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Communications networks have become increasingly complex environments due to
the massive increase in the number of communicating nodes and diverse services
with unique requirements. Therefore, machine learning has become extremely im-
portant from the access to backhaul and core networks, as well as various technolo-
gies required for the smooth operations of different tasks and services within those
networks. The overall complexity of networked environments and increasing vol-
umes of data further complicates the network security landscape. Machine learning
with its various techniques and tools, thus, has become vital for network security.
In 6G network security, the promises of machine learning are vast, from preventive
measures to detection to response and remediation. However, machine learning re-
quires a huge amount of resources mainly due to the fact that machine learning
operates on data and data volumes are consistently rising. This work studied and
investigated the resource consumption of machine learning techniques used for net-
work security to provide insights into the potential resource implications of deploying
machine learning in 6G security.

The thesis explored a wide range of state-of-the-art resource-efficient Machine learn-
ing based security solutions to find out the key resources consumed by those solutions
and the key enablers of resource efficiency for those solutions. In particular, the the-
sis focused on investigating the resource consumption of distributed learning for 6G
networks in terms of computing, memory, bandwidth, energy, latency, and human
resources. Distributed machine learning is highly relevant to the context of 6G, as
it can meet the future 6G requirement of processing substantial amounts of data
generated from numerous devices while preserving data privacy and security. The
thesis presents an experimental and comparative analysis of the Federated Learning
(FL) and Split Learning (SL) based network security solutions, which are the two
most popular distributed learning in terms of resource consumption fingerprinting.
The finding shows that both models perform well, while Federated Learning appears
to have a slight edge over Split Learning in terms of precision and F1 score. However,
the differences are quite small. In terms of resource consumption fingerprinting, we
observed that both of them have their advantages and shortcomings. In terms of
CPU usage, SL had higher CPU usage, while FL had higher peaks and variability.
In terms of memory usage, FL was more memory efficient than the SL. Finally, SL
was more time and power-efficient and had lower CO2 emission.
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1 Introduction

Recently, we have been witnessing a revolution in multiple fields due to the devel-

opment and application of Artificial Intelligence (AI) and, in particular, of Machine

Learning (ML). Its extensive adoption in scientific and technological fields has paved

the way for more data-driven decision-making models, like speech recognition, natu-

ral language processing (NLP), computer graphics, computer vision, and intelligent

control. Additionally, it is also being utilized to solve network-related problems

such as traffic engineering, routing, security, and resource allocation [1]. The Sixth

Generation (6G) networks are expected to increase connectivity beyond 5G to the

three-dimensional coverage of land, sea, and space by integrating novel technologies

from the access to core networks and non-terrestrial networks [2]. Due to this, 6G

networks will integrate a huge variety of devices, systems, and services [3]. Most of

those devices, systems, and services will emerge with unique requirements. More-

over, 6G is expected to grow on almost all key performance indicators (KPIs) from

5G. Some of these KPIs will require a radical shift from the existing network ar-

chitecture. For example, the existing 5G network is largely centralized, where most

control network functions reside in the core network. Even though some of the core

network functions can be pushed to the edge of the network, most functions still

remain centralized. However, to meet the latency requirements of future services,

most core network functions, such as the authentication function, will be pushed to

the far edge of the network. The resulting network will be an extremely complex
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environment compared to the previous predecessors. ML, thus, will play a signifi-

cant role in almost all aspects of the management and operations of 6G networks [4].

Therefore, the resulting 6G networks will be highly complicated environments need-

ing AI and ML-based solutions for automated or semi-automated network-related

decision-making, converting those decisions to configurations, and then deployment.

AI and ML, thus, will be instrumental in not only enhancing but also in the very

functioning of 6G networks and their technologies.

Similarly, the security of 6G communications networks will also become increas-

ingly challenging due to the overall complex nature of networks [5]. To meet the

needs of various applications, ML algorithms are progressing towards larger and

computationally complex models, which require more computational resources and

energy [6], [7]. Previously, while developing the ML algorithms, resource consump-

tion did not get enough attention since most research focused on improving model

accuracy. But recently, resource consumption of ML models has become a major

research field for researchers since it has a significant impact on both economic and

environmental costs [8]. Furthermore, the deployment of ML in communications

networks has its own challenges [9]. When it comes to the implementation of secu-

rity of communications networks, resource efficiency of ML solutions will be crucial.

The main reason is that in all types of communication network transmission, re-

sources like power and bandwidth are limited [10]. When an ML-based security

solution is integrated into communications networks, resources are also consumed

for ML and security operations. Therefore, researchers have increasingly given con-

siderable attention to resource efficiency while developing ML models for various

tasks. Moreover, there may be instances where the accuracy of the model may be

sacrificed in order to optimize resource consumption.
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1.1 Problem Statement

Native AI has been proposed for 6G. Native AI will require dedicating computing,

memory, and energy resources to the 6G network infrastructure. To put facts in

perspective, training large AI models requires a huge amount of resources. For

example, training a large language model can consume hundreds of megawatts of

hours of electricity, memory of several terabytes, and hundreds of powerful GPUs.

Even though the consumption of resources of ML or AI can be smaller due to smaller

tasks in 6G networks, the net impact can be much higher since 6G networks are

considered more of an eco-system than a simple packet-forwarding infrastructure.

For example, 6G will provide differentiated Quality of Service (QoS) for different

verticals and services, such as digital healthcare [11] and vehicular networks [12].

Securing future networks will be extremely difficult because of the integration

of the large array of mobile services that accompany users. The challenge is also

due to the exponential growth in the number of resource-constraint devices like the

Internet of Things (IoT) and the consolidation of various operators who may have

differing and potentially conflicting security policies [5]. The security recommen-

dation provided by the International Telecommunication Union-Telecommunication

Standardization Sector (ITU-T) covers security from eight dimensions, they are au-

thentication, access control, data confidentiality, non-repudiation, data integrity,

communication security, privacy, and availability. Each of these aspects has its own

implementation methods and resource costs. Achieving green security with them

would need specific modifications to maintain the same level of security while re-

ducing resource consumption. Although ML-based security solutions are potential

candidates for meeting the network security challenges in many aspects of 6G, their

resource consumption will be a key concern, and extensive research is needed to

maintain the resource consumption of ML [3]. Hence, to establish a robust and

reliable network security system for the 6G network, it is essential to ensure proper



1.3 RESEARCH OBJECTIVES 4

resource utilization. This will not only foster innovation but also promote sustain-

ability in the coming years.

Therefore, the work in this thesis investigates the resource consumption of ML

algorithms in network security. Additionally, different resource-efficient ML-based

network security solutions are studied to find out the key enablers of the resource ef-

ficiency of those solutions. Finally, resource consumption measurement experiments

of an ML-based network security solution are performed to provide important in-

sights into the resource consumption of ML algorithms in network security solutions

to study the impact on important resources through ML in future 6G networks.

1.2 Research Questions

In this thesis, our main goal is to answer three research questions, they are:

• RQ1: What are the key resources that are consumed by ML techniques used

in network security?

• RQ2: How resource efficiency in network security is achieved in different ML

techniques? and

• RQ3: How much resources are consumed by distributed learning techniques

like Federated Learning (FL) and Split Learning (SL) and how do they perform

in a network security test case?

1.3 Research Objectives

Given the unique characteristics of 6G, such as ultra-wide bandwidth, minimal delay,

and a decentralized and intelligent network, ML is poised to play a crucial role in

its operation. Therefore, this thesis aims to investigate the resource usage of ML
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in the context of 6G, with the goal of promoting sustainable practices and efficient

utilization of resources. Specifically, the objectives of the thesis are:

1. Explore ML-based network security solutions to define Key Performance Indi-

cators (KPIs) for resource usage

2. Identify key enablers of resource efficiency in ML-based security solutions

3. Evaluate resource consumption of deploying distributed ML techniques in 6G

security

By doing so, this work contributes to the ongoing discussions and preparations

for the advent of 6G and its implications for ML and network security.

1.4 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 Describes the basic 5G and 6G concepts, their security challenges,

basic machine learning concepts, their application in communication networks,

and their challenges in integrating with 6G security.

• Chapter 3 describes the resource consumption of ML in network security.

Also, this chapter discusses the Key Performance Indicators (KPIs) for the

resource consumption and efficiency of ML algorithms.

• Chapter 4 describes different resource-efficient state-of-the-art ML-based net-

work security solutions and how the resource efficiency was achieved there.

• Chapter 5 describes the necessary experimental setup, use case, data pre-

processing, model descriptions, model training, and other necessary steps for

measuring the resource consumption fingerprint of the two most popular dis-

tributed learning techniques, FL and SL.
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• Chapter 6 discusses the findings of the experiment in detail, and provides

recommendations for the application of FL and SL in various 6G use case

scenarios.

• Chapter 7 concludes the thesis with a discussion of the research questions

and discuss of the future research direction.



2 Literature Review

This Chapter discussed some key background information, including an overview of

the concepts of 5G and 6G, the requirements for 6G, the basic concept of ML and

different ML approaches, the application of ML in network security, the importance

of ML in 6G, and the challenges for ML in a 6G network system.

2.1 Introduction to 5G and the Need for 6G Net-

work

Fifth-Generation Mobile Technology (5G) offers enhanced quality, high-speed data

transfer, extensive coverage, minimal delay, high-dependability and cost-effective

services. The services delivered by 5G can be divided into three types. Extreme

Mobile Broadband (eMBB) is one of them, which enables high-speed internet access,

moderate delay, increased bandwidth, augmented and virtual reality, and ultraHD

video streaming. Another is Massive Machine-Type Communication (mMTC), de-

signed for broadband and long-range machine communication. This type is cost-

effective, has low power consumption, and provides high data rates and extended

coverage, making it suitable for IoT applications. The final type is Ultra-Reliable

Low Latency Communication (URLLC), known for its low latency, superior ser-

vice quality, and ultra-high reliability. It facilitates services such as remote surgery,

intelligent transport, smart grid, etc. [13].
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The advent of the 5G wireless network introduced novel technological ideas to

the wireless field, bridging the gap between communications networks and the con-

ventional IT realm [14]. This includes the transformation and virtualization of

networking technologies, which facilitated the launching of new wireless network

applications and use cases. From the Massive Multi-Input Multi-Output (MIMO)

technology at the physical layer to the enhancement of the application layer with ML

capabilities, the network’s functionalities have been significantly expanded. How-

ever, despite these advances, 5G inherited some limitations that prevent it from

fulfilling the requirement of new services such as the Internet of Everything (IoE)

[15].

The 6G communication network is expected to be introduced in 2030 and will

make a significant jump beyond the current 5G technology. The aim will be to cater

to the future needs of societies and services. That will revolve around intelligent,

data-driven, and automated processes [16]. Presently, terrestrial communication is

a fundamental aspect of 5G networks. However, in 6G, this dimension is expected

to expand from terrestrial to underwater and aerial communication with several

times greater capacity than the 5G [17]. This increased connectivity will pave the

way for numerous advantages, for instance flying cars, underwater leisure activities,

holographic telepresence, etc. [18]. Innovative and groundbreaking technologies like

terahertz and optical communications, distributed AI based on end-user terminals,

seamless coverage through combined terrestrial-satellite access technologies [2], and

Distributed Ledger Technologies (DLTs) will be some of the key enablers for meeting

the requirement of the new use cases and applications [19].

6G is anticipated to trigger a significant transformation in human interaction

facilitated by enhanced context-aware devices, with new interfaces between humans

and machines. However, the end devices that will provide these interfaces will

evolve beyond simple data collectors to multiple synchronized entities operating
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together. Moreover, emerging technology like holographic data launching to millions

of users simultaneously in real-time with extremely low latency will require data rates

ranging from several gigabits per second up to terabits per second [18]. Hence, these

services will require a strict Quality of Services (QoS), including latency, reliability,

and bandwidth, which will pose a challenge for existing 5G networks [15]. Hence,

with the emergence of sophisticated technologies, the 6G network is envisioned to

transform into a more potent and efficient system than 5G, which will cater to

the need for the existing services and pave the way for introducing groundbreaking

services that have never been witnessed before [20].

2.2 Security Challenges in 5G and 6G

To meet the new technological demand for connected devices and diverse applica-

tions, a few concepts were introduced in 5G, such as Software Defined Networking

(SDN), Cloud Computing, and Network Function Virtualization (NFV). However,

these technologies also have their own security issues. For example, there are two

entities in the cloud known as Mobility Management Entity (MME) and Home

Subscriber Server (HSS). They store user’s mobility handling, personal, and billing

information accordingly. If any breach occurs in this area, the whole network will

be ineffective. Moreover, in the SDN controllers, the network control logic is cen-

tralized, as a result, these controllers are the attractive target for the attackers for

rendering the whole network down with resource exhaustion or Denial of Service

(DoS) attacks. This challenge also applies to NFV hypervisors [5].

5G resource allocation optimization/orchestration utilizes AI/ML which provides

built-in orchestration flexibility. However, this flexibility can lead to vulnerability

and open the path for attackers to manipulate the configuration. Moreover, even

though network slicing makes the 5G network more efficient in resource sharing

and aids in allocating resources for different applications, it also involves security
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concerns. Additionally, since the edge is extended to end users, the attack surface

increases as a result, and it becomes a favourite choice for cyber attacks. There also

exists the complication related to the edge host security controls. Furthermore, the

open-source activities in SDN/NFV also raise security concerns because there is a

lack of documentation, level of support, intellectual property concerns, and more.

Finally, there is also concern regarding to data security and privacy resulting from

data centralization, and supply chain security from the utilization of commodity

modular software and hardware [21].

The security threat landscape for 6G will be much wider since the network will

be part of a system that includes space, air, and ground networks. The system will

inherit vulnerabilities from 5G [5] and will obtain new threat vectors from newly

integrated technologies from the infrastructure layer (e.g., radio technologies) up

to the application layer (e.g., new verticals). For instance, the positioning of radio

bands in extremely large MIMO systems operating at terahertz frequencies can be

exposed to eavesdropping, jamming, and pilot contamination attacks [22]. Moreover,

the openness of the network architecture, for example, Open Radio Access Networks

(O-RAN), can significantly expand the attack surface in 6G [23].

The rise in connected devices and extreme use of open-source solutions will also

significantly expand the attack surface in 6G. Additionally, since the security of a

network system is dependent on its entities and interfaces, converging to the weakest

point as these increase. Devices with poor security, especially IoT devices, will

increase system vulnerability. Interfaces such as Network Exposure Function (NEF)

or Mobile Edge Computing (MEC) will be more open to third parties, potentially

leading to privacy invasion due to the failure to implement proper authentication

and authorization measures [24].

The introduction of Further Enhanced Mobile Broadband (FeMBB) and its ex-

treme data rates present challenges regarding traffic processing for security. Such
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challenges can be mitigated with distributed security solutions allowing for local

and real-time traffic processing across various network sections, from the edge to the

fundamental cloud services [25]. However, distributed solutions will have challenges

regarding resource limitations, synchronization of different security approaches, and

the extreme entanglement of core-network (mainly control) functions that can lead

to signalling overhead. ML can provide a way forward in such cases.

2.3 Machine Learning

ML is a specialized field of AI focused on studying and developing statistical algo-

rithms. These algorithms can learn from existing data and apply that knowledge

to unseen or new data. This is how they can perform tasks without any explicit

instruction. The term machine learning was coined by Frank Rosenblatt, a psycholo-

gist from Cornell University. He developed a machine that mimicked the operations

of the human nervous system and was capable of identifying alphabetic charac-

ters in 1957 [26]. The machine is known as a perceptron, subsequently served as

the blueprint for contemporary Artificial and Neural Networks (ANN). While the

model’s learning was close to the human and animal learning models [27]. In 1960,

the multi-layer concept opened up the path for feed-forward neural networks and

back-propagation. Later in 1967, Marcello Pelillo introduced the idea of the Nearest

Neighbor Algorithm, marking the onset of pattern recognition. During the late 1970s

and early 1980s, ML and AI went on a separate path. AI researchers abandoned

research on neural networks and focused on knowledge-based logical approaches in-

stead of algorithms, but up until that point, ML was utilized as a training program

for AI.

ML types vary based on various aspects like input and output data type, ap-

proaches, and the problem in hand to solve. Additionally, different views and ap-

plications also lead to different classifications. Hence, it is not possible to refer to
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a completely acceptable taxonomy from the literature. A variety of frequently used

ML approaches are discussed below.

2.3.1 Supervised Machine Learning

A labelled dataset is used to train the algorithm in supervised learning. A labelled

dataset has both input and output parameters, and the model learns to map points

between input and correct output [28]. Models developed with supervised learning

can be classified using classification and regression techniques.

• Classification: The classification technique deals with categorical variable

perdition that represents different labels or classes. It predicts distinct out-

comes and segregates input data into various groups [28]. For instance, if a

traffic flow is normal or attack flow, if an email is spam or not spam. Some of

the common supervised ML algorithms are Support Vector Machine (SVM),

K-Nearest Neighbors (KNN), Random Forest (RF), Naive Bayes (NB), Logis-

tic Regression (LR), and Decision Tree (DT) [29].

• Regression: The regression technique predicts a continuous response or tar-

get variables. It is applicable if the nature of the expected outcome is a real

number or the data have a specific range. For example, predicting the sales of

a product or stock market forecasting based on historical data. Some of the

most common regression techniques are Lasso Regression, Ridge Regression,

Polynomial Regression, Linear Regression, DT, and RF [30].

2.3.2 Unsupervised Machine Learning

In unsupervised Learning, the algorithm is trained with a unlabeled dataset to

realize the inherent relationships or hidden patterns in data and react accordingly.

When new data is introduced, the algorithm reacts with those data based on the
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presence or absence of those characteristics. In other words, unsupervised learning is

used for data that includes only input attributes but lacks any corresponding output

[31]. There are three main types of unsupervised learning. They are Clustering,

Association, and Dimensionality Reduction.

• Clustering: It involves organizing data points into clusters based on their like-

ness. This is a suitable method to determine trends and connections in data

without pre-labeled instances [32]. Some of the very common clustering al-

gorithms are Hierarchical Clustering, K-means and k-medoid, Fuzzy C-means

Clustering, Gaussian Mixture Model, Hidden Markov Models, and Subtractive

Clustering.

• Association: It is the technique used to uncover the links between elements

in a dataset. It establishes the rules suggesting that the occurrence of one

item implies the occurrence of another item with a certain likelihood [33].

This technique is useful for market basket analysis helping companies to com-

prehend different product relationships and understand the customer behavior

for cross-sell recommendation. Some of the very frequently used algoríthms

for generating association rules are Eclat, Apriori, and FP-Growth.

• Dimensionality reduction: This technique is utilized when a dataset has an

excessive number of features or dimensions. It lessens the dataset to a control-

lable size while striving to maintain the dataset’s integrity as much as possible

[34]. It is a very commonly used technique in dataset pre-processing. Some

of the very common dimensionality reduction techniques are Autoencoders,

Principal Component Analysis (PCA), and Singular Value Decomposition.
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2.3.3 Semi-Supervised Machine Learning

This technique combines both supervised and unsupervised techniques by using both

labelled and unlabeled data. It is applicable when relatively lower labelled data is

available, and relatively higher unlabeled data are provided. It is a very suitable

option when getting labelled data is difficult, resource-intensive, costly, and time-

consuming [35]. There are various kinds of semi-supervised learning techniques, such

as Label propagation, Self-training, Co-training, Generative Adversarial Networks

(GANs), and Graph-based Semi-supervised Learning.

• Self-training: In this method, any supervised technique is used to train

the method for classification or regression and deploy it in a semi-supervised

manner. In other words, the model is trained with labelled data, and then the

model is used to predict the label of unlabeled data.

• Co-training: Co-training is derived from and an improved version of self-

training. It is utilized while a small portion of labelled data is available. Here

two individual classifiers are trained with two different views of data. The

views are features, and each view is independent of the class variable. Each

view is sufficient to accurately predict the class of the sample data [36].

• Graph-based Semi-supervised Learning In this method, a graph is uti-

lized to illustrate the connection between the data points. The graph is sub-

sequently utilized to distribute labels from the data points that are labeled

to those that are not. This method can efficiently encapsulate the inherent

physical characteristics of intricate social interactions in real-world scenarios

[37].
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2.3.4 Reinforcement Learning

This method is a combination of ML and optimal control, which focuses on how

intelligent agents can make decisions in a changing environment by maximizing the

rewards they receive over time. It generally consists of a relationship between three

elements, an agent, environment, and a goal. This relationship is often expressed

with the concept of a Markov decision process (MDP) [38]. Here the RL agent

interacts with an environment and learns about a problem. The RL agent receives

the data about the current state of the environment and makes a decision based on

the provided information. The RL agent receives the reward or punishment from

the surrounding environment. Which encourages or discourages the RL agent from

making the same decision in a similar state in the future. The process is repeated for

every new state and hence RL agents learn to take actions within the environment

to satisfy a specific goal. Some of the most common RL approaches are Q-learning,

SARSA, and Deep Q-learning.

2.4 Centralized and Distributed ML

Due to the ever-evolving nature of data and devices, ML also needs to evolve. Train-

ing traditional ML algorithms requires centralizing data to a central server. However,

there exists some laws and regulations that restrict data from being aggregated or

shared directly to different regions [39]. Hence, distributed learning is utilized to

address this issue. In this section, a brief discussion about Centralized Learning and

Distributed Learning is presented.

2.4.1 Centralized Learning

Centralized machine learning is the traditional way of machine learning, where data

from different sources are collected or gathered on a central server. The central



2.4 CENTRALIZED AND DISTRIBUTED ML 16

server can act as a data warehouse, data lake, or lake warehouse. The data here

is then processed and trained in the ML model in the central server. Training this

type of ML requires an extensive amount of processing and memory resources. This

trained model can then be used in the server or other nodes for operation. However,

the models in the other nodes do not require a similar amount of memory and

processing power as the server because they only perform inference. The advantages

of this method are efficiency, simplicity, affordability, and consistency. However, the

limitations of centralized learning are privacy issues, scalability, robustness, and

adaptability [40].

2.4.2 Distributed Learning

The development of distributed machine learning has been geared towards managing

extensive learning processes on massive data sets within the context of big data

and distributed computing systems [40]. It allows training the ML model without

requiring the data to be transmitted to a centralized server. This is relevant to

future requirements of 6G as significant growth in data, such as from IoT devices,

edge, and distributed sources, will make it challenging to centralize and process all

the data on a single server. Also, with a growing need for data privacy, sensitive data

must be confined to devices or within certain geographical regions. In such scenarios,

distributed learning enables training models without centralizing all the data and

addressing privacy and data sovereignty concerns. From a communication point of

view, distributed learning results in lower overhead as the model parameters need

to be shared without requiring the transmission of large amounts of data, therefore

minimizing the use of bandwidth. For certain applications requiring low latency,

such as autonomous vehicles, distributed learning can enable faster response times

by training and processing the data closer to the sources.
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2.5 Applications of ML in Communication Networks

ML is renowned for its contributions to scientific disciplines such as computer vision,

NLP, and speech recognition and is now expanding its reach to numerous other

areas. It has been attracting renewed interest in the networking domain. The

data-driven nature of ML allows it to automatically understand the complexities

of communication and networking environments and dynamically adjust protocols

without the need for human intervention [41]. In communication networks, it is being

used for various purposes. Fig. 2.1 shows an AI/ML-based network infrastructure

for IoT applications. Some of the very common applications of ML are listed below:

• Information Cognition: Due to the complex nature of networks and the

limitations of measurement tools and architecture, some types of data are

difficult to access within an acceptable cost and granularity, even though data

is the fundamental asset for ML networking. However, ML can evaluate a

certain network state with its predictive ability [42].

• Traffic Prediction and Classification: Accurate traffic prediction is

crucial for network routing, resource allocation, congestion control, and high-

level streaming applications. Traditional traffic classification methods, like

port-based and payload-based approaches, have limitations such as unfixed or

reused port assignments and privacy issues, respectively. Therefore, ML-based

statistical features have been extensively studied to address these gaps [42].

• Intelligent Routing: Routing is the process that determines the path

from source to destination of any data packet. The performance of a network

substantially depends on the efficiency of the routing algorithm [43]. There

are many routing algorithms like Distance Vector, heuristic algorithms, and

Shortest Path First (SPF). However, these traditional algorithms have some

disadvantages, like high computational complexity, slow convergence speed,
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and long training time. Inefficient routing decisions can cause network con-

gestion and packet loss because of the transmission delay, so dealing with the

growing traffic and meeting the high user demand may become difficult[44].

Machine Learning can address this issue by enabling intelligent routing. Dif-

ferent ML-based solutions for intelligent routing are available in the literature

such as, [45], [46], and [47].

• Resource Management and Network Adaptation: Improving network

performance is key and relies heavily on network adaptation and resource

management. However, challenges like Transmission Control Protocol (TCP)

congestion control, routing, and traffic scheduling exist. Heuristic algorithms

may not be sufficient due to the complexity of diverse system environments,

noisy inputs, and optimization difficulties of tail performance. Deep learning

(DL) can characterize the relationship between the input and output of a

network system without human involvement, making it a promising solution

for these issues. Various Deep-learning solutions for these issues are available

in the literature [42].

• Network Performance Prediction and Configurations Extrapolation:

The ability to predict performance is vital for decision-making in a variety of

applications. This includes predicting the Quality of Experience (QoE) for

videos, determining the location of Content Delivery Networks (CDN), select-

ing the best wireless channels, and extrapolating performance under different

configurations. ML is an intuitive method for predicting system states, aiding

in improved decision-making [42].

• Congestion Control: Network congestion is a significant issue for service

providers as it negatively impacts the overall performance of the network.

Congestion control maintains network stability, ensures fair use of resources,
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and keeps the packet loss ratio at an acceptable level [48]. With the massive

development of widely used network technology, like 5G, Wi-Fi, data centers,

and satellites, the diversity and complexity of the network transmission pro-

tocols and scenarios have increased significantly. Different types of congestion

control algorithms are used in different scenarios, but finding a generic algo-

rithm is difficult because of the variety of network scenarios and their intrinsic

dynamics. But ML can provide a generic congestion control algorithm that

supports different network scenarios [49].

• Fault management: It’s unrealistic to expect network administrators or

operators to have comprehensive knowledge about the entire network, includ-

ing all applications and devices connected to it. Modern networks have become

increasingly advanced and characterized by high levels of complexity and dy-

namism, which makes fault management even more challenging. However,

ML can provide significant assistance in this area, aiding in the prediction,

detection, and localization of faults, as well as in the mitigation of these issues

[50].

• Developing Intelligent Architectures: AI/ML is also gaining popularity

in developing intelligent architecture, which is necessary to meet the grow-

ing demands of modern networks and systems. Heilin et al. [51] proposed

an AI-enabled intelligent Architecture for a 6G network to support diverse

services smartly, guaranteeing reliable connectivity, and optimizing network

performance.

• Edge Intelligence

The huge amount of data which are generated by edge devices is difficult to

send for processing to the cloud due to the various quality of the channel, enor-

mous energy consumption, privacy concerns, and traffic congestion. Hence,
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edge AI has become a potential solution by pushing the training and inference

process at the edge to deal with this issue. However, there are some challenges,

too, since the AI needs close cooperation between edge devices (smartphones,

vehicles, base stations, etc.), which leads to a severe communication overhead.

Shi. et. al [52] conducted a comprehensive survey on the recent development

techniques which were done to overcome those communication challenges.

Figure 2.1: AI/ML Operations in AI-based Network Infrastructure.

2.6 Applications of ML in Network Security

The use of ML in network security is currently receiving significant attention in aca-

demic circles. The need for ML in various aspects of network security is becoming

increasingly essential, given that a wide array of next-generation network services
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require automated decision-making processes for tasks such as security policy verifi-

cation, conversion, deployment, and configuration. A crucial requirement for these

services is the proactive implementation of security measures, such as access control

and authentication, within specific time constraints. This is necessary to fulfil the

primary service requirements. The authors in [4] discuss how ML is contributing

to proactive security measures in communication networks and earning recognition

by mitigating security risks and lapses. For example, ML is used in CAPTCHA

to distinguish between humans and bots, in traffic classification to assist in intru-

sion detection and deep packet inspection, and so on. However, the authors also

highlight some challenges, such as various attacks on ML itself, the lack of research

focus on ML security, and the potential for ML to be leveraged to deploy and devise

malicious attacks. Some other common applications of ML in network security are:

• Distributed denial-of-service (DDoS) Detection

• Network segmentation

• Intrusion Detection System (IDS)

• Anomaly Detection

• Botnet Detection

• Wireless security

• Security Traffic Management

• Mobile Malware Detection

• Distributed Domain Name System (DNS) Attack Detection.

• False data injection detection

• Web and Virtual Private Network (VPN) security
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2.7 ML for Security in 6G

AI and ML will be instrumental in enhancing networks and developing novel wave-

forms of 6G. Additionally, the advancement in AI and ML will be propelled by 6G

technology, which will leverage locally stored data on 6G sensors [53]. The fully

automated networks hinge on preemptively identifying threats, implementing smart

countermeasures, and ensuring that 6G networks are self-reliant. This section dis-

cusses the challenges for AI/ML in 6G security.

2.8 Challenges for ML in 6G Security

The driving force of the 6G will be the intrinsic intelligent connectivity within com-

munication networks with enhanced AI and sophisticated networking technology

[54]. The ML techniques, however, have several inherent challenges. Most ML tech-

niques are highly centralized. Therefore, Large-scale deployment of the traditional

ML and DL models is challenging in the context of 6G. This is because, in the

traditional centralized ML, where a massive amount of data is collected and pro-

cessed in a centralized server, resulting in performance bottlenecks and increased

processing time. Moreover, data centralization leads to communication overhead,

especially when dealing with geographically distributed data. Furthermore, central-

ized systems suffer from a single point of failure, leading to availability and privacy

issues [55].

Additionally, though DL has demonstrated high efficiency in threat detection,

context-aware security protection will be a requirement for future communication

services with diversified data generated from various devices. The rapid growth of

the IoT and the Internet of Vehicles (IoV) will also lead to several security chal-

lenges in 6G. Setting up appropriate security measures will be a complex issue, as

implementing security measures often leads to a trade-off with network QoS [56].
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Additionally, AI/ML is prone to various security risks. The most common attacks

on AI/ML are evasion attacks, poisoning attacks, compromise of AI frameworks, ML

API-based attacks, infrastructure physical attacks, and DoS attacks. DLTs have the

potential to protect the integrity of AI/ML. However, the DLT is also subject to the

eclipse attack and has software and end-user vulnerability [25].

Furthermore, in 6G, ML will also be responsible for processing and harvesting

vast quantities of clients’ private data, which will raise privacy concerns. Moreover,

the ML is often criticized for lacking fairness and transparency. The substantial

volume of training data can make it a prime target for attacks, and the inherent

vulnerabilities of ML can make it susceptible to such attacks [57]. Moreover, dis-

tributed AI will be one of the key areas of 6G; hence, it needs to be IoE-compliant.

It will make the 6G a sizable decentralized system that can make intelligent deci-

sions at different levels. In that scenario, distributed ML is expected to be deployed

extensively. However, there are some challenges related to distributed learning.

For instance, some malicious users can upload poisonous models to train the entire

model, and there are also some device-level security issues [58]. Furthermore, the 6G

will have real-time edge intelligence, where the computation will be brought close

to the data source. 6G is touted to possess the substantial capability to deliver

seamless services to billions of smart devices, and the Edge node will be one of the

network nodes in 6G. However, AI/ML algorithms are computationally intensive

and consume a significant amount of power and computation resources, which is

lacking in the edge node [6]. Hence, deploying resource-efficient security solutions

will be a requirement for 6G while deploying at the edge. Finally, since AI/ML can

be the indirect source of carbon footprint [7], and if they are the vital elements of

6G, deploying a Green ML-based Security System will be another crucial challenge

in 6G.



3 Resource Consumption of ML in

Network Security

This Chapter elaborates on the resource consumption by ML techniques in commu-

nications network security. It was mentioned in the previous chapter that, although

ML is a promising technology for future network security, its extensive resource

consumption is a significant challenge. Hence, to overcome this challenge extensive

research and study is needed to maintain resource usage in ML in network security.

Hence, this thesis attempted to find out the Key resources that are consumed by

ML techniques. This chapter describes the process of finding those resources. It also

provides a brief description of the resources that are consumed by ML techniques.

3.1 Key Performance Indicators (KPIs)

In this section, the thesis attempts to answer the first research question, RQ1:

What are the key resources consumed by ML techniques used in network security?

To address this question, an extensive literature review was conducted. Popular

databases and search engines, including Google Scholar, Web of Science, Scopus, and

Bing, were used to search for articles related to the theme of the work. The focus was

on literature published by IEEE, ACM, Springer, and Elsevier, as these publishers

have a strong reputation in academia and offer a portfolio of high-quality journals.

Initially, the work focused on the importance of ML in communication networks to
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understand the basic principles of ML applications in these networks. It was found

that ML has been extensively used across all layers of communication networks,

from the physical layer up to the application layer. Subsequently, thorough research

was conducted on the application of ML in network security. The application of

ML in network security began much earlier than in other parts of communication

networks [4]. For instance, the first application of ML was CAPTCHA.

Given the focus of the work, further research was conducted on the resources re-

quired for efficiently running ML in communication networks. In particular, searches

were conducted to find the key resources considered in most of the state-of-the-art

ML-based network security solutions. This thesis considers these resources the KPIs

for resource-efficient ML-based network security solutions. For this purpose, articles

on the state of the art were selected based on the following criteria:

• If the article is about a resource-efficient ML-based network security solution.

• Or, if the article discussed an ML-based network security solution that con-

sumes less amount of resources.

• Or, if the article discussed any resource that an ML-based network security

solution can improve.

• Or, if the author conducted a comparison of different ML algorithms where

any algorithm was proven any kind of resource efficient.

• Or if the author conducted a comparison of any technique on ML model de-

velopment that uses fewer resources.

• if the article is published not before 2017.

The literature study found different kinds of resources relevant to network oper-

ation and ML techniques deployment. These resources are intended to be improved

or considered important by researchers when comparing or developing a network
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security solution. A list of those resources, along with corresponding network se-

curity solutions and the ML algorithm used, was prepared in this work. The list

is presented in Table 3.1, where E, P, M, T, B, and H represent Energy/Power,

Processing, Bandwidth, Memory, Time, and Human Involvement respectively.

Table 3.1: The Resource-Efficient ML-based Solutions for

Network Security Concerning the KPI

Ref Security Type ML Algorithm Covered resources

E P M T B H

[59] DDoS detection Extreme Learning Machine ✓ ✓ ✓

[60] IDS DT, RF, XGBoost (XGB) and

KNN

✓ ✓

[61] IDS SVM and ANN ✓

[62] HTTP Flood At-

tacks prevention

SVM, Multi-layer perceptron

(MLP), DT, and RF

✓

[63] IoT security moni-

toring

Resource Efficient Federated

Deep Learning (REFDL)

✓ ✓

[64] Intrusion detection

engine

DT, NB, and kNN ✓ ✓ ✓

[65] DoS detection Multi-Trust DoS Attack Detec-

tion System (M-TADS)

✓ ✓ ✓
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Table 3.1: The Resource-Efficient ML-based Solutions for

Network Security Concerning the KPI

Ref Security Type ML Algorithm Covered resources

E P M T B H

[66] Anomaly detection Long Short Term Memory

(LSTM), FL, LR, Gated

Recurrent Units (GRU), Feed-

Forward Neural Network

(FFNN), Variational Autoen-

coder (VAE), Convolutional

Neural Network (CNN), Vanilla

Recurrent Neural Networks

(RNN)

✓ ✓ ✓ ✓ ✓

[67] DDoS detection and

prevention

RF, Light Gradient Boosting

Machine (LightGBM), XGB,

and Adaptive Boosting (Ad-

aBoost)

✓ ✓ ✓ ✓

[68] Anomaly detection FL ✓ ✓ ✓

[69] IoT anomaly detec-

tion

FL, Deep Reinforcement Learn-

ing (DRL)

✓

[70] Anomaly detection FL ✓ ✓ ✓ ✓

[71] Anomaly-detection-

based IDS

FL, GRU ✓ ✓ ✓

[72] WSN attack detec-

tion

SVM, MLP ✓ ✓ ✓
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Table 3.1: The Resource-Efficient ML-based Solutions for

Network Security Concerning the KPI

Ref Security Type ML Algorithm Covered resources

E P M T B H

[73] False data injection

detection

Linear Discriminant Analysis

(LDA), SVM

✓ ✓

[74] IDS for 6LoWPAN RL ✓ ✓ ✓

[75] Artificial jamming FL (MLP) ✓ ✓

[76] IoT security moni-

toring

Resource-Efficient Deep Neural

Network (REDNN)

✓ ✓

[77] IDS DT, LSTM ✓ ✓

[78] Anomaly detection KNN, DT, SVM, NB, RF ✓ ✓ ✓

[79] DoS detection Custom ✓ ✓ ✓ ✓

[80] DoS detection KNN, DT, SVM ✓

[81] DoS detection lightweight variational Bayes al-

gorithm

✓ ✓ ✓ ✓

[82] DoS detection LSTM ✓ ✓ ✓

[83] DDoS detection REP Tree, Random Tree, RF,

Decision Stump, PART

✓ ✓

[84] IDS SVM, RF, KNN ✓ ✓

[85] DDoS mitigation Cyclic queuing algorithm ✓ ✓ ✓

[86] DDoS detection LSTM ✓

[87] Botnet detection LR, RF, KNN, SVM, XGB,

DNN

✓ ✓ ✓

[88] Anomaly detection Genetic Algorithm (GA) ✓
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Table 3.1: The Resource-Efficient ML-based Solutions for

Network Security Concerning the KPI

Ref Security Type ML Algorithm Covered resources

E P M T B H

[89] IDS KNN, LR, DT, RF, NB and

ANN

✓

[90] Botnet detection RL ✓

[91] Online phishing

email detection

RL, Neural Network (NN) ✓ ✓

[92] Anomaly detection RL ✓ ✓ ✓

[93] IDS RL ✓

[94] Security traffic man-

agement

DRL ✓

[95] Mobile malware de-

tection

Hybrid, SVM, C4.5CS, SVMCS ✓

[96] IDS RF, XGB ✓

[97] IDS NB, C4.5 ✓

[98] IDS KNN, SVM, DT ✓

[99] Botnet detection LR ✓

[100] IDS SVM, KNN, K-means, SVM2,

k-means2, SVM+k

✓

[101] IDS Facebook’s prophet ✓ ✓ ✓ ✓

[102] IDS Hybrid Feature Selection (Least

Squares and SVM)

✓ ✓
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Table 3.1: The Resource-Efficient ML-based Solutions for

Network Security Concerning the KPI

Ref Security Type ML Algorithm Covered resources

E P M T B H

[103] IDS SVM, Mean-shift, ANN, LDA,

RF, K-means, density-based

clustering algorithms (DB-

SCAN), and KNN

✓

[104] IDS DT, RF, SVM, NB, CNN,

KNN, ANN

✓

According to the finding of this research attempt, while developing a resource-

efficient security solution, most of the time, the researchers attempt to improve

either one or multiple of the following resources: Energy/Power, Processing,

Bandwidth, Memory, Time, and Human Involvement. However, Data and

Storage are other important resources for an ML to function. According to the

authors in [105], to learn the related pattern, ML processes and consumes data.

Whereas storage is crucial to store the model after the completion of the training

process. For large models, besides memory, a significant amount of storage is also

required. For example, the GPT 3, a large and well-known language model, has over

175 billion parameters to store[106]. However, this work did not focus on these two

resources. The reason is that in the search for resource-efficient network security

solutions in this work, sufficient discussion was not found on improving these two

resources.
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3.2 Description of Resources Consumed by ML Tech-

niques

The previous section mentioned that power, processing, memory, time, bandwidth,

and human supervision are the key resources for any ML-based network security

solution. This section briefly describes how and why this resource is required for

ML techniques.

• Energy/Power: Machine learning learns from a large amount of data that

requires computational power and energy. Various factors affect the energy

consumption of an ML model, such as the size and structure of a model.

Large and complex models have more parameters and require more data to

train. So, the energy demand is higher for those kinds of models. Moreover,

the volume of data is another factor, when there is more data to process,

more energy will be required. Additionally, different algorithms have different

convergence and stability, which affect energy consumption while optimizing.

Furthermore, different optimization techniques also have different impacts on

energy consumption [107]. Finally, the hardware platforms such as Central

Processing Unit (CPU), Graphics Processing Unit (GPU), specialized chip,

and software like TensorFlow, PyTorch, or Scikit-learn, which enables an ML

model to run, also require energy. So, energy is a crucial resource for ML.

• Processing: Processing power is a crucial resource for ML. It may involve

the CPU, GPU, Tensor Processing Unit (TPU), disk space for intermediate

data or final model storage, memory usage, and others. The requirement for

processing power can vary based on application needs and the nature of the

algorithms. The CPU performs general-purpose processing, sequential pro-

cessing, data preparation, and other tasks. It is suitable for training simple

models, small effective batch sizes, and models limited by the host system’s
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I/O or networking bandwidth. Additionally, the CPU is much more effective

and cost-efficient for non-deep learning ML. GPU consists of numerous simple

processing units compared to CPU and can handle parallel computing and

perform rapid mathematical calculations. It is suitable for medium and large

models with larger effective batch sizes. Finally, TPU is an AI accelerator

particularly designed for TensorFlow and provides extremely fast execution

of calculation [108]. Various factors may influence the amount of processing

resources required in ML. For example, the size of the training and prediction

dataset. Larger datasets consume more computing power. Moreover, different

ML algorithms have different complexity and require different levels of pro-

cessing power. For instance, deep learning requires a great deal of computing

resources. Additionally, the use of different frameworks and hardware also has

different levels of processing consequences.

• Memory: Memory is the another crucial resource for ML. Generally, the

memory in ML refers to the Random Access Memory (RAM). It temporarily

stores the data that a computer processor can access quickly. Based on the

requirement, different kinds of RAM are used in ML applications. The require-

ment for the amount of memory can depend on various factors. To process

large datasets, larger memory is needed. Processing large and complex models

also requires larger memory, etc. The fast-growing Machine Learning requires

stronger support from the memory, like the memory with higher bandwidth,

access speed, capacity, and reliability [106].

• Time: Managing time efficiently is the key to the success of a machine learn-

ing model. Time is crucial for the quality and accuracy of a modal, and various

steps require time. For instance, data collection, data cleaning, pre-processing,

training, and inference. The required training time for a model can vary based

on different factors, such as the dataset size, model complexity, and computa-
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tional resources. Moreover, the model accuracy of the ML model also improves

with time because of its iterative nature. Additionally, time is a constraint in

some real-world applications, like fraud detection, self-driving cars, and chat-

bots. So, time is a vital resource for ML, and its proper utilization is crucial.

• Bandwidth: In computing, bandwidth or network bandwidth represents the

maximum data transfer rate along a specific route [109]. It generally defines

the number of bits, kilo-bits, megabits, or gigabits of data that can be sent

in a single second. The network has more bandwidth and can send or receive

more data. However, bandwidth is a scarce resource for networks, and the cost

goes up with the increased utilization of bandwidth. Different communication

devices and users compete and share the available bandwidth in a network.

When an ML-based solution is deployed into a network, it also uses the network

bandwidth. Because ML needs a large volume of data for real-time processing,

it can strain high bandwidth.

• Human: Although ML paves the way towards automation, it is not a com-

pletely hands-off process. Humans are needed in every step to guide the key

decisions. Human involvement is generally required in Data Collection and

labelling, Data Cleaning and Pre-processing, Feature Engineering, Model Se-

lection and Training, Deployment and Monitoring, and Ethics and Fairness.

Additionally, humans also control the ML learning process, and some ML al-

gorithms were developed from the inspiration of the human learning process

[110].



4 Resource Efficient ML-Based

Network Security Solutions

Despite the potential of 6G networks, it will introduce a range of security chal-

lenges because of the growing numbers of independence of smart services and their

extensive involvement in daily life [111]. Some of the challenges will come from

its extensive dimensions, such as the security system of underwater devices, which

generally have lower access to resources like power than traditional land-based de-

vices. Hence, lightweight security systems will be preferred for longer operations in

such scenarios. Additionally, in traditional 5G, when the battery level of a device

is low, it prefers a less complex security configuration to conserve power. Consid-

ering those situations, the security protocols in the 6G network should be tailored

in a flexible and evolving way for different situations [112]. Although security was

hardly researched from the sustainability point of view for the previous generation of

wireless network technology, the trend is expected to change for the 6G [3]. Hence,

the desired level of resource utilization and the environmental cost with acceptable

accuracy will get some serious attention while deploying future network security.

Furthermore, ML is expected to play a key role in securing 6G networks, but it

also requires resources for operation, as discussed in the previous chapters. Hence,

ML must be resource-efficient in developing sustainable security systems for 6G. In

this Chapter, the thesis tries to answer the second question RQ2: How resource
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efficiency in network security is achieved in different ML-based solutions? For this

purpose, the literature collected in answering RQ1 in Chapter 3 was studied and

examined carefully. Various remarks from those articles were taken, such as:

• Which kind of datasets were used in those solutions?

• Which ML algorithm performed best with that solution?

• How was the performance of the best ML algorithm in that solution?

• What types of validation methods were used?

• Which step influenced achieving resource efficiency for that solution?

After extracting this information, the information was arranged according to the

KPIs and corresponding tables.

4.1 Energy/Power

Energy consumption of ML is becoming a major concern not only because of its

scarcity but also because of its environmental cost. The energy consumption in ML

happens for training, inference, and operating the ML hardware, including the data

center overhead. According to [113], the energy consumption of ML can be reduced

significantly by selecting efficient ML models, using processors optimized for ML

training, and computing in the cloud rather than on-premise. Moreover, in Google,

even though the use of ML from 2019-2021 increased significantly, the amount of

energy used did not increase that much because of algorithmic and hardware im-

provements. ML researchers are continuously improving the efficiency of ML models

in various fields by innovating model architectures and algorithms. This section dis-

cusses various efforts by researchers to reduce the energy consumption of ML-based

network security solutions. It also discusses how energy efficiency was achieved in

different solutions. Table 4.1 shows the comprehensive analysis of these solutions.
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4.2 Processing/Computation

Efficient Computation/Processing is essential for any ML-based network security

solution. If the solution uses too much computation power, it may not be able to

process network traffic in real-time, and malicious activities may remain undetected.

As a result, the whole system’s performance can be degraded and unstable. Hence,

efficient processing power utilization is crucial. Table 4.2 presented various process-

ing power efficient network security solutions. It also included different datasets,

validation methods, and the way processing power efficiency was achieved in those

solutions.

4.3 Memory

Efficient memory utilization is very important for any ML-based solution, and it is

also notably a relevant context for network security applications. Since ML models

are becoming computationally complex and large, their memory requirements also

increase significantly. As a result, it can be a severe challenge to implement them

in resource-constrained environments. Hence, the ML models need to be developed

to utilize the available memory efficiently and not compromise the system’s perfor-

mance. Table 4.3 shows some of the ML-based memory-efficient network security

solutions and how the memory efficiency was achieved in those solutions.

4.4 Bandwidth

Machine learning in network security often comes with a high amount of band-

width consumption, which can degrade the network performance and increase the

operational cost. Few researchers have attempted to develop some network security

solutions that can achieve effective security measures with efficient bandwidth uti-
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lization. Table 4.4 shows some of the bandwidth-efficient ML-based network security

solutions and how the bandwidth efficiency was achieved in those solutions.

4.5 Human Supervision

Human supervision is needed in various ML steps until it can make decisions. Even

after the deployment of an ML model, proper human monitoring is crucial to ensure

the model is performing as accurately as it is supposed to. The extensive expense of

employing skilled ML engineers in tech industries is also a significant hurdle [115].

However, some of the tasks that require human involvement are nowadays replaced

by ML-based solutions to some degree, such as data collection and labeling, data

cleaning and pre-processing, feature engineering, etc. Table 4.5 presents some of the

ML-based network security solutions where human involvement was reduced.

4.6 Time

Time is crucial for time-sensitive applications such as network security. For in-

stance, the models used in IDS should have relatively short training time because

the model needs to be retrained to classify new types of attacks or to adapt to the

changing nature of previously seen attacks [61]. Additionally, it also needs to have

less inference time for real-time detection and better user experience. Consequently,

researchers have put forth significant effort, as documented in the literature, to re-

duce the training and execution time of ML-based network security solutions. Table

4.6 presented some time-efficient ML-based network security solutions and how time

efficiency was achieved in those solutions.
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Table 4.6: The Methods for Efficient Time Consumption
Ref ML Algo-

rithms*
Datasets Resource Efficiency

Achieved by
Validation
Techniques

Performance

Acc. Pr. Re. FS
[69] FL(DRL) - Decentralized Training Stratified Sam-

pling
- -

[61] ANN UNSW-NB-15 Feature Engineering Holdout Method 92 93 92 92

[66] FL (LR)
KDD 99
NSL-KDD
CIDDS-001

Distributed Learning Holdout Method
96
92
91

61
64
70

93
95
91

-

[71] FL, GRU Custom Device-Type-Specific Anomaly
Detection, Feature Selection

Cross-validation 95.4 - - -

[80] DT Custom Feature selection, Hyper-
parameters Fine Tuning,
Label Encoder, Heuristic
Rules

Holdout 100 100 100 100

[116] DT
MLP UNSW-NB15 Feature Selection

Feature Extraction - - 80.18
79.90

76.6
71.4

78.4
75.4

[90] RL - Network Traffic Reduction,
Feature Extraction, Feature
Reduction

Cross-validation 98.3 - - 98.9

[100]
SVM2
k-means2
SVM+k

NSL-KDD Multi-level Tweak, Feature Se-
lection, Normalization

Holdout
97.9
97.2
93.9

97
92
95

99
94
98

98
96
96

[101] Facebook
Prophet

CSECICIDS2018 Feature Selection Cross-validation 98.3 - - 98.9

[102] Hybrid - Feature Selection, Algorithmic
Improvement

Cross-validation 98.3 - - 98.9

[103] RF

KDD99
NSL-KDD
UNSW-NB15
CIC-IDS-2017

- Holdout

99.9
99.9
97.4
99.8

- - -

[117] NB KDD 99

Feature Selection: Dense
FR
Feature Selection: Sparse
FR

Cross-validation 94.6
94.9

94
94.8

98.2
98.2

96
96.4

[98] DT Custom - Holdout 98.9 99.5 97.7 98.6
[59] ELM NSL-KDD Adaptive Feature Selection Cross-validation 91.7 - - -

[118] DT
Bagging

NSL-KDD
KDD+Kyoto 2006 Feature Selection, Algorithmic

Improvement
Cross-validation 84.5

99.8 - - -

[78] RF (low-end)
DT (high-end) Custom Feature Construction, Data

Reduction
Cross-validation 92.9

92.2
94.7
96.5 - 96.3

95.8

[104] NB
MQTT
UNSW-NB15
IoTID20

Feature Selection and Extrac-
tion

Holdout
64.1
77.4
25.2

59.99
86
100

80
90
20

74
73
98

[87] SVM Custom Packet Aggregation, Pre-
trained Model Using

- 86 - - 86

ML Algorithms*: Best Performing ML Algorithms, Accuracy: Acc., Precision: Pr., Recall: Re,
Fi-score: FS.



5 Resource Consumption of

Distributed ML in Network Security

In this chapter, an experiment was conducted to answer RQ3. Two popular dis-

tributed learning methods were investigated: FL and SL. The experiment was con-

ducted focusing on resource consumption fingerprinting in terms of memory, CPU

utilization, power consumption, and potential CO2 emission while considering the

accuracy of the models. The chapter presents these two ML models briefly, and then

the required experimental setup and experiment procedures are described.

5.1 Federated Learning

Federated learning [119] is a method for training machine learning models on data

distributed across multiple devices without centralizing or sharing the raw data.

Initially, each client is given a copy of a pre-existing base model. This model is

then further trained using the client’s private data. The updated models from

each client device are then sent back to a central server. The server combines the

updated model parameters to create a new, global model. This global model is then

distributed back to each client, and the process repeats in cycles until the model is

fully trained. One of the key benefits of this process is that it does not require sharing

raw data with the server, thereby preserving the client’s privacy. Furthermore,

federated learning allows for simultaneous training across multiple clients, which is
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a significant advantage. A general overview of the Federated Learning process is

depicted in Fig. 5.1. However, one potential challenge with this approach is that

the clients must train the entire model, which can be problematic for client devices

with limited resources [120].

Figure 5.1: A High-level Presentation of FL Mechanism.

5.2 Split Learning

SL involves dividing a deep neural network into several sections, each training by

a different client. This differs from FL, where the entire model is trained on the

client device. In split learning, only a portion of the neural network is trained

on the user’s end, while the rest is trained on the server. Hence, the clients are

relieved from the burden of the resource-intensive part of the computation, which

is crucial for resource-constrained devices. In SL, the model architecture is divided

into layers, and each client maintains the weights of what is learned until a specific

layer, known as a split layer. The server hosts the remaining layers. SL reduces the

communication payload size that must be sent during distributed training. This is

because only the activation from the split layer needs to be sent from each client
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to the server. Similarly, only the gradient from the layer following the split layer

needs to be sent from the server to the client [121]. Split learning is considered to

offer more excellent privacy protection than FL. A general training process of split

learning is illustrated in Fig. 5.2. However, unlike FL, training in split learning is

sequential. Only one client interacts with the server at any given time, which could

result in significant training overhead when there are many clients.

Figure 5.2: A High-level Presentation of SL Mechanism.

5.3 Experimental Setup and Model Training

This section describes the considered use case, the experimental environment, the

used dataset for the experiment and its specification, the process regarding data

preparation, the nature of ML models used, the matrices that are used for perfor-

mance comparison, and the possible resource measurement tools that can be used

in the experiment.
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5.3.1 Use Case

6G networks are poised to be the cornerstone of future communication systems,

catering to various sectors, including V2X, IoT, healthcare, and public and emer-

gency services. As such, it’s crucial to safeguard these pervasive networks from

different types of attacks. A DDoS attack, for instance, which is relatively simple

to carry out, can lead to large-scale disruption of various essential services, directly

or indirectly. Moreover, ML models are also vulnerable to DoS attacks arising from

input flooding, resource exhaustion, model overload, and data manipulation. These

attacks can lead to increased resource usage, drain system resources, and result in

unresponsiveness, posing significant threats to the reliability and security of 6G net-

works. Distributed Machine Learning-based DDoS detection solutions, such as FL

and SL, can be employed to identify and mitigate these malicious requests that aim

to cause DDoS. In these scenarios, the distributed ML model can leverage data and

computational power from various devices involved while preserving user privacy, as

the raw data is not shared with the server.

A variety of devices, including drones, IoT devices, smartphones, smart helmets,

cameras, autonomous vehicles, and others, can be equipped with distributed ML.

It’s essential to ensure minimal resource consumption for training on these devices.

Hence, these devices can continue to perform their primary functions without any

hindrance. Fig 5.3 illustrates a conceptual scenario where a diverse range of devices

are used to train a global model using distributed ML for 6G networks. Additionally,

it’s essential to keep resource consumption to a minimum to reduce the carbon

footprint and foster a sustainable green network.

5.3.2 Experimental Environment

The evaluation was carried out on a high-performance system featuring an x86-64

architecture and a 12th Gen Intel® Core™ i9-12900K CPU. This system boasts 24
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Figure 5.3: A Generalized 6G Network Representation with Key Relevant Network
and User Segments.

CPUs and 16 cores per socket. The CPU speed fluctuates between 800 and 6700

MHz, and it supports VT-x virtualization. In addition, it has an L1d cache of 384

KiB, an L1i cache of 256 KiB, and an L2 cache of 10 MiB. The system is also

equipped with 64GB of RAM. The experiments were performed using Anaconda

PyTorch and Jupyter Notebook, tools that are highly regarded in the ML com-

munity for their robustness, flexibility, and interactive capabilities in development,

execution, and sharing of experiments.

5.3.3 Dataset

This work utilized the DDoS evaluation dataset (CIC-DDoS2019), a benchmark

dataset prepared by the Canadian Institute for Cybersecurity [122]. The dataset

has 50,063,112 entries, where 50,006,249 instances represent DDoS attacks, and
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56,863 instances represent benign (normal) behavior. The dataset is stored in 11

packages, where it has 12 types of DDoS attacks, which include NetBIOS, MSSQL,

WebDDoS, LDAP, DNS, SNMP, NTP, UDP, SSDP, Syn, TFTP, and UDP Lag.

For the experiment, 50,000 instances from 11 packages were randomly chosen from

the dataset, resulting in 550000 instances. The resulting dataset from the original

contains both attack instances and normal instances. However, there were only 5330

normal data while the rest, 544670, were different attack types mentioned earlier.

5.3.4 Data Pre-Processing and Feature Extraction

Data preparation is a crucial step for training any machine learning model. The real-

world data can be inconsistent and may have missing values, duplicates, outliers,

or errors. The dataset was inspected and handled for infinite, NaN, and negative

values. Some features, such as source and destination IPs, timestamps, etc., which

were considered less informative, were removed from the dataset to enhance the

training process and decrease the data size. The StandardScaler was employed to

standardize the dataset’s features by removing the mean and scaling to unit variance.

Additionally, the PCA method was used to extract the most significant features,

resulting in 30 features. After the feature extraction, the target variables were

binary encoded, with all the attack data labeled as 0 and the Normal data labeled

as 1. The data was split into a training and testing set at a ratio of 75:25. The

training dataset was balanced with the Synthetic Minority Oversampling Technique

(SMOTE), which generates synthetic data using a linear interpretation between the

minority class samples and their K-nearest neighbors. After balancing, the training

set had 816928 instances with nearly equal numbers of DDoS and Normal data. The

test dataset was imbalanced with 136206 Attack data and 1294 Normal data out of

137500 instances.
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5.3.5 Model Training Setup

The experimental evaluations were conducted using the FL and SL source code

adapted from [123]. The experiments involved a total of 32 client nodes, with the

number of clients used for training at a time varying from 10, 16, and 24. It’s

assumed that the clients are spread across the network, and each client model is

trained with a distinct dataset. However, the study did not take into account any

data loss resulting from network congestion or channel interference. A similar neural

network structure for both models (SL and FL) is implemented, as shown in Fig 5.4.

In the case of FL, each client trains an MLP model, as shown in the figure 5.4. In

the case of SL, for each selected client, a split Neural Network model is created with

the client and server models. Both models are feed-forward neural networks that

incorporate dropout regularization and utilize the ReLU activation function in their

hidden layers. The inclusion of a dropout layer mitigates the problem of overfitting

by randomly nullifying a portion of the input units during each update in the training

phase. The model’s parameters were updated during the training process using the

Adam optimization algorithm, with a learning rate set at 0.001. The models were

trained with the training dataset for five epochs for 50 rounds. After each round of

training, the model is tested with a test dataset, and its performance is assessed.

This process is repeated for all 10, 16, and 24 batches of clients for training out of

the 32 clients to measure the time, CPU usage, memory usage, power consumption,

and CO2 emission for the entire process.

5.3.6 Performance Metrics

The DDoS attack detection was considered as a binary problem, where the 1 rep-

resents the normal flow, while the 0 represents an attack. Four possible unique

outcomes can be found in ML models. They are:

• True Positive (TP): When the ML model correctly predicts the positive or
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Figure 5.4: Considered FL and SL Models Structure for the Experiment.

DDoS attack in this case.

• True Negative (TN): When the model correctly predicts negative or Normal

flow in this case.

• False Positive (FP): When the model incorrectly predicts positive but the

actual label is negative.

• False Negative (FN): When the model incorrectly predicts negative but the

actual label is positive.

While comparing the FL and SL models, the standard performance matrices

Accuracy, Precision, Recall, and F1-Score were used.

• Accuracy: It is the ratio of correct predictions to the total number of predic-

tions. It is defined as:
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Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

• Precision: It is the proportion of the correctly predicted positive assumption

made by the classifier. It is defined as:

Precision =
TP

TP + FP
(5.2)

• Recall: It is the proportion of actual positive prediction that is predicted

correctly. It is defined as:

Recall =
TP

TP + FN
(5.3)

• F1-Score: It is the weighted average of precision and recall. It is useful

to understand the rate of false positives and false negatives in the prediction

model.

F1− Score =
2× Precision×Recall

Precision+Recall
(5.4)

We also evaluate them from the resource efficiency points of view in terms of

CPU usage, memory usage, required time, energy consumption, and CO2 emission.

5.3.7 Resource Consumption Measurement Tools

For the measurement of the resource consumption of ML algorithms, various tools,

and libraries are available in the literature. Hence, a list of the potential tools to

measure those resources is prepared shown in Table 5.1. Although the experiment

utilized only a single tool for each corresponding resource, it is expected that the

prepared list will aid in further research on resource consumption in the ML research

field.
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6 Results and Discussion

One of the main goals of this work was to study the resource consumption of SL and

FL algorithms in DDoS detection, their change in performance in highly imbalanced

test datasets with various batch sizes of clients, and the impact of the dataset on

various resource consumption. The results of the experiments from Chapter 5 are

analyzed and presented in this chapter.

6.1 CPU Usage

The CPU and Memory usage was measured by using the Python library psutil, which

provides an interface for measuring system resources like CPU, disk, memory, and

network. To measure CPU and memory usage, a separate background thread was

created which runs until the stop_event is triggered. This thread runs concurrently

with the main process and continuously samples and stores the CPU and Memory

usage of the FL and SL. The cpu_percent method of the psutil library with "inter-

val=0" was used for getting the real-time and instantaneous CPU percentage usage

of the Python script. There is no delay between the measurements, providing an

immediate snapshot of CPU usage. According to the result, the average CPU usage

for the FL 10 clients batch is 8.10%, while for SL, it is slightly higher at 8.52%. This

indicates that, on average, SL utilises more CPU resources than FL. The maximum

CPU usage for FL is 17.4%, which is significantly higher than the average. This

indicates that certain operations in FL are particularly resource-intensive. On the
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other hand, for SL, it is 13.3%, which is closer to the average. However, the standard

deviation of the CPU usage for FL and SL are 2.78 and 2.91, indicating that, even

though SL has a lower maximum CPU usage than FL, its CPU usage values vary

more around its mean than FL.

For 16 clients batch, The average CPU usage for FL is 7.78%, while for SL,

it is significantly lower at 5.22%. This indicates that, on average, SL utilises less

CPU resources than FL. However, the maximum CPU usage for FL and SL was

29.6% and 33.3%. Also, for SL, the highest spike to this maximum value was only

for the first second, and then it stabilized and never went that up. After that, the

maximum value for SL was 7.4%. The minimum CPU usage for FL is 0.0%, and

for SL, it is 4.4%, indicating that SL has a higher baseline CPU usage than FL.

Furthermore, the standard deviation for FL is 5.36, and for SL is significantly lower

at 1.39, indicating that FL’s CPU usage has more variation than SL. Finally, for 24

clients, the average CPU usage for FL is 8.38%, while for SL, it is slightly higher at

8.81%. This indicates that, on average, SL utilises more CPU resources than FL.

Whereas the maximum CPU usage for FL is 18.7%, and for SL, it is 12.2%, and the

standard deviation for FL is 2.28, and for SL, it is 1.10. Hence, while SL has high

average CPU usage, FL has a higher peak (resource-intensive operations) and more

variability. Fig 6.1 shows the CPU usage of the FL and SL.

6.2 Memory Usage

For memory usage, memory_info().rss from psutil was used to retrieve the Resident

Set Size (RSS) memory usage of the current process for every second during the

entire process. The result was converted from bytes to megabytes and stored in

memory_usage list. In terms of memory usage, it was observed that SL’s memory

usage increased linearly over time, whereas FL’s memory usage increased until a

certain point, after which it remained nearly constant. For instance, in FL with 10,
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Figure 6.1: CPU Usage Over Time.

16, and 24 client batches, the memory usage increased to 1974.59 MB, 2000.15 MB,

and 1960.54MB at the initial stage of execution, and they became nearly constant

at that point for the rest of the time. Whereas, SL used significantly more memory

than FL in all the scenarios. For example, memory usage for SL increased with time

for all the scenarios and reached 5997.21 MB, 8286.375 MB, and 11335.62MB at the

end of 50 rounds for 10, 16, and 24 clients, respectively, which is 3.04, 4.14 and 5.78,

times more memory usage than FL. Fig. 6.2 shows the memory usage comparison

of the FL and SL.

6.3 Power Consumption and CO2 Emission

For measuring power consumption, Eco2AI python library [7] was used. This tool

can accumulate statistics about power consumption and CO2 emission while running

a code. The experiment result found that the power consumption and CO2 emission

are significantly higher for FL than SL for all scenarios. For instance, while the

training batch size was 10 clients, the power consumption of SL was approximately
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Figure 6.2: Memory Usage Over Time.

3.14 times less than FL, while the CO2 emission was approximately 3.16 times less

than FL. In the case of 16 clients, the power consumption of SL is approximately

3.45 times less than FL, and CO2 emission is approximately 3.43 times less than

FL. Finally, in the case of 24 batch clients, SL consumes approximately 3.48 times

less power than FL and approximately 3.46 times less CO2 emission than FL. The

comparison results are shown in Fig. 6.3.

Figure 6.3: Energy Consumption and CO2 Emission.
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6.4 Turnaround Time for Execution

For measuring the turnaround time, the Python library Time[132] was used. This

is the total time required to complete the 50 training rounds and the corresponding

testing. The experiment finding shows that FL requires significantly more time

than the SL for all the scenarios. For instance, for 10 client batches, FL required

approximately 3.37 times more time than the FL. For 16 and 24 client batches, it

required 3.79 and 3.89 times more time, as shown in Fig. 6.3.

Figure 6.4: Turnaround Time for Execution.

6.5 Performance Evaluation

Along with the resource consumption, the performance of FL and SL is also com-

pared in DDoS detection. Where the numbers of client batches were varied to 10,

16, and 24 clients during training for 32 clients. From the result, we observed that

both FL and SL demonstrated high performance in DDoS detection. The average

accuracy for both methods is quite high (> 0.996) across all batch sizes, indicating

that both methods are highly accurate. Table 6.1 shows the performance of both
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methods with different numbers of clients. FL had slightly lower false positives than

SL and better precision. Also, the precision improved with the increase in client

batch size and with the increment in rounds shown in Fig 6.5. In the case of Recall,

both methods performed very well and were close to 1, indicating that both methods

are excellent at detecting positive instances. Finally, the F1 score of FL is slightly

better than the SL for the entire period for all scenarios. This suggests that FL is

slightly better at maintaining a balance between precision and recall.

Figure 6.5: Performance Comparison of FL and SL.
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Table 6.1: The Performance Comparison of FL and SL

Models Metrics
Avg. Accu Avg. Pre Avg. Rec Avg. F1 Sco

Fed 10 0.9962 0.7109 0.9980 0.8302
Split 10 0.9961 0.7098 0.9991 0.8298
Fed 16 0.9965 0.7312 0.9990 0.8437
Split 16 0.9962 0.7158 0.9992 0.8339
Fed 24 0.9965 0.7314 0.9990 0.8444
Split 24 0.9965 0.7276 0.9989 0.8419

6.6 Impact of Data on the Resources and Perfor-

mance

When the size of client batches increases, the amount of data needed to process

also increases. Both FL and SL can handle greater client batch sizes without no-

ticeably sacrificing their performance, as evidenced by the models’ nearly identical

performance when the client batch size increases in terms of scalability. Whereas

for resource consumption, it was observed that the amount of resource consumption

increases significantly with the increase in client batch size, especially memory, time,

and power. This is expected since the larger batch size means more data to process,

which naturally requires more computational resources. Based on the experiment

evaluation, SL consistently used fewer resources than FL for all the batch sizes, in-

dicating better resource efficiency. However, it was also observed that the memory

usage for SL was much higher than for FL. For FL, it was nearly constant for all

the batch sizes, while SL increased significantly with the batch size.

6.7 Recommendations from Analysis

Devices operating on 6G networks will have varying resource requirements, includ-

ing power, processing, memory, bandwidth, and other types of resources, in addition

to data privacy requirements. It was discussed in the earlier sections that FL and
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SL train models in distributed manners without the requirement of centralizing the

raw data, and hence they safeguard users’ privacy. Also, this approaches reduce

the computational load on the devices. However, it was observed in the experiment

that, although both techniques showed nearly similar performance in terms of DDoS

detection, their resource consumption fingerprint was significantly different. For in-

stance, SL showed superior resource efficiency in terms of (time, power consumption,

and CO2). This is because FL needs to train the entire client model, while SL trains

only a part of the model. Hence SL will be suitable for large-scale networks like IoT

or time-sensitive applications such as V2X. Nonetheless, in scenarios where data

is unevenly distributed among the devices, or when the complexity of the model

cost and communication is not substantial, Federated Learning can be utilized. Ul-

timately, the choice of distributed learning type for a 6G network will depend on

various aspects like computational capabilities, attack nature, communication over-

head, privacy needs, and other factors.



7 Conclusion and Future Work

As the advent of the 6G era approaches, extensive research is being conducted on

the role of ML in various sectors of 6G. To contribute to the ongoing research and

to participate in the advancement of 6G, the thesis work investigated the resource

consumption and resource efficiency of ML techniques. The first objective of the

work was to find out the key resources that are required in ML-based network

security solutions, and the thesis work studied literature, prepared a list of those

resources, and presented the reason why and how those resources are required for

ML techniques. The second objective was to investigate the resource-efficient ML-

based network security solutions and find out the key enablers of resource efficiency

in those solutions. The thesis studied a wide range of literature and prepared a

list of possible ways to achieve resource efficiency in a network security solution.

in a network security solution. Additionally, the work also collected the possible

resources that can be useful for this purpose. Those resources include the list of

better-performing ML algorithms in different use cases and datasets for different

kinds of network security solutions. It also listed different useful tools that can

be used to measure the resource consumption of ML. Finally, the third objective

was to evaluate the possible resource consumption of deploying ML techniques for

6G, and this thesis conducted an experiment based on a DDoS detection use case.

The answers to the research questions mentioned at the beginning of the thesis are

discussed below:
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7.1 Result of RQ1

RQ1: What are the key resources that are consumed by ML techniques

used in network security?

According to our findings, while ML techniques are deployed in a network secu-

rity solution, they consume different resources. The focus of the thesis has been on

Power/Energy, Bandwidth, Processing, Memory, time, and required human involve-

ment to supervise the ML model, its selection, or the whole process. There are also

other resources that are involved, for instance in the acquisition of data, its storage,

and the relevant processing of these data.

7.2 Result of RQ2

RQ2: How resource efficiency in network security is achieved in different

ML techniques?

In various network security solutions, the researchers intend to improve resource

usage, including energy/power, processing, memory, time, bandwidth, and human

involvement. The researchers used various techniques to achieve resource efficiency

while developing an approach. For instance, to achieve efficient energy consump-

tion, techniques such as feature selection, feature extraction, hardware implemen-

tation, offloading computation, hyperparameter optimization, distributed learning,

and some sorts of algorithmic improvement techniques were used. For efficient pro-

cessing utilization, feature extraction, feature selection, feature engineering, snort

rule generation, period-wise-detection, packet-wise-detection, VAE, cyclic queuing,

and using a small chunk of the dataset were used. For efficient memory utilization,

pruning, tuning, simulated micro-batching, hyper-parameter optimization, param-

eter regularization, weight-averaging, feature selection, and reduction techniques

were used. To improve the time efficiency, feature engineering, parameter tuning,
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decentralized training, feature selection, feature extraction, hysteretic rule integra-

tion, reduction, multi-level tweak, normalization, algorithmic improvement, etc.,

were used. For efficient bandwidth consumption, an efficient transformer, a fourier

mixing sublayer, distributed training, VAE, feature selection, feature extraction, and

reduction were used. Finally, for human involvement reduction, auto hyperparam-

eter tuning, active learning, unsupervised learning, dynamic evolving of NN, etc.,

were used.

7.3 Result of RQ3

RQ3: How much resources are consumed by distributed learning tech-

niques like Federated Learning (FL) and Split Learning and how do they

perform in a network security test case?

This work’s third goal was to provide insight into how resources might be con-

sumed in ML-based distributed network security solutions for 6G. For this purpose,

the work presented a comparative analysis of resource usage of a DDoS detection

system using FL and SL. It was observed from the experiment that both techniques

can detect DDoS attacks very effectively with very high accuracy. Although the

detection performance is pretty similar for both techniques, their resource usage

differs significantly, and both require a considerable amount of resources. In terms

of CPU usage, SL consumed a higher average CPU, while FL had a higher peak and

variability. In the case of memory, SL consumed significantly more memory than

FL, while FL’s memory usage was more consistent. However, SL was more power

and time-efficient and emitted lower CO2.
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7.4 Limitation of the Thesis Work

This work has certain limitations, for instance, it was mentioned that data and stor-

age are also two important resources for ML-based network security solutions, but

the thesis work did not include them in the KPIs. Moreover, although the work

considers human involvement an important resource for ML-based network security

solutions, it did not find any scale or tool to measure human involvement in machine

learning. Furthermore, the experiments that conducted here, were done on a single

machine instead of distributed machines. Additionally, the resource consumption

was measured for all the clients and servers altogether, not separately. Hence, the

work could not determine how much resources the server consumes and how much

each client consumes in FL and SL. Moreover, the CO2 emission can be different

based on the source of energy. For example, fossil fuel produces significantly higher

CO2, while renewable energy produces minimal CO2. However, the Eco2ai consid-

ered the global average emission coefficient for calculating the emission, which is

436.529 kg/MWh. Also, hence the work did not deploy the technique in any net-

work, it excluded the bandwidth measurement from the experiment, and it could not

measure the amount of human involvement in this work. Finally, the measurement

tools and the libraries used in this experiment also consumed some resources, but

the work did not exclude those resources from the measurements.

Despite limitations, the experiments serve as a good foundation for further re-

search in the area that is still in the early stages, providing several intriguing insights

into the resource consumption of distributed ML for security in 6G and beyond. Such

results are of significant importance as they will help design a resource-efficient, sus-

tainable 6G network with a lower overall carbon footprint, which has become a key

consideration in tackling climate change.
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7.5 Future work

The future work includes establishing a test bed and conducting a series of exper-

iments using various centralized and distributed machine learning-based network

security solutions. There is also an aim to measure the resource requirements for

each client device and investigate whether an attack or compromise on any node af-

fects the resources of other nodes. Furthermore, there will be a strive to design a use

case-specific resource-efficient SL or FL algorithm that performs optimally for that

particular use case, and deploying that solution into the test bed. Furthermore, it is

also aimed to develop generalized techniques for detecting a combination of security

threats and then providing protection against those security threats.
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