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Abstract 
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learning in the prediction of ischemia using PET cardiac perfusion imaging”. 
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            May 2024 

 

Positron emission tomography (PET) is an advanced, non-invasive medical imaging technology 

that allows for precise internal imaging. The recent progress in PET technology, particularly in 

cardiovascular applications, has significantly improved our knowledge of heart-related 

conditions. PET scans offer clear visuals of blood circulation and cardiac functions, playing an 

important role in detecting various conditions. One such condition is ischemia, a state where a 

part of the body lacks sufficient blood and oxygen supply, posing serious risks. This can be fatal 

and hence the detection of this is incredibly essential. For accurate predictions of such conditions, 

healthcare professionals rely on specialised software dedicated to segmentation and visualization 

of PET cardiac perfusion images, and one such software is Carimas. The integration of predictive 

machine learning models with Carimas not only enhances but also confirms the accuracy of 

diagnostic findings, revolutionizing the way we approach cardiac care. 

The objective was to have individuals from medical and non-medical backgrounds perform 

segmentation/analysis on Carimas and to then compare them with one another. Additionally, a 

pre-trained machine learning model uses the data created on the software to predict whether the 

patient is ischemic or not. This strategy offers a thorough insight of how segmentation techniques 

used by people with various backgrounds affect the prediction of ischemia, as well as machine 

learning models.  

55 PET cardiac stress perfusion images from ischemic and non-ischemic patients have been used 

to create polar maps with radiowater [15O-H2O] labelling. The Myocardial Blood Flow (MBF) 

data is compared using statistical tests like the Wilcoxon test, Jaccard Index and Dice Coefficient. 

The pre-trained The Convolutional Neural Network (CNN) model undergoes K-fold validation 

to verify its performance. 

Our study aimed to evaluate the accuracy of ischemia prediction derived from manual 

segmentation performed by individuals with diverse backgrounds indeed gives different MBF 

data which in turn affects the classification of patients. The CNN model, on the other hand, shows 

a high area under the characteristic curve value indicating good performance that is independent 

of the level of expertise of the individuals who created the polar maps. 
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PRE                                Precision 

PTF                                Perfusion Tissue Fraction 
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1 LITERATURE OVERVIEW 

 

1.3  Introduction  

 

Today’s healthcare heavily relies on imaging, which offers a detailed and quantifiable insight into 

the human body’s physiology and various health conditions. The field has seen advancements 

thanks to cutting-edge technologies that are now able to handle large volumes of data, leading to 

a revolution in healthcare research. Among these advancements, Positron Emission Tomography 

(PET) imaging has emerged as a radical nuclear imaging technique that provides us with a look 

into the body's biochemical processes in great detail which helps us in the visualization and 

quantification of various conditions [4][5]. 

 

The effectiveness of PET scans is due to positron annihilation. Positron is a tiny particle that is 

similar to an electron but with a positive charge. When this particle is released, it interacts with 

an electron within the body and by annihilation into two gamma rays provides us with useful 

information. This interaction is critical for generating images that aid in the diagnosis of 

numerous health conditions, including various types of heart disease [5]. 

 

Cardiovascular disease (CVD) continues to be a major concern and is the primary cause of 

mortality on a worldwide scale. In conditions like ischemia, where there’s no adequate blood flow 

and oxygen delivery to the heart, present a serious risk and a common factor in these CVDs. 

Unfortunately, the diagnosis of similar conditions have been challenging over the previous decade 

[6][7][17]. Even though procedures like coronary angiography exist for diagnosing heart issues, 

there are times when they do not detect any significant blockages, which means the real problem 

could be something less obvious, like coronary microvascular dysfunction which is a difficult 

thing to catch and is frequently linked to cardiac-related chest discomfort. [20][21][22][23][24]. 

That's where imaging, and particularly PET imaging comes in as they are necessary for precision 

diagnosis. For accurate predictions of such conditions, healthcare professionals rely on 

specialised software dedicated to segmentation and visualization of PET images, and one such 

software is Carimas.   

 

Carimas is software specifically built to analyse PET images. It enables doctors to easily examine 

blood flow patterns and other crucial parameters to detect health issues [14]. The integration of 

predictive machine learning models with Carimas not only enhances but also confirms the 
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accuracy of diagnostic findings, revolutionizing the way we approach cardiac care. 

[1][2][3][10][11][25][26][27]. 

 

In this era of Artificial intelligence (AI), Machine learning (ML) is making significant strides in 

this field too, particularly with approaches like convolutional neural networks (CNNs). These 

advanced tools are trained to analyse images and have the potential to provide consistent results 

compared to human analysis as they don’t get tired or biased. Despite this, CNNs have not yet 

been widely used for real-life medical image analysis due to practical challenges such as 

insufficient data and expensive computational costs. [12][13][28][33].   

 

Deep learning (DL), a subset of ML, utilises neural network layers to systematically extract 

intricate information from intricate medical pictures. The growing utilization of AI, ML, and DL 

in medical imaging may mostly be credited to their remarkable capacity to analyse direct cardiac 

images. By doing analysis, these technologies have the ability to not only properly identify, but 

also classify myocardial ischemia, resulting in valuable diagnostic insights. These improvements 

represent a shift in our understanding and treatment of cardiac problems, with AI playing a crucial 

role in connecting complicated data with clinical decision making. The future of imaging is tightly 

linked to the advancing capabilities of AI, which provide the potential for enhanced diagnostic 

accuracy and better patient care. 

 

As AI advances, its potential to change cardiovascular treatment becomes clearer. It is currently 

being used in several promising applications, such as identifying obstructive coronary artery 

disease and predicting other heart function indicators in patients [11]. The use of such 

technologies has made significant improvements in image classification and analysis using 

CNNs, which holds well for medical imaging. Although concerns exist, such as ethical issues 

about accessing patient information, but the advantages of employing machine learning for 

medical diagnostics are too substantial to overlook [25][26][27][28][33]. 

 

Our goal is to combine all of these game-changing elements together to make analysing PET 

images both accurate and efficient. This could be a significant step toward bettering the accuracy 

and helping healthcare professionals diagnose heart conditions like ischemia successfully since 

the process of segmentation is currently done manually.  
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1.2 Thesis structure  

 

In this thesis, we compare the results of the manual segmentation performed on Carimas by 

individuals from a medical and non-medical background to determine the impact of their 

expertise on the prediction of ischemia. Additionally, we use a CNN model to assess if it’s 

performance is affected by the level of expertise of the individuals who created the polar maps. 

 

The structure of this thesis is straightforward and is broken down into seven sections: It begins 

with an introduction that briefs the reader of our study's key elements, emphasizing their 

importance and showing how they are all linked to one another.  Following that, we move on to 

the aims and research questions where we highlight the primary objective of this research, the 

identification of the issue, and the placement of the solution that sets the stage for the further 

analysis 

Once we have established an understanding of these research questions, we transition to the 

background which gives an in depth explanation of why researching in this field is crucial and 

elaborates, on the fundamental components of the thesis. This part also discusses the inspiration 

for our research, ensuring that the readers understand the study's core concepts, important 

terminologies, and objectives. 

Our next section is the materials and methods that describe the methodologies we employed and 

strategies we used to collect data so we could compare outcomes and evaluate the accuracy of 

ischemia prediction. After gathering the data, we go on to the results and discussion section, 

where we systematically analyse, evaluate, and interpret the data in order to draw conclusions. 

 

Finally, we conclude our study by consolidating and reflecting upon our findings, emphasizing 

the significance of our study and its impact, on the field. 

 

1.3  Motivation  

  

This study on PET image segmentation was driven by a practical problem we encountered when 

using PET cardiac perfusion images and how different analysts produced varied results. This 

discrepancy gave rise to questions since these outcomes are crucial in the prediction of 

myocardial ischemia, where the stakes are exceptionally high because early discovery can 

drastically alter treatment approaches for a disease that, while severe, is often curable if diagnosed 
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quickly [4][30][31][32]. Correct segmentation is crucial when planning for a treatment or future 

steps [35] Motivated by the impact of these contradictions and the growing worldwide prevalence 

of coronary artery disease (CAD), we wanted to explore this further.  

 

Our goal was to figure out why such differences exist and how they impact the identification of 

ischemia. The integration of AI with non-invasive imaging modalities, notably in nuclear 

cardiology and PET myocardial perfusion imaging, has enormous potential to improve diagnostic 

accuracy [3][12]. 

 

This study aims to utilise these findings to investigate methods for enhancing the segmentation 

process and the machine learning methodology in PET myocardial perfusion imaging. The 

primary objective is to enhance the precision of diagnosis and aid healthcare practitioners in 

making informed decisions to improve the management of CAD [9]. 

 

1.4  Previous studies  

 

ML is being acknowledged as an increasingly valuable approach for improving the identification 

and classification of myocardial ischemia in PET imaging. Studies have begun to highlight the 

potential of ML techniques to improve diagnostic accuracy as well. 

The majority of existing approaches rely on region-based segmentation algorithms and 

incorporate thresholding operations [35]  

 

For instance, in Johansson et al. [34] who studied how different experts segment images. They 

found out that these experts had different approaches when outlining areas of regions of interest 

(ROI) in the images that resulted in varying interpretations. This variance underlines the 

subjective nature of the task and opens up opportunities to investigate more standardized methods. 

 

Dewalle-Vignion et al. [35] designed a straightforward framework to evaluate these subjective 

interpretations. They compared the manual segmentations of a group of experts against one 

another using clinical data, aiming to identify the method that best aligns with the manual 

reference standard. This study intended to spotlight the most reliable methods for delineating the 

heart's affected regions accurately. 
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Piri et al. [36] compared segmentation accuracy with computer-generated models and found that 

a tailored ML model closely matched manual methods, with only a slight 6% deviation. This 

comparison emphasises the growing competence of AI in replicating the nuanced work 

traditionally done by human hands. 

 

Similarly, Teuho et al. [3] put their own ML model, a custom CNN, to the test against traditional 

clinical interpretations. Their CNN model achieved an 83% accuracy rate, nudging close to the 

87% accuracy achieved by seasoned clinicians. 

 

These findings highlight the constraints of machine learning and human competence. Although 

some existing techniques utilise region-based segmentation algorithms and thresholding 

procedures, there is ongoing advancement in merging the efficiency of machine learning with 

specialised knowledge, indicating the possibility of incorporating it into clinical diagnostics. This 

suggests that future improvements in these models may eventually provide assistance or 

improvement to operations such as manual segmentation. 
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2 AIMS AND RESEARCH QUESTIONS 

 

2.1  Aims of the study  

 

This study was inspired by my experience with PET image segmentation, where I was taught the 

process of segmentation by two individuals in the field with very different backgrounds. Each 

had their own unique checkpoints and methods for segmenting the images. Surprisingly, even 

when working with scans from the same patient, their manual segmentation processes yielded 

different polar maps, which led to a deeper investigation into the subject.  

 

AIM 1: To examine and compare the analytical results between an individual from a medical 

background and a non-medical background. 

AIM 2: To examine and see how the dissimilarities, if found, result in the prediction of ischemia 

with radiowater labelling. 

Aim 3: To check the accuracy using a pre-trained CNN model independent of individuals with 

varied levels of experience in the prediction of ischemia.  

 

2.2  Research questions  

 

The results at the end of the segmentation process connected directly to predicting ischemic 

events. So, we dug into these questions to see how they all fit together. This study aims to 

breakdown these relationships and make sense of how each component connects to the overall 

picture of ischemia prediction.  

 

RQ1: How much has the analysed result deviated from the clinically verified ground truth 

following the methodologies used by individuals from diverse backgrounds?  

RQ2: To what extent do these alterations in segmentation techniques impact the accuracy of 

medical condition prediction? 

RQ3: Is there an optimal method to segment or analyse these images if one follows checkpoints 

given by an expert while performing these operations to reduce the inaccuracy?  

RQ4: Is the accuracy of the CNN model independent of this manual process? 
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3 Background 

 

With the increase in CVDs, the importance of disease detection and prediction is also rising. Since 

many CVDs main root cause is insufficient blood and oxygen i.e., ischemia, the early prediction 

of this can be vital in saving patients’ lives. CVD diagnosis has changed dramatically in recent 

years because of the incorporation of cutting-edge imaging technology. In order to better 

understand and provide more accurate diagnosis and analysis of CVD, researchers and physicians 

are increasingly using PET scans and imaging software like Carimas to visualise such dynamic 

data.  

 

The use of ML algorithms in the study of CVD has expanded research opportunities. ML models 

have demonstrated a remarkable and predictive analytical skills after being trained on large 

datasets generated from PET imaging and other sources. ML systems can predict prospective 

heart problems by spotting detailed patterns in these datasets. Incorporating ML improves illness 

prediction accuracy while also allowing healthcare providers to take preventative action before 

situations worsen. 

 

Despite these developments, there is still a significant area of unexplored research in the field of 

combined potential of PET imaging and ML in the early prediction of ischemia. A method for 

ischemia prediction can be created by combining the complex insights obtained from PET scans 

along with the segmentation software with the prediction power of ML algorithms.   

 

3.1  Positron Emission Tomography 

 

Positrons are the antiparticles of electrons. During β+ decay, the nucleus emits a neutrino and a 

positron. Because of its substantial mass and positive charge, a positron collides with an electron 

within its surrounding environment.. The term "positron range" refers to the maximum distance 

a positron may travel, which depends on its energy level [5]. 

 

The abbreviation "PET" in PET imaging is associated with the tracers used, which undergoes 

decay by producing positrons. The choice of tracer is determined by its intended purpose and the 

unique characteristics of the imaging technology being used. Each tracer exhibits distinct 

properties, such as its lifespan, method of synthesis, rate of absorption, and picture sharpness, 

which are determined by the positron range [58]. PET is an advanced and non-invasive medical 
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imaging technology that allows for precise internal imaging. It provides a distinct benefit in its 

capacity to accurately and precisely diagnose ischemia, while also evaluating the extent and 

severity of the illness. It has the ability to precisely identify cardiac tissue that might benefit from 

revascularization treatments, hence providing guidance for treatment methods. PET is not as 

readily available as other imaging methods since it utilises ionizing radiation, necessitating a 

cyclotron facility for the manufacture of radiotracers [12]. In order to accurately examine PET 

data, which provides information about the amounts of tracers at certain time points, researchers 

utilise models to assist in quantifying biological aspects such as metabolic rates, blood volume, 

and flow dynamics [58]. 

 

3.1.1  15O-Water as a Tracer 

Oxygen-15-labelled water, commonly referred to as 15O-water or [15O]H2O, is currently 

commonly used as a tracer in PET myocardial perfusion imaging (MPI) to measure Myocardial 

Blood Flow (MBF). Its unique properties set it apart from other tracers like 13N-ammonia, 

rubidium-82, and 18F-flurpiridaz, that are easily metabolically trapped in the myocardium. 15O-

water is readily diffusible and physiologically inert, which means that it does not interfere with 

the body's metabolism like other tracers do. This is significant because it gives us a clear and 

direct measurement of blood flow as 15O-water has an extraction fraction close to one, which 

means that its absorption into the heart muscle is exactly proportionate to the actual blood flow, 

which does not hinder metabolic processes in the body. This feature makes it extremely 

dependable for MBF measurement since the assessment is based on how the tracer flows into and 

out of the heart's tissues, rather than how much is absorbed [13]. When it comes to using PET 

imaging to measure blood flow, 15O water is a notable choice for measuring blood flow with 

PET imaging. As stated by Manabe et al., [60] the tracer's high extraction rate enables its use in 

doses and at short intervals for stress and rest imaging, while also reducing radiation exposure. 

Although 15O-water has some benefits, it is not frequently used in settings due to its tendency to 

provide rather indistinct pictures [4][59]. 

 

For practical tracer administration, a dosage of 15O-labeled water, generally ranging between 

400 - 500 MBq, is injected using equipment such as Hidex Oy's Radiowater Generator in Finland 

[24]. MPI using radiowater is extremely effective since its activity uptake is proportional to MBF 

at all ranges. The MBF is then calculated from PET images using a mathematical model that takes 

into consideration the blood flow inside the myocardium as well as the factors affecting the PET 

image. This approach gives a thorough examination of suspected CAD, and in the end it gives us 
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an accurate diagnostic tool that fits with the highest standards of cardiovascular treatment. MBF 

values obtained through 15O-water PET imaging can be effectively visualised using polar map 

images that accurately reflect regional MBF that aids in the diagnosis of suspected CAD [19]. 

The use of software like Carimas, developed at the Turku PET Centre in Finland, caters and 

enhances the utility of 15O-water in clinical settings. Carimas, in particular, has demonstrated 

high reliability, with consistent results across different observers regardless of their experience 

level, underscoring its repeatability and the reproducibility of its analyses [15]. 

 

In this study, we employed [15O]H2O as our tracer agent for PET scans focused on quantitative 

flow analysis. This approach is favoured because it has been shown to be the best for qualitative 

image analysis when diagnosing myocardial ischemia, offering a more precise assessment of the 

condition [37][38].  

 

3.2   Myocardial Ischemia  

 

Myocardial ischemia occurs when there is a demand for oxygen from the heart and the lack 

of supply results in cardiac dysfunction, arrhythmias, myocardial infarctions, and sudden death 

as shown in figure 1. PET MPI is a diagnostic technique employed to evaluate the blood 

circulation to the heart muscle under both stress and rest situations. The images produced through 

this method can be analysed by experts. Potentially processed using advanced learning algorithms 

for detecting cardiac ischemia. [4] 

 

 

Figure 1. Showing blocked blood flow causing cardia-related symptoms. 

Blocked flow 

of blood 
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Ischemia can manifest due to various factors, such as increased stress on the heart muscle, reduced 

ability of the blood to deliver oxygen, or a combination of both. The main factor that determines 

the amount of oxygen supplied to the heart muscle is the flow of blood via the coronary arteries 

as shown in figure 2. However, this circulation might be adversely affected by several reasons, 

such as vasospasm, atherosclerosis, or thromboembolic events. On the other hand, the assessment 

of myocardial oxygen demand relies on several parameters such as contractility, heart rate, and 

wall stress. Ischemia arises when the oxygen demand of the myocardium exceeds the available 

supply [62] [63]. 

 

 

 

Figure 2. Comparison between sufficient blood flow and insufficient blood flow. 

 

During an ischemic period, myocardial cells undergo hypoxia, leading to impaired aerobic 

metabolism. As a result, decrease in the pace of energy generation and the accumulation of 

hydrogen ions and lactate occur. The change in metabolic activities leads to a decrease in the pH 

value inside the cell, which impairs its functioning and triggers a chain of harmful effects on the 

heart [64]. Hydrogen ions and lactate in ischemic myocardium can trigger several physiological 

processes, including inhibition of ion transport across the cell membrane, alterations in 

intracellular calcium regulation, and activation of proteolytic enzymes. Disruption of ion 

transport across the cell membrane can lead to cellular depolarization and subsequent damage to 

the membrane. This event indicated above might cause an elevation in the influx of extracellular 

calcium ions, which can worsen cellular dysfunction and accelerate cellular death [65].  
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Prolonged ischemia can lead to a progressive decline in the functioning of the heart muscle due 

to the lack of oxygen and essential nutrients. This can ultimately result in permanent cellular 

damage and mortality. Ischemia-induced cell death, referred to as necrosis, typically begins in the 

subendocardial region of the heart. The high oxygen demands and limited collateral blood flow 

of this area make it especially vulnerable to ischemia injury. If the ischemiac event persists, there 

is a chance that necrosis may develop, affecting a larger portion of the myocardium and leading 

to the occurrence of myocardial infarction [66]. 

 

3.3  Carimas  

 

PET imaging is an advanced technique used to quantify cardiac activity and patients are 

administered a chemical that releases positrons. Positrons in the body interact with electrons, 

resulting in the production of detectable gamma photons by the scanner. The resultant pictures 

provide a temporal perspective on the cardiac activity, which is crucial for evaluating 

physiological processes like metabolism and blood circulation that may not be visible in static 

images. Because of their cylindrical form and intricate geometry, heart images sometimes require 

certain viewing orientations. Carimas makes this easier by allowing the user to define axes from 

which the heart may be examined. Once these axis’s are established, the system can segment and 

analyse the heart's structure, compute values automatically, and provide a polar map that aids in 

the identification of any anomalies or defects in the heart. 

Carimas, short for the Cardiac Image Analysis System was developed to assess complex cardiac 

imaging data. It specialises in the management of three-dimensional and four-dimensional 

images. It plays a crucial role in generating detailed polar maps of myocardial perfusion. The 

importance of Carimas lies in its capacity to assist healthcare practitioners in the diagnosis of 

cardiac problems, monitoring patients' progress over time, and planning for medical procedures 

or treatments.  

 

The software analyses PET imaging data by taking sequential images of the heart in layers. The 

heart is represented in three dimensions by combining layers collected from different angles, with 

time acting as the fourth dimension. In order to efficiently process accurate images, it is vital to 

use a program such as Carimas. Carimas is specifically developed to provide a user-friendly and 

efficient experience by assisting users in activities such as uploading images, segmenting them, 

analysing data, and displaying conclusions.  
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Users may achieve a thorough understanding of the heart by seeing images from various 

perspectives and slicing 3D representations, thereby providing flexibility. Carimas is very 

adaptable due to its API (Application Programming Interface), which allows for seamless 

integration of functionality via plugins. The ability to adapt allows for customization to align with 

the objectives of various research tasks, eliminating the need to create a completely new software 

system. The system is furthermore compatible with the outputs of imaging scanners, namely the 

Digital Imaging and Communications in Medicine (DICOM) format, and may be seamlessly 

connected with hospital systems such as Picture Archive and Communications System (PACS) 

to facilitate convenient access to patient pictures. The current version of Carimas has a central 

module, CarimasCore, together with three additional plugins that offer specific functionality for 

managing, visualizing, and analysing data. The HeartPlugin is mostly used for managing PET 

data, whereas HeartModels provides specialised tools for heart modeling. 

 

Carimas distinguishes itself from other imaging software by offering extensive PET imaging 

features that allow for the visualization of 4D data and have the potential for future research and 

therapeutic applications. The tool's exceptional compartmental modeling capabilities are 

particularly remarkable, as they allow it to effectively manage tracer chemicals and mimic 

models, a feature that is not typically seen in software that primarily focuses on static MRI and 

CT pictures. Carimas offers a wide variety of tools that are quite beneficial for persons who are 

researching the heart and assessing perfusion using PET imaging. Carimas, with its extensive 

two-decade track record, has shown itself to be an invaluable asset in both research and therapy 

settings [67]. 

 

3.3.1 Polar Maps 

From the Carimas software, one of the main results we get are the polar maps. A three-

dimensional and four-dimensional dynamic PET image contains a lot of data points and its 

important for us to visualise and analyse this in a 2D polar map format. It uses kinetic 

modelling techniques to measure the rate at which radiotracers flow from the circulation to 

tissues. This is done by applying a single-tissue compartment model for radiotracers. However, a 

two-tissue compartment model is preferred for tracers that undergo metabolism within the cardiac 

muscle [93]. 
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From the figure 3. we can see the original PET image that is getting segmented and converted 

into a polar map following the 17 segment model for the left ventricle segmentation. 

 

  

 

 

 

 

 

 

 

 

 

 

PET-CT scan of normal myocardium                     17 segment model for left ventricle segmentation 

 

 

 

 

17 segments 

 

Figure 3.The process of segmentation and conversion of dynamic PET image into 17 segment 

polar map [93]. 

 

 

 

 



 

 14 

And once we have the 17 segment polar map images, we can visually classify the patient as 

ischemic and non-ischemic as make the classification as seen in figure 4. 

 

 

 

 

 

 

 

 

Figure 4. An example of ischemic polar map (A) with more green and colours and non-ischemic 

polar map (B) with more red and yellow colours. 

 

 

3.4  PET imaging for  the diagnosis of myocardial ischemia 

 

Over the years, imaging techniques such as Single-photon emission computed tomography 

(SPECT) and PET MPI have become essential tools for addressing ischemic heart diseases. The 

PET MPI technique is great for its capacity to conduct stress testing and assess MBF in a single 

examination [1][32][46]. The uses of PET in cardiology mostly involve the measurement of blood 

flow and the assessment of cardiac metabolism in instances when there is ischemia in the left 

ventricles. PET scans have yielded insights on the relationship between ischemia and cardiac 

disorders [2][4] [47][48]. Comparative studies have demonstrated that PET is more precise than 

Coronary Computed Tomography Angiography (CCTA) and SPECT in diagnosing myocardial 

ischemia in individuals suspected of CAD, with results corroborated by fractional flow reserve 

(FFR) measures. Prior to 2017, European specialists did not have a preference for a particular 

noninvasive imaging approach. However, when directly comparing its capacity to identify 

ischemia with that of SPECT MPI, quantitative PET has demonstrated higher performance [37]. 

 

MPI plays a great role in nuclear medicine by assessing MBF to help diagnose potential CAD.  

The use of radiowater also known as oxygen-15 labelled water as a tracer in MPI has proven 

effective since its absorption is closely correlated with blood flow levels, even at elevated rates. 

This oxygen-based tracer provides a notable benefit in the detection of CAD by allowing for 

accurate assessment of blood flow in the heart muscle using PET images. The determination of 

blood flow is an elaborate procedure that takes into account both the flow of blood in the heart 

and the variables that impact the PET image [12]. The use of 15O water MPI in PET imaging is 

A B 
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highly effective for assessing perfusion by offering accurate measurement of MBF in both rest 

and stress imaging. Although the technique for quantifying  MBF using  PET in  CAD research 

is widely recognised, it is crucial to acknowledge the constraints of currently accessible 

radiotracers. Radioactive water is employed for the measurement of MBF, however its limited 

half-life limits its usage to facilities equipped with an on-site cyclotron. The short duration of the 

half-life also affects the quality of the image by creating temporal activity curves, which impede 

precise measurement of myocardial perfusion. An optimal perfusion compound would possess a 

high initial extraction fraction and have the ability to accurately measure regional  MBF 

throughout a broad spectrum, thereby allowing for exact calculation of absolute MBF [38]. 

 

Disease presence is identified by a specific reduction in regional stress MBF (sMBF) or 

myocardial flow reserve (MFR), using predetermined threshold values for the tracers employed. 

PET data gathering and processing, facilitated by software such as Carimas MBF, allows for the 

visual representation of MBF in several regions of the heart, including the right coronary artery 

(RCA), left anterior descending (LAD) artery, and left circumflex (LCx) artery. The precision of 

this method in diagnosing CAD by invasive angiography and FFR measures has made it more 

popular for examining patients with suspected CAD [37][49]. The assessment of cardiac 

perfusion data begins with the orientation of the heart, but it is later automated using algorithms 

that can detect specific parts of the myocardium. Modifications to the ROIs are performed 

manually as required. Experts from several domains have thoroughly evaluate this procedure to 

determine its influence on MBF readings and its capacity to predict ischemia [3]. Tissue time 

activity curves are derived from polar maps by utilizing specific ROIs. A blood pool time activity 

curve is produced from a tiny ROI positioned at the middle of the left ventricle on the final frame 

of dynamic short axis pictures. This comprehensive procedure is suitable for analysing both 

resting and stress data in order to precisely detect  CAD. The prospective application of PET 

imaging to evaluate risk in different clinical circumstances is promising since it combines 

assessments of relative perfusion with absolute measurements of cardiac blood flow [38].  

 

Identifying ischemia with PET scans is a strong and separate indicator for long-term mortality 

and cardiovascular events. Research suggests that a reduction in sMBF or MFR might serve as 

prognostic markers, providing predictive value that goes beyond regional ischemia and other risk 

factors. The use of [15O]water PET enables the measurement of  sMBF, and the interpretations 

are based only on quantitative data. An sMBF value of 2.3 ml/g/min or less is regarded a reliable 

sign of obstructive CAD, which is characterized by a FFR below 0.80 at both the patient and 

vascular levels. However, the process of identifying the specific threshold value for global 
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sMBF that may accurately predict bad clinical outcomes in patients undergoing examination for 

suspected CAD using [15O]water PET imaging is still an area that needs more research and 

analysis. When analysing heart segments, it is typical to exclude some sections, such as segments 

2 and 3 in the basal septum and segment 17. A sMBF value of 2.3 ml/g/min or lower in any 

segment shows decreased blood flow compared to a sMBF value over 2.3 ml/g/min, which is 

used to assess the health of the heart [52]. The threshold was established in experiments to identify 

ischemia, which manifests as perfusion deficits in at least two adjacent myocardial segments at 

these flow circumstances [37]. 

  

Furthermore, PET perfusion imaging can be utilised to identify coronary microvascular 

dysfunction by assessing the vasodilator capacity in patients experiencing stable chest discomfort 

and suspected  (CAD) [24]. Quantitative PET perfusion imaging stands out among diagnostic 

approaches for heart diseases due to its high diagnostic accuracy when compared to invasive 

coronary angiography standards, as well as its capacity to anticipate major adverse cardiac events 

(MACEs) [53][54][55]. Hence, quantitative PET perfusion imaging serves as a means to detect 

CAD-induced ischemia and evaluate the likelihood of  MACEs without the need for invasive 

procedures [10]. Efficiently managing cardiac diseases, such as myocardial ischemia, requires 

prioritizing the use of modern imaging techniques like nuclear imaging to promptly identify and 

address potential significant health problems. PET and other nuclear imaging techniques have 

gained popularity in the identification of ischemia. Medical practitioners commonly examine PET 

MPI images, however the utilization of AI-enhanced computer-aided diagnostic techniques can 

significantly benefit in interpretations. AI may also assist with activities such as image 

classification in the medical area, which is crucial for illness identification. An example of a 

classification issue in medical diagnosis is the identification of ischemia using polar map image 

data. Clinicians must assess whether the map shows a normal or pathological state 

[1][10][12][56][57]. 

 

3.5  AI for Cardiovascular disease 

  

AI has become an essential component of modern healthcare, especially in the studying and 

treatment of CVDs. Its uses have led to new findings in heart failure and congenital heart diseases, 

resulting in novel treatments. AI can also assist in monitoring how medications perform once they 

are released to the market [39]. The investigation of AI's function in CVD is, however, not novel.  
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In 1963, Warner et al. [40][41] and Gorry and Barnett in 1968 investigated how computer 

algorithms and mathematical models may assist in identifying congenital heart disease. Warner 

and his colleagues created a mathematical model based on Bayes' theorem to demonstrate that 

with the correct data, a computer can equal a doctor's diagnosis accuracy. However, this strategy 

wasn't ideal; it occasionally missed critical diagnoses and might lead to unneeded testing, 

especially when employed by someone less skilled. [40][41]. More recently, Zellweger et al. 

[44][45] investigated AI's potential as a non-invasive technique for detecting CAD. They applied 

an AI-based mimetic pattern-based algorithm (MPA) and discovered that it beat standard risk 

scores such as the Framingham risk score in detecting CAD. The MPA had a remarkable positive 

predictive value, scoring well in both the training and test groups [39][44][45]. 

 

Quantitative PET myocardial polar maps are one use of how AI can help in cardiovascular 

imaging as these maps provide a thorough picture of blood flow in the heart's left ventricle, which 

is extremely valuable for patients with known or suspected CAD [43]. AI does more than simply 

diagnose; it enhances cardiovascular care practice by incorporating precision medicine and big 

data analysis. This allows us to correctly filter through various clinical data for predictions and 

classifications without making assumptions. This can be a game changer for busy healthcare 

systems by automating tedious processes and allowing clinicians to focus on what they do best 

which is caring for patients [39]. 

 

Despite these advancements, implementing AI in healthcare comes with its own challenges. 

We're talking about concerns like data privacy, the use of obsolete or biased data, which can lead 

to incorrect findings. Despite these obstacles, AI's potential to transform healthcare appears 

obvious [39]. 

 

3.6  Image classification and ML models  

 

AI has revolutionized cardiovascular imaging, leading to a paradigm shift in the diagnosis and 

treatment of CVDs. This transformation is driven by ML, a multidisciplinary domain that 

empowers algorithms to acquire knowledge from datasets without the need for explicit 

programming for specific tasks. An established instance in this domain is the CNN, with several 

layers of nodes that handle input. CNNs are highly efficient in image processing and data 

management, thanks to their learning processes. They enhance cardiac image analysis and enable 

precise classification of myocardial ischemia [39]. 
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ML, as a subset of AI, enables systems to extract valuable information from data and provide 

accurate predictions. It generates models that detect data patterns by employing diverse 

mathematical functions, efficiently automating programming with minimum human involvement. 

Nevertheless, human oversight is crucial, particularly when deciding how to implement machine 

learning techniques in the field of medicine [77][78]. Deep learning, a subset of ML, utilises 

neural network layers to systematically extract intricate information from intricate medical 

pictures. The growing utilization of AI, ML, and DL in medical imaging may mostly be credited 

to their remarkable capacity to analyse direct cardiac images. By doing analysis, these 

technologies have the ability to not only properly identify, but also classify myocardial ischemia, 

resulting in valuable diagnostic insights. These improvements represent a shift in our 

understanding and treatment of cardiac problems, with AI playing a crucial role in connecting 

complicated data with clinical decision making. The future of imaging is tightly linked to the 

advancing capabilities of AI, which provide the potential for enhanced diagnostic accuracy and 

better patient care. In figure 5, we can see a diagrammatic overview about the hierarchy of AI. 

 

 

Figure 5. An overview of the world of Artificial intelligence. 

 

DL algorithms, renowned for their capacity to mimic cognitive abilities, have been generating 

remarkable advancements in the field of medical imaging. The advancement in imaging is 

Artificial 
Intelligence

Machine 
Learning

Deep 
Learning

CNN 
Models



 

 19 

particularly evident in the use of DL for the analysis of brain and cardiac PET/SPECT images. 

These applications demonstrate the promise of ML for predictive modelling by using image 

classification to improve diagnostic processes. The capacity to learn and adapt to new situations, 

together with its effective handling of enormous amounts of data, makes it highly advantageous 

for classifying medical images [87]. It is especially acknowledged for its capacity to automatically 

extract features, a procedure that was formerly time-consuming and prone to mistakes. On the 

other hand, DL algorithms have the ability to autonomously learn and identify certain data 

characteristics, optimizing them for accurate and dependable medical diagnostics [12]. Thus, DL 

enhances the accuracy of detecting illnesses and tracking treatment progress. DL techniques 

encounter difficulties in medical contexts due to the requirement for substantial training datasets, 

which are sometimes restricted in specialised medical sectors. The requirement for datasets is a 

significant barrier to the general use of deep learning in domains with limited data accessibility 

to facilitate efficient model training. In the field of imaging, the task of obtaining sufficient data 

is particularly challenging due to the scarcity of available information induced by ethical and 

privacy considerations. Consequently, there is a challenge in acquiring a sufficient amount of 

labelled data to effectively train these highly capable algorithms since this type of labelled data 

typically needs to be produced by experts. [90]. 

 

CNNs have revolutionized the classification of pictures in the field of imaging. They accomplish 

this by employing a technique known as convolution, which enables them to not only learn from 

individual pixels but also understand the surrounding context inside the images. The complex 

architecture of CNNs consists of convolution layers, pooling layers, and linked layers, as seen in 

figure 6 which provide an effective foundation for intricate image processing [75][82]. A CNN is 

one of the neural network architectures commonly employed in DL and they are mostly utilised 

for tasks such as classification of images as they have demonstrated exceptional achievements in 

several industries, including medical imaging. Nevertheless, the problem of data scarcity 

continues to persist when training CNNs for medical image processing, since it requires a 

significant quantity of data. Transfer learning addresses this issue by utilizing pre-

trained CNN models that have been trained on extensive datasets of natural images. These models 

are then fine-tuned to recognise comparable patterns in medical images [74][75]. 

Moreover, CNNs extend their capabilities beyond classification of images to the field of 

predictive modelling. They are characterized by their capacity to exceed constraints in discerning 

complex patterns inside medical images. Although reliance on training datasets is a problem, 

CNNs may effectively address novel difficulties in medical imaging by utilizing transfer learning 

from trained models [79][80][81][92]. 



 

 20 

 

 

 

 

 

 

 

Figure 6. A schematic view of the architecture of a CNN model. 

 

In the field of ML, there is a possibility to identify patients who are at risk of developing 

myocardial ischemia and are more likely to experience MACE by using accessible predictors and 

quantitative PET myocardial perfusion imaging. ML is continuously being studied to improve the 

selection of techniques for cardiovascular diagnosis and prognostic assessments [10]. Although 

the general use of PET scans is limited due to obstacles related to accessibility, cost, and 

infrastructure requirements, the integration of data is consistently improving the effectiveness of 

machine learning. This enhancement might assist in prioritizing the utilization of PET scans for 

patients who would get the greatest benefit from myocardial perfusion imaging by precisely 

evaluating the extent and location of ischemia load [10]. 

 

AI has greatly enhanced the field of nuclear cardiology, namely in PET MPI. ML has proven to 

be highly efficient in this field, particularly with the utilization of DL algorithms. DL methods 

excel in their capacity to extract characteristics from imaging data by employing advanced neural 

network layers. These algorithms have contributed to improving direct interpretation of cardiac 

images and diagnosing myocardial ischemia, resulting in improvements in diagnostic accuracy 

[31][32][43][75][76]. The inherent capacity of learning to autonomously extract characteristics 

from image data represents a substantial advancement in comparison to conventional approaches 

of image classification, which are frequently laborious and susceptible to mistakes. 

DL algorithms are highly effective at identifying important characteristics in data, which is 
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essential for accurately categorizing and understanding medical images [87]. The main goal of 

integrating learning in this context is not just to aid in clinical practice but also to foster an 

impartial viewpoint on myocardial ischemia. In the current healthcare landscape, where clinicians 

deal with complex diagnostic and prognostic assessments, machine learning models can assist in 

optimizing these evaluations. The integration of these models with updated electronic patient data 

has the potential to greatly improve precision medicine and clinical alerts [10][86]. 

 

3.6.1 Previous studies 

 

Through the integration of clinical and PET data, ML algorithms are being proposed to improve 

the identification of  CAD and guide decisions for early treatment. This development has the 

capacity to enhance assessments of the risk of death from any cause, using a wide range of clinical 

indicators obtained by CCTA [84][85][86]. 

 

A recent example of this is the study  "Classification of ischemia from myocardial polar maps in 

15O–H2O cardiac perfusion imaging using a convolutional neural network" authored by Teuho 

et al. [3]. This study created a specialised CNN model to assess 138 polar maps from 15O–H2O 

stress perfusion tests. The maps were in JPEG format and categorised individuals as either 

ischemia or non-ischemic based on the results of invasive coronary angiography, which identified 

obstructive coronary artery disease. The performance of the model was evaluated using several 

measures such as accuracy (ACC), the area under the receiver operating characteristic (ROC) 

curve (AUC), F1 score (F1S), sensitivity (SEN), specificity (SPE), and precision (PRE), 

highlighting the model's ability to accurately diagnose [4]. 

 

Furthermore, the ability of DL to improve diagnosis accuracy has been further proven in a 

comprehensive SPECT investigation. The study employed 99mTc-sestamibi or 99mTc-

tetrofosmin to conduct MPI. It identified polar maps from 1638 participants by comparing them 

to reference data obtained from invasive coronary angiography. The dataset was enlarged to 

incorporate data from both semi-upright and supine stress MPI of 1160 individuals who 

underwent the identical MPI protocol. The results from this comprehensive dataset confirmed 

that deep learning greatly enhances the automated prediction of obstructive CAD in comparison 

to current clinical approaches [94]. 

 

It is important to mention that although SPECT data has been the main focus of these techniques, 

just a few publications have explored the use of PET data. Quantitative PET perfusion polar maps 
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provide a comprehensive dataset for sophisticated analytical approaches, but their full potential 

has not been fully used. However, there is a significant lack of assessment when it comes to 

applying ML to a wide range of easily accessible and interrelated predictor variables. These 

characteristics might significantly help in identifying individuals who are likely to have 

myocardial ischemia and the related cardiovascular risks, as evaluated using quantitative PET 

myocardial perfusion. It is expected that advancement in this approach will enable the 

development of advanced diagnostic skills, leading to better results for patients [3][10]. 

 

3.6.2 K-Fold cross validation  

 

In our research, we used the features of TensorFlow and Keras, two well-recognised libraries in 

the field of DL. We evaluated the efficacy of our CNN model by utilizing the AUC, a critical 

metric in ROC curve analysis that measures the diagnostic accuracy of a classifier system across 

various discriminating thresholds. An AUC score close to 1 shows precise predictions, whereas 

an AUC value approaching 0.5 denotes a lack of ability to differentiate [4]. 

 

Pretrained models represent a step forward in improving the efficiency of machine learning by 

utilizing prolonged training on intricate problems with massive datasets and significant 

computing resources. This extensive training provides these models with a sophisticated 

understanding of attributes that may be utilised or 'transferred' to. These versatile models may be 

easily accessed via repositories like as the Keras applications repository and TensorFlow hub. 

They are frequently evaluated in competitions like ImageNet, where teams compete to create 

better CNN structures [88][89]. CNNs are carefully crafted to achieve a harmonious equilibrium 

between efficiency and the inherent strong performance characteristics of ordinary convolutions. 

CNNs, particularly beneficial in fields like as image and speech recognition, contribute to 

improving overall performance levels [12].  

 

Within the domain of ML, we explored many learning methods. The one used in our study was 

the supervised learning algorithms which operates with the use of labelled data, to discover 

concealed patterns and categorise data according to certain analytical goals. This approach 

facilitates comprehension of datasets and is particularly useful in situations when there is a 

scarcity of labelled data or when intricate linkages within the dataset are not completely 

comprehended [32][75][76]. 

 



 

 23 

One often employed method is called k-fold cross-validation. As we can see in figure 7, where 

the model is trained with k-1 folds and evaluated with the remaining green folds and this is 

repeated for each blue fold as thus k times. This approach is used to evaluate the ability of a 

machine learning model to adapt to various datasets, while avoiding the limitations of relying 

exclusively on a single training and testing split that may not correctly represent the model's real 

performance. In k-fold cross-validation, the dataset is partitioned into k-equal segments, 

guaranteeing that each section is utilised for validation precisely once. This thorough technique 

provides an assessment of the model's performance on several subsets of data. In our research, 

we utilised 3-fold, 5-fold and 10-fold cross validation to comprehensively assess and compare 

the difference in the findings.  

 

During the evaluation of ML models in each iteration of k-fold cross validation, performance 

measures such as accuracy, mean, median and standard deviation are computed. The final 

assessment of the models is determined by calculating the average of these performance metrics 

throughout all 'k' iterations. Despite the time and processing resources required, k-fold cross 

validation is very beneficial due to its ability to decrease biases inherent in data splitting. This 

technique involves training and evaluating the model 'k' times, resulting in a more accurate and 

reliable assessment. This technique ensures a reliable and consistent assessment of a model's real 

performance, which is essential for optimizing hyperparameters, selecting models, and picking 

features [12]. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. K-fold cross-validation, where k=3 
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4 MATERIALS AND METHODS 

 

 

4.1 Patient population  

 

In our research, we considered 55 patients that underwent PET imaging with radiowater [15O-

H2O] labelling. The group comprised of individuals who had a clinically verified history of 

myocardial infarction, as seen by documented medical evaluations and previous diagnostic 

procedures (Ischemic) and individuals with non-ischemic cardiac conditions, who had a range of 

cardiac dysfunctions, excluding those caused by CAD. It was imperative for us to analyse the 

cardiac images of both groups without any bias. So we made sure not to have any knowledge of 

which individuals had ischemic conditions and which did not. [3]. 

 

 

Figure 8. Patient population of the dataset 

 

From these patients, cardiac stress PET cardiac stress perfusion images were obtained. These 

images depict the flow of blood to our heart muscle, the myocardium, under stressful conditions 

like physical exercise or using pharmacological drugs to mimic the same effect on the heart. This 

helps physicians understand how the heart handles the workload to see signs of heart problems.  

 

Based on these images, we conducted a study involving two groups—one with a medical 

background and the other without. Our objective was to analyse these images on Carimas and see 

how each group interpreted the images, specifically focusing on their ability to identify and 

segment details of the heart in the scans that ultimately resulted in the prediction of ischemia. 

 

Patient population 

Ischemic Non-ischemic
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Figure 9. The group of individuals involved in the segmentation process. 

 

In the process of image evaluation, the individual with the medical background who had clinical 

experience effectively, successfully analysed and segmented all 55 PET images despite some 

images having noticeable noise. This showcases the importance of medical knowledge in 

identifying cardiac structures accurately even under challenging image quality.  

 

On the hand, the individual without a medical background approached the task with a different 

set of skills. Despite being briefly trained for about 2 months in image segmentation and analysis, 

this individual only found 44 cardiac stress PET images suitable for detailed segmentation. This 

was mainly to due poor image clarity, high background noise and no clear visualization of the 

ventricular borders of the heart. Therefore, 11 PET cardiac stress images were not included since 

they had significant noise that made it difficult to see the specific anatomical characteristics 

required to accurately spot and segment the left ventricle. These noisy images would also produce 

unreliable segmentation, making it necessary for their exclusion from the analysis. 

 

This comparative approach highlights the importance of medical experience in assessing cardiac 

images and provides insight into the difficulties faced by non-specialists when using modern 

imaging technologies. The findings of this comparative investigation may provide insights into 

the importance of specialised training and having checkpoints for the segmentation process in 

understanding complex medical images.  

 

 

 

 

 

 

Figure 10. Total patients after the elimination of the noisy cases. 

Groups

Medical 
Background

Non-Medical 
Background

55 patients 11 patients 44 patients 
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4.2 Image Acquisition 

 

The initial imaging procedure was carried out using a 64-row Discovery VCT PET/CT scanner 

manufactured by General Electric Medical Systems, USA. The preferred imaging methods were 

CT coronary angiography (CTA) and MPI using a PET/CT hybrid. A computed tomography (CT) 

scan was used to adjust for attenuation, followed by a PET scan to assess adenosine-induced stress 

perfusion. During a time period of two minutes before to the initiation of the scan, a dosage of 

140 micrograms of adenosine per kilogram of body weight was injected through the veins. The 

patient was administered a rapid intravenous infusion of oxygen-15 labeled water (900 to 1100 

MBq) using a Radiowater Generator from Hidex Oy, Finland, for a duration of 15 seconds. The 

heart's blood flow was assessed using a dynamic mode acquisition consisting of several time 

intervals: 14 intervals of 5 seconds, 3 intervals of 10 seconds, 3 intervals of 20 seconds, and 4 

intervals of 30 seconds. The obtained picture data was subsequently rebuilt using a 2D ordered 

expectation-maximization approach (2D-OSEM) with the specified parameters: a field of view 

of 35 cm, 2 iterations, a matrix size of 128x128, a Gaussian post-filter with a width of 6.0 mm, 

and 20 subsets.[12][24] 

 

4.3 Data Acquisition 

 

In this thesis, we used 44 stress PET perfusion images from both the individuals- medical and 

non-medical background to make it a common ground for an effective comparison. These images 

were critical in generating the data for further analysis and were segmented to extract key 

information such as polar maps, data on MBF and Volume of Interest (VOI). The Carimas 

software platform was the primary tool for image loading and, segmentation. 

 

The images and data were handled using a Lenovo 23-inch FHD ThinkVision T23i-20, which 

provided the computational power necessary for the intricate processing involved. This high-

performance system ensured that the data processing was efficient and reliable, contributing to 

the integrity of the study's results. 
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4.3.1 Protocol for segmentation followed by non-medical background individual 

 

 

The patient file to be analysed was loaded onto Carimas. After the file has been loaded and 

viewed, we are presented with four quadrants displaying images of the heart as seen in Figure 

11.  

 

 

 

Figure 11. Quadrant images of the heart on Carimas. 

 

By adjusting the contrast, we can effectively visualise the anatomical features of the left and 

right ventricles.  As seen below in Figure 12, it is necessary to label the axis from the base to 

the apex of the left ventricle in segment A. Moving to segment B, we realign the base and apex 

axes to the center. In segment C, it is necessary to draw out the axis extending from the center 

of the right ventricle to the center of the left ventricle, as shown by RV → LV.  

 

The segmentation tools can be found as the second option under the "heart" section of Figure 13, 

indicated by a grey arrow. By aligning the axis, we have successfully identified and distinguished 

14 distinct segments. In this section, we have the chance to adjust the axis in segments A, B, and 

C of figure 13 by vertically adjusting both the base and apex of the axis to align at the centre. 

Additionally, we can observe the corresponding changes in current inside these segmented 

images.
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Figure 12. Images undergoing segmentation on Carimas. 

 

 

 

 

Figure 13. Continuation of segmentation. 

 

Segment A Segment B Segment C 

Segment A Segment B Segment C 



 

 29 

So once the segmentation is done, we now “fit” the model for Oxygen-15-labelled water or 

radiowater as shown in figure 14.  

 

Figure 14. Fitting the radiowater tracer for results. 

 

Once we click on “Fit” we get the results below shown in Figure 15. This displays the polar maps 

on the top left corner, the MBF data on the botton left corner, in the top right corner we have the 

time activity curve, and on the bottom right corner we can see the histogram distribution of the 

polar map that gives is the pixel intensity of the polarmap.  

 

 
 

 

Figure 15. The final results displayed on Carimas after segmentation. 
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4.3.2 Protocol for extracting Histogram 

 

As saving the histogram requires more than a few straightforward steps, we follow the protocol 

below to extract and save that information.  

 

1. Choose the Polar map: Identify and choose the specific polarmap for which you want the 

histogram.  

 

2. Open the Polarmap Settings: Access the menu and follow the path Edit > Other commands > 

Polarmap To Core. 

 

3.Now switch to "Core" view. This will allow you to examine the recently uploaded polarmap in 

the picture list. 

 

4. To activate the Polarmap, choose the new Polarmap image from the image list and set it as the 

primary image for analysis. 

 

 

5. Locate the Visualization Cutpoint: The polarmap, which is usually a two-dimensional picture, 

may not be immediately visible as it is derived from a preceding three-dimensional image.  

To determine the cutpoint in the Polarmap, choose picture > find position of maximum when the 

polarmap is the primary image.  

To realign and recentre the display to the highest point inside the polarmap, simply press the x 

button.  

 

6. To enter Histogram Mode, just click the middle button positioned at the upper right corner of 

the picture visualization interface. 

 

7. Choose the histogram tool and once it is in histogram mode, enable the histogram analysis tool.  

 

8. Modify Colour Range: Utilise the colour crop tool found in the colour bar. Modify the 

histogram to include the complete range, excluding any sections that are empty or have zero-

value areas.  

 

9. Save the Graph: Click the option to store the histogram graph.  

10. Select the .txt format when given, as it is compatible with the histogram plot data.  
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4.3.3 Data obtained 

 

Polar Maps: 

 

Polar maps are created after the process of segmentation in order to visually display the heart. 

A polar map converts complex three-dimensional cardiac blood flow data into a concise two-

dimensional representation. The two-dimensional depiction is especially valuable for 

evaluating the circulation of blood into and out of the heart muscle, as well as for contrasting 

various sections of the heart, such as pinpointing areas with impaired blood flow. 

 

MBF data:  

 

The post-segmentation MBF results offer precise information on the blood perfusion in the 

cardiac muscle. These values are vital for assessing the heart's health, providing insights into 

possible locations of ischemia or infarction. 

 

VOI Data: 

 

The VOI data, found in the "Core" column of the Carimas program, captures precise locations 

inside the cardiac pictures for in-depth examination. The advantage of saving the VOI data in 

.nii format lies in its interoperability with complex image analysis applications. This format is 

specifically intended to manage datasets with different dimensions and is widely accepted as a 

standard in the field of medical imaging. It greatly enhances interoperability and accuracy in 

following analytical procedures. 

 

Histogram:  

 

They are obtained for each polar map by using the segmentation methodology outlined above. 

The histograms give a visual representation of the distribution of pixel intensity in the polar 

map of the picture. This is crucial for measuring changes in blood flow inside the heart. 
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4.4 Workflow  
 

  

 
 

Figure 16. Showing the workflow that was incorporated to extract the results 

 

 

Following the extraction of the data elaborated above, we proceed to the crucial step of 

consolidating it, during which we methodically categorised and arranged the data we had 

collected. With the volume of data we have, using coding languages like Python and MATLAB 

were used, to ensure the precision of our study, as it would provide the groundwork for the next 

evaluation phase.   

Our objective was to provide a seamless and efficient framework of codes for all the different 

kinds of data we extracted. This systematic strategy would not only assist us in distinguishing 

data and correlations within them, but also enable us to derive significant insights from the. 

Our goal was to transform the findings into useful insights that provide a strong basis for 

decision-making and provide a deeper understanding of the underlying dynamics. 

4.4.1 Statistical test 

The three main tests we used in this study was the Wilcoxon test to find the significance of the 

difference and the Dice score and Jaccard Index to identify the similarities.  

Coding

• Python

• MATLAB

Statistical 
Tests

• Wilcoxon test

• Dice Score

• Jaccard Index
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Wilcoxon Test: It is a non-parametric statistical test that compares two paired groups. We used 

this in our study since we have two sets of data that are connected in some way, so it's easier 

to compare them. This test helps us to check if the differences we saw in our data are likely to 

be significant differences or not.  

Jaccard index: This is a statistical test that is used to compare the similarity and the diversity 

of the sample set. It checks how much these groups have in common compared to how much 

they differ.  

Jaccard Index = 
𝐴∩𝐵

𝐴∪𝐵
 

Equation 1. Formula for Jaccard Index 

Dice score: This is a similarity coefficient like Jaccard Index to also guage the similarity 

between two samples. But the difference is that it calculates the intersection twice unlike in 

Jaccard Index.  

Dice score = 
2 𝑋 𝐴∩𝐵

𝐴+𝐵
 

Equation 2. Formula for Dice Score 

 

4.4.2 Coding 

 

In this thesis, we used Python and MATLAB’s capabilities to organise our data more 

efficiently.  

 

Initially, a script to properly modify the size of the polar maps, ensuring a consistent dataset 

for precise classification was created. Following that, the attention was directed towards 

obtaining MBF measures from the CSV files. We meticulously gathered this data from 

individuals with diverse backgrounds. In order to assess the significance of differences between 

these two groups, we employed the Wilcoxon test, which is a non-parametric approach for 

comparing two paired data without making any assumptions about their distribution.  

 

In order to account for the potential inaccuracies caused by unreliable segments, we conducted 

a reassessment of the Wilcoxon test by removing segments 2, 3, and 17. The decision was made 

based on the general understanding that these segments frequently include values that have the 
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potential to affect and alter our analytical results and decrease their precision. By employing 

this strategy, we were able to maintain a uniformity in our evaluations and improve the 

practical significance of our findings. We simultaneously utilised a comprehensive technique 

to examine Perfusable Tissue Fraction (PTF) data. PTF is a metric that quantifies the extent to 

which cardiac tissue can be supplied with blood perfusion.  

 

Upon doing an analysis of the histogram data for MBF and PTF,  a Python script was developed 

to overlay the values from both groups. This comparison demonstrated the disparities 

between both of them visually and quantitatively.  

 

One of the focus of this study was on the VOI. In order to evaluate the degree of alignment 

between different segmentation results, a script that computes the Dice score was created. This 

statistic offered an assessment of the extent to which segmented regions were similar. 

Furthermore, measurements of the VOI volume were extracted in order to determine the 

potential effects of segmentation changes on volumetric evaluations. 

 

This computational analysis not only enabled us to conduct a comprehensive comparison of 

segmented images, but also provided us with significant insights into the complexities of 

cardiac perfusion imaging.   

 

Our research involved the classification of patients into two distinct groups: ischemia and non-

ischemic. This categorization was based on a code that takes into account the rate of blood 

flow. A threshold of 2.3 ml/g/min was set. If the blood flow in adjacent parts of the heart drops 

below this level, we expect a restricted blood supply, which may indicate probable ischemia. 

 

Figure 17, visually describes the step-by-step functioning of the classification code. 

This flowchart provides an overview of the sequential steps involved in the decision-making 

process when our algorithm analyses data from the cardiac segments. By employing this 

automated decision-making strategy, we are able to maintain fairness in our classification 

process by depending on predetermined criteria rather than subjective evaluations. Precision 

and consistency are of utmost importance in diagnosis, since they have a substantial influence 

on the well-being of patients. 
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Figure 17. Schematic flow of the classification code. Where ‘yes’ means that it exceeds the 

2.3 threshold and ‘no’ means that it does not exceed. 
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To run our CNN code, we standardized all the polar maps by resizing them uniformly through 

cropping. This stage ensures that the model consistently examines images by detecting patterns 

in a systematic manner. After completing the picture preparation process, we employed a 

Python script to perform k-fold cross-validation. The main parts of this code are shown in 

figure 18. 

 

  
 

 
 

 
 

 

 
 

 

 

Figure 18. A snapshot of all the important parts of the CNN code. 
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5   RESULTS 

 

5.1 Medical vs Non-Medical Expert 
 

In this study we reviewed the results from 44 patients from both medical and non-medical 

backgrounds. The task involved the examination of Polarmap images, data on MBF, and 

measures of VOI. 

In the following part, we will dissect the results that were obtained from each one of these 

results and investigating their connections and reflecting on the implications they provide about 

heart health.  

 

5.1.1 Polar Maps 

 

A polar map is a visual aid that allows us to track the blood flow to the heart muscle and assess 

its efficiency in supplying it to the myocardium. By mapping the perfusion patterns in the heart, 

we have the capacity to readily detect locations where blood flow may be impaired. This is 

vital for recognizing regions of ischemia. 

 

 

 
 

Figure 19. Patient 031 medical vs non-medical 

 

 

 
 

Figure 20.Patient 036 medical vs non-medical 
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In figure 19 and 20, the images we have analysed clearly showcases how various segmentation 

techniques can result in producing different polar maps. These differences go beyond 

technicality as they carry significant implications for evaluating cardiac function in a clinical 

setting. The accuracy and precision in developing these maps can significantly influence the 

diagnostic process and ultimately determine the efficacy of patient outcomes. 

 
 

Figure 21. Histogram of patient 031 

 

 

What we have here in figure 21 and figure 22 is essentially a representation of the polar map 

on histograms, which helps to display the nuances of pixel intensity in a clear way. This 

approach allows us to assess segmented pictures in terms of both visual appearance and 

numerical measurements. This approach allows us to assess segmented pictures in terms of 

both visual appearance and numerical measurements.  

 

By examining the histogram we can notice differences in pixel intensity across various parts 

of the polar map indicating diverse perfusion levels within the heart muscle. This thorough 

analysis is crucial for pinpointing areas of concern such as regions, with blood flow and offers 

a detailed comparative perspective that assists in assessing the same effectively. 
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Figure 22. Histogram of patient 036 

 

 

 

5.1.2 MBF Data 

 

 

The MBF values extracted from the segmentation were also compared. And the values within 

the red boundaries show us how different the values are when comparing it between figure 23 

and figure 24. 

 

 
 

Figure 23. The MBF values of patient 001 by a Non-Medical background individual. 
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Figure 24. MBF Values of patient 001 by a Medical background individual. 

 

 

In order to analyse the differences between our two data sets, we used the Wilcoxon test for 

this purpose. By analysing the p values produced by this test, we are effectively assessing the 

likelihood that the patterns detected in the data are due to random chance. We set our standard 

for determining significance at a p-value of 0.05 or below. 

 

Here in the method we tested, we omitted segments 2, 3, and 17 in one of our comparisons. 

Before making this modification, we found that 14 patients displayed p values of 0.05 or below, 

indicating significant patterns in their data. And 12 patients had low p values when the three 

segments were excluded. After removing the data components that might impact our accuracy, 

we still find strong evidence indicating a large variance across these individuals. 
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Figure 25. Showing the common 10 patients from both the sets that had a p-value of 0.05 and 

below. 

 

 

 

5.1.3 VOI data 

 

In addition, we made a comparison of the VOI, which involved analysing the heart's perfusion. 

The results were stored in a 3-D volume format.  In order to assess the degree of similarity, we 

adopted the Dice Score and Jaccard Index.  

• Result of Dice Score:  

There are 24 patients whose values lie within the range of 0.6-0.8, which suggests a modest 

level of overlap.  

There are 20 patients with a score below 0.6, which indicates a very low level of similarity.  

 

• Result of Jaccard Index:  

Most patients lie within the 0.2-0.6 range exhibiting a few similarities among the VOIs.  
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Figure 26. Dice score and Jaccard index result comparison. 

 

 

5.2 Classification results  
 

Based on the ground truth, it was determined that 23 out of the 55 patients are ischemic. 

After excluding 11 patients with noisy images, our analysis now focused on a total of 44 

individuals, out of which 19 have been diagnosed with ischemic conditions.  

Given that the threshold value for ischemia stress MBF is 2.3ml/g/min, we found out that- 

 

• For the individual with a medical background: There were 20 cases classified as ischemic.  

A total of 17 patients were accurately classified. 

• For the individual without a medical background: There were 24 cases classified as ischemic. 

A total of 17 patients were accurately classified.  

 

An interesting finding is that patient 016 shows ischemiac symptoms, however was not 

categorised as ischemic in both of the datasets. 
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Figure 27. Venn diagram of the classified patients from both the sets. 

 

 

From figure 27, the Venn diagram shows that based on the classification result, there were 19 

patients who were identified by both individual with a medically trained background and 

individual without a medical background.  

The patients marked in blue are those who are non-ischemic but have been misclassified as 

ischemic using a threshold of 2.3 ml/g/min on the MBF data acquired from the segmentation 

method. 

 

5.3 K- fold results 
 

During the examination of our CNN model result, we evaluated the accuracy and used the K-

fold cross validation method to examine the difference in the results. The technique was 

systematically performed on 10, 5, and 3 folds to examine the AUC values of the model. After 

understanding the variations of the values we got using statistical measurements such as mean, 

median, and standard deviation we found that the 3-fold and 5-fold validations results showed 

better results in comparison to the 10-fold validation. As a result of this discovery, we decided 

to focus our analysis and discussion just on these two folds as it was offering us an accurate 

assessment of its performance with new data. 
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Figure 28. Comparison between the AUC result for normal K-fold 

 

 

 
 

 

Figure 29. Comparison between the AUC result for repeated K-fold 
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In the tables 1, 2, 3 and 4 below, we have incorporated the different results of our CNN model 

when subjected to different folds. The tables display AUC values that indicate the model's 

performance. In addition, we also have the mean, median and standard deviation, which 

effectively indicate the central value, middle value, and divergence from the mean. 

 

Organizing all this data in tables helps us to compare and better understand the model's 

outcomes as we modify the number of folds. It is similar to providing the model with many 

sets of practice exams and seeing which one best prepares it for real-world applications. This 

is crucial to make sure that our model is well-prepared and reliable for use cases such as 

helping clinicians in making decisions based on its predictions. 

 

 

 

AUC Mean Median Standard 

Deviation 

Normal 3 Fold 

Medical 

100% 91.80% 97.73% +/- 10.03% 

Normal 3 Fold 

Non-medical 

87.76% 90.56% 87.76% +/- 6.85% 

 

Table 1. Comparison between medical and non-medical background 3 fold. 

 

 

 AUC Mean Median Standard 

Deviation 

Normal 5 Fold 

Medical 

80% 85.84% 96.43% +/- 16.69% 

Normal 5 Fold 

Non-medical 

96.67% 91% 96.67% +/- 11.52% 

 

Table 2. Comparison between medical and non-medical background 5 fold. 

 

 

10 repeats AUC Mean Median Standard 

Deviation 

Repeated 3 Fold 

Medical 

100% 91.67% 93.52% +/- 8.43% 

Repeated 3 Fold 

Non-medical 

97.96% 90.35% 89.14% +/- 8.26% 

 

Table 3. Comparison between medical and non-medical background repeated 3 fold. 

 

 

10 repeats AUC Mean Median Standard 

Deviation 

Repeated 5 Fold 

Medical 

100% 89.94% 93.93% +/- 12.20% 
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Repeated 5 Fold 

Non-medical 

100% 91.36% +/- 11.08% 100% 

 

Table 4. Comparison between medical and non-medical background repeated 5 fold. 
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6 DISCUSSION 
 

In addition to the results section, we observed certain occurrences and examples during 

separate tests. These examples provided us with valuable insights and improved our 

understanding of the correlation. These additional tests are not crucial but it added some insight 

and provided us with some patterns  that we may have missed. By considering these tests, we 

can strengthen our research and ensure that no essential information is overlooked. By 

integrating our results with these supplementary assessments, we may obtain a comprehensive 

outlook on our study objectives which makes it more trustworthy and gives us relevant 

conclusions that can be applied. 

To classify ischemia, we allocated a numerical value of 1 to segments exhibiting evidence of 

ischemia, while segments without such indications were given a numerical value of 0. This 

straightforward grading method allowed us to accurately differentiate between non-ischemic 

regions. 

 

Ischemic Segments for Patient 026: [1. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]   

Ischemic Segments for Patient 020: [1. 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

 

Examining patients 020 and 026 as an illustration. At first, both individuals were categorised 

as having ischemia when we evaluated all 17 segments of the polar map. However, this 

changed when we eliminated the three segments, 2, 3, and 17. In the absence of these segments, 

both individuals were classified as non-ischemic. This emphasises a key point- the adjacent 

sections showing indications of ischemia might have a major influence on the overall diagnosis. 

Patient 026 had distributed ischemia segments, with initial involvement of segments 1, 2, and 

3, followed by a separate segment 8. However, patient 020 had a same initial pattern but 

afterwards experienced ischemia in segments 7 and 8. 

 

This finding highlights the need of taking into account several criteria when diagnosing 

ischemia. The presence of ischemic signals in nearby segments can significantly impact its 

classification. Our study methodology illustrates how analysing segments may offer a 

comprehensive understanding of the patients' condition, potentially impacting their approach 

to therapy. 
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Table 5 below provides an analysis that examines the significance of variations across different 

segments of the heart. This analysis focuses on the p value, which is a statistical measure used 

in Wilcoxon test to determine if observed differences. We considered a p-value equal to or less 

than 0.05 to be statistically significant. 

 

None of the patients exhibited measurements within the specified range for segments including 

LAD, LADwa, LCX and RCA. This suggests that there were no noteworthy variances in 

measurements or observations among individuals in these particular segments. But for the PTF 

values, 15 patients had a p value of less than 0.05 and that became 14 patients when segment 

2,3 and 17 were excluded.  

 

 PTF 4 segment 

Included 15 patients 0 patients 

Excluded 14 patients 0 patients 

 
Table 5. PTF and 4 Segments results. 

 

 
In Figure 30, we can see the scatter plot to visually compare the VOI volumes among the group 

of patients between the medical and non-medical background. It is evident that the quantities 

differ across patients. An interesting observation is that patients 021 and 046 have the same 

VOI volumes making them outliers in a dataset where each patients VOI volume is unique. 

 

Furthermore when we examine the group as a whole we notice a division in how these volumes 

differ. There is a subgroup of 21 patients where the difference in VOI volumes are minimal 

indicating that while there are variations they are not significantly different. On the other hand, 

the remaining 21 patients shows good differences in their VOI volumes. These variations are 

significant enough to investigate more to understand their underlying causes. 

 

This type of analysis plays a role in identifying patterns or irregularities, in medical imaging 

data, which can impact diagnosis and treatment decisions. It also highlights the diversity within 

populations and emphasises the importance of considering individual characteristics when 

assessing medical images. 
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Figure 30. Scatter plot of VOI volumes between Medical Individual and Non-Medical 

Individuals. 

 

 

6.1 Future studies  
 

Although these are promising evidences in our study, it is essential to use a systematic strategy. 

In order to enhance our understanding and properly assess the importance of our findings, a 

bigger dataset is required. From that, we may improve the validity of our results while getting 

a better understanding of their correctness. This step is crucial before applying technology in 

the healthcare sector.  

DL has shown potential in analysing quantitative cardiac perfusion polar maps. It greatly 

enhances our ability to identify individuals who are at risk of experiencing negative 

cardiovascular events. The power of DL not only resides in its performance, but it also 

surpasses basic ML algorithms that consider clinical, functional, and flow related elements 

[43]. 

 

However, we are only exploring the superficial aspects. Further investigation is required to 

fully understand the practical significance of DL estimations in evaluating the risk of 
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myocardial ischemia in patients. The potential for customization and enhancement of patient 

care is the driving force behind our ongoing research. 
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CONCLUSION 
 
Our study finds that there are noticeable differences in our results. We can see it in the visual 

representation of polar maps, histograms, VOI data, and MBF data after segmentation of the 

images. This suggests that an individual's expertise and background has an impact on the 

resultant images produced.  

Significantly, by utilizing the classification technique with a threshold of 2.3 ml/g/min, we 

accurately categorised a total of 17 cases from individuals from both the backgrounds. This 

indicates that these differences do not significantly affect in the final prediction of ischemia.  

 

It is important to note that automated solutions have not yet been widely accepted due to the 

complexity that always exists when segmenting medical images. Although computers and 

algorithms have their advantages, they are unable to completely substitute the expertise of a 

human professional [3]. 

Our CNN model constantly demonstrate great performance, independent of the creator of the 

polar maps. The CNN routinely achieves outstanding accuracy levels, ranging from 85% to 

100%. This shows that the degree of reliability is quite encouraging, suggesting that the CNN 

approach has the potential to significantly impact image classification.  

However, despite these favourable indications, it is crucial to approach this situation with a 

measure of caution. In order to ensure the strength and relevance of our findings, it is important 

to evaluate this using an adequate dataset. Expanding the dataset would enhance the credibility 

of the findings and offer insights into its truthfulness. Before diving into applications within 

the field of medicine, this confirmation step is of extreme significance so we can approach the 

incorporation of modern technology into regular medical practices. 
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