriginal , by permuting feature i
4: Calculate error epermuation = MSE(y, f̂ (Xpermuation))
5: end for

Feature importance was also analyzed with a linear regression model. To keep the
analysis informative, means are taken across the ten lags used in the original models for
each datapoint.

f̂ (y) = α +βXmeans + ε,

where f̂ (y) are the NN model predictions and Xmeans is the mean transforemed matrix of
the original dataset.

Both analyses were conducted with data from the testing period.
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5.2.5 Copula construction and portfolio optimization

A regular copula was fitted on the train prediction return errors (train and validation
for the test period), normalized with predicted conditional volatility from T -distributed
GARCH(1,1) models

rt = εt ,

εt = σtzt ,

σ
2
t = ω +αε

2
t−1 +βσ

2
t−1,

zt ∼ Student-t(ν).

which were fit for each stock separately. A zero-mean GARCH model was chosen due
to its simplicity, and lack of assumptions about the underlying time-series. Assuming
an autoregressive or empirical mean were utilized, this would have to be assumed stable
out-of-sample. Once the NN models were been trained on the training data, standardized
return errors were computed as

rt+5 −E(rt+5)

E(σt+5)
.

Using the errors, regular vine copulas were fitted om the training data. Using stan-
dardized return errors allows for the usage of time-variability in volatility, and returns
could be computed from simulations as E(rt+5)+E(σt+5) ∗ es, where es is a simulated
normalized error from the copula. The copula is fitted using the pyvinecopulalib library
(Nagler and Vatter, 2023) using Algorithm 5 (Dissman et al. 2013).

Algorithm 5 Sequential R-Vine model selection (Dissman et al. 2013)

1: Calculate the empirical Kendall’s tau τ̂ j,k for all possible variable pairs { j,k},1 ≤ j <
j ≤ n.

2: Select the spanning tree that maximizes the sum of the absolute empirical Kendall’s
taus.

3: For each edge { j,k} in the selected spanning tree, select a copula on and estimate the
corresponding parameters(s). Then transform F̂j|k(xι j|xιk and F̂l| j(xι j|xιk, ι = 1, ...,N
using the fitted copula Ĉ jk.

4: for i = 2, ...,n−1 do
5: Calculate the empiritical Kendall’s tau τ̂ j,k|D for all conditionoal cariable pairs

j,k|D that can be part of tree Ti.
6: Among these edges, select tge spanning tree that maximizes the sum of absolute

empirical Kendall’s taus.
7: For each edge j,k|D in the selected spanning tree, select a conditional copula and

esimate the corresponding parameter(s). Then transform F̂j|k∪D(xι j|xιk,xιD) and
F̂k| j∪D(xιk|xι j,xιD), ι = 1, ...,N, using the fitted copula Ĉ jk|D.

8: end for

Only one parameter pair-copulas were used in the copula fitting, which includes the
following copulas: Gaussian, Clayton, Gumbel, Frank, and Joe. This was due to runtime
limitations, and the high dimensionality of the data.

Portfolio optimization was done with mean-CVAR optimization using the PyPortfo-
lioOpt library (Martin, 2021). The mean-CVAR optimization was computed with lin-
ear programming based on Uryasev and Rockafellar’s (2001) method, which follows the
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equation

Minimize α +
1

1−β

1
T

T

∑
i=1

ui

subject to ui ≥ 0

ui ≥−wT ri −α,

where ui is the shortfall of for scenario i. The mean ri is defined by the outputs from the
NN models minus the considered transaction cost. Shortfalls are defined by the normal-
ized copula error and predicted volatility from GARCH(1,1) model E(σt) ∗ es, where es
is an instant simulated normalized errors. The portfolios are long only portfolios, which
means an additional constraint wk ≥ 0, where wk ∈ w was added to the original formula-
tion of the problem. For the mean-CVar optimization, 1000 simulations were conducted
from the copula, and an α value of 0.05 (β = 0.95) and a CVaR value of 0.1 was used.
Transaction costs of 0%, 0.5%, and 1% were considered. Transaction costs were equally
divided between the buying date and selling date. Buying and selling was conducted at
close, and it is assumed that all information available at close was available to the model.

5.2.6 Performance evaluation

The evaluation of the models investigates the informative value of fundamental analysis,
technical indicators chosen, the performance of NN-copula model and the importance of
variables used in the NN.

The performance of the agnostic fundamental analysis is analysed with portfolio per-
formance of pentiles of the mispricing signal in monthly updated portfolios. The predic-
tive power of the mispricing signal is also evaluated with the linear regression model

rt+5 = α +βM,

where rt+5 is the five-day return and M is the mispricing signal.
The predictive accuracy of the different NN-models is evaluated with validation and

test period mean square error (MSE)

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2

and mean absolute error (MAE)

MAE =
1
n

n

∑
i=1

|ŷi − yi|.

Technical indicators selected by the genetic algorithm and used in the NN-models are
reported.

An additional linear regression model is estimated for benchmarking purposes, using
data from training period, which utilizes the same set of variables as the NN-models

rt+5 = α +βx,

where x is the flattened vector of the input data.
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The performance of the NN-copula models is compared with OLS-copula, equally-
weighted (EW) and value-weighted (VW) buy-and-hold portfolios, as well as predic-
tion weighted portfolios. The prediction weighted portfolios perform risk-naive selection
based on the sum of of positive predictions

wi =
[E(rt+5,i)]

+

∑
N
k=0[E(rt+5,k)]+

,

where E(rt+5,k) is the prediction of one of the models and N is the number of stocks.
Comparing the NN-copula performance to OLS-copula and market portfolios informs

about the economic value of the NN predictions, where as comparing the performance of
the copula portfolios to the prediction weighted portfolios informs about the successful-
ness of the copula and mean-CVaR optimization, as the used return predictions stay the
same.

In evaluation the portfolios, five measures were used:

Annualized Return = 252×Average Daily Log Return,

Annualized Volatility =
√

252×Average Daily Log Volatility,

Sharpe ratio =
Annualized Return

Annualized Volatility
,

CVaR0.05 =
1

⌈α ×n⌉

⌈α×n⌉

∑
i=1

L(n−i+1),

where n is the number of days, L is the sorted list of losses, and ⌈α ×n⌉ is the number of
losses included.

Maximum drawdown = max
t≤u

(
P(t)−P(u)

P(t)

)

6 Results

6.1 Agnostic fundamental analysis
The summary statistics of the mispricing signal is reported in Table 5. The mean is clearly
negative, and the distribution is highly positively skewed and significantly leptokurtic.

Table 5: Agnostic mispricing signal descriptive statistics

Statistic Mean Standard deviation Skewness Kurtosis

Variance -0.0911 0.2894 2.880 199.8

The linear predictive performance of the agnostic pricing signal deteriorated during
the test phase. Three OLS regression results of mispricing and the following five-day
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returns without dividends are produced in Table 6 for the training, validation and testing
periods.

Table 6: Agnostic mispricing signal and five-day returns

Period Training Validation Test

Coefficients

Constant 0.0036*** -0.0005*** 0.0020***

Mispricing signal 0.0048*** 0.0118*** -0.0050***

R-squared 0.00078 0.0020 0.00049

The first describes the performance during the training period of 2016-2021. As can
be seen, the mispricing has a statistically significant positive coefficient of 0.0048, with
a constant of 0.0036. This was the highest R-squared producing model with a R-squared
of 0.00078. During the validation period of 2022, the coefficient increased to 0.0118,
with a constant of -0.0005. The R-squared value during the validation period was 0.0020.
However during the test period, the performance of the signal not only disappeared, but
became negative, with a coefficient of -0.0050, and a constant of 0.0020. However during
the testing phase, the R-squared was also the lowest at 0.00049. This indicates that the
performance of the mispricing signal is not constant, and may even become negative
during periods.

There is also evidence that the relationship between the mispricing signal and actual
returns is either non-linear or non-existent. This is evidenced by non-ordered performance
of monthly updated pentile equally weighted portfolios based on the mispricing signal.
During the training period of 2016-2021, the two portfolios with the highest annualized
return performance with dividends were the highest and lowest pentiles of mispricing,
with 18.6 percent and 17.9 percent respectively, compared to the equally weighted market
return of 17.0 percent. During the validation period of 2022, the highest pentile performed
the best with an annualized return of -5.3 percent, however the worst performing pentile
was the second highest pentile with an annualized return of -8.4 percent, compared to the
market’s -6.4 percent. During the test period of 2023, the lowest pentile of mispricing
actually performed the best, with an annualized return of 18.4 percent, while the highest
pentile performed the worst, with an annualized return of 11.8 percent, compared to the
equally weighted market return of 14.6 percent. The performance of the portfolios for the
entire dataset is shown in Figure 12.
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Figure 12: Agnostic mispricing portfolios

6.2 Technical indicator input selection
The best cross-validation MSE was 0.992. Considering that predictimg the mean would
have had an MSE of 1 by definition, as the return values were Z-score normalized, the
best Random forest regression model does not offer significant insight in the prediction of
returns. The algorithm ended up choosing 19 variables, given a maximum of 20, which
were the following technical indicators:

• Smooth Moving Average 100-day

• Relative Strength Index 7-day

• Relative Strength Index 21-day

• Normalized Average True Range 252-
day

• Commodity Channel Index 7-day

• William’s R% 100-day

• Aroon Oscillator 14-day

• Volume Weighted Average Price 14-day

• Volume Weighted Average Price 21-day

• Volume Weighted Average Price 50-day

• Volume Weighted Average Price 252-day

• Minimum 252-day

• Maximum 14-day

• Standard deviation 5-day

• Standard deviation 21-day

• Standard deviation 50-day

• Standard deviation 252-day

• High Bollinger Band 5-day

• High Bollinger Band 252-day

After adding the technical indicators, the final dataset contained 54 input variables.
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6.3 Neural networks and portfolio optimization
The volatility and variance of five-day returns is described in Table 7, and MSE and MAE
of the models is described in Tables 8 and 9 for the validation and test period respectively.

In terms of prediction accuracy the best model during the validation period was
the BiLSTM model according to mean square error and the CNN-BiLSTM and CNN-
BiLSTM-Attention models according to mean absolute error. The worst NN-model based
on MSE was the CNN-BiLSTM-Attention model, and based on MAE the All ensem-
ble. During the testing period both accuracy methods indicated that the CNN-BiLSTM-
Attention model performed the best. The BiLSTM performed the worst in terms of both
measures. However, the differences were quite small, and not differentiating until the
third or fourth, or even fifth significant figure. The OLS model performed by far the worst
across both periods and measures.

Table 7: Five-day return dispersion measures, x100

Period Validation Test

Variance 0.2371 0.1436

Standard deviation 4.869 3.790

Table 8: Validation prediction error, x100

Strategy BiLSTM CNN-BiLSTM CNN-BiLSTM-Attention All OLS

Mean square error 0.2382 0.2383 0.2391 0.2386 0.2666

Mean absolute error 3.651 3.650 3.650 3.653 3.908

Table 9: Test prediction error, x100

Strategy BiLSTM CNN-BiLSTM CNN-BiLSTM-Attention All OLS

Mean square error 0.1433 0.1431 0.1430 0.1431 0.1664

Mean absolute error 2.748 2.748 2.746 2.747 3.028

Portfolio return behaviour for the models with no transaction costs, 0.5% transaction
costs and 1% transaction costs for the validation and test period are shown in Tables 10-21.
Figures showing the return behaviour are presented in the Appendix.

With a CVaR of 0.1, during the validation period no model consistently outperformed
the market. With 0% transaction costs, all of NN models performed slightly less worse,
in terms of annualized returns than the market portfolios, with the BiLSTM model being
the only one with a positive return. However in doing so, all NN model -based portfolios
experienced nearly double the volatility and CVaR compared to the market portfolios.
This is shown in Table 10. With 0.5% transaction costs, all models underperformed the
market in terms of both return and risk measures. Compared to the other transaction costs
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alternatives, the NN model performance was clearly the worst with 0.5% transaction costs.
This is shown in Table 11. With 1% transaction costs, all NN models again outperformed
the market portfolios in terms of returns, with BiLSTM and CNN-BiLSTM producing
positive annualized returns. The CNN-BiLSTM produced the highest return and Sharpe
ratio across the portfolios. While risk measures improved over the previous transaction
cost, both volatility and CVaR were still higher than that of market portfolios. This is
shown in Table 12. The OLS model performed by far the worst out of the available
strategies in each transaction cost scenario both in terms of returns and risk measures.

During the validation period the prediction weighted portfolios overall performed
worse than the copula-based portfolios. However when given 0% transaction costs, the
portfolios had higher returns and better risk measures compared to both market portfolios
and the 0% transaction cost copula-based portfolios. This is shown in Tables 13-15.

Table 10: Validation portfolio results, 0% transaction cost, CVaR = 0.1

Strategy BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All OLS EW VW

Annualized return 5.72% -7.55% -6.15% -6.45% -47.4% -8.59% -15.3%

Annualized volatility 37.1% 36.3% 38.6% 38.2% 55.1% 21.9% 22.4%

Sharpe ratio 0.154 -0.208 -0.159 -0.169 -0.859 -0.393 -0.685

CVaR 4.73% 4.42% 4.88% 4.93% 7.92% 3.06% 3.16%

Maximum drawdown 23.6% 25.9% 27.8% 29.3% 51.2% 19.5% 22.8%

Table 11: Validation portfolio results, 0.5% transaction cost, CVaR = 0.1

Strategy BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All OLS EW VW

Annualized return -19.5% -19.8% -23.8% -28.6% -71.8% -8.59% -15.3%

Annualized volatility 37.3% 35.7% 39.7% 38.4% 55.1% 21.9% 22.4%

Sharpe ratio -0.521 -0.555 -0.599 -0.745 -1.30 -0.393 -0.685

CVaR 5.02% 4.75% 5.18% 5.10% 8.01% 3.06% 3.16%

Maximum drawdown 32.6% 31.9% 34.2% 34.8% 59.2% 19.5% 22.8%
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Table 12: Validation portfolio results, 1% transaction cost, CVaR = 0.1

Strategy BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All OLS EW VW

Annualized return 13.7% 0.636% -4.32% -3.58% -88.4% -8.59% -15.3%

Annualized volatility 26.8% 24.6% 26.0% 24.6% 58.9% 21.9% 22.4%

Sharpe ratio 0.509 0.259 -0.166 -0.146 -1.50 -0.393 -0.685

CVaR 3.88% 3.41% 3.96% 3.52% 8.47% 3.06% 3.16%

Maximum drawdown 15.7% 18.2% 25.7% 16.1% 63.3% 19.5% 22.8%

Table 13: Validation portfolio results, 0% transaction cost, prediction weighted

Strategy BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All OLS EW VW

Annualized return 4.01% 7.35% -0.93% 4.76% -3.15% -8.59% -15.3%

Annualized volatility 7.24% 8.41% 4.61% 6.48% 23.2% 21.9% 22.4%

Sharpe ratio 0.554 0.874 0.201 0.735 -0.136 -0.393 -0.685

CVaR 0.919% 1.09% 0.680% 0.813% 3.47% 3.06% 3.16%

Maximum drawdown 5.44% 4.76% -5.25% 4.02% 18.6% 19.5% 22.8%

Table 14: Validation portfolio results, 0.5% transaction cost, prediction weighted

Strategy BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All OLS EW VW

Annualized return -43.6% -46.8% -39.4% -41.6% -28.0% -8.59% -15.3%

Annualized volatility 39.7% 41.5% 32.2% 38.4% 29.1% 21.9% 22.4%

Sharpe ratio -1.09 -1.13 -1.22 -1.08 -0.960 -0.393 -0.685

CVaR 5.39% 5.82% 4.52% 5.38% 4.43% 3.06% 3.16%

Maximum drawdown 42.9% 46.0% 39.8% 42.2% 31.8% 19.5% 22.8%
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Table 15: Validation portfolio results, 1% transaction cost, prediction weighted

Strategy BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All OLS EW VW

Annualized return -42.5% -56.4% -13.5% -58.1% -70.6% -8.59% -15.3%

Annualized volatility 49.4% 49.8% 46.6% 50.1% 39.4% 21.9% 22.4%

Sharpe ratio -0.862 -1.13 -0.289 -1.16 -1.79 -0.393 -0.685

CVaR 6.61% 6.89% 6.60% 6.87% 6.75% 3.06% 3.16%

Maximum drawdown 48.5% 48.1% 27.3% 46.6% 52.1% 19.5% 22.8%

With a CVar of 0.1, during the testing period, no model consistently outperformed
the market. With 0% transaction costs, all models outperformed the market in terms
of annualized returns. While volatility and CVaR were elevated, all models had higher
Sharpe ratios than the EW-portfolio, and the BiLSTM model had a higher Sharpe ratio
than both the EW- and VW-portfolios. This is shown in Table 16. With 0.5% transaction
costs, three of the NN models, the BiLSTM, the CNN-BiLSTM-Attention, and the All
ensemble had higher returns than both market portfolios, while CNN-BiLSTM and the
All ensemble produced higher returns than the EW-portfolio. Higher returns were again
at the cost of higher risk measures, as only the BiLSTM model had a higher Sharpe ratio
than the EW-portfolio and all NN models produced significantly lower Sharpe ratios than
the VW-portfolio. This is shown in Table 17. With 1% transaction costs, no NN model
outperformed both market portfolios in any of the measures, however the CNN-BiLSTM-
Attention model produced higher returns than the EW-portfolios. The BiLSTM model
was the only other model to produce positive annualized returns. While CVaR remained at
the same level as with lower transaction costs, volatility measures improved, although still
significantly inflated compared to market portfolios. This is shown in Table 17. In sharp
contrast the performance of the OLS predictor in the validation data, the OLS model was
the only model to consistently have higher returns than both market portfolios, and in two
of the three transaction cost scenarios had the highest return compared of all portfolios.
However, risk measures were consistently higher with the OLS model compared to the
NN models. This is shown in Tables 16-18.

The performance of the prediction weighted portfolios again was significantly worse
than the copula-based portfolios, although the difference was not as large as during the
validation period. With 0% transaction costs, the prediction weighted portfolios again
had by far the best risk measures compared to both market portfolios and copula-based
portfolios, however at the costs of significantly lower returns. This is shown in Table 19.
With 0.5% transaction costs, the BiLSTM, CNN-BiLSTM-Attention and OLS portfolios
had higher annualized returns than both market portfolios, while the All ensemble had
higher returns than the EW-portfolio. However the returns were consistently lower for the
prediction weighted portfolios compared to copula-based portfolios. Risk measures were
also worse for the prediction weighted portfolios compared to both market and copula-
based portfolios. This is shown in Table 20. With 1% transaction costs, All models had
negative returns, with significantly worse risk measures than both the copula-based and
market portfolios. This is shown in Table 21.
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Table 16: Test portfolio results, 0% transaction cost, CVaR = 0.1

Strategy BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All OLS EW VW

Annualized return 58.6% 37.9% 46.3% 39.7% 72.6% 12.1% 18.9%

Annualized volatility 29.4% 30.6% 29.9% 30.4% 35.9% 13.6% 12.1%

Sharpe ratio 1.995 1.239 1.547 1.307 2.026 0.892 1.57

CVaR 3.16% 3.41% 3.41% 3.43% 4.07% 1.71% 1.48%

Maximum drawdown 13.4% 19.3% 18.9% 19.3% 16.6% 12.3% 9.84%

Table 17: Test portfolio results, 0.5% transaction cost, CVaR = 0.1

Strategy BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All OLS EW VW

Annualized return 31.6% 17.5% 23.6% 17.3% 27.2% 12.1% 18.9%

Annualized volatility 29.4% 30.0% 29.8% 29.9% 35.4% 13.6% 12.1%

Sharpe ratio 1.07 0.586 0.791 0.580 0.768 0.892 1.57

CVaR 3.37% 3.50% 3.50% 3.55% 4.00% 1.71% 1.48%

Maximum drawdown 16.0% 21.6% 22.6% 23.5% 26.7% 12.3% 9.84%

Table 18: Test portfolio results, 1% transaction cost, CVaR = 0.1

Strategy BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All OLS EW VW

Annualized return 2.66% -8.26% 15.6% -11.6% 26.1% 12.1% 18.9%

Annualized volatility 21.3% 27.1% 17.2% 23.5% 34.3% 13.6% 12.1%

Sharpe ratio 0.125 -0.305 0.906 -0.492 0.762 0.892 1.57

CVaR 3.28% 3.69% 2.55% 3.61% 4.01% 1.71% 1.48%

Maximum drawdown 19.9% 33.7% 13.2% 31.2% 23.8% 12.3% 9.84%
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Table 19: Test portfolio results, 0% transaction cost, prediction weighted

Strategy BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All OLS EW VW

Annualized return 7.01% 7.40% 7.74% 6.94% 40.9% 12.1% 18.9%

Annualized volatility 5.24% 5.98% 5.51% 5.37% 18.2% 13.6% 12.1%

Sharpe ratio 1.339 1.239 1.407 1.293 2.249 0.892 1.57

CVaR 0.621% 0.697% 0.640% 0.640% 1.90% 1.71% 1.48%

Maximum drawdown 3.25% 3.66% 3.93% 3.61% 8.40% 12.3% 9.84%

Table 20: Test portfolio results, 0.5% transaction cost, prediction weighted

Strategy BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All OLS EW VW

Annualized return 21.4% 8.46% 19.9% 14.0% 19.1% 12.1% 18.9%

Annualized volatility 36.7% 37.2% 30.8% 35.3% 22.3% 13.6% 12.1%

Sharpe ratio 0.583 0.227 0.649 0.398 0.856 0.892 1.57

CVaR 4.46% 4.35% 3.66% 4.20% 3.00% 1.71% 1.48%

Maximum drawdown 32.5% 35.1% 24.6% 31.2% 17.1% 12.3% 9.84%

Table 21: Test portfolio results, 1% transaction cost, prediction weighted

Strategy BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All OLS EW VW

Annualized return -10.2% -26.4% -2.64% -29.3% -10.6% 12.1% 18.9%

Annualized volatility 39.0% 44.9% 39.1% 43.0% 29.2% 13.6% 12.1%

Sharpe ratio -0.262 -0.587 -0.676 -0.681 -0.363 0.892 1.57

CVaR 5.84% 6.10% 5.37% 6.06% 3.73% 1.71% 1.48%

Maximum drawdown 48.7% 50.6% 39.8% 51.0% 36.9% 12.3% 9.84%

6.4 Feature importance
The results of the permutation feature importance analysis are shown in Figure 13. The
values were computed as

Error =
epermutation − eoriginal

eoriginal
,
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Figure 13: Permutation feature importance

Variable importance linear regression results for all models are shown split into Tables
22-24.

Table 22: Model variable output regression (1/3)

Variable BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All

Constant 0.0028*** 0.0028*** 0.0036*** 0.0031***

Close -0.0005*** -0.0002 4.409e-05 -0.0002***

High 7.002e-06 -0.0004*** -6.272e-05 -0.0001**

Low -0.0003*** -0.0003** -0.0004*** -0.0003***

Open 8.732e-05* 0.0001 -1.704e-05 7.141e-05

Volume -0.0016*** -0.0018* 0.0007 -0.0009**

SMA 100-day 0.0010*** 0.0015*** 0.0007*** 0.0011***

RSI 7-day -0.0004*** -0.0005*** -0.0002*** -0.0004***

RSI 21-day 0.0009*** 0.0012*** 0.0005*** 0.0008***

NATR 252-day 0.0003*** 0.0003*** 0.0005*** 0.0003***

CCI 7-day 7.28e-05** 8.816e-
05***

-3.226e-05* 4.29e-05***

William’s R% 100-day 0.0002*** 0.0004*** 5.855e-07 0.0002***

Aroon osc 14-day -7.228e-
05***

-5.964e-
05***

-6.243e-
05***

-6.478e-
05***
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Table 23: Model variable output regression continued (2/3)

Variable BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All

VWAP 14-day -0.0010*** -0.0017*** -0.0001 -0.0010***

VWAP 21-day 0.0002*** 0.0008*** 0.0007*** 0.0003***

VWAP 50-day 0.0008*** 0.0008*** 0.0007*** 0.0008***

VWAP 252-day -0.0001*** -0.0006*** 0.0003*** -0.0003***

Min 252-day -0.0003*** -0.0004*** 2.282e-05 -0.0002***

Max 14-day 0.0004*** 0.0003*** 0.0003*** 0.0003***

STD 5-day 5.336e-05 0.0007*** -0.0008*** -1.243e-05

STD 21-day -0.0001*** 6.599e-
05***

0.0002*** 4.982e-
05***

STD 50-day 0.0005*** 0.0003*** 0.0002*** 0.0003***

STD 252-day 0.0006*** 0.0012*** 0.0007*** 0.0008***

High BB 5-day 0.0001*** 0.0006*** -0.0009 *** -4.527e-05

High BB 252-day 0.0004*** 0.0009*** -0.0002*** 0.0004***

Candlestick bullish 4.899e-
05***

-8.399e-06 -0.0001*** -3.027e-
05***

Candlestick bearish 0.0001*** 5.913e-
05***

9.174e-06 6.946e-
05***

Mispricing signal -2.253e-06 -4.865e-
05***

8.893e-
05***

1.268e-
05***

Google Trends 1.782e-
05***

-3.966e-
05***

-0.0001*** -4.192e-
05***

AAII Bearish -9.563e-
05***

-0.0001*** 4.03e-05*** -5.577e-
05***

AAII Bullish 0.0001*** 2.628e-05 0.0007*** 0.0003***

Index advances -0.0024*** 0.0008 -0.0096*** -0.0037***

Index declines -0.0026*** 0.0006 -0.0093*** -0.0038***

Index new highs 6.538e-07 -5.784e-
05***

0.0002*** 3.808e-
05***

Index new lows 2.819e-
05***

0.0002*** 0.0002*** 0.0001***

Index return -0.0003*** -0.0004*** 0.0002*** -0.0002***
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Table 24: Model variable output regression continued (3/3)

Variable BiLSTM CNN-
BiLSTM

CNN-
BiLSTM-
Attention

All

VIX -0.0001*** -0.0002*** 0.0002*** -5.013e-
05***

OVX 0.0007*** 0.0019*** 0.0107*** 0.0044***

GVZ 8.096e-
05***

-7.107e-
05***

-9.652e-
05***

-2.888e-05*

TNX 0.0002*** 0.0001*** -0.0003*** 1.629e-05

IRX -5.649e-06 0.0001*** -0.0004*** -8.727e-
05***

Unemployment 6.91e-05*** -9.222e-
05***

-0.0002*** -8.81e-
05***

Inflation -7.043e-
05***

-0.0002*** -0.0002*** -0.0002***

Industrial prod -6.762e-
05***

9.384e-
05***

-0.0001*** -2.871e-
05***

GDP -0.0002*** -0.0002*** 0.0005*** 1.887e-05

Communication Services -0.0002*** -0.0002*** -3.349e-06 -0.0001***

Consumer Cyclical -0.0002*** 5.195e-
05***

-6.394e-
05***

-5.879e-
05***

Consumer Defensive -5.357e-
05***

7.286e-
05***

-1.493e-05 1.455e-06

Energy -0.0002*** -0.0002*** 3.976e-
05***

-0.0001***

Financial Services -9.616e-
05***

-0.0002*** -4.115e-06 -0.0001***

Healthcare -0.0001*** -9.851e-
05***

-0.0001*** -0.0001***

Industrials -8.415e-
05***

-5.494e-
05***

-4.122e-
05***

-6.01e-
05***

Real Estate -0.0002*** -0.0003*** -7.883e-
05***

-0.0002***

Technology -2.251e-
05**

-9.662e-
05***

7.006e-
05***

-1.635e-05

Utilities -2.251e-
05**

-1.849e-05 -2.212e-05* -4.693e-
05***

R-squared 0.842 0.755 0.869 0.872
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7 Discussion

7.1 Agnostic fundamental analysis
There are several possible reasons for the unstable and relative underperformance of the
used model compared to those seen in literature (Bartram and Grinblatt’s (2018) and
Hanauer et al. (2022)). The first one is lack of data. While 329 is not a small num-
ber, Bartram and Grinblatt used all listed U.S. stocks, while Hanauer et al. used 8,121
European companies. 329 might not be enough data for the task. Wheter this is the case
however may not be the true, as there exists literature, that utilizes the agnostic funda-
mental approach successfully with less than 329 stocks (e.g. Shah et al. 2023; Navas et
al. 2023).

The second reason could be the time period. Hanauer et al.’s analysis spans the period
in 1987–2019, while Bartram and Grinblatt used data from 1987–2012. The possibility
of using a relatively big data approach with new technology may simply have made the
approach non-viable given a more modern market period. In the periods studied in litera-
ture, such an approach was not viable and as such brings in to question the validity of the
results seen.

Relating to the time period, a third possible reason is the complexification of the world
and as such companies. In 1990, the utilities materials, and industrial sectors accounted
for roughly 30 percent of the S&P 500 market capitalization, and by 2016, this share had
fallen to 20.1 percent. Meanwhile the technology sector by itself had risen to 20.7 percent
by 2016. (Bespoke, 2016) This change is reflective of the rise of the service economy,
where more skilled workers produce more complex goods (Buera and Kaboski, 2012).
This change and evolution of the economy lends itself to more complex companies, and
the valuation of such companies becomes increasingly divorced from current accounting
figures. Because of this change, agnostic fundamental analysis may have already become
less reliable.

Despite the apparent failure, the variable was used, as while it did not have value
alone, it may still have cross dependent or conditional value, which the nonlinear models
could in theory still factor in.

7.2 Technical indicator input selection
Technical indicator selection was done independent of final models, with a random forest
approach. The reason for this was computational costs, as running thousands of regres-
sions with the final models would require significantly more computational power when
compared to the random forest approach. While using the final models was feasible in
theory, in practice the tradeoff between computational costs and selection optimization
was considered in making this decision.

Relating to computational costs, not all stocks were used in the selection process, as
this again required significant resources. A random sample of 10 stocks, which for the
training period signified 15 110 data points, was used.

The selection was also done without taking into account the other variables used in
the final model. This means while perhaps the indicators selected were optimal or close
to optimal independently, the selection of technical indicators could have been influenced
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by other data used later on, and therefore may not have been optimal for the final models,
which did utilize the other non-technical indicator variables.

The selection was also conducted without lags and only the most recent data point was
considered. This was done to simplify the selection process, and based on the hypothesis
that the most recent state of the variable was the most significant. This means changes
in the underlying technical indicators were not considered, which likely would have been
informative, as the final models did utilize lags beneficially.

Based on this, the technical indicator selection could be described as good enough,
however with a high degree of probability not optimal. The choice of technical indicators
should thus be evaluated taking into account the above mentioned limiting factors.

The population of technical indicators included hyperparameters, which indicated the
period used to calculate each indicator, were 5, 7, 14, 21, 50, 100, 252. All periods were
selected which indicates that for weekly returns, both long and short term behaviours of
stock price are informative.

Five of the indicators were measures of historical dispersion, either in the form of
normalized average true range or standard deviation. These dispersion indicators used
both relatively short-term and long-term lags. This likely stems from the well founded
concept of volatility clustering, which informs return prediction in at least two ways. The
first is that because past volatility informs future volatility, this informs return prediction
by defining the likely range of those returns, meaning extremely high or low predictions
are less unlikely during less volatile periods and vice versa. The secondary reason is
that there might be a direct relationship between volatility and return prediction accuracy.
Marquering and Verbeek (2004) found that return predictability was higher during periods
of high volatility.

Volume weighted average price (VWAP) was selected four times, with both short and
long term lags. VWAP taken together with current price indicates deviation from the
current market sentiment over a give period. Literature on VWAP has especially focused
on VWAP orders, which are buy or sell orders conditioned on the VWAP, which are
done especially by institutional investors to limit market impact and commission costs.
(Madhavan, 2002). VWAP has also been used successfully in trading strategies, (e.g.
Colliri, and Ferreira, 2012). However, there may be an issue with combining VWAP and
assumed constant transaction costs. While price deviations from the VWAP can be used
to predict returns, orders placed farther away from the VWAP have been seen to have a
larger market impact. (Madhavan, 2002) Based on this, the real transaction costs would
be higher when the price is farther from VWAP, and not constant, as was used in the
methodology.

7.3 Neural network predictions and portfolio optimization
Based on the prediction accuracies of the models and application of those predictions in
portfolio selection, there appears to be some relationship between prediction accuracy and
economic value. However this relationship was not constant across different transaction
cost scenarios. The reasons for this may stem from the difference between prediction
accuracy and prediction significance. This can be illustrated by a simplified example.
Let’s say there is a binary distribution, which outputs either -1 or 1 with equal probability,
and we have two predictors: Predictor 1, which always outputs 0 and Predictor 2, which
when it outputs 1 there is 75% likelihood that the actual value is 1, but otherwise outputs
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-10. Clearly, the prediction accuracy of Predictor 1 is much better than Predictor 2’s. Let’s
also say there is an agent which has a yes or no option on incurring the unrealized value
or, and a goal of maximizing the sum of incurred values. Using Predictor 1 the agent
would have expected outcome of zero, where as using predictor 2, and only incurring the
outcome if the prediction is 1, the agent would have have an expected outcome of 0.5np,
where n is the sample size and p the probability Predictor 2 outputs 1. This example
illustrates that instead of unconditional accuracy, conditional accuracy is the determining
factor in choosing the best predictor for an agent who can opt in or out in using the
predictor. This concept also applies to portfolio selection.

However as the differing validation and test period results show, in the trained models
the prediction interval which is optimal is clearly not constant. In the validation period,
the interval of [1%,∞) appears to be needed in creating overperforming returns, while
during the test period this interval was [0,∞). During the test period, this interval was
not due to lack of conditional accuracy for the [1%,∞) interval, but due to the low fre-
quency of predictions in the interval. This resulted in lack of market participation. In
subperiods during the where market participation was possible, the pool of stocks to cre-
ate an optimized portfolio was too low for the [1%,∞) interval, resulting in inefficient
portfolios. This indicates that while using transaction costs as the threshold would make
sense from an intuitive perspective, the distribution of predictions and the conditional ac-
curacy appears to be non-constant, and as such, a dynamic threshold should be utilized
instead of the only transaction costs. The second alternative would be to use no threshold
conditioning on the prediction, which appeared to provide market beating results in the
testing period, however the models trained outputted nearly only positive values, and thus
using no threshold would likely in general result in negative returns, as seen during the
validation period.

The highest variance in performance was seen with the OLS model, which makes
sense considering it was the most overfit based on prediction errors. The least variance
in portfolio performance was seen with the BiLSTM model, as it was never the worst
performing portfolio across both periods and transaction cost scenarios. The BiLSTM
model had the highest return in five of the six copula-based portfolios and two of six
prediction weighted portfolios across both periods and transaction cost scenarios. While
the BiLSTM model was the overall best performing model, it still performed worse than
the market portfolios given 0.5% transaction costs during the validation period, and 1%
transaction costs during the test period. As such it cannot be said to consistently either
produce positive returns or even market outperforming returns, even without considering
the elevated risk measures that accompanied its usage. Thus while NN models were
able to produce higher returns than benchmarks in both periods under several transaction
cost scenarios, this came at the cost of increased risk measures. And even given higher
risk measures, no model consistently produced positive returns, or even higher returns
compared to benchmarks.

The portfolio optimization used a CVaR of 0.1, as it was deemed the lowest possible
value to achieve consistent market participation during the validation period. However
during the test period it is noteworthy that due to lower risk during the period, a lower
CVaR could have been used, which would have resulted in achieving similar returns with
lower risk measures. Based on this, instead of a constant CVaR being utilized, optimal
portfolio selection should have utilized a dynamic CVaR level. This was noted after the
test results, and thus not used post hoc.
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Compared to the risk naive approach of the prediction weighted portfolios, the copula-
based CVaR-optimization consitently gave higher returns with lower risk measures across
both periods given non-zero transaction costs. This indicates that the copula-based ap-
proach was able to better utilize the predictions in achieving higher returns, while also
factoring in risk. However due to the relatively high CVaR used, market portfolios con-
sistently had better risk measures compared to the copula-based portfolios.

7.4 Feature importance
Based on feature importance, the technical indicator selection strategy utilized was suc-
cessful, as the permutation impact on prediction error was the largest for all models with
technical indicators. However while the impact was the largest, the error was still mod-
erately small, between 0.3% and 0.6%. This indicates that while the models rely most on
technical indicators, there is a great amount of reliance on the whole array of variables
and a great level of regularization.

The second most significant category of variables were the market sentiment vari-
ables, however again with relatively small errors added from permutation, between 0.1%
and 0.3%. Interestingly the error added from permutation was the highest in the CNN-
BiLSTM-Attention model for both technical indicators and market sentiment variables,
which indicates that the attention layer likely highlighted the variables within the two
categories more than architectures without an attention layer were able to.

All other categories of variables did not appear to significantly affect prediction ac-
curacy, except for macroeconomic indicators, permuting of which actually improved the
predictive accuracy of all models during the test period. A possible reason for this was the
low frequency of updates in some of the variables and during permuting, the 10-day vari-
able lags would likely be of different values than the current value, which was impossible
to occur with actual data. A secondary reason was the change in interest rate behaviour
post COVID, most of which was missing from the training period.

The rest of the categories of variables did not appear to impact permutation prediction
accuracy significantly. Sector dummies did not significantly affect prediction accuracy,
which indicates that the behaviour of stocks was similar across all sectors. This indi-
cates that the choice of a model utilizing all stocks instead of dividing models by sector
or company may be justified, especially after considering the increased amount of data
available.

Permuting basic variables appeared to not significantly affect prediction error. This
is extremely surprising, as basic variables, especially close-to-close returns, are one of
the most commonly used variables in stock prediction (Kumbure et al., 2022, Shah et al.
2019). Considering that technical indicators, which are calculated based on these basic
variables, are the most significant group of variables, one would expect basic variables to
also be significant in prediction. This could indicate that the technical indicators helped
the model extract information from the basic variables. The technical indicators also have
the benefit of using data prior to the ten-day window, for example the 100-day SMA, with-
out the need to use as many total lags. The technical indicators also have the benefit of
dimensionality reduction, as some of the variables utilize more than one variable, for ex-
ample the VWAP. Thus its possible that because of dimensionality reduction, information
extraction, and increased lags, the models emphasized technical indicators rather than the
underlying basic variables.
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The linear regression results show that most variables, even when mean transformed
variable-wise, have statistically significant linear coefficients on the model predictions.
However most coefficients are relatively small, and as such the significance to predictions
appears to be very small. The largest coefficients for the All ensemble, apart from the
constant, are seen with index advances and declines, OVX change, 100-day SMA, and 14-
day VWAP. While there is a loss of information from using means, the R-squared values
of the models were relatively high, with CNN-BiLSTM having the lowest of 0.755, and
the All ensemble having the highest of 0.872. This indicates that there was a great level
of linearity in the models, as even with simplified variables the level of variance in the
output explained by a linear transformation of the inputs was more than 75%.

8 Conclusion

The main research questions of the thesis were:

• How can a neural network model be effectively deployed to integrate multiple data
sources for predicting stock returns?

• How can copula-based mean-CVaR optimization be deployed using neural network
predictions for stock returns?

The secondary research question were:

• How do transaction costs impact the returns of an NN-copula portfolio?

• How do the returns of NN-copula portfolios compare to those of market and risk-
naive portfolios?

In regards to how to effectively integrate multiple data sources for predicting stock
returns, four NN models, a BiLSTM, CNN-BiLSTM, CNN-BiLSTM-Attention, and an
ensemble which utilized predictions of all three were trained using eight categories of
data: basic variables, technical indicators, candlestick indicators, agnostic fundamental
mispricing, a Google Trends sentiment variable, market sentiment variables, macroeco-
nomic indicators, and sectors dummies. All of the categories have been used in literature,
either utilized independently, or with variables from one other category, but limited liter-
ature exists were such a significant cross-section of variables has been utilized. Based on
prediction errors, there appeared no significant differences between the models based on
how they utilized the data, nor in the prediction accuracies of the models out-of-sample
periods of 2022 and 2023. Using a permutation feature importance analysis, all models
similarly showed that the two categories of variables which affected prediction errors the
most were the technical indicators and market sentiment variables. Permuting the other
categories of variables did not seem to significantly affect prediction errors, except the
macroeconomic indicators, permuting of which interestingly improved prediction accu-
racy across all models.

Based on portfolios constructed with the predictions only, none of the models were
able to successfully outperform the market given different transaction cost scenarios or
portfolio construction methods. The best model in terms portfolio performance was seen
to be the CNN-BiLSTM-Attention model, as it was the worst performing portfolio in
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only one of the six scenarios across both periods and transaction costs, while having the
highest return in four of the six scenarios. However despite being the best of the NN
models, it failed to give higher returns than at least one of the market portfolios (EW
and VW) in five of the six scenarios, and had positive returns in only five of the six
portfolio scenarios. While the NN models generally performed much better than the OLS
model during the validation period, during the test period, the OLS model was seen to
have similar performance to the NN models. Based on the failure of the NN prediction
weighted models to consistently outperform the market and OLS prediction weighted
portfolios, the models cannot be said to be reliable.

However the second major part of the portfolio selection model used alongside the
NN models was the GARCH(1,1) standardized error copula and mean-CVaR optimiza-
tion conducted using the NN predictions and simulated errors from said copula. Compar-
ing the performance of prediction weighted portfolios and mean-CVaR portfolios showed
that the portfolios constructed with the use of copulas consistently outperformed the pre-
diction weighted portfolios in terms of returns and in the cases where transaction costs
were taken into account, also in terms of risk measures. Interestingly, when the copula
modelling and mean-CVaR portfolio selection was added, the most consistent model in
terms of return performance across the two periods and three transaction cost scenarios
changed, as the simplest of the models, BiLSTM was seen to perform the best. Despite
the improvement in performance, the best model, BiLSTM, with the copula-based opti-
mization failed to outperform both market portfolios in two of the six scenarios. On top
of the lack of return outperformance, the NN GARCH-copula models consistently had
worse risk measures compared to the market portfolios. Thus despite the improvement in
portfolio performance compared the prediction weighted and market portfolios, the pro-
posed model fails to consistently outperform the market benchmarks in terms of returns,
and once risk measures are factored in, the performance of the model only comparatively
worsens.

Transaction costs had a significant effect on the portfolio performances. The first
obvious reason for this was that transaction costs lowered returns. However this effect
was not consistently seen. During the validation period, with a transaction cost of 0.5%,
the annualized return of the BiLSTM-GARCH-copula model was -19.5%, whereas with
a 1% transaction cost the annualized return increased to 13.7%. During the test period,
there was a negative relationship with transaction costs and annualized returns, however
this not only related to the higher transaction costs. The reason for this was seen to
be that the optimal prediction interval used was set to be [transaction cost, inf], which
from a intuitive perspective makes sense, as the prediction would be negative when it is
lower the transaction cost. However, the range of predictions was seen to be non-constant
due to the model relying highly on dispersion measures, which means there were long
subperiods during both validation and test periods when either low or only a small number
of predictions actually were positive after subtracting the transaction cost. This however
was seen to not necessarily mean that the predictions under the given threshold were non-
useful. This was indicated by the finding that during the validation period, the optimal
interval appeared to somewhere in the intersection of [0.5%,∞] and [1%,∞], whereas
during the test period the optimal interval appeared to be in the intersection [0,∞] and
[0.5%,∞]. Based on these findings, the optimal prediction interval for portfolio selection
in the model was variable and not necessarily connected to transaction costs.

The failure of the model brings attention to the limitations of the proposed method-
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ology, that resulted in lack of performance. The limitations of the methodology are both
significant and numerous.

The first limitation of the methodology comes from the variable selection process.
One of the main purposes of the used methodology was to see how well NNs are able to
utilize data from a multitude of sources. However, based on feature importance permuta-
tion analysis conducted on the models, only two categories of variables were seen to be
the significant for model predictions, technical indicators and market sentiment variables.
while the other six categories of variables, basic variables, candlestick patterns, agnostic
fundamental mispricing, stock sentiment, and macroeconomic did not appear to signifi-
cantly affect the predictions. This indicates that the models were not able to utilize the full
scope of the data. There are two possible solutions to this. The first solution is to apply an
input variable selection process, like an evolutionary algorithm on the whole variable set.
With the current methodology, only technical indicators underwent this selection. Based
on the finding that technical indicators were the most significant category of prediction
and that it was the only category that underwent empirically guided selection, it may have
been useful to apply this to the entire set of variables. The second possible solution would
be to experiment with model architectures, in order to better extract information from the
different categories of variables. These architectures could be for example separate mod-
ules that only use one category of the variables. This could help the model better extract
information from the smaller sets of variables, as opposed to the the used approach where
all data is available to the model at once.

The second limitation is also in the same realm of variable choice, as instead of using
values that are proxies for intrinsic value, like price ratio, the variable chosen to represent
fundamental data was a mispricing signal based on Bartram and Grinblatt’s (2018) agnos-
tic fundamental analysis. However the analysis failed (,due to possible reasons described
in 6.1) and as such the model had no good descriptors of intrinsic value. As the purpose
of the fundamental variables is to proxy intrinsic value, the use of agnostic fundamental
analysis could still be useful for NN models, however steps required to make the mispric-
ing signal significant in predicting returns should be taken. Alternatively simply using
the underlying data or other proxies for intrinsic value, such as price ratios, instead of
the pre-analysing of this data could allow the NN model to better take advantage of the
information.

The third limitation of the NN-models were the hyperparameters. As an exhaustive
search of the hyperparameter space is not computationally possible, a grid search guided
by the author was conducted. During the hyperparameter optimization, it was noted that
all of the model were extremely prone to overfitting, and as such the dropout rates utilized
were relatively high, and only increased with model complexity. The used batch size
was large in terms of number of data points, as each batch contained 10% of the data,
which translated to roughly 50 000 data points. Smaller batch sizes were utilized with
lower learning rates, however the control over overfitting was significantly harder. The
reason for this may stem from the scope of the data and its processing, as the ratio of
signal to noise in the data may have simply been too high for the models as is. There is
also the near certainty that the optimal hyperparameter set was not found, either due to
it being within the search range, although not a considered multiple, or possible due to it
being outside the search range, as the use of normal batches sizes, ≤ 1000, would have
required significantly lower learning rates and the computational time would have been
significantly prolonged.
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The fourth limitation was the way in which final outputs were computed. A simple
stacking approach was utilized by taking the mean of the outputs of the underlying mod-
els. While this approach is simple, it may not optimally utilize the information given
by the underlying predictors. Alternative approaches could be a meta-learner, which is a
separately taught model to make optimal predictions based on the predictions of another
model. An interesting and possibly useful approach to thr meta-learner would be to use
the full set of stock predictions at time t, as the model itself was limited in its knowledge
of the simultationsly made prediction, apart from sharing the variables of market senti-
ment and macroeconomic indicators. This approach could at the same time benefit from
the increased dataset and training time as the original model, while still using temporal
knowledge from other prediction made at the same time.

The fifth limitation was the set of possible pair-copulas used in the copula selection.
The choice was made to use only one parameter copulas, meaning two parameter and
nonparametric copulas were excluded. This was done due to the significant differences
in computational time, as with the one parameter set of copulas the copula fitting took
roughly two minutes, where as including two parameter or nonparametric copulas resulted
in the selection taking over two hours. Although the actual time could have been much
longer, as the execution was never ran to completion. Excluding two parameter copulas
resulted in the exclusion of, among others, the T -distribution, one of the most common
distributions used in financial literature. All copula computations were done in the Google
Colaboratory environment with eight Intel Xeon 2.20 GHz CPUs. Based on the limited set
of pair-copulas, a copula fitted with all possible pair-copulas could not have been worse
than the one-parameter only copula utilized in the model.

The sixth limitation was the volatility modeling used. A simple GARCH(1,1) ap-
proach was utilized, however the use of neural networks has been seen to improve volatil-
ity prediction accuracy compared to ARCH models(e.g Bucci, 2020; Donaldson and
Kamstra, 1997). Based on this, the second use of NNs also in the volatility phase could
improve the performance of the model.

The seventh limitation was the lack of dynamic dependence used in the modelling.
Stocks and related financial time-series have been to be dynamic in nature in terms of
correlation structures (Case et al., 2012; Arai et al. 2015). Using predicted volatilities
should capture some of this cross-dependence, however the relationship between depen-
dencies and volatility is also dynamic in nature (Ramchand and Susmel, 1998). This is not
captured by a single copula model. Thus a time-varying copula approach, such a regime
switching copula could be utilized.

Based on these findings and limitations future work could be in regards to some of the
following:

• Investigate input selection and neural network model architectures to optimize the
use of multi-sourced data in stock prediction.

• Investigate the optimization of dynamic prediction interval and CVaR in the NN-
copula framework.

• Investigate the use of NNs in volatility prediction in the NN-copula framework.

• Investigate the use of a meta-learner in the NN-copula framework.

• Investigate the use of a time-varying copula in the NN-copula framework.
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The prediction of stock returns remains in large part illusive, despite advances in tech-
nology. The approach used, having multi-sourced inputs in a NN-GARCH-copula model
did not result in consistent overperformance compared to market portfolios. While the
GARCH-copula approach was shown to improve in portfolio selection given NN-based
return prediction, the NNs did not give significant enough predictions to for the model
to be reliable. Further research and methodology development is required to make the
approach viable.
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Appendix

Appendix 1 - List of stocks included
The list of stocks used:

• Agilent Technologies,
Inc.

• Apple Inc.

• AbbVie Inc.

• Abbott Laboratories

• Accenture plc

• Adobe Inc.

• Analog Devices, Inc.

• Archer-Daniels-
Midland Company

• Automatic Data Pro-
cessing, Inc.

• Autodesk, Inc.

• Ameren Corporation

• American Electric
Power Company, Inc.

• The AES Corporation

• Aflac Incorporated

• American International
Group, Inc.

• Assurant, Inc.

• Akamai Technologies,
Inc.

• The Allstate Corpora-
tion

• Allegion plc

• Applied Materials, Inc.

• AMETEK, Inc.

• Amgen Inc.

• Ameriprise Financial,
Inc.

• American Tower Corpo-
ration

• Amazon.com, Inc.

• Aon plc

• APA Corporation

• Air Products and Chem-
icals, Inc.

• Amphenol Corporation

• Aptiv PLC

• AvalonBay Communi-
ties, Inc.

• Broadcom Inc.

• Avery Dennison Corpo-
ration

• American Express
Company

• AutoZone, Inc.

• The Boeing Company

• Bank of America Cor-
poration

• Baxter International Inc.

• Best Buy Co., Inc.

• Becton, Dickinson and
Company

• Franklin Resources, Inc.

• Brown-Forman Corpo-
ration

• Biogen Inc.

• The Bank of New York
Mellon Corporation

• Booking Holdings Inc.

• BlackRock, Inc.

• Bristol-Myers Squibb
Company

• Berkshire Hathaway
Inc.

• Boston Scientific Cor-
poration

• BorgWarner Inc.

• Boston Properties, Inc.

• Citigroup Inc.

• Conagra Brands, Inc.

• Cardinal Health, Inc.

• Caterpillar Inc.

• Chubb Limited

• CBRE Group, Inc.

• Crown Castle Inc.

• Carnival Corporation
plc

• CF Industries Holdings,
Inc.

• C.H. Robinson World-
wide, Inc.

• The Cigna Group

• Cincinnati Financial
Corporation

• Colgate-Palmolive
Company
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• The Clorox Company

• Comerica Incorporated

• Comcast Corporation

• CME Group Inc.

• Chipotle Mexican Grill,
Inc.

• Cummins Inc.

• CMS Energy Corpora-
tion

• CenterPoint Energy,
Inc.

• Capital One Financial
Corporation

• ConocoPhillips

• Costco Wholesale Cor-
poration

• Campbell Soup Com-
pany

• Salesforce, Inc.

• Cisco Systems, Inc.

• CSX Corporation

• Cintas Corporation

• Cognizant Technology
Solutions Corporation

• CVS Health Corpora-
tion

• Chevron Corporation

• Dominion Energy, Inc.

• Delta Air Lines, Inc.

• DuPont de Nemours,
Inc.

• Deere Company

• Discover Financial Ser-
vices

• Dollar General Corpora-
tion

• Quest Diagnostics In-
corporated

• D.R. Horton, Inc.

• Danaher Corporation

• The Walt Disney Com-
pany

• Dollar Tree, Inc.

• Dover Corporation

• Darden Restaurants,
Inc.

• DTE Energy Company

• Duke Energy Corpora-
tion

• DaVita Inc.

• Devon Energy Corpora-
tion

• Electronic Arts Inc.

• eBay Inc.

• Ecolab Inc.

• Consolidated Edison,
Inc.

• Equifax Inc.

• Edison International

• The Estée Lauder Com-
panies Inc.

• Eastman Chemical
Company

• Emerson Electric Co.

• EOG Resources, Inc.

• Equity Residential

• EQT Corporation

• Eversource Energy

• Essex Property Trust,
Inc.

• Eaton Corporation plc

• Entergy Corporation

• Edwards Lifesciences
Corporation

• Exelon Corporation

• Expeditors International
of Washington, Inc.

• Expedia Group, Inc.

• Ford Motor Company

• Fastenal Company

• Freeport-McMoRan
Inc.

• FedEx Corporation

• FirstEnergy Corp.

• F5, Inc.

• Fidelity National Infor-
mation Services, Inc.

• Fifth Third Bancorp

• FMC Corporation

• First Solar, Inc.

• General Dynamics Cor-
poration

• General Electric Com-
pany

• Gilead Sciences, Inc.

• General Mills, Inc.

• Corning Incorporated

• General Motors Com-
pany

• Alphabet Inc.

• Alphabet Inc.

• Genuine Parts Company
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• Garmin Ltd.

• The Goldman Sachs
Group, Inc.

• W.W. Grainger, Inc.

• Halliburton Company

• Hasbro, Inc.

• Huntington Bancshares
Incorporated

• The Home Depot, Inc.

• Hess Corporation

• The Hartford Financial
Services Group, Inc.

• Honeywell International
Inc.

• HP Inc.

• Hormel Foods Corpora-
tion

• Host Hotels Resorts,
Inc.

• The Hershey Company

• Humana Inc.

• International Business
Machines Corporation

• Intercontinental Ex-
change, Inc.

• International Flavors
Fragrances Inc.

• Intel Corporation

• Intuit Inc.

• International Paper
Company

• The Interpublic Group
of Companies, Inc.

• Iron Mountain Incorpo-
rated

• Intuitive Surgical, Inc.

• Illinois Tool Works Inc.

• Invesco Ltd.

• Johnson Controls Inter-
national plc

• Johnson Johnson

• Juniper Networks, Inc.

• JPMorgan Chase Co.

• Kellanova

• Keurig Dr Pepper Inc.

• KeyCorp

• Kimco Realty Corpora-
tion

• KLA Corporation

• Kimberly-Clark Corpo-
ration

• Kinder Morgan, Inc.

• CarMax, Inc.

• The Coca-Cola Com-
pany

• The Kroger Co.

• Loews Corporation

• Lennar Corporation

• Laboratory Corporation
of America Holdings

• Eli Lilly and Company

• Lockheed Martin Cor-
poration

• Lowe’s Companies, Inc.

• Lam Research Corpora-
tion

• Southwest Airlines Co.

• LyondellBasell Indus-
tries N.V.

• Mastercard Incorpo-
rated

• Marriott International,
Inc.

• Masco Corporation

• McDonald’s Corpora-
tion

• Microchip Technology
Incorporated

• McKesson Corporation

• Moody’s Corporation

• Mondelez International,
Inc.

• Medtronic plc

• MetLife, Inc.

• Mohawk Industries, Inc.

• McCormick Company,
Incorporated

• Martin Marietta Materi-
als, Inc.

• Marsh McLennan
Companies, Inc.

• 3M Company

• Monster Beverage Cor-
poration

• Altria Group, Inc.

• The Mosaic Company

• Marathon Petroleum
Corporation

• Merck Co., Inc.

• Marathon Oil Corpora-
tion

• Morgan Stanley

• Microsoft Corporation

• Motorola Solutions, Inc.

• MT Bank Corporation
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• Micron Technology,
Inc.

• Nasdaq, Inc.

• NextEra Energy, Inc.

• Newmont Corporation

• Netflix, Inc.

• NiSource Inc.

• NIKE, Inc.

• Northrop Grumman
Corporation

• NRG Energy, Inc.

• Norfolk Southern Cor-
poration

• NetApp, Inc.

• Northern Trust Corpora-
tion

• Nucor Corporation

• NVIDIA Corporation

• News Corporation

• ONEOK, Inc.

• Omnicom Group Inc.

• Oracle Corporation

• O’Reilly Automotive,
Inc.

• Occidental Petroleum
Corporation

• Paychex, Inc.

• PACCAR Inc

• PGE Corporation

• Public Service Enter-
prise Group Incorpo-
rated

• PepsiCo, Inc.

• Pfizer Inc.

• Principal Financial
Group, Inc.

• The Procter Gamble
Company

• The Progressive Corpo-
ration

• Parker-Hannifin Corpo-
ration

• PulteGroup, Inc.

• Prologis, Inc.

• Philip Morris Interna-
tional Inc.

• The PNC Financial Ser-
vices Group, Inc.

• Pentair plc

• Pinnacle West Capital
Corporation

• PPG Industries, Inc.

• PPL Corporation

• Prudential Financial,
Inc.

• Public Storage

• Phillips 66

• Quanta Services, Inc.

• Pioneer Natural Re-
sources Company

• QUALCOMM Incorpo-
rated

• Royal Caribbean
Cruises Ltd.

• Regeneron Pharmaceu-
ticals, Inc.

• Regions Financial Cor-
poration

• Robert Half Inc.

• Ralph Lauren Corpora-
tion

• Rockwell Automation,
Inc.

• Roper Technologies,
Inc.

• Ross Stores, Inc.

• Republic Services, Inc.

• Starbucks Corporation

• The Charles Schwab
Corporation

• The Sherwin-Williams
Company

• The J. M. Smucker
Company

• Schlumberger Limited

• Snap-on Incorporated

• The Southern Company

• Simon Property Group,
Inc.

• SP Global Inc.

• Sempra

• State Street Corporation

• Seagate Technology
Holdings plc

• Constellation Brands,
Inc.

• Stanley Black Decker,
Inc.

• Stryker Corporation

• Sysco Corporation

• ATT Inc.

• Molson Coors Beverage
Company

• TE Connectivity Ltd.
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• Target Corporation

• The TJX Companies,
Inc.

• Thermo Fisher Scien-
tific Inc.

• Tapestry, Inc.

• T. Rowe Price Group,
Inc.

• The Travelers Compa-
nies, Inc.

• Tractor Supply Com-
pany

• Tyson Foods, Inc.

• Texas Instruments In-
corporated

• Textron Inc.

• Universal Health Ser-
vices, Inc.

• UnitedHealth Group In-
corporated

• Union Pacific Corpora-
tion

• United Parcel Service,
Inc.

• United Rentals, Inc.

• U.S. Bancorp

• Visa Inc.

• V.F. Corporation

• Valero Energy Corpora-
tion

• Vulcan Materials Com-
pany

• VeriSign, Inc.

• Vertex Pharmaceuticals
Incorporated

• Ventas, Inc.

• Verizon Communica-
tions Inc.

• Waters Corporation

• Walgreens Boots Al-
liance, Inc.

• Western Digital Corpo-
ration

• WEC Energy Group,
Inc.

• Welltower Inc.

• Wells Fargo Company

• Whirlpool Corporation

• Waste Management,
Inc.

• The Williams Compa-
nies, Inc.

• Walmart Inc.

• Weyerhaeuser Company

• Wynn Resorts, Limited

• Xcel Energy Inc.

• Exxon Mobil Corpora-
tion

• DENTSPLY SIRONA
Inc.

• Xylem Inc.

• Yum! Brands, Inc.

• Zimmer Biomet Hold-
ings, Inc.

• Zions Bancorporation,
National Association

• Zoetis Inc.

Appendix 2 - List of Ta-lib technical indicators
List of Ta-lib technical indicators:

• Chaikin A/D Line

• Chaikin A/D Oscillator

• Average Directional
Movement Index

• Average Directional
Movement Index Rat-
ing

• Absolute Price Oscilla-
tor

• Aroon

• Aroon Oscillator

• Average True Range

• Average Price

• Bollinger Bands

• Beta

• Balance Of Power

• Commodity Channel In-
dex

• Chande Momentum Os-
cillator

• Pearson’s Correlation
Coefficient ®

• Double Exponential
Moving Average

• Directional Movement
Index

• Exponential Moving
Average
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• Hilbert Transform -
Dominant Cycle Period

• Hilbert Transform -
Dominant Cycle Phase

• Hilbert Transform -
Phasor Components

• Hilbert Transform -
SineWave

• Hilbert Transform - In-
stantaneous Trendline

• Hilbert Transform -
Trend vs Cycle Mode

• Kaufman Adaptive
Moving Average

• Linear Regression

• Linear Regression An-
gle

• Linear Regression Inter-
cept

• Linear Regression Slope

• All Moving Average

• Moving Average Con-
vergence/Divergence

• MACD with control-
lable MA type

• Moving Average Con-
vergence/Divergence
Fix 12/26

• MESA Adaptive Mov-
ing Average

• Highest value over a
specified period

• Index of highest value
over a specified period

• Median Price

• Money Flow Index

• MidPoint over period

• Midpoint Price over pe-
riod

• Lowest value over a
specified period

• Index of lowest value
over a specified period

• Minus Directional Indi-
cator

• Minus Directional
Movement

• Momentum

• Normalized Average
True Range

• On Balance Volume

• Plus Directional Indica-
tor

• Plus Directional Move-
ment

• Percentage Price Oscil-
lator

• Rate of change :
((price/prevPrice)-
1)*100

• Rate of change Per-
centage: (price-
prevPrice)/prevPrice

• Rate of change ratio:
(price/prevPrice)

• Rate of change ratio
100 scale: (price/pre-
vPrice)*100

• Relative Strength Index

• Parabolic SAR

• Parabolic SAR - Ex-
tended

• Simple Moving Average

• Standard Deviation

• Stochastic

• Stochastic Fast

• Stochastic Relative
Strength Index

• Summation

• Triple Exponential
Moving Average (T3)

• Triple Exponential
Moving Average

• True Range

• Triangular Moving Av-
erage

• 1-day Rate-Of-Change
(ROC) of a Triple
Smooth EMA

• Time Series Forecast

• Typical Price

• Ultimate Oscillator

• Variance

• Weighted Close Price

• Williams’

• Weighted Moving Aver-
age

Appendix 3 - List of Ta-lib candlestick patterns
List of Ta-lib candlestick patterns:
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◦ To Crows

◦ Three Black
Crows

◦ Three Inside Up/-
Down

◦ Three Outside
Up/Down

◦ Three Stars In The
South

◦ Three Advancing
White Soldiers

◦ Abandoned Baby

◦ Advance Block

◦ Belt-hold

◦ Breakaway

◦ Closing
Marubozu

◦ Concealing Baby
Swallow

◦ Counterattack

◦ Dark Cloud Cover

◦ Doji

◦ Doji Star

◦ Dragonfly Doji

◦ Engulfing Pattern

◦ Evening Doji Star

◦ Evening Star

◦ Up/Down-gap
side-by-side white
lines

◦ Gravestone Doji

◦ Hammer

◦ Hanging Man

◦ Harami Pattern

◦ Harami Cross Pat-
tern

◦ High-Wave Can-
dle

◦ Hikkake Pattern

◦ Modified Hikkake
Pattern

◦ Homing Pigeon

◦ Identical Three
Crows

◦ In-Neck Pattern

◦ Inverted Hammer

◦ Kicking

◦ Kicking - bul-
l/bear determined
by the longer
marubozu

◦ Ladder Bottom

◦ Long Legged Doji

◦ Long Line Candle

◦ Marubozu

◦ Matching Low

◦ Mat Hold

◦ Morning Doji Star

◦ Morning Star

◦ On-Neck Pattern

◦ Piercing Pattern

◦ Rickshaw Man

◦ Rising/Falling
Three Methods

◦ Separating Lines

◦ Shooting Star

◦ Short Line Candle

◦ Spinning Top

◦ Stalled Pattern

◦ Stick Sandwich

◦ Takuri (Drag-
onfly Doji with
very long lower
shadow)

◦ Tasuki Gap

◦ Thrusting Pattern

◦ Tristar Pattern

◦ Unique 3 River

◦ Upside Gap Two
Crows

◦ Upside/Downside
Gap Three Meth-
ods

Appendix 4 - Portfolio figures
Portfolio figures:
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Figure 14: Validation period 0% transaction cost, CVaR0.05 = 0.1

Figure 15: Validation period 0.5% transaction cost, CVaR0.05 = 0.1
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Figure 16: Validation period 1% transaction cost, CVaR0.05 = 0.1

Figure 17: Validation period 0% transaction cost, prediction weighted
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Figure 18: Validation period 0.5% transaction cost, prediction weighted

Figure 19: Validation period 1% transaction cost, prediction weighted
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Figure 20: Test period 0% transaction cost, CVaR0.05 = 0.1

Figure 21: Test period 0.5% transaction cost, CVaR0.05 = 0.1
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Figure 22: Test period 1% transaction cost, CVaR0.05 = 0.1

Figure 23: Test period 0% transaction cost, prediction weighted
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Figure 24: Test period 0.5% transaction cost, prediction weighted

Figure 25: Test period 1% transaction cost, prediction weighted
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Appendix 5 - Sample code

# Agnostic fundamental analysis

## Packages and data

import numpy as np
import keras
from tensorflow.keras import layers, models

# Here the variables used are shown in 5.1 exclusive of market
↪→ capitalization

x_pre = np.array((data_point_count,stock_count * variable_count))

# market capitalization
y_pre = np.array((data_point_count,stock_count))

# list of indices of the first market day the month
month_changes_index = []

# list of sectors for each stock
sectors_all = []

# list of unique sectors
sectors = []

## Code

lr = 0.001
drop = 0
hidden_layers = 2
neurons = 100
epochs = 1000
batch_size = 110
decreasing = True
patient = 10
multiplier = 1/100000000000
empty_preds = np.zeros((rows,num_stocks))
dropout_rate = drop

ffnn_model1 = models.Sequential()
ffnn_model1.add(layers.InputLayer(input_shape=(34,)))
if decreasing == False:
for loops in range(hidden_layers):
ffnn_model1.add(layers.Dense(neurons, activation="relu"))
ffnn_model1.add(layers.Dropout(dropout_rate))

else:
for loops in range(hidden_layers):
ffnn_model1.add(layers.Dense(int(neurons/(loops+1)), activation="relu")

↪→ )
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ffnn_model1.add(layers.Dropout(dropout_rate))
ffnn_model1.add(layers.Dense(1, activation="linear"))

ffnn_model1.compile(
optimizer=optimizers.Adam(learning_rate=lr),
loss="mape",

)

for row_index in range(3,len(month_changes_index)-1):
y_train = np.zeros((stock_count,1))
x_train = np.zeros((stock_count,34))
for j in range(stock_count):

x_row = x_pre[month_changes_index[row_index],(j*12):(j*12+12)].reshape
↪→ (1,12)

x_lag = x_pre[month_changes_index[row_index-3],(j*12):(j*12+12)].
↪→ reshape(1,12)

index = sectors.index(sectors_all[j])
sect = np.zeros((1,10))
if index > 0:
sect[0,index-1] = 1

x_row = np.concatenate((x_row,x_lag,sect),axis = 1)

y_row = y_pre[month_changes_index[row_index],j]

x_train[j,:] = x_row
y_train[j,0] = y_row

x_train[:,:24] *= multiplier
y_train[:,0] *= multiplier

callback = keras.callbacks.EarlyStopping(monitor=’loss’, patience=patient
↪→ )

history = ffnn_model1.fit(
x_train, y_train,
epochs=epochs,
batch_size=batch_size,
verbose=0,
shuffle=True,
callbacks = [callback]

)

y_pred = ffnn_model1.predict(x_train)
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y_pred /= multiplier
for insert_range in range(month_changes_index[row_index],

↪→ month_changes_index[row_index+1]):
empty_preds[insert_range,:] = y_pred.reshape(stock_count)

mispricing_signal = (empty_preds - y_pre) / y_pre

# Genetic algorithm for technical indicators

## Packages and data
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from genetic_selection import GeneticSelectionCV

# array of z-score normalized technical indicators during training period
x_train = np.array((data_point_count * stock_count,

↪→ technical_indicator_count))

# array of z-score normalized five day returns during training period
y_train = np.array((data_point_count * stock_count, 1))

## Code

n_estimators = 5
leaf_perc = 0.1
max_features = 20
pop = 250
cross_over_prob = 0.9
mutation_prob = 0.025

estimator = RandomForestRegressor(n_estimators = n_estimators,
↪→ min_samples_leaf=int(np.shape(y_train)[0]*leaf_perc), random_state
↪→ =42)

# Initialize GeneticSelectionCV
selector = GeneticSelectionCV(estimator=estimator,

cv=5,
verbose=1,
scoring="neg_mean_squared_error",
max_features=max_features,
n_population=pop,
n_generations=100,
tournament_size = 10,
crossover_independent_proba=cross_over_prob,
mutation_independent_proba=mutation_prob,
n_gen_no_change=2,
n_jobs=-1)
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# Fit GeneticSelectionCV
selector.fit(x_train, y_train)

def indexes_of_true(list):
return [i for i, val in enumerate(list) if val]

indices_chosen = indexes_of_true(selector.support_)

# Neural networks

## Packages and data

import numpy as np
import tensorflow as tf
import keras
import pyvinecopulib as pv
import pypfopt as ppo
import cvxpy as cp
from sklearn.preprocessing import StandardScaler

# array of z-score normalized variables for all stock
x_seqs = np.array((data_point_count * stock_count, timestep_count,

↪→ variable_count))

# array of z-score normalized five-day ahead returns
ys = np.array((data_point_count * stock_count, variable_count))

## Code

### BiLSTM

n_timesteps = 10
n_features = 54

n_layers = 1
drop = 0.7
lr = 0.001
epoch = 50
mult = 1
batch = int(np.shape(ys)[0] * 0.1)
final_drop = 0.9

for z in range(5):
model = models.Sequential()
model.add(keras.layers.Input(shape=(n_timesteps,n_features)))
model.add(keras.layers.Bidirectional(keras.layers.LSTM(int(n_features/2),

↪→ return_sequences=False, dropout = drop,recurrent_dropout=drop)))
model.add(keras.layers.Dense(n_features, activation = "relu"))
model.add(keras.layers.Dropout(final_drop))
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model.add(keras.layers.Dense(1, activation = "linear"))
print(model.summary())

optimizer = tf.keras.optimizers.Adam(lr)

model.compile(loss="mse",optimizer=optimizer)

history = model.fit(x_seqs, ys, epochs=epoch, verbose=0, batch_size=batch
↪→ , shuffle=True)

text = f"lstm_model_{z}.h5"
model.save(text)

### CNN-BiLSTM

n_timesteps = 10
n_features = 54

n_layers = 1
drop = 0.6
lr = 0.001
epoch = 50
mult = 1
batch = int(np.shape(ys)[0] * 0.1)
kernel = 4
conv_drop = 0.1
final_drop = 0.9
leak = 4

for z in range(5):
model = models.Sequential()
model.add(keras.layers.Input(shape=(n_timesteps,n_features)))
model.add(keras.layers.Conv1D(filters=(n_features*mult), kernel_size=

↪→ kernel, activation=keras.layers.LeakyReLU(alpha=leak), padding = "
↪→ same"))

model.add(keras.layers.AveragePooling1D(pool_size=kernel-1,padding="same"
↪→ ))

model.add(keras.layers.Dropout(conv_drop))
model.add(keras.layers.Bidirectional(keras.layers.LSTM(int((n_features*

↪→ mult)/2),return_sequences=False, dropout = drop,recurrent_dropout=
↪→ drop)))

model.add(keras.layers.Dense(n_features, activation = "relu"))
model.add(keras.layers.Dropout(final_drop))
model.add(keras.layers.Dense(1, activation = "linear"))

optimizer = tf.keras.optimizers.Adam(lr)

model.compile(loss="mse",optimizer=optimizer)
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history = model.fit(x_seqs, ys, epochs=epoch, verbose=0, batch_size=batch
↪→ , shuffle=True)

text = f"cnn_model__{z}.h5"
model.save(text)

### CNN-BiLSTM-Attention

n_timesteps = 10
n_features = 54
drop = 0.9
lr = 0.001
epoch = 50
mult = 1
batch = num_train*33
final_drop = 0.9
conv_drop = 0.85
kernel = 4
leak = 4
conv_mult = 1

for z in [5]:
inputs = keras.layers.Input(shape=(n_timesteps,n_features))
conv1 = (keras.layers.Conv1D(filters=int(n_features*conv_mult),

↪→ kernel_size=kernel, activation=keras.layers.LeakyReLU(alpha=leak),
↪→ padding = "same"))(inputs)

avepool1 = (keras.layers.AveragePooling1D(pool_size=kernel-1,padding="
↪→ same"))(conv1)

drop1 = (keras.layers.Dropout(conv_drop))(avepool1)
bilstm1 = (keras.layers.Bidirectional(keras.layers.LSTM(int((n_features*

↪→ mult)/2),return_sequences=False, dropout = drop,recurrent_dropout=
↪→ drop)))(drop1)

reshaped_output = keras.layers.Reshape((n_features, 1))(bilstm1)
attn = keras.layers.Attention()([reshaped_output,reshaped_output])
flattened = keras.layers.Flatten()(attn)
dense1 = keras.layers.Dense(int(n_features), activation = "relu")(

↪→ flattened)
drop3 = (keras.layers.Dropout(final_drop))(dense1)
final = keras.layers.Dense(1, activation = "linear")(drop3)

model = keras.Model(inputs=inputs, outputs=final)

optimizer = tf.keras.optimizers.Adam(lr)

model.compile(loss="mse",optimizer=optimizer)

history = model.fit(x_seqs, ys, epochs=epoch, verbose=0, batch_size=batch
↪→ , shuffle=True)

# GARCH-Copula and portfolio optimization
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## Packages and data

import numpy as np
import tensorflow as tf
import keras
from arch import arch_model
from tensorflow.keras.models import load_model

# The index of the end of the train period
train_end = float()

# The index of the end of the test period
test_end = float()

# days discarded from the beginning of the data
discarded = int()

# close-to-close percentage change
close_change = np.array((data_point_count,stock_count))

## Code

### GARCH

cond_vol_train = np.zeros((train_end-discarded,stock_count))
cond_vol_test = np.zeros((test_end-train_end,stock_count))

for j in range(stock_count):
am = arch_model(close_change[discarded:test_end,j]*100, dist = "studentst

↪→ ", vol = "GARCH", p=1,q=1)
res = am.fit(update_freq=1, last_obs = train_end-1)

this = res.forecast(horizon = 5, start = 0)

this = this.variance
this = this.iloc[:,-1]

this = this.to_numpy()
this /= 100

cond_vol_train[:,j] = this[:train_end-discarded]
cond_vol_test[:,j] = this[train_end-discarded:test_end-discarded]

### Copula and portfolio optimization

model_num = -1
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# This code runs the BiLSTM model, code can be adjusted with e.g.
# ["cnn"],["attn"],["lstm","cnn","attn"] to compute other models
for model_list in [["lstm"]]:
model_num += 1
if model_list != "ols":
train_list = []
test_list = []
for model_text in model_list:
for i in range(5):
location = "/content"
text = f"{location}/{model_text}_model_{i}.h5"
model = load_model(text)
# scalery is trained StandardScaler for the train period five-day

↪→ returns
model_train = scalery.inverse_transform(model.predict(x_seqs))
model_test = scalery.inverse_transform(model.predict(x_seqs_test))

# Concatenate to the corresponding lists
train_list.append(model_train)
test_list.append(model_test)

# Delete arrays to save memory
del model_train
del model_test

# Concatenate arrays in the lists
train = np.concatenate(train_list, axis=1)
test = np.concatenate(test_list, axis=1)

# Delete the lists to save memory
del train_list
del test_list

train_return_regression_pred = np.mean(train, axis=1)
test_return_regression_pred = np.mean(test, axis=1)

else:
train_return_regression_pred = scalery.inverse_transform((ols_model.

↪→ predict(x_train)).reshape(-1,1))
test_return_regression_pred = scalery.inverse_transform((ols_model.

↪→ predict(x_test)).reshape(-1,1))

train_return_regression_real = scalery.inverse_transform(ys)
test_return_regression_real = scalery.inverse_transform(ys_test)

y_preds_sidebyside = np.zeros((num_test,num_stocks))
for j in range(num_stocks):
y_preds_sidebyside[:,j] = (test_return_regression_pred[j*num_test:(j+1)

↪→ *num_test]).reshape(num_test,)
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train_return_regression_real = train_return_regression_real.astype(np.
↪→ float64)

train_return_regression_pred = train_return_regression_pred.astype(np.
↪→ float64)

train_return_regression_pred = train_return_regression_pred.reshape(
↪→ train_return_regression_pred.shape[0],1)

train_errors = train_return_regression_pred -
↪→ train_return_regression_real

#train_errors = train_return_regression_real

y_errors_sidebyside = np.zeros((num_train,num_stocks))
for j in range(num_stocks):
y_errors_sidebyside[:,j] = (train_errors[j*num_train:(j+1)*num_train

↪→ ,0]).reshape(num_train,)

y_preds_sidebyside_train_vol = cond_vol_train

y_errors_normalized_train = y_errors_sidebyside /
↪→ y_preds_sidebyside_train_vol

y_preds_sidebyside_test_vol = cond_vol_test

u_train = empirical_pit_transform(y_errors_normalized_train)

controls = pv.FitControlsVinecop(family_set = pv.one_par, num_threads =
↪→ 9999, select_trunc_lvl = True, nonparametric_method = "quadratic")

cop = pv.Vinecop(data = u_train, controls=controls)
print(cop)

sims = 1000

sims = cop.simulate(n=sims)
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sims_untransformed = inverse_empirical_pit_transform(sims, u_train,
↪→ y_errors_normalized_train)

for tc in [0,0.005,0.01]:
for target in [0.075]:
for beta in [0.95]:
weights_during_test = np.zeros((num_test,329))
incur_tc = []

i = 0
while i < (num_test-5):
return_preds = y_preds_sidebyside[i,:].copy()

sim_errors = return_preds + sims_untransformed*cond_vol_test[i]
return_with_errors = return_preds + sim_errors

return_preds -= tc

return_with_errors = np.nan_to_num(return_with_errors, nan = 0.0)
return_preds = np.nan_to_num(return_preds, nan = 0.0)

this = ppo.EfficientCVaR(returns = return_with_errors,
↪→ expected_returns=return_preds, verbose = False,
↪→ weight_bounds=(0, 1), beta = beta)

try:
weights = this.efficient_risk(target)
if this.portfolio_performance()[0] < 0:
weights_array = np.zeros((num_stocks))

else:
weights_array = np.array(list(weights.values()))
weights_array = np.round(weights_array, decimals=2)

except:
weights_array = np.zeros((num_stocks))

if np.sum(weights_array) == 0:
i +=1
continue

weights_during_test[i+1:i+5+1,:] = weights_array
incur_tc.append(i)
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incur_tc.append(i+4)
i += 5
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