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Perinteisten mataladimensioisten VAR-mallien informaatiojoukko ei mahdollista ra-
hapolitikkashokkien luotettavaa identifiointia, jonka takia ne tuottavat usein niin kut-
sutun hintapähkinän. Tulokseni näyttävät, että informaatiojoukon laajentaminen ta-
vanomaisilla hyödykehinta- ja valuuttakurssikontrolleilla ei tuota merkittävää parannusta
tähän, ja perinteisten mallien onnistuminen selittyy malleissa käytetyillä trendikomponen-
teilla, jotka muuttavat käytetyn tuotantomuuttujan lineaariseksi tuotantokuiluestimaatiksi.
Empiiriset tulokseni hylkäävät rekursiivisen Cholesky-identifikaation lähes jokaisessa
mallissa. Lisäksi Cholesky-identifikaatio vaikuttaisi tuottavan todellista pienempiä esti-
maatteja mataladimensioisissa malleissa. Tuotantokuilun sisältävät mallit, isoista aineis-
toista estimoidut FAVAR-mallit sekä tilatollinen identifikaatio mahdollistavat rahapoliti-
ikkashokkien identifikaation luotettavammin. Näiden mallien tuottamien tulosten perus-
teella euroalueella ei ole havaittavissa hintapähkinää. Tulosteni perusteella 25 korkopis-
teen rahapolitiikkashokilla on 10-15 korkopisteen negatiivinen vaikutus inflaatioasteeseen
noin 12 kuukauden viiveellä, jonka jälkeen vaikutus konvergoituu nollaan noin 30 kuukau-
teen mennessä.

Avainsaat: hintapähkinä, vektoriautoregressio, rahapolitiikka, tilastollinen identifikaatio,
informaatiovaje.
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1 Introduction

1.1 The Price Puzzle

Ever since VARmodels were introduced to the econometric literature by Sims (1980), they
have become the workhorse of marcoeconmetricians. However, to this day the question of
the impact of monetary policy on inflation remains controversial. This question was first
raised by Sims (1992) who pondered the initial rise in prices following a contractionary
monetary policy shock. Against all intuition and theoretical models, an exogenous shock
seemed to initially have a positive effect on prices which turned into a negative one only
after several years after the shock. This counter intuitive finding has since been well
documented in other works as well, which has led to the coining of the term “price puzzle”.
Although several solutions to this problem have been proposed, to this day no convergence
or consensus has been achieved. This is evident from the fact that long after Sims (1992,
p. 981) used commodity prices and exchange rates to control for inflation expectations,
new solutions are still proposed and evaluated, for example Giordani (2001), Bernanke,
Boivin, and Eliasz (2005), Rusnák, Havranek, and Horváth (2013) and Estrella (2015). To
add insult to injury, many of these attempts only seem dampen the price puzzle instead of
removing it.

The price puzzle raises some fundamental questions regarding the research on dynamic ef-
fects of monetary policy with VARs. First: As discussed by Christiano, Eichenbaum, and
Evans (1999), the consensus on the effects of monetary policy shocks is quite broad and
non-specific. How are we to reliably evaluate the effects of monetary policy, when there is
no consensus even on the requisites for specification? Second: if the puzzle is indeed the
result of information insufficiency, what does it mean for other variable responses besides
inflation? As noted by Bernanke, Boivin, and Eliasz (2005), information insufficiency
would lead to the whole model being misspecified and thus the estimated responses of all
the variables faulty. The identification of these models raise some questions too, as the
generally ad hoc recursive identification procedures remain dominant to this day.

1.2 The aim of this thesis

As stated by Cochrane (2023), with monetary VARs it is important to be clear with the
questions one is asking. Even if one were to uncover the structural relationships between

10
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variables of interest, this doesn’t necessarily answer the question of how ECB’s next rate
hike will effect the economy, as the hike should be endogenous given any coherent mone-
tary rule. So why should we even be interested in these exogenous shocks? To answer this,
let us take a parallel example from microeconometrics. Angrist and Lavy (1999, p. 550)
find that both reading and math results correlate strongly with class sizes. Using an instru-
mental variable approach, the causality from class sizes to scores is found to be negative
however. The initial positive correlation is attributed to selection biases, ie. endogenous
variation. One could say the econometrician does not have the same information as the
parents who select their school districts to get their kids to certain schools. Finding the
causal relationship essentially entails forcing a modelling framework, where parents put
their children into a particular school at random and then taking a particular kid, reassign
them at random into a new class with different class size ”for the heck of it” and watch
what happens to their scores. One could be even tempted to call this random reassignment
a ”shock” and then, to loosely use the words of Cochrane (2023), say ”but the parents
never do this. Ask them. There are no shocks as defined”.

So why should we care about this instrumented causal relationship? Put simply, if one
would want to make educated decisions on educational policy, growing class sizes because
the strong correlation between them and scores fits reality with its endogenous variation
more realistically would obviously be a horrendous idea. In a similar manner, making
educated monetary policy decisions obviously requires knowledge of the structural causal
relations which are revealed by identified shocks. Knowing the effects of these shocks,
be they how theoretical in nature as they be, is paramount: even if class sizes and scores
correlate and the selective behaviour of parents may be much more interesting than a the-
oretical instrumentation using a near millennia old arbitrary rule, the causal link between
them has to be acquired, as if there is no causal link, why should the policy maker even
bother with restricting class sizes? In the same vain, if there is no sizable, relatively quick
structural causal effect from monetary policy to inflation, why should a inflation targeting
central bank even bother with an official interest rate as its instrument? Thus, making
educated endogenous policy decisions require information of the causal effects, which are
uncovered by identifying these shocks.

As VARs can be estimated by minimal assumptions compared to other model types, they
are a powerful tool in the toolkit of an econometrician. They are also important in validat-
ing and calibrating othermodel types. As such, finding clear requisites for the specification
and identification of monetary VARs is a crucial task.

The aim of this thesis is to review different solutions to the price puzzle. The scope of this
review will be focused on model specification from the viewpoint of information suffi-
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ciency and proper identification of shocks. In Section 2 I will present the VAR framework
upon which this thesis will be built upon. In section 3 I will be reviewing solutions pro-
posed in the existing econometric literature as well as more general potential pitfalls and
solutions. In section 4 I will be evaluating empirically the performance of these solutions
as well as offering my own. As most of the literature uses quarterly datasets from the
US between the 50s and the 00s, the empirical section of this thesis will be conducted
on monthly data from the euro area between 2000 and 2019: as more and more studies
with mostly overlapping data is conducted, the more likely it is for a minor difference to
produce a Type II error and thus the results to vary from chance alone.

The scope of this thesis will for the most part be empirical. As will be evident later, even
theoretical models with reasonable empirical calibration provide too varying results to
give us conclusive answers, indicating the question at hand to be empirical in nature in the
end.

It is worth noting that whereas usually empirical research is conducted by first building
reasonable assumptions and then evaluating the results, I will be turning this the other way
around. In other words, the aim is to “brute force” the expected results and then evaluate
the plausibility of the assumptions needed to reach the predetermined results.
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2 Theoretical background

2.1 What exactly is a monetary policy shock?

Let’s define monetary policy shocks in line with Christiano, Eichenbaum, and Evans
(1999, p. 71) as

St = f (Ωt)+ vt , (1)

where St is the instrument of the monetary authority (for example the official interest rates
of the ECB), Ωt is the informational set available to the monetary authority and f is a
linear function capturing the behaviour and reactions to other variables of the monetary
authority when setting the policy instrument (this could be the Taylor’s rule for example).
The monetary policy shock is the disturbance term vt . In other words, it is the part not
explained by the monetary authority’s reaction function and the available information set.
This of course implies that the shock is exogenous and orthogonal to other shocks.

But where does this shock come from? The policy instrument is controlled by the mone-
tary authority and thus any change (or lack there of) is by definition a conscious decision
by them. As Cochrane (2023) put it, why would the FED just add 25 basis point to the
appropriate rate ”at random, just for the heck of it”? However, as outlined by Christiano,
Eichenbaum, and Evans (1999, pp. 71–72), there are several reasonable interpretations
for these shocks. First, stochastic shifts in the preferences of the monetary authority. For
example, the composition of the board of a central bank could stochastically shift due to
personal reasons. One could think of Tuomas Välimäki taking Olli Rehn’s seat in the
ECBs governing council due to Rehn’s presidential campaign (BoF 2023). Second, the
monetary authority might give into public pressure and deviate from its general feedback
rule. Third, economic variables usually get revised several times afterwards, as the initial
values usually contain certain amount of measurement error. Thus when making desi-
cions, the monetary authority is restricted to imprecise data corrected only after the fact
and thus leads to skewed decisions.

2.2 Model setup

In line with most textbooks (see for example Kilian and Lütkepohl 2017, p. 23 or Lütke-
pohl 2005, p. 13) let Yt = (y1t y2t . . . ykt)′ be a k× 1 vector of variables at time t. By
regressing these variables on the past valuesYt−1,Yt−2 . . . we get the reduced formVAR(p)
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model

Yt = ν +
p

∑
i=1

AiYt−i+ut , (2)

where ν is the vector of constants, Ai is the matrix of coefficients relating the dynamic
effects of the variables to each other at lag i and ut is the error term vector with covariance
matrix Σu. As outlined in Kilian and Lütkepohl (2017, pp. 25–26), a VAR(p) can be given
a VMA(∞) representation

Yt = µ +
∞

∑
j=0

Φ jut− j (3)

where Φ0 = Ik and Φi = ∑i
j=1Φi− jA j. In other words, observations Yt can be presented

as a linear combination of past errors.

The error terms of a reduced formmodel can be viewed as comprising from a large number
of economically meaningful shocks and are thus (potentially) contemporaneously corre-
lated. Thus, making any economically meaningful inference requires structuralisation of
the reduced form model into a SVAR model in order to extract the shocks of interest. This
can be done by setting ut = Bvt turning model (2) into

Yt = ν +
p

∑
i=1

AiYt−i+Bvt , (4)

where Σv = Ik and B is the matrix relating the contemporaneous effects of the orthogonal
shocks vt . In order to infere the structural model, one has to identify the orthogonal shocks
of interest from the noisy error term. By substituting the structuralisation of the error term
into the VMA(∞) model (3) we get

Yt = µ +
∞

∑
j=0

Θ jvt− j, (5)

where Θ j = Φ jB. The subject of identification will be examined more closely in Section
3.2.

2.3 Impulse response functions

As seen, VMA representations model the VAR process as a linear combination of its past
shocks. As apparent from (5), Θ j maps the impact of shocks vt− j to Yt . Following Kilian
and Lütkepohl (2017, pp. 108–111), the effect of a given shock at t to variable i at horizon
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j is acquired from the corresponding coefficient θ j,ik, or

∂yi,t+ j

∂vkt
= θ j,ik.

Here impact matrices Θ j are acquired recursively

Θ0 = Φ0B0 = IKB0 = B0

Θ1 = Φ1B0

Θ2 = Φ2B0

etc.

In these lines it is customary to plot the impulse responses of the structural shocks from
these estimates. Naturally, these can also be cumulated.

2.4 The confidence interval problem

It is well-known that constructing reliable confidence intervals for applied VAR models is
challenging. As is demonstrated by Benkwitz, Neumann, and Lütekpohl (2000, pp. 76–
8), the limiting behaviour for the asymptotic distribution of the response estimate differs
whether the response is zero or non-zero. Many of the methods based on asymptotic the-
ory also require distributional assumptions, which often become questionable with finite
samples (Kilian 1998, pp. 2–7).

Due to these problems, confidence intervals are often constructed by bootstrapping rather
than asymptotic theory. The idea is to approximate the distributions of interest based on
their sample analogues and then use these to simulate confidence intervals. Thus they tend
to be more general and accurate in small samples than their more theory based counter-
parts. For many types of model specification, formal confidence interval methods also just
don’t exist as of yet (Kilian and Lütkepohl 2017, p. 340). It should be noted however, that
bootstrap intervals come with their own problems. The performance of different methods
may differ greatly depending on the model and sample sizes (Kilian and Lütkepohl 2017,
pp. 368–369). The presence of heteroskedasticity of some sort does also play an impor-
tant role, and as outlined by Lütkepohl and Netšunajev (2017a, p. 7), generally little is
known about the actual properties of bootstrapping methods in these instances. Thus, it
is often better to view bootstrapped or theory based intervals as indicators for sampling
uncertainty rather than classic confidence intervals.
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2.5 Fundamentalness

As we saw frommodel (4), economically meaningful shocks are acquired by assuming the
VAR residuals to be a linear combination of them. More formally, let Zt be a stochastic
process with the VMA representation

Zt =
∞

∑
i=0

Θivt−i

where Zt is N× 1 vector of the observable variables and vt is q× 1 vector of structural
shocks driving the process. As the estimate for this VMA process is acquired by estimat-
ing a VAR, the estimates for these structural shocks are by construction acquired as a part
of the VAR residuals. Thus, it is easy to see that if N < q, acquiring the actual structural
shocks is not possible. In this situation of course, the estimates for a single shock would,
in general, be tainted by several shocks. Formally put; whenever vt ∈ span{Zt−i, i ≤ 0},
vt is fundamental with respect to Zt (Alessi, Barigozzi, and Capasso 2008, p. 7). Thus one
can see fundamentalness as a close concept to invertibility, as nonfundamentalness would
require inverting the VMA in the future to acquire the structural shocks, which VAR esti-
mation does not allow for. Here it is easy to see that the central source of nonfundamental-
ness is due to agents possessing a larger information set than the econometrician (Alessi,
Barigozzi, and Capasso 2008, p. 5). One should note that the concept of fundamental-
ness and invertibility are not identical, as the later rules out roots with modulus equal to 1
(Forni, Gambetti, and Sala 2019, pp. 226–227). In a more general sense, nonfundamen-
talness is a case of the VMA polynomial determinant having at least one root inside the
unit circle (Alessi, Barigozzi, and Capasso 2008, p. 7). The cause for this strands from the
underlying economic process including a moving average component. Thus, identifying
structural shocks from a VAR would require either a priori knowing the real economic
model or ruling out these kinds of nonfundamental representations (Alessi, Barigozzi, and
Capasso 2008, p. 12).

At this point it should be pointed out that although SVARs by construction identify as
many shocks as there are variables, all of these do not have to be attached with a particular
economic meaning. The source for these could be from measurement errors or otherwise
macroeconomically uninteresting shocks and/or their combination. Thus, when identify-
ing a model, fully labelled identification should not always be seen as necessary. As is
well put by Forni, Giannone, et al. (2009, p. 1327), ”...the question why assume funda-
mentalness, which is legitimately asked when n = q, is replaced by why should we care
about nonfundamentalness when n> q”.
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2.6 What to expect? Implications from the IS-MP framework

As we have seen, empirical structural impulse responses are dependent on the model spec-
ification of the reduced form, ie. estimates of Ai andΦ j, and the identification of the struc-
tural form, ie. the estimate of B. As both of these hinge on some sort of assumptions of
the underlying structure modelled by the VAR, a wide range of different impulse response
shapes is possible depending on these assumptions. Thus having an idea of what kind of
impulse responses can be generated by reasonable theoretical assumptions is useful when
assessing the plausibility of their empirical counterparts. To this end we should start by
constructing some theoretical frameworks.

Let’s start with a straight forward IS-MP model modified from Romer (2019, pp. 265–
267). As there, let’s simplify the analysis by normalizing constants and potential output
to zero, so the output gap equals the realized output. Thus we have

πt = πt−1+λyt (6)

rt = byt + vMt (7)

yt = Et(yt+1)−
1
θ
rt . (8)

Here equation (6) is the so-called accelerationist Phillips curve with inflation πt and the
log of output yt . Equation (7) is the monetary policy curve with the real interest rate rt and
an orthogonal monetary shock vMt which for now we are going to assume as mean zero
and serially uncorrelated. Finally we have equation (8) as the forward looking IS curve.
To solve inflation as a function of the monetary shock let’s substitute (7) into (8) to get

yt = ϕEt(yt+1)−
ϕ
θ
vMt

= ϕ(ϕEt(yt+2)−
ϕ
θ
vMt

...

= lim
j→∞

ϕ jEt(yt+ j)︸ ︷︷ ︸
→0

−ϕ
θ
vMt

where ϕ = θ/(θ +b). The iteration uses the fact that vMt is serially uncorrelated and has
thus always an expected value of zero and ϕ < 0 unless ”the central bank followed the
perverse policy of cutting real interest rate in response to increases in output” (Romer
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(2019, p. 267)). Substituting this into (6) gives inflation as

πt = πt−1−
λϕ
θ

vMt = πt−1−
λ

θ +b
vMt (9)

which is a simple random walk. As such it is easy to iterate forward

πt+1 = πt−1−
λ

θ +b
vMt − λ

θ +b
vMt+1

πt+2 = πt−1−
λ

θ +b
vMt − λ

θ +b
vMt+1−

λ
θ +b

vMt+2

...

from which we can easily take the derivative with respect to vMt to get

∂πt+ j

∂vMt
=− λ

θ +b
, j ≥ 0.

In other words, as is well-known for random walks, shocks are infinitely persistent, as
here a unit monetary shock at t lowers the rate of inflation by λ/(θ + b) from impact to
the end of the world.

One could also entertain the idea of serially correlated shocks. This could be motivated
by empirical VAR models sometimes exhibiting some remains of serial correlation in the
residuals. In the same manner as above, it is straightforward to show that with vMt =

ρMvMt−1+ eMt , where eM ∼ (iid),

∂πt+ j

∂vMt
=− λ

θ +b−ρM
, j ≥ 0.

As we see, the effect of this shouldn’t be dramatic, as the autocorrelation coefficient only
serves to strenghten the response. The exception to this would be if θ + b ≤ ρM, as this
would drive the response to minus infinity after it would jump to positive. Although an
intriguing possibility, we will ignore this scenario.

Intuitively it should be quite obvious that the infinitely persistent shocks implied by the
accelerationist Phillips curve is quite unreasonable when regarding an inflation targeting
central bank, as this type of a random walk for inflation implicitly assumes the central
bank not having credibility regarding its inflation targeting.

If one is to take the the first term of the Phillips curve as inherited from a past as is the
case with the accelerationist version, a more reasonable assumption could be to assume
past inflation rates to effect the current one with diminishing lags. Most straight forward
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way to formulate this would be to replace the lagged inflation term in the accelerationist
Phillips curve by a stationary VAR(∞) process, that is (9) becomes

πt =
∞

∑
j=1

ρ jπt− j−
λ

θ +b
vMt . (10)

with 0< ρ < 1. Thus we get

∂πt+ j

∂vMt
=− ρ jλ

θ +b
, j ≥ 0 (11)

which converges to zero as j→ ∞.

With the simple IS-MP we are already able to produce quite reasonable impulse responses
with the effect being negative, lagged and with realistic applications considered converg-
ing to zero. Of course, with the framework considered here the peak of the effect is at
impact. As will be touched upon in Section 3.1.5, more sophisticated DSGE models tend
to produce impulse responses peaking with a lag. As these kinds of models do not tend
to have explicit solutions, the shapes and even the sign of the responses depend on the
model specifications and parameter calibration. Thus, these kinds of application will be
left untouched for now.
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3 Previous literature

3.1 Model specification

In this thesis model specification will be used to describe the informational set contained
in the model. Other aspects of model specification, like asymptotic properties, though
important, will not be covered. Proper specification is important since proper inference
requires the model to capture relevant systematic dynamics of the variables. For example,
since inflation and economic activity (for example GDP) are strongly linked to each other
and reacting to inflation is one of the key mandates of modern central banks, excluding
inflation would lead to the dynamics between it and the monetary policy instrument being
captured as dynamics between GDP and the instrument by the model due to GDP and
inflation being linked, and thus to faulty inference. This could be contrasted with omitted-
variable bias in microeconometrics.

3.1.1 Indicators for future inflation

The original diagnosis for the price puzzle was conducted by Sims (1992, pp. 988–989)
who postulated that since VAR models look into the past, a proper specification of the
model should include variables useful for forecasting inflation, as central banks look also
to the future. Hence, the model identifies an endogenous response to inflation expecta-
tions as an exogenous shock. In other words, in the context of the price puzzle, it is not
prices rising in response to a contractionary monetary policy shock, but rather the mone-
tary authority contracting because of expected inflation in the near future.

Hanson (2004, p. 1393) divides the possible indicator variables into two broad categories.
First is the set of variables with a pass through effect to consumer goods. Certain variables
like producer price indices can be viewed to have forecasting power for consumer good
prices, since producers tend to eventually pass rising costs in production into the final
goods. Second is the set of variables reacting to same signals as consumer goods, just
faster. An example for this could be exchange rates, as in line with Dornbusch (1976)
they react immediately by overshooting to inflationary pressures due to consumer prices
reacting sluggishly. These two categories are not mutually exclusive however.

Sims (1992, p. 981) includes commodity prices and exchange rates in his models estimated
for the US, the UK, Germany, France and Japan. The results are mixed however, as the
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effect on the impulse responses varies a lot with the UK having a large mitigation of the
price puzzle while Japan, France and Germany having barely. The price puzzle is not
completely eliminated in any of the models.

The author also makes it clear that the models are not very satisfactory, as the same com-
modity price index is used in all of the models and hence, six different estimates for the
modeling of the same variable are acquired. This problem can be solved if one takes
commodity prices as exogenous. This of course is not feasible with large economies like
the US with significant impact on global commodity prices but might be realistic enough
in certain modelling instances. This approach was taken by Peersman and Smets (2001,
p. 37) who conducted their VAR on the eurozone countries with synthetically aggregated
data. Following the notation specified in Section 2.2, their model is as follows:

Yt = ν +
p

∑
i=1

AiYt−i+
k

∑
i=0

DiZt−i+ut ,

where Yt = (yt πt rt st)′ is the standard vector of endogenous variables, in this case the
real GDP, the rate of inflation, the short term interest rate and the real exchange rate. Zt =
(pcomt yUS

t rUS
t )′ is the vector of exogenous variables, in this case a global commodity

price index, the real GDP of the US and the short term interest rate in the US. Note, that
there of course is no explicit reason for the lag lengths to be the same, ie. p ̸= k is a viable
option. The rationalisation behind Zt is to control for inflation expectations and the global
business cycle. Taking Zt as given means naturally that we are assuming no feedback
from variables in Yt to Zt removing the need to model their dynamics. One could however
ponder whether the euro area is too large in the global scale to assume this.

Peersman and Smets (2001, p. 39) get impulse responses which can’t really be argued to
exhibit the classic hump-like pattern so often seen with the price puzzle. Still, they do
raise some questions. Looking at the estimated impulse responses, one has to ponder on
why does it take a full year for inflation to react in any meaningful way? This is usually
explained away by ushering the magic word ”frictions”, but this explanation should be
examined more critically. If we take price frictions in the classic sense of Calvo (1983),
surely inflation should start to adjust immediately or quite soon at some rate, albeit grad-
ually. This is how we see pretty much every other variable in almost all cases behaving
and it makes intuitive sense. For the exhibited impulse responses of inflation to make
sense from the point of view of frictions, we would have to assume that during the first
year after the shock, there are no significant supply or demand effects that would lead to
re-optimization of any prices, but after this agents suddenly start to act. Though not im-
possible, this seems like a very strong assumption and thus Occam’s razor would caution
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us to make too strong conclusions.

The findings of Hanson (2004, pp. 1393–1407) shed some much needed light on the in-
clusion of variables forecasting future inflation. The author tests the forecasting power of
a wide range of often used control variables, including different commodity prices and ex-
change rates. The author finds that the consistency of the forecasting power over different
horizons is poor for all of the tested variables as none of them is able to produce superior
forecasting power over others for all of the tested horizons. Moreover, none of the tested
variables is able to mitigate the positive point estimate under 8 months or so. The rela-
tionship between mitigation of the price puzzle and forecasting power is also found to be
small at best, implying that the forecastability of inflation is not the problem in the first
place. One could even argue that these findings dispute the whole puzzle. This view will
be considered further in Section 3.1.5.

Another interesting interpretation could also be given however: As the general price level
aggregates all of the different price effects in the economy, it could be argued that different
indicators have forecasting power over some of the underlying price movements but not
the aggregate level itself. For example, a rise in the price of oil and the price of conductors
might have unrelated pass through effects on prices. Thus including one does not account
for the effects of the other though it is reasonable to assume the monetary authority to be
aware of both. More formally, the monetary author acts upon general, but unobservable
inflation expectations for which all of the observed variables are noisy indicators. This
line of thought will be expanded upon in Section 3.1.4.

3.1.2 The output gap, Phillips curve and inflation

As is evident from the different forms of the Phillips curve that litter the literature (for
example see the accelerationist, Lucas and new Keynesian Phillips curves from Romer
2019, p. 338 or the Phillips-type and NAIRU-type curves from Higo, Nakada, et al. 1999,
pp. 131–133), mainstream economic theory doesn’t really see a relationship between in-
flation and output, but rather inflation and the output gap. As outlined well by Fisher,
Mahadeva, and Whitley (1997, pp. 68–69), ”The output gap is generally used to measure
the extent to which the economy is operating at an unsustainable level of resource utilisa-
tion...”. As such one could see it reflecting the extent to which the economy deviates from
equilibrium. In this view, equilibrium prices or inflation are constant, and movements in
these are caused by the disequilibrium resulting from rigidities in the economy.

Due to this evident discrepancy between the traditional monetary VARs and theory, Gior-
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dani (2001, p. 1) proposes the inclusion of the output gap or potential output to be
paramount for the proper specification of monetary VARs. As outlined by the author,
solving the apparent misspecification of the VAR with commodity prices is problematic
also due to the fact that it makes it more difficult to interpret the structural shocks. As
VARs need as many shocks as there are variables, a CPI and a commodity price index
need their separate, orthogonal shocks. Again, these tend to be absent from theoretical
models (Giordani 2001, p. 3). With these lines of thought as well as the conclusions made
at the end of Section 3.1.1 one could easily argue that the inclusion of a commodity price
seems to be a patch work solution at best.

The author constructs a simple backwards looking model which implies a Taylor rule both
in the discretionary and commitment solutions. As such, the DGP is driven by the potential
output, realized output, inflation and the interest rate. However, it turns out that giving this
model a VAR representation and excluding the potential output implies a positive variance
for the monetary policy shock even if the true variance is set to zero. In other words, a
model with no output gap will overestimate the variance of the monetary shock (Giordani
2001, pp. 6–10). As is then shown by the author, the impulse responses implied by the
theoretical model with a zero variance monetary shock (ie. the shock doesn’t exist) when
the output gap is excluded seem quite similar to the ones we see in the empirical literature:
a decline in output, and an initial increase followed by a tapering of in the rate of inflation
and the interest rate. Simulating the system with a stochastic, non-zero variance monetary
shock reinforces these conclusions. These do not just exhibit the classic prize puzzle in
the form of an initial rise in the rate of inflation (which does not appear in the correctly
defined DGP), but also other impulse responses are misestimated: the response of output
to a aggregate demand shock gets overestimated while the response of the interest rate
get underestimated. In short, excluding the output gap misspecifies the whole system and
subsequently the impulse responses. These observations seem to hold quite well also for
the empirical counterparts (Giordani 2001, pp. 23–25).

3.1.3 Different monetary policy regimes

For obvious reasons relating to degrees of freedom in estimation, researchers prefer to have
as much observations as possible. Within time series econometrics this naturally means
longer and/or more frequent time series. Longer time series might bring their own curses
however, as monetary authors might switch instruments over time. As pointed out by
Hanson (2004, p. 1407), between 1979 and 1982 the FED explicitly targeted non-borrowed
reserves, not the federal funds rate. Thus, identifying monetary policy through the federal
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funds rate would be inappropriate through this period and lead to faulty estimates.

Monetary authors might also change their preferences and goals. As outlined by Taylor
(1999, pp. 336–339), the federal funds rate had at the time of him writing more or less
responded to the rates implied by the Taylor’s rule since the late 80s as well as being
on point during Volcker’s disinflation years in 1979 and 1980. Before the disinflation
years the rate was consistently too low and between 1982-1984 too high. This indicates
shifts in FEDs goals. As outlined, in the 60s inflation was tolerated in the view of the
inflation/unemployment-trade off and in 1982-1984 the FED tried to establish its credibil-
ity and keep inflation expectations low as it was essentially ”in a transition between policy
rules” (Taylor 1999, p. 339). In other words, the FEDs response function has changed
multiple times since the 60s. Thus estimating the whole period as a whole with one model
would naturally lead to biased results.

This line of thought could be taken further by considering rational expectations. Let’s
say that for the first α-part of the estimation period the monetary authority conducted it’s
policy by an old rule such that Soldt = f old(Ωt)+vt and for the remainder (1−α)-part by a
new rule such that Snewt = f new(Ωt)+vt . Without rational expectations, this would simply
mean that estimation over the whole period would lead the monetary reaction function
estimate to be a linear combination

Ŝt = α f old(Ωt)+(1−α) f new(Ωt)+ et .

However, as outlined by Kydland and Prescott (1977, p. 480), with dynamic rational ex-
pectations the reaction function of economic agents is in itself a function of the policy
function. In the case of a monetary VAR, this would mean that a change in monetary pol-
icy regime alters the expectations in the economy thus changing all of the other reaction
functions modelled by the system as well. In other words, the whole model and its impulse
responses gets misestimated, not just the monetary instrument. This also seems to be the
case when looking at the impulse responses from Hanson (2004, p. 1408), as the responses
from 1959 to 1979 seem to be more volatile than the ones from 1982 to 1998, while the
responses from the whole period seem to be something in between.

As shown by Hanson (2004, p. 1408) the price puzzle is mostly mitigated from their mod-
els by simply restricting the data from 1982 onward. This idea is also taken up by Borys,
Horváth, and Franta (2009, p. 424), who restrict their observations to relatively low 101 in
order to acquire estimates only on the post-1997 period of inflation targeting by the Czech
National Bank (a fixed exchange rate regime was in place prior to this). As a result, they
do not observe a price puzzle. This is also reinforced by the meta-analysis of Rusnák,
Havranek, and Horváth (2013, p. 42) who observe that compared to the whole pool of
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studies of which 15% exhibited a significant price puzzle and 50% in some form, studies
estimating a single monetary regime only faced this 8% and 38% of the time.

3.1.4 Factor augmentation

As outlined by Bernanke, Boivin, and Eliasz (2005, pp. 388–389), traditional VARmodels
exhibit at least three problemswhen applied tomonetary policy research. First, due to each
variable raising the amount of estimated coefficients by the number of lags used (plus the
constant), having a large number of variables in the system is not generally feasable with
the finite set of observations econometricians are limited by. Thus models with more than
six to eight variables are rarely seen, as having more starts to pose some serious problems
with degrees of freedom. This poses an obvious challenge from the point of view of proper
model specification, as monetary authorities observe and weigh in hundreds of variables
when conducting monetary policy. Thus, even with carefully chosen proxies, it is very
likely that some relevant information used by the monetary authority and economic agents
gets left out from a traditional VAR model.

Second, a lot of concepts and variables in economic theory have no precise counterparts in
the observable data. For example, ”economic activity” may not be a one-to-one measure-
ment with variables such as GDP or industrial production. As these observable variables
may not represent the actual variables of interest precisely, using them creates model mis-
specification and thus faulty estimates for the impulse responses. In addition, asmentioned
in Section 2.1, these observable variables are subject to measurement errors which in time
of policy conducting haven’t been revised yet. Thus, it could be argued that these variables
are actually (to a point) contemporaneously unobservable.

These two aspects alone paint a grim picture of traditional monetary VARs. As the ob-
served variables are rather just noisy proxies for the actual driving forces of the DGP,
including only a handful of them would lead to information insufficiency, while includ-
ing enough to ensure a proper information set would lead to serious cross-correlation and
overfitting issues.

Third, often the econometrician is not interested in the effects of monetary policy on just a
few variables, but rather a wide range of them, which a traditional small dimension model
doesn’t allow for. Furthermore, one could argue that as contemplated by Sims (1992,
p. 997), estimating several models to acquire estimates for a large amount of variables
would lead to several different model equations for certain variables.
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The first two aspects become quite clear when reading the accounts of monetary authors
meetings. For example, in the monetary policy meeting of the Governing Council of the
European Central Bank in October 2023, a large number of variables were discussed. To
name a few; different interest rates and spreads, indicators for inflation and output expec-
tations, disaggregated price indices, energy price volatility, employment, credit supply
and demand changes, changes in the outlook for the US and Chinese economy, service
sector activity, productivity trends, real estate transactions, the effect of monetary policy
transmission etc. were discussed. It is also quite evident that monetary policy decisions
are not made by explicitly applying some observed variables into a rule in the moment,
but rather by extrapolating a general view on the outlook of the real economy and infla-
tion expectations from a large amount of indicators (ECB 2023). This of course is to be
expected as especially the output gap estimates are not in general available at their final
form at the moment of policy conduct.

As a solution to these problems, Bernanke, Boivin, and Eliasz (2005) propose the use of
FAVARmodels. In this setup, themodel of directly observable variables is augmentedwith
unobserved factors, which are estimated from a large set of data. The general formulation
of this looks like following: (

Ft
Yt

)
= ν +

p

∑
i=1

Ai

(
Ft−i

Yt−i

)
+ut .

Here Yt is the vector of observed variables and Ft is the vector of unobserved factors. As
mentioned before, the amount of observable variables which the monetary authority reacts
to are actually quite small in number. For example, Bernanke, Boivin, and Eliasz (2005,
p. 397) argue that even inflation and output could be seen as unobservable, since these are
(at least contemporaneously) subject to measurement errors and do not necessarily fully
align with their theoretical counterparts. For example, measuring inflation is always sub-
ject to subjective choices not just between different price indices, but also the composition
of these indices making it hard to justify one measurement to be the true one. Thus they
conclude, that the most realistic form ofYt might actually be a univariate vector consisting
of only the policy instrument ie. Yt = rt . In this case, all the other available variables are
noisy macroeconomic indicators from which common factors are extrapolated. Again,
this interpretation is reinforced by reading of ECB (2023) for example. Of course, one
could argue that the composition of Yt depends on the monetary authority in question. For
example, as the ECB considers ”...that the Harmonised Index of Consumer Prices (HICP)
remains the appropriate price measure for assessing the achievement of the price stability
objective...” (ECB 2021), including it in Yt for the euro area could be justified.
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A factor model can be defined as

Xt = Λ fFt +ΛyYt +ηt , (12)

where Xt is a large N× 1 vector of variables, which are driven by m common factors in
vector Ft = ( f1, . . . , fm) and the observable variables Yt . This can also be extended to a
DFM by including the lags of the factors in Ft (Bernanke, Boivin, and Eliasz 2005, p. 393).
As outlined by Kilian and Lütkepohl (2017, p. 539) this (static) model can be estimated by
principal components by maximizing the variance of Xt explained by m common factors,
or in reverse minimizing the sum of squared errors ie.

min
Λ f∗ , f1,..., fT

1
T

T

∑
t=1

(Xt −Λ f ∗Ft)′(Xt −Λ f ∗Ft). (13)

Note, that following Bernanke, Boivin, and Eliasz (2005, pp. 398–399) we aren’t taking to
account the effect ofYt toXt at this point yet. Solution to (13) can be acquired by finding the
m largest eigenvalues λ1 > · · · > λm and their corresponding eigenvectors λ1 . . .λm from
Sx = T−1∑T

t=1XtX
′
t . From this we set the estimates for factor loadings as Λ̂ f ∗ = (λ1 . . .λm)

and thus F̂∗t = Λ̂′ f
∗
Xt . Now the final estimate cleaned of Yt can be acquired for example

by regressing the estimates of the common factors with unobserved ”cleaned factors” and
Yt , though the exact procedure would have to be chosen in accordance with identifying
assumptions. For example Bernanke, Boivin, and Eliasz (2005, pp. 404–405) suggest
extracting the common factors from the regression F̂t = F̂∗t +Λy∗Yt + et using the so-
called slow-moving variables, as these aren’t in their case assumed to be affected byYt = rt
contemporaneously excluding problems of multicollinearity. As the series of common
factors F̂t have been extracted, they can be used in the VAR model as usual.

The asymptotic properties of the estimates for the common factor are discussed in Stock
and Watson (2002, p. 1167) who show that under mild assumptions F̂t is consistent as
N,T → ∞. However, as discussed by Boivin and Ng (2006, p. 171), as data sets Xt are
always put together by the researcher using subjective judgment and due to many of the
series used in practical applications being highly correlated, the usual asymptotic assump-
tions, even mild ones, become quite strong. They show by Monte Carlo simulation and
study replication that limiting N into the range of 40-50 gives often better estimates than
ones extracted from three-digit amount of series. This is attributed to the fact that in gen-
eral asymptotic properties have most of their effects kicking in when sample size is at min-
imum around 30-40, but at the same time the disturbing effect of strongly cross-correlated
idiosyncratic errors and dominating factors is minimized by having less series.

The results of Boivin and Ng (2006) can be used to the advantage of the econometrician.
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Bernanke, Boivin, and Eliasz (2005, p. 403) extract common factors out of the whole data
set Xt . An alternative to this would be to divide Xt into subsamples and extract factors
out of these and use the first factor (the one accounting for largest amount of variation
in Xt) of each subsample. Subsampling could be done by dividing Xt into categories like
”economic activity” and ”prices” etc. The advantage of this procedure is that it allows for
the use of very large sets of data without the complications discussed by Boivin and Ng
(2006). Although used in the literature before (see Fernald, Spiegel, and Swanson (2014)
and Holguín and Uribe (2020) for example), to my knowledge this kind of subsampling
hasn’t been motivated by the asymptotic results discussed by Boivin and Ng (2006) but
rather just to give the factors an economic interpretation.

Another clear advantage of a FAVAR framework can be seen, when circling back to the
problem of nonfundamentalness discussed in Section 2.5. As is pointed out in Alessi,
Barigozzi, and Capasso (2008, pp. 24–27) and Forni, Giannone, et al. (2009, p. 1329),
nonfundamentalness is not an issue for factor models, as having a large cross-section of
more variables than structural shocks and heterogeneous impulse responses in a factor
model leads to fundamentalness.

Compared to their traditional benchmark models without factor augmentation, Bernanke,
Boivin, and Eliasz (2005, p. 406) are able to considerably limit the price puzzle effect to
less than a year. The initial positive effect does not disappear completely however. Other
authors, such as Laine (2020, p. 2913) and Holguín and Uribe (2020, p. 2459) estimate
very different shapes, the first being the intuitive convex shape and the second concave
with the greatest effect on impact.

3.1.5 The cost channel explanation

What if the prize puzzle isn’t a puzzle at all? Although often neglected from theoretical
models, monetary policy has also ”supply-side” effects, creating the so-called cost chan-
nel. As interest rates rise, some production costs rise as well which could lead to initial
rise in prices (Rabanal 2007, pp. 907–908). The standard way is to take working capital
into consideration by assuming a delay between sales and their payments, so that for ex-
ample wages have to be payed before sales revenue is acquired. Thus firms would have
to loan money to pay wages, leading to interest rates having also an effect labour demand
and aggregate supply (Barth III and Ramey 2001, pp. 208–209).
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Figure 1: The cost channel in action

The empirical implications of the cost channel are discussed by Barth III and Ramey
(2001), who study the cross-sectional dynamics of different industries. Their theoreti-
cal baseline is simple and sheds some light on the mechanism of the cost channel. As
seen from the left side panel in Figure 1, if a monetary contraction has only traditional
demand-side effects, the AD curve shifts to the left leading to a reduction in prices and
output. However, if the AS curve is a decreasing function of interest rates it too shifts to
the left as seen in the left panel of Figure 1. Thus the effect on prices becomes unam-
biguous (Barth III and Ramey 2001, p. 200). This standard way of modelling working
capital also implies that demand for labour and thus the wage is a decreasing function of
the interest rate. Thus, as discussed by Barth III and Ramey (2001, pp. 213–214), if an
industry is primarily affected by the demand channel, prices should fall relatively to wages
as in the right panel of Figure 1. If the industry is primarily affected by the supply channel
however, wages should fall relatively to prices (or in other words prices rise relative to
wages). If both channels are in effect equally, there should not be a change in the relation
of prices and wages.

Out of the 21 industries studied, Barth III and Ramey (2001, pp. 216–219) find that 10
exhibit a rise in prices relative to wages, indicating a dominance of the supply channel. It
is noteworthy however, that the magnitude of these relative price increases doesn’t seem
to be very large. Interestingly however, when subsampling the data reveals that the dom-
inance of the supply channel is much more substantial in the pre-Volcker years, while
it is very minimal during the post-disinflation years. One could even postulate one rea-
son for the prevalence of the price puzzle in the pre-Volcker years compared to the post-
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disinflation years to be this change in the transmission of monetary policy through the cost
channel. Barth III and Ramey (2001, pp. 225–226) discuss numerous structural changes
in the 70s and 80s from private-sector financial innovations to the switch from fixed to
floating exchange rates, which could have contributed to the dampening of the cost chan-
nel. It should also be noted that these findings do not necessarily give a clear answer to
how much one could expect the aggregate price level to rise due to the cost channel, but
rather indicate that such a mechanism exists.

A DSGE approach to the cost channel with working capital is considered by several au-
thors. CEE and Henzel et al. (2009) use a minimum distance estimation approach, where
the model parameters are calibrated by minimizing the distance between empirical and
theoretical impulse responses. Christiano, Eichenbaum, and Evans (2005, pp. 21–22) find
that with US data from 1965 to 1995 this procedure is able to generate an initial rise in the
price level following a positive monetary shock. Rather than sticky prices, sticky wages
is found to be the key driver of this dynamic, as wages have an effect on marginal costs
through the cost channel (Christiano, Eichenbaum, and Evans 2005, p. 30).

Using data from the euro area from 1997 to 2002, Henzel et al. (2009, p. 279) come to the
same conclusion as CEE . Their model is able to generate a positive response in inflation
following a negative monetary shock by allowing for low price stickiness and high wage
stickiness. Their model also includes the same Calvo-type stickiness for loan rates set
by the banking sector. However, this dampens the positive effect as only very low to
non-existent stickiness is found to be able to contribute a positive initial effect, while the
estimate for the Calvo-parameter is found to be 0,41 with a standard error of 0,03. The
authors find that despite initial estimates for price and wage stickiness parameters (0,56
and 0,61) do not allow for a positive initial effect on inflation, re-calibrating them in line
with previous literature (0,35 and 0,7) does. These values are not found to be rejected by
the data. It should be noted however, that even with these restrictions, the positive effect
on inflation is small and lasts only for two quarters (Henzel et al. 2009, pp. 280–281).

Rabanal (2007) follows the modelling assumptions of CEE as well as using US data from
1959 to 2004. Calibrating the initial parameters in line with Christiano, Eichenbaum, and
Evans (2005, p. 17), including full indexation of wages and prices, all intermediate firms
being affected by the cost channel and setting the elasticity of capital utilization with re-
spect to the rental rate of capital high, Rabanal (2007, pp. 917–919) is able to produce
the initial rise in inflation after a monetary contraction. From this baseline model, allow-
ing for price flexibility increases this phenomenon, while allowing for wage flexibility or
eliminating the variability of capital utilization leads to inflation falling from impact as
one would expect in the traditional view. Thus the author concludes, that the mere ex-



31

istence of the cost channel, even when all firms are subject to it, is not enough for the
positive response of inflation, but ”... having a large elasticity of the nominal interest rate
on the real marginal costs of production, high real wage stickiness and variable capital
utilization rates (which implies low volatility in the rental rate of capital) are needed” (Ra-
banal 2007, p. 919). Instead of a minimum distance estimation, the author then uses a
likelihood-based Bayesian approach to re-calibrate the parameters. These contradict the
conditions set by the initial model for a positive inflation response, as price stickiness is
found to be relatively high while wage stickiness relatively low. In addition, practically
all of the probability mass of the posterior distribution for the estimate of firms subject to
the cost channel lie under 0,5, contradicting Christiano, Eichenbaum, and Evans (2005,
p. 10) who assume this to be 1. Thus the author concludes that ”... the posterior probability
of observing an increase of inflation after a monetary policy tightening is zero” (Rabanal
2007, p. 908).

As the conclusions of the papers discussed above are conflicting, it is worthwhile to inter-
pret their findings a bit closer. As mentioned in Rabanal (2007, pp. 908–909), since CEE
calibrate their parameters using minimum distance estimation, their model will naturally
reflect the properties of the VAR used, which displays a small price puzzle. Thus, a mis-
specification of the VAR would lead to misspecified parameters in the DSGE model too.
In the context of this theses it seems quite possible that this is the case, as their VAR spans
over several distinct monetary regimes and does only include a handful of US domestic
real variables (Christiano, Eichenbaum, and Evans 2005, p. 4). It should also be noted that
the initial calibration of Henzel et al. (2009, pp. 275–277) does not lead to a price puz-
zle even though the underlying VAR does display one. It is only after re-calibration that a
small, six month increase in inflation is produced without being rejected by the data. Even
then, one should note that the impulse responses from the original calibration are confined
within the 68% bootstrap intervals of the empirical impulse responses. Henzel et al. (2009,
p. 269) do mention that unlike the US, the euro area financial system is bank based rather
than market based which could explain the differing results of them and Rabanal (2007,
pp. 908–909).

Based on the above discussed evidence it can be concluded that witnessing an increase in
inflation following a negative monetary shock seems improbable. The evidence seems to
indicate that in certain situations, like older data or a more bank-based financial system,
an increase is possible, but even then it can be expected to be small in magnitude and brief,
no more than a couple of quarters.
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3.2 Identification

Identification refers to the procedure by which structure of the contemporaneous dynamics
(which isn’t observable from the raw data) of the estimated reduced form model is extrap-
olated in order to acquire the orthogonal shocks to the system. This can be contrasted with
microeconometric methods by which one can orthogonalise residuals with the explanatory
variables allowing for inference on the model.

The fundamental problem is that in general the covariance matrix of the reduced form
errors cannot be assumed as an identity matrix (ie. the errors are usually contemporane-
ously correlated meaning that one shock of interest might have a contemporaneous effect
on several variables). Thus acquiring orthogonal (ie. Σv = Ik) shocks vt from model (4)
leads to the following (this is analogyous to Kilian and Lütkepohl 2017, p. 494) situation
(for the sake of illustration let k = 2):

Σu = B0ΣvB′
0 ⇒

(
σ2
1 σ12

σ12 σ2
2

)
=

(
b11 b12
b21 b22

)(
b11 b21
b12 b22.

)
(14)

From this we get the set of equations:

σ2
1 = b211+b212

σ12 = b11b21+b12b22

σ2
1 = b221+b222

As we can see, with covariances given by the data, there are three equations with four free
parameters while a unique solution to a set of equations requires as many equations as free
parameters.

The most commonly used identification method is to impose zero restrictions directly to
the impact matrix B. As is well known, full identification requires k(k−1)/2 restrictions
(see Kilian and Lütkepohl 2017, p. 215 for example). In practice this means assuming that
certain shocks do not have a contemporaneous effect on certain variable. This is usually
done by a recursive ordering using the Cholesky decomposition on the covariance matrix
of the reduced form errors Σu. This is done by defining the lower-triangular matrix P such
that PP′ = Σu. As Σu = B0B′

0, this gives one possible identified structure for the model
with P= B (Kilian and Lütkepohl 2017, p. 216).

Identification can be achieved also by restricting the long run effects of shocks. That
is, instead of imposing a recursive structure on the impact matrix B, rather a recursive
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structure on the sum of Θi:s is imposed. More formally, zero restrictions are imposed on
matrix

Θ(1) =
∞

∑
i=0

Θi.

For a classic example, Blanchard and Quah (1989) assume the bivariate system of US un-
employment and the difference in log real GDP to be stationary and identify the shocks
as aggregate supply and demand shocks. For identification, it is assumed that an aggre-
gate demand shock will not have a long run effect on the level of real GDP. That is, the
cumulative impulse responses on the difference of GDP are zero at limit.

The obvious problem with these kind of identification strategies is of course the plausibil-
ity of the made restrictions. Even as it could be argued that it is enough for the ”true” value
of the restricted parameter to be close enough to zero in order to get satisfying estimates for
the identified shocks, these restriction have to be made often quite ad hoc purely to get full
identification. This is evident from the growing literature of statistical identification which
has made these traditional identification procedures testable with the plausibility of them
being rejected repeatedly. For examples, see Normandin and Phaneuf (2004, p. 1231),
Lütkepohl and Netšunajev (2017b, p. 52) and Lütkepohl and Netšunajev (2017a, p. 15).
This of course doesn’t automatically disqualify inference made upon these identification
restrictions, but as seen in Section 2.3, impulse responses are derived from matrix B and
thus misidentifying it naturally leads to faulty estimates for the impulse responses.

3.2.1 The long lags of monetary policy

Since a series of articles by Milton Friedman, the idea of monetary policy effecting with
long lags has been well established. That is, monetary policy doesn’t actually have a direct
effect on prices, but works indirectly through output. Estrella (2015, p. 1883) takes this
idea and formulates the following simple macroeconomic model:

πt = a1πt−1+a2yt−1+ εt (15)

yt = b1yt−1+b2(rt−1−πt)+µt (16)

rt = c1rt−1+ c2yt + c3πt + vt (17)

where (17) is the monetary policy rule. The short-term rate set by the monetary authority
affects output directly only with a lag, which then in turn affects inflation with a lag. Thus
a monetary policy shock at t effects inflation only at t+2 and beyond. From these insights
the author suggests restricting the monetary policy instrument coefficient for inflation to
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zero both contemporaneously and on the first lag. In their three variable model with Yt =
(πt yt rt) this means restricting a1,13 = 0 on top of the recursive identification.

This procedure raises some questions however. First, it could be argued that if the econ-
omy follows the dynamics described by (15)-(17), all of the monetary policy instrument
coefficients on inflation should be restricted to zero, as the effect of monetary policy on
inflation is assumed to work only indirectly through output. Second, even when assuming
the described dynamics of the economy, the applicability of this insight in a VAR context
is very much affected by the data frequency used. Restricting the first lag to zero with
monthly data is very different from doing the same with yearly frequency. The author
uses quarterly data, but no discussion on the effects of data frequency or why quarterly
data specifically fits the proposed period structure is given. Thus, the choice of data fre-
quency can be deemed purely ad hoc. In the end, the question of how many lags on what
kind of a frequency should be restricted is a purely empirical one. Third, one could argue
that given sufficient model specification, these restrictions shouldn’t be necessary as the
model should estimate them as zeros anyway. The need for restricting lags thus implies
information insufficiency to begin with.

Restricting the first lag seems to dampen the price puzzle effect leading the author to
conclude that ”the puzzle disappears”. However, as with many other proposed solutions,
the shape of the estimated curve still exhibits a small positive initial effect. The difference
to the benchmark model seems to be the magnitude of the effect and the bootstrapped
significance level of it. Apparently, the initial positive effect of the unrestricted model was
deemed significant whereas the restricted model was not. It is noteworthy however, that
the bootstrapped intervals used were 0,68 ones and thus quite small by normal standards
of 0,9 or 0,95.

3.2.2 Long run restrictions in a VECM

Another pure identification solution is proposed by Krusec (2010, p. 147). They propose
a model with Yt = (yt πt rt) which gets identified with two long run restrictions and one
short run restriction (this equals to k(k−1)/2= 3 as k= 3). However, instead of a normal
VAR model, one cointegration relationship is assumed (and supported with the Jansen
trace test) and thus a VECM is estimated instead. With a few simplifications (removing
constants and deterministic trends) for illustration proposes, this would look like following



35

(Lütkepohl 2005, p. 247):

∆Yt = αβ ′Yt−1+
p

∑
i=1

Γi∆Yt−1+ut . (18)

Intuitively this means that ”...integrated variables share a common stochastic trend such
that a linear combination of these variables is stationary...” Kilian and Lütkepohl (2017,
pp. 75–76). For example the price of a particular commodity in different markets could
deviate from each other according to the dynamics of the individual markets while the
general trend of these prices is common, ie. there exists an equilibrium relation (Lütkepohl
2005, p. 246).

The author restricts the long run effect of monetary policy shocks to zero for all of the
variables, which due to one cointegration relationship accounts for two independent re-
striction. Thus an additional contemporaneous restriction of inflation shocks (it is unclear
what the author means by this but usually this is modelled as a cost-push shock) to output
is made.

Although the author concludes the results to show a solution to the price puzzle, it is worth
noting that for the post-1981 era the estimate shows again the classic initial hump shape
in the response to inflation. Also unlike in the pre-1978 era, a considerable proportion
of the bootstrapped confidence interval mass is on the positive side. According to these
intervals, the results cannot be considered significant at any point. As the author seems
to use the bootstrapped intervals for inference, a more suitable conclusion based on the
post-1981 era would be ”monetary policy doesn’t seem to have any significant effect on
inflation”, which of course one could argue to be a price puzzle in itself. In the pre-1978
era the negative effect is more or less significant, though the bootstrap intervals are very
much all over the place leaving the magnitude of the impact effect quite open.

3.3 Statistical identification

Statistical identification refers to a broad set of identification strategies employing statis-
tical properties of the data in order to identify orthogonalized shocks. As pointed out by
Rigobon (2003, p. 777), sometimes the traditional identification strategies just cannot be
justified. The clear advantage of statistically identified shocks tend to be that unlike tra-
ditional identification strategies which require assumptions which have to be validated by
external empirical research or that are outright ad hoc, assumptions about the statistical
properties needed for proper identification are usually quite straightforward to validate on
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the data itself and can thus be seen as milder ones. The clear downside is that since a
broad set of identifications for the shocks is possible, statistically identified shock don’t
have a natural economic interpretation but might rather be combinations of economically
interesting shocks. However, this leaves room for over-identification of the model, which
can be used to validate more traditional identification assumptions. The field of statistical
identification is relatively new and still evolving, and as such use of it in the empirical
research has been quite sparse to my knowledge.

Statistical identification methods shouldn’t be necessarily seen as better (or worse) than
traditional ones. Rather they should be seen as useful additional tools in the toolbox of an
econometrician. As their validity can often be directly tested, they can be useful to relax
traditional identification assumptions and thus achieve proper identification. As outlined
by Lütkepohl and Netšunajev (2017a, p. 17), understanding the particular features of the
model and data helps making informed decisions on the type of identification to be used.

3.3.1 Structural breaks in variance regimes

A simple solution to the problem of more free parameters than equations was proposed by
Rigobon (2003), who argued that a shift in the variance of the structural shocks vt could
be used to solve this. Lets use example (14) to illustrate this. However, now we have two
volatility states such that

Σv =

Ik, when t = 1 . . .TB−1

Λ, when t = TB . . .T

where Λ = diag(λ1 . . .λk) and TB is the moment of the break in variance. Now

Σ1
u = B0I2B′

0 ⇒

(
σ2
1,1 σ1,12

σ1,12 σ2
1,2

)
=

(
b11 b12
b21 b22

)(
b11 b21
b12 b22

)
(19)

and

Σ2
u = B0ΛB′

0 ⇒

(
σ2
2,1 σ2,12

σ2,12 σ2
2,2

)
=

(
b11 b12
b21 b22

)(
λ1 0
0 λ2

)(
b11 b21
b12 b22

)
(20)
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giving us the following set of equations

σ2
1,1 = b211+b212

σ1,12 = b11b21+b12b22

σ2
1,1 = b221+b222

σ2
2,1 = λ1b211+λ2b212

σ2,12 = λ1b11b21+λ2b12b22

σ2
2,1 = λ1b221+λ2b222.

As we can see, the number of free parameters has increased by two but the number of
equations by three, giving us six free parameters in six equation, thus enabling a unique
solution for the parameters. This procedure thus requires two assumptions. First, volatility
parameters λ1 . . .λk have to be unique, as λi = λ j would imply less free parameters than
needed for identification. Second, there has to be at least two different volatility states
to begin with, the break point between which has to be specified. However, as shown by
Rigobon (2003, p. 783), given that the volatility break exists, misspecification of it will
still lead to unique estimates for parameters as linear combinations of the true parameters.
Thus even a misspecified model is identified and the estimates are consistent.

In practise, identification boils down to whether parameters λ1 . . .λk can be interpreted to
be unique. Lanne and Lütkepohl (2008, pp. 1137–1139) do this by conducting (quasi-)LR
tests on the stylized log likelihood functions of Σu. However, although this tests the valid-
ity of the assumed heteroskedasticity of the covariance matrix of the structural shocks (as
B being constant through the whole model implies heteroskedastiscity of ut resulting from
heterskedasticity in vt), it is not obvious that this confirms the uniqueness of individual
volatility parameters λi. Lütkepohl, Meitz, et al. (2021, pp. 5–8) develop formal Wald-
tests for uniqueness of λ1 . . .λk for models with two volatility states, assuming elliptically
symmetric distributions for the reduced form errors. However, through simulations they
find the power of the test to be questionable with large models on small samples (their
small samples where T = 100with larger being T = 250 and T = 500) (Lütkepohl, Meitz,
et al. 2021, pp. 9–15).

3.3.2 SVAR-GARCH

As is seen in many economic and financial applications, time series are often well ap-
proximated by GARCH processes. Thus assuming the shocks in the VAR system to have
conditional variances might be a useful tool. As it turns out, if the shocks are generated by
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a GARCH process, they become identifiable (Kilian and Lütkepohl 2017, pp. 517–518).

Let’s follow the model setup of Kilian and Lütkepohl (2017, pp. 518–519) and assume
the shocks to be generated by individual and orthogonal GARCH(1,1) processes. Higher-
order processes could be considered as well, but in practice this is rarely done (Kilian and
Lütkepohl 2017, p. 518). Now we get

E(utu′t |Ft−1) = BΣvt |t−1B
′

as the conditional covariance matrix of reduced form errors ut . Here Ft−1 is the infor-
mation set up to t − 1 and and the covariance matrix of structural shocks is Σvt |t−1 =

diag(σ2
1,t|t−1, . . .σ

2
k,t|t−1). The individual structural shock conditional variances are given

by a GARCH(1,1) process of the form

σ2
k,t|t−1 = (1− γk−gk)+ γkv2k,t−1+gkσ2

k,t−1|t−2, k = 1, . . . ,K, (21)

where γk,gk ≥ 0. Note, that the unconditional covariance matrix of the strutural shocks is
E(vtv′t) = Ik as usually. Now full identification is achieved if at least k−1 of the processes
in (21) are non-trivial, that is γk ̸= 0. Tests for full identification are considered by Lütke-
pohl and Milunovich (2016, pp. 246–253), who based on Monte Carlo evidence conclude
them to have relatively low power in small samples.

Identifying the model through SVAR-GARCH has a couple of advantages. First, it is
easy to rationalize the conditional covariance structure of the structural shocks. Second,
as outlined by Lütkepohl and Netšunajev (2017a, p. 17), SVAR-GARCH models provide
quite a lot of flexibility. This doesn’t come without a price however, as estimation tends
to be difficult for larger models as well as constructing reliable bootstrap intervals.

3.3.3 Smooth transition in variance regimes

Rigobon (2003) assumes an exogenous and immediate change in the volatility state of
vt . These can be a bit of strong and ad hoc assumptions however. Thus Lütkepohl and
Netšunajev (2017b, pp. 45–46) propose the idea of two volatility states of vt with a smooth,
endogenous transition between them according to a transition function with exogenously
determined transition variable.

Let’s take the two covariance functions (19) and (20) from Section 3.3.1. However, instead
of the structural break marking the change from one to the another, let the covariance
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matrix Σut be a time variant combination of Σ1
u and Σ2

u. In other words,

Σut = (1−G(st))Σ1
u+G(st)Σ2

u (22)

where G(·) is the transition function and st the transition variable. Lütkepohl and Netšu-
najev (2017b, p. 45) use a transition function of the form

G(γ,c,st) = (1+ exp[−exp(γ)(st − c)])−1. (23)

Due to its logistic form, 0 < G(γ,c,st) < 1. Here γ is the slope parameter, which can
be interpreted to determine the speed of the transition between states Σ1

u and Σ2
u. c is the

location parameter.

Note that for γ → ∞ and st < c, Σut → Σ1
u while st > c, Σut → Σ2

u. Interestingly, from this
angle one could see the formulation of Lütkepohl and Netšunajev (2017b) as a general-
ization of Rigobon (2003), as setting st = t and γ as ”large” would keep the volatility state
approximately at Σ1

u until t > c at which the volatility state ”jumps” to approximately Σ2
u,

just as in the formulation of Rigobon (2003).

The smooth transition framework is beneficial as it provides a happy middle ground be-
tween the structural break models and GARCH models. Whereas the former is computa-
tionally efficient but quite inflexible and the latter is computationally inefficient but flex-
ible, smooth transition models retain the computational efficiency while allowing for (at
least often) enough flexibility. The transition between volatility states can also be given
economic justifications, as the transition is captured by the transition variable. For exam-
ple, Lütkepohl and Netšunajev (2017b, p. 48) use lagged values of inflation. This could
be motivated by higher inflation causing more price dispersion under Calvo (1983) style
price ridgities which in turn causes more disturbances in resource allocation, and thus
could potentially also cause more volatile shocks.

3.3.4 Non Gaussian maximum likelihood

A lot of the theory and practices concerning VAR modelling is based on assumptions of
Gaussian shocks, be it explicit or implicit. As we have seen earlier, these models do not
allow for a straightforward identification of shocks as the joint distribution of the reduced
form errors is determined only by their covariances (Lanne, Meitz, and Saikkonen 2017,
p. 288). However, as shown by Lanne, Meitz, and Saikkonen (2017) the Gaussian case is
the exception, as full identification is always achieved when the shocks are non-Gaussian
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andmutually independent. The technical details are beyond the scope of this thesis, but the
intuition can be clearly shown by the next simple examplewhich closely follows Jarociński
(forthcoming).

Let us assume that the price and quantity of a particular commodity follows a VAR process(
∆qt
∆pt

)
=

(
0,6 0,5
−0,4 0,7

)(
vSt
vDt

)
.

In other words, the changes in the price and traded quantities of the said commodity depend
on the contemporaneous supply and demand shocks. Thus it is easy to extrapolate the
supply curve to have a slope of 0,5/0,7≈0,7 and the demand curve a slope of 0,6/-0,4=-
1,5. Next, let us simulate two examples of this model. In the first example, seen in the left
panel of Figure 2, both shocks are Gaussian with mean zero and unity standard deviation.
This Gaussian nature leads the observations to form a circle like group with no visible
structure.

Gaussian shocks T−distributed and Gaussian shocks
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Figure 2: Simulated example of Gaussian and non-Gaussian shocks, n=1000.

To illustrate the fact that identification is achieved even if one of the shocks is Gaus-
sian, now let the demand shock be as in the first example, but let the supply shocks be
drawn from a Student-t distribution with the shape parameter set to 2 (for ease of illus-
tration these shocks have been normalized to have unity standard deviation). Note, that
the (causal) structure of the model stays the same, only the nature of the unforecastable
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ie. from modelling point of view random disturbances changes. As we see from the right
panel of Figure 2, the observations are spread around the supply and demand curves. This
is due to the fact that the fat tailed nature of the t-distribution causes the shocks to cluster
more heavily around their mean while large outliers become more prevalent than in the
Gaussian case. To loosely paraphrase Jarociński (forthcoming), even an observer lacking
any statistical training would have no problem identifying the structural model.

In layman terms, shocks with fat tailed distributions can be described as being almost al-
ways small but sometimes very large, while Gaussian shocks could be described as mostly
small or medium and very large as often as one can spot a unicorn in the woods. Thus it
is easy to see the attractiveness of the NGML identification procedure, as a lot of macroe-
conomically interesting shocks are clearly better characterized by the first description.

3.4 Conclusions from previous literature

As discussed in Section 3.1.1 and 3.1.2, the standard variable selection used in most mon-
etary VARs leaves room for improvement, as most observed variables aren’t necessarily
the driving forces of the DGPs modelled. As central banks consider a wide range of vari-
ables, the usual models do not allow for sufficient information sets. As was discussed in
Section 3.1.1, the usual procedure of adding commodity prices and exchange rates does
not seem to be a reliable way to control for these shortcomings. Thus, it seems that proper
model specification for monetary policy analysis requires at least some level of factor aug-
mentation as well as considering a measure for the output gap rather than realized GDP
as standard theory implies. An initial increase in inflation due to the presence of a cost
channel might be possible, but cannot be expected to be large in magnitude or to last more
than some months.

As discussed in Section 3.2, the standard identification procedures tend to fall short as
they seem to be rejected by the data more often than not. Thus, some level of caution
should be used when interpreting results acquired using these. As seen in Section 3.2,
modifying these traditional identification schemes does not seem to give any additional
and clear answers. Thus it seems that identification has to be thought as a case-by-case
issue with great attention to the specifics of the application at hand taken.
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4 Empirical evaluation

In this section I will be evaluating the performance of different model setups. For the sake
of comparison, all of the models will be estimated on euro area data from January 2000 to
December 2019 and will include a constant. To illustrate identification issues, models will
be identified both by traditional means and a statistical procedure with a few exceptions
where singularity problems were encountered. In order to make the interpretation and
comparison of the impulse responses easier, a unit effect normalization in line of Stock
and Watson (2016, pp. 451–453) will be utilized in the plots for impulse responses such
that, a monetary shock increases the ECB interest rate by 25 basis points. Unless other-
wise stated, the variables used in all of the models will be the same as in the benchmark
model introduced in the next section. To illustrate estimation uncertainty, for the Cholesky
identified impulse responses 0,9-percent bootstrap intervals will be drawn from 1000 sim-
ulations with the moving block bootstrap, as it is found to be quite robust to conditional
heteroskedasticity, the existence of which can be seen quite reasonable (Brüggemann,
Jentsch, and Trenkler 2016). For statistically identified impulse responses these will not
be presented due to high computational needs.

For the sake of readability, only the impulse responses for HICP inflation will be presented
in this section. The full set of impulse response estimates is available in the Appendix.

4.1 The Benchmark model

First, let’s start by estimating a simple trivariate model with Yt = (prodt ,πt ,rt), where the
variables are the log of the ECB index for industrial production including construction
(which will be used as a monthly proxy for GDP), the HICP inflation rate and the rate
of the Main refinancing operations as the estimated monetary instrument. Selecting lag
length for this model, Akaike, Hannan-Quinn and Bayes all suggest three. For now, a
lag length of four is chosen, as it seems to better the residual diagnostics somewhat from
three. Since themodel is also estimated in levels, adding an extra lagmight be usefull in the
case of integrated variables (Kilian and Lütkepohl 2017, p. 96). Although not particularly
relevant for the discussion on the matter at hand, it provides a good starting point to asses
the problems relating to monetary VARs.

Based on the LM,Q1 andQ2 tests formalized in Lütkepohl andMilunovich (2016, pp. 244–
245), there seems to be evidence of at leastK−1= 2 shockswith nontrivial GARCH struc-
tures implying full identification, especially since these tests tend to over-reject in practical
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samples (Lütkepohl and Milunovich 2016, p. 257). This identification also heavily rejects
the Cholesky restrictions. Thus identifying a viable monetary policy shock has to be made
by interpreting a shock as a possible monetary shock based on its characteristics: if a shock
has a major contemporaneous impact on the monetary instrument, it is a viable candidate
for a monetary shock (this approach is taken for example in Lütkepohl and Netšunajev
2017b, pp. 54–55 and Lütkepohl and Netšunajev 2017a, pp. 15–16). Luckily, the model
does identify such a shock. The same observations hold for the NGML identification,
which identifies two non-Gaussian shocks.
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Figure 3: Benchmark impulse response estimates, Cholesky identified with 0.9-percent
moving block bootstrap intervals (grey), 1000 simulations.
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Figure 4: Benchmark impulse response estimates, statistical identification.

This benchmark model raises three interesting observations. First, as discussed in Sec-
tion 3.2, the traditional Cholesky identification restrictions do not seem to hold against
the data. Second, despite of this, the general shape of the impulse response does not seem
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to be affected dramatically. The same observation is done by Kerssenfischer (2019, p. 22)
who postulates that the identification scheme seems to play a relatively minor role com-
pared to model specification. Third, and possibly countering the last point, although the
general shape and later magnitude is the same with the Cholesky and statistically identi-
fied impulse responses, one should note the larger initial magnitude in the response. In
a similar exercise, the same observation is made by Lanne, Lütkepohl, and Maciejowska
(2010, p. 126), who hypothesise the (potentially) false Cholesky restrictions to hide omit-
ted variable problems.

As a final curiosity one could mention that restricting the first interest rate lag in the in-
flation equation as discussed in Section 3.2.1 does reduce the magnitude of the response a
little but not the general shape of it. Similarly, restricting all the interest rate lags reduces
the general magnitude in about half, but again not the shape. These results are easily con-
tributed to the fact that even in the unrestricted model the interest rate lag coefficients for
inflation are small and statistically insignificant to begin with. It turns out, that in the later
models, when additional variables are added (and model fits considerably bettered), these
coefficients get such minuscule estimates, that it is hard to see any practical reason for
manual restrictions. Thus, for our purposes this procedure will be deemed trivial.

4.2 A Mainstream model

To this day, adding control variables to account for inflation expectations remains the dom-
inant way to address model specification. However, choosing a definite way to augment
the benchmark model introduced in Section 4.1 turns out to be challenging. Based on
information criteria, the single largest impact on model fit is achieved by introducing the
real US to EUR exchange rate as an endogenous variable (Figure 5). After this, adding
commodity prices (the log of World Bank Commodity Index) and the effective FFR as
exogenous controls has only small to marginal benefits on the fit (Table 1). All models
in this section were estimated with four endogenous lags and a constant (information cri-
teria suggest either one or three), as this does a reasonable job at eliminating most of the
autocorrelation from the residuals.
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Table 1: Information criteria for different controlled model specifications.

AIC BIC
Benchmark -1829,304 -1694,214
Exchange rates -4976,781 -4741,240
Exchange rates, commodity prices, k=p -5078,279 -4773,462
Exchange rates, commodity prices, FFR, k=p -5113,056 -4738,962

As we see from Figure 5, the story for the exchange rate augmented model stays the same
as for the benchmark model, as the general shapes and magnitudes stay the same. The
GARCH identification is again successful, as the LM andQ2 tests indicate significant evi-
dence for at least three non-trivial GARCH shocks and a viable candidate for the monetary
policy shock is identified. Unfortunately, ST and NGML do not indicate identification
while testing Cholesky restrictions via GARCH runs into singularity problems. None of
the model specifications seem to have an effect on the price puzzle.
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Figure 5: Exchange rates as inflation expectation proxy. Grey areas 0.9-percent moving
block bootstrap intervals, 1000 simulations.
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Commodity prices Commodity prices and FFR
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Figure 6: Commodity prices and effective Fed Funds rate as exogenous controls, Cholesky
identified.

These results indicate that these usual controls are ad hoc at best and outright faulty at
worst. It is hard to infer a clear reason why this, apparently time tested procedure, does
not seem to have the expected effects. The most glaring difference to most models in the
literature seems to be the lack of a trend component, thought this will be touched on in
Section 4.3.1. Of course, all of this should come as expected as discussed in Section 3.4.

4.3 Including the output gap

4.3.1 A note on linear trends

As seen from the exercises in previous sections, the results do not line with the ones from
similar models in Peersman and Smets (2001, p. 39) for example. This is due to the fact
that in the previous section we did not include deterministic trends in the model. Adding
a linear trend gives us a new interpretation for industrial production as without one, it is
estimated as an I(1) variable. However, if we add a linear trend we are implicitly esti-
mating the (potentially) I(0) fluctuation around this trend and thus the trend could be seen
as a linear approximation of potential output. In this view, adding a linear trend into the
model is already a crude inclusion of the output gap.

To test this hypothesis, let us take the benchmark model of Section 4.1 and re-estimate
it with linear trends. Not surprisingly, Cholesky identification is heavily rejected by the
GARCH identification, for which full identification is strongly supported by Q2 and LM

tests. As we can see from Figure 7, the price puzzle is mitigated to the usual one year pos-
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itive response so often seen in the literature. It also seems, that the Cholesky identification
might again hide some omitted variable problems, as the GARCH identified response is
circa double in magnitude during the first 12 months. Again as before and seen in the mid-
dle panel of Figure 7, adding endogenous exchange rates as well as exogenous commodity
prices and Fed funds rate does not seem to have interesting effects on the results.

Benchmark, Cholesky identified Mainstream, Cholesky identified Benchmark, GARCH identified
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Figure 7: Benchmark and mainstream models estimated with linear trends. Moving block
90-percent bootstrap intervals in grey, 1000 simulations.

As an interesting note, repeating this exercise with quarterly data and replacing industrial
production with real GDP yields different results. As seen from Figure 8, there is no price
puzzle to be seen.
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Figure 8: Benchmark model with quarterly data and the real GDP, Cholesky identified.
Moving block 90-percent bootstrap intervals in grey, 1000 simulations.

Why is this? The most straightforward answer seems to be the fact that industrial pro-
duction fluctuates more than GDP. One could also hypothesise industrial production to be
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more affected by the cost channel and other ridgities than the service sector included in
GDP.

4.3.2 A more sophisticated approach

In order to use more formal measures for the output gap we need to turn into quarterly
data, as GDP in general is only reported as such. This poses an obvious drawback as it cuts
the number of observations practically to less than 100 thus limiting degrees of freedom.
As a result, despite several information criteria suggesting larger lag lengths (AIC six,
Hannan-Quinn four), the following models are estimated with one and two lags (Bayes
criteria suggests one). For the output gap I am using the baseline estimate by Morley et al.
(2023, p. 6), who use BN on a BVAR to estimate the gap. Thus we get Yt = (gapt ,πt ,rt)′.
Both models are estimated using a trend and a constant.

VAR(1), Cholesky identified VAR(2), Cholesky identified
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Figure 9: Benchmark andmainstreammodels estimated with linear trends, Cholesky iden-
tified. Moving block 90-percent bootstrap intervals in grey, 1000 simulations.

As we see from Figure 9, there is no trace of the price puzzle. It is not clear however, which
estimate should be considered more reliable. Although the estimates somewhat diverge,
their general shape is the same and their bootstrapped lower intervals follow very similar
paths. The peak of the effect seems to also shift closer to impact compared to the linear
trend model in the previous section. It should be noted that the residual diagnostics reveal
major autocorrelation in the residuals and the Cholesky identification used here is strongly
rejected by the GARCH identification. However, this identification is not able to identify
a clear monetary shock. NGML and ST are also unsuccessful at reaching identification.
Thus, Cholesky identification had to be used here.
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4.4 The FAVAR approach

In what follows, common factors are estimated through principal components from a
dataset of 67 time series of euro area macro indicators, price indices, commodity prices,
the Eurostoxx index, Eurostoxx and oil futures and a few US macro indicators. As the
usual diagnosis for the possible misspecification behind the price puzzle is the lack of
information about future expectations, variables reacting to expectations, such as interest
rates and stocks have been emphasized. The full list is provided in the Appendix. As can
be seen from Table 2, the first principal component alone explains about 60% of the vari-
ance in the dataset, while the first five together explain about 91%. After this, individual
principal components explain less than 5% of the variance in the data. Thus, in what fol-
lows, three FAVAR models will be considered: Yt = (πt ,rt) augmented with one common
factor, four common factors and a D-FAVAR with four common factors.
Table 2: Principal components estimated from a large data set of macroeconomic variables

Proportion of variance Cumulative
PC1 0,6008 0,6008
PC2 0,1849 0,7856
PC3 0,0683 0,8539
PC4 0,0545 0,9084
PC5 0,0246 0,9330

Before we continue, it is worth mentioning a few important details concerning the FAVAR
approach. First, at this point any a prioriCholesky identification procedure should be seen
as completely arbitrary. As the common factors are drawn from a large pool of data and
are not attached to an obvious and concrete measurable variable, deciding which contem-
poraneous responses to restrict would be completely ad hoc. Of course, one could take the
BBE route and divide the variables into ”fast” and ”slow” moving. With dozens or even
hundreds of series it is easy to see that this procedure seems quite arbitrary too however.
Of course, this is not to say these restrictions cannot be done, just that they have to be
explicitly justified by over-identification for example.

Second, even if the practical pitfalls of constructing impulse responses to normal VAR
models are disregarded, constructing any meaningful confidence intervals at the time of
writing is - at least to my knowledge - not possible. As common factors are estimated
from the data, they cannot be seen as given in the same sense as explicit variables in Yt ,
but rather exhibiting estimation uncertainty in themselves. Thus there are three layers
of uncertainty in the model: the one from common factor estimation, the one from VAR
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estimation and the one from identification. Due to this, even if meaningful confidence
intervals accounting for model specification and identification could be constructed, un-
certainty from the common factor estimation would render these meaningless in the strict
frequentist sense. In what follows, bootstrapping will be used for illustration purposes but
won’t be given major attention from the point of view of inference.

4.4.1 One common factor

As previously, information criteria suggest a lag length of one (Bayes) to three (Akaike).
As previously, I am going with four lags, as this seems to more or less remove all relevant
serial correlation and is in line with the previous models. As we see from Figure 10, there
does not seem to be a price puzzle anymore.
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Figure 10: FAVAR with one common factor, Cholesky identified. Grey areas 0.9-percent
moving block bootstrap intervals, 1000 simulations.

Turning again into statistical identification for answers, our earlier workhorse SVAR-
GARCH does not help here, as there is no evidence for anyGARCH shocks in the FAVAR.
However, unlike earlier, NGML estimation identifies two shocks which seem to be non-
Gaussian (Shapiro test p-values 0,16; 0,0065 and 1,03× 10−12) implying full identifi-
cation. ST gives at least weak evidence for full identification, as the null hypothesis of
λ1 = λ2 for the pairwise Wald tests is only rejected at the 0,1-confidence level with a p-
value of 0,08. In addition, the estimates for these happen to be 1,72 and 0,87 making it
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unclear whether they can be interpreted as differing from unity, which of course is needed
for full identification. As we can see from Figure 11, the price puzzle has re-emerged
indicating again that the Cholesky procedure might hide omitted variable biases.

Note, that whereas earlier the STwas identified by time t as the transition variable, here the
lagged (ie. t−1) values of the first common factor seem to produce the clearest evidence
for identification. This highlights the usefulness of the ST procedure the FAVAR context,
as a common factor includes much more information about the possible transitions in the
variance structure than any single variable could.
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Figure 11: FAVAR with one common factor, unrestricted statistical identification.

Contemporaneous restrictions aren’t completely rejected however, as restricting the con-
temporaneous effect of the candidate monetary shock to inflation isn’t rejected. Statistical
properties needed for identification stay practically the same. As seen from Figure 12 the
price puzzle seems to be reduced.
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Figure 12: FAVAR with one common factor, restricted statistical identification.
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4.4.2 Four common factors

Adding more common factors seems to have some conflicting results. In general, adding
more common factors seems to worsen the model fits according to information criteria
(as Akaike suggests 24 lags and Bayes one) while residual diagnostics get worse as well.
However, at the same time the price puzzle seems to vanish practically completely. While
this could be seen as pure chance, as we have seen throughout this thesis, the more in-
formation (in this case in form of common factors) is included, the more the price puzzle
diminishes and the closer to impact the peak of the response seems to get. Thus, it seems
likely that the model is getting better in general.
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Figure 13: FAVARwith four common factors, Cholesky identified. Grey areas 0.9-percent
moving block bootstrap intervals, 1000 simulations.
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Figure 14: FAVAR with four common factors, statistical identification and additional re-
strictions.
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Unlike with the previous FAVAR, NGML does not identify enough non-Gaussian shocks
to imply full identification. For the unrestricted ST the case is the same, as out of the
15 pairwise Wald test, five produce p-values ranging from 0,15 to 0,43. What is espe-
cially interesting, is that the Cholesky identification does not get rejected (LR-test p-value
0,1047). A look at the estimated B-matrix and its standard deviations suggests that out of
the restricted parameters only b34 and b16 seem to significantly differ from zero. Thus,
unrestricting them means we need only two distinct, non-unity lambdas for full identifi-
cation. Even a conservative interpretation of the pairwise Wald tests implies at least four
distinct, non-unity lambdas which thus implies over-identification, which in turn is easily
accepted by the data with a p-value of 0,8348 for the LR-test. This specification, as seen
in the right panel of Figure 14, does not exhibit even the tiniest of price puzzles.

An interesting detail can also be observed by comparing the differences between impulse
responses estimated the Cholesky and statistical identification or rather lack there of. Un-
like earlier, there does not seem to be any major differences in shape nor peak. The mag-
nitude might be still considered a bit smaller, but it is hard to infer whether this can be
considered a result of omitted variables biases or pure chance.

As discussed earlier, FAVARs allow for impulse responses to be estimated for a wide
range of variables. These impulse responses are easily acquired by a linear combination
of the impulse responses of the common factors scaled by their individual loading for said
variable. More formally, as a single variable xit has the representation

xit = Λ′
iFt + et ,

where Λ′
i is the ith row of the loading matrix Λ, the impulse response of xi at horizon j to

shock vkt is
∂xi,t+ j

vkt
= Λ′

i
∂Ft+ j

vkt
where Ft is the vector of common factors. It should be noted however, that reliable impulse
responses would require that (almost) all of the important common factors effected by the
shock of interest are included in the FAVAR, which is not as obvious as one could interpret
at first glance: the number of common factors are in general chosen from the viewpoint
of model performance as a whole, not the modelling performance of one noisy proxy. For
now, I am going to continue with this assumption, though it could be regarded quite ad
hoc.
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Figure 15: Impulse responses for selected variables in Xt estimated from FAVARwith four
common factors.

As can be seen from Figure 15, all of the estimated impulse responses have the same
general shapes. This can be attributed to the fact that all estimated common factors have
very similar impulse response shapes for a monetary shock while all of the loading matrix
coefficients are positive. Thus it is natural for linear combinations of these to exhibit the
same kinds of shapes too. This is of course hard to comprehend for unemployment and
the Euribor rate, which should by all logic go up with the monetary shock. Thus one has
to conclude that there seems to be room for improvement for this model.

4.4.3 D-FAVAR expansion

Although the FAVAR with static factors in the last section seemed to perform fairly well
in regards of identifying the monetary policy shock and its effects on inflation, it still
seemed to leave some room for improvement. The obvious first step would be to use
dynamic factors instead of static ones.

Using four common factors again, Akaike suggest estimation with six lags, Hannan-Quinn
three and Bayes two. For now estimation is carried out with four lags, though the results
seem to be very robust to differing lag lengths. Both static and dynamic factors are depicted
in Figure 17 in normalized values.

Unlike earlier, ST procedures do not identify shocks easily interpreted as monetary shocks.



55

NGML however identifies four non-Gaussian shocks ie. only one less than needed for full
identification. A look at the estimatedB-matrix and its standard errors suggests that at least
B16, B25, B46 and B56 can be restricted to zeros clearly over-identifying the model, which
is accepted by the data with LR-test p-value of 0,2192; though the effects of different
restrictions (or lack there of) on the identified monetary shock are minimal.

Cholesky Restricted NGML
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Figure 16: D-FAVAR with four common factors. Grey areas 90% moving block bootstrap
intervals, 1000 simulations.

As we see from Figure 16, the estimated impulse responses align quite well with the ones
estimated before. However, one interesting note can be seen in the right panel, where
one can observe the NGML procedure to push the peak of the effect even closer, now
peaking around 10 months after impact. This seems to continue the trend of less persistent
monetary shock estimates causing shorter effects for the inflation response. This line of
thought will be expanded upon in Section 4.6
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Figure 17: Comparison of static and dynamic estimates for four common factors, normal-
ized to mean zero and unity standard deviation.

Returning to the question of the response of particular variables, as we see from Figure
18, the puzzling results from the static model seem to have improved a bit: the general
response of unemployment seems to be positive while the positive values for the Euribor
response have increased. Still, there seems to be room for significant improvement.
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Figure 18: Impulse responses for selected variables in Xt estimated from D-FAVAR with
four common factors.
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4.4.4 Some notes on the estimation of common factors

In the case of both static and dynamic factors we saw two problematic features. First,
the model diagnostics left room for improvement as in both cases the estimated FAVAR
errors exhibited clear autocorrelation. This would indicate that systematic dynamics are
left outside the model. Second, the estimated impulse responses of the variables in Xt
seemed to leave some serious questions, indicating individual loading matrix weights to
be somewhat off.

The most probable culprit for the puzzling impulse responses for variables in Xt is the
fact that the common factors have not been cleaned of the variation caused by Yt . That
is, the estimation does not include the controlling of the second term in Equation (12).
This cleaning procedure would be straight forward for a Cholesky identification as done
in Bernanke, Boivin, and Eliasz (2005, pp. 404–405). However, this procedure requires
the observed variables in Xt to be divided into ”slow moving” and ”fast moving”, ie. ones
reacting to a monetary shock contemporaneously and ones not reacting. This of course
in the context of this thesis is not possible, as a priori assumptions on these have been
avoided. Thus, other methods would be required, though coming up with such will be left
outside the scope of this thesis.

The problems discussed above raise the obvious question of how problematic the lack of
prior cleaning of the common factors is in practice. The results from both the static and
dynamic models indicate this to be a non-issue for the estimation of the FAVAR itself, as
they line up with both expectations and other models. This of course is expected, as one
would not think of ”cleaning” the output gap of the effects of other variables in the VAR:
estimating these effects is the whole point. However, it should be quite easy to see that
the lack of this controlling will have an obvious omitted variable bias on the estimates of
the individual weights of the loading matrix Λ f . In other words, the problem is not in the
common factor estimates but rather the weights of individual variables.

4.5 Practical concerns regarding integrated variables

As discussed in Section 3.2.2, a VECM approach might be attractive. As VECM models
explicitly count for long run relationships, they could give better insight into these than
the iterated short run dynamics from a VAR model. For this reason, the VECM approach
is quite often used in monetary analysis. However, before deciding to use this approach
one should have clear reasons for this. Macroeconometric applications often exhibit very
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complex DGP structures of unambiguous form making the parsimony principle especially
important: adding more complexity into the model should always be strongly founded as
applying modelling structures on data which does not actually exhibit these can lead to
spurious inference at least in finite samples. Thus, there should be clear evidence for not
just integrated variables (as most monetary VARs are estimated in levels to begin with) but
co-integration relations. This raises the obvious question of which variables should be co-
integrated? The answer will of course depend on the model specification, but especially
with the kinds of models considered in this thesis, the question becomes a bit tricky.

The obvious ”problem” variables from a co-integration point of view are the output gap
and inflation, as it should be quite reasonable to assume both to be I(0) (at least in the sense
of mean convergence). By definition, the output gap should fluctuate around the output
measure which should make it by construction I(0). Inflation on the other hand should at
least in the cases considered in this thesis be for the most part I(0), as anything else would
imply the ECB’s inflation targeting to have no credibility. Thus assuming inflation to be
integrated to begin with would implicitly assume the ECB to have no credibility or control
of inflation (as the ECB explicitly targets inflation). Indeed, a sizable amount of empirical
research indicates that at least in the developed countries the persistence of inflation has
lowered significantly after the adoption of inflation targeting (see Bratsiotis, Madsen, and
Martin 2015 for example). This naturally suggests that inflation should at least for the
most part converge towards the rate anchored as inflation expectations.

In the context of this thesis the most potential model specification to yield any benefits
from a co-integration analysis is probably the FAVAR approach, as it has more variables
and no obvious reasons to exclude the possibility of co-integration.

In Table 3 we can see the results from the Johansen-procedure for determining the co-
integration rank when applied to the data set used in the D-FAVARmodel of Section 4.4.3.
Following the suggestion of Hjalmarsson and Österholm (2010, p. 60), a ”combined” ap-
proach of both the maximum eigenvalue test and the trace test (as especially the trace test
tends to over-reject the null hypothesis of r or less co-integration relations) is used. This
would thus suggest using r = 2.
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Cholesky Restricted Non−Gaussian maximum likelihood
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Figure 19: FAVEC with four common factors.
Table 3: Johansen procedure test statistics for the dataset used in the D-FAVAR model.

Maximum eigenvalue Trace
H0 Statistic 5% critical value Statistic 5% critical value
r ≤ 3 17,66 25,54 34,70 42,44
r ≤ 2 29,30 31,46 64,00* 62,99
r ≤ 1 41,63* 37,52 105,63* 87,31
r ≤ 0 54,93* 43,97 160,56* 114,90
Test statistic values significant on the 5% level marked with *.

Identification-wise it has to be said that long run restrictions could not be run without
singularity issues, so for now the two identification procedures used are the Cholesky
and NGML procedures. The NGML identifies three non-Gaussian shocks and as such
two restrictions on B are made, b16 and b56 (note that the candidate monetary shock is
identified on the fourth row so these restrictions do not affect it). As seen from Figure
19, both procedures identify a persistent effect on inflation following a monetary shock,
suggesting inflation to be I(1). The estimated effect magnitude is also considerably larger
than with the VAR estimates, which makes sense without a mean converging effect of
mean stationarity.

The results from the SVEC analysis raise the obvious question of the degree of integra-
tion for inflation especially, as the estimated persistence obviously clashes with the zero
converging estimates from VAR models. As is discussed in length by Hjalmarsson and
Österholm (2010), the Johansen procedure is not without its fair share of problems and
tends to over-reject especially in the presence of near-integrated variables, and as such
”[t]he risk of concluding that completely unrelated series are co-integrated is therefore
non-negligible” (Hjalmarsson and Österholm 2010, p. 51). It should also be noted, that
the Augmented-Dickey-Fuller test rejects the null-hypothesis of a unit root for the infla-
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Figure 20: Euro area HICP inflation between 2000 and 2020.
tion series against the alternative hypothesis of stationarity with a p= 0,0299. One could
of course cite the critique of Cochrane (1991) against too far reaching conclusions about
unit root tests in finite samples, which would underline even more the muddied waters one
has to traverse through here. Thus it might be useful to take a step back and instead of
relying too much on statistical procedures with questionable power to take a more intuitive
look at the plotted series of inflation. It is easy to see from Figure 20 that even with the
fluctuations following the financial crisis of 2008, until the introduction of ECBs uncon-
ventional policies in 2012 inflation seems to converge towards the 2% target. After this
however, inflation starts to exhibit a more of a wandering dynamic. This could indicate
that the rank of integration has changed.

Although the possibility of co-integration and especially inflation being I(1) cannot be
ignored, the evidence for such seem to be inconclusive. Thus, for now it seems more
appropriate to follow the parsimony principle and not include more complexity into the
model without substantial reasoning and evidence. Despite this and the discrepancies
between the VAR and SVEC estimates regarding magnitude sizes and long term effects, it
is interesting to note that the peak of the response seems to align with earlier models. This
seems to reinforce the earlier conclusions of monetary transmission not being as lagged
as usually credited.

4.6 Some notes on the identified monetary shocks

An interesting observation one canmake from themany different models and themonetary
shocks identified from them is that the persistence of the identified monetary shock seems
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to vary quite a lot. As we can see in Figure 21, the identified monetary shocks from the
traditional low-dimensional models vary greatly in shape and persistence.

Benchmark, GARCH identified Linear trend, GARCH identified Mainstream, Cholesky identified
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Figure 21: Some monetary shocks identified from traditional low-dimensional models.

This raises two obvious questions. First, how realistic is the high persistence of these
shocks and second, how realistic are the shapes of these shocks? As was discussed in
Section 2.1, the nature and source of monetary shocks should be such that high persistence
should be improbable (unless the monetary instrument follows a random walk making the
persistence infinite). If one assumes the policy instrument to follow a coherent rule, say
a linear function of a set of macroeconomic indicators like in Equation (1), one should
ponder why a shock should be positively persistent. If there is a shock in the policy rate,
the rate would be too high given the rule of the central bank. This should slow down
economic activity and inflation more than intended, which in turn should imply that the
central bank should, according to its rule face downward pressure for the rate. If anything,
one should thus expect the impulse response to the rate to exhibit a relatively steep decline,
possibly below zero. After all, if a ”too high” policy rate does not slow down the economy
more than intended and thus does not create downward pressure to the policy rate, then
why should the central bank bother with a policy rate as its instrument in the first place?
Subsequently, this is exactly the kind of behaviour seen in the ECB official rate response
to monetary shocks identified from the FAVAR and output gap models, as seen in Figure
22.

One could also ponder the shape of the benchmark and linear trend models. As seen in the
left and right panel of Figure 21, the estimated impulse responses do not peak at impact
but rather after it and in the case of the benchmark model the peak is circa twice as large
as the initial impact. Due to the reasons discussed earlier, this seems quite unreasonable.
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Figure 22: Some monetary shocks identified from better performing models.

As discussed in Section 2.5, identifying shocks from models with non-fundamental rep-
resentations would require inverting the VMA in the future. As this is not possible in a
VAR setup, identified shocks will be linear combinations of a larger set of shocks than
the model can truly identify. Thus one could argue the reason for persistent monetary
shocks to lie in non-fundamentalness: the shock labelled as a monetary shock is truly a
combination of several shocks. Thus, assuming that monetary shocks exhibit the kinds of
properties discussed earlier, one could use the shape of the identified monetary shock as
an informal test for fundamentalness.
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5 Concluding remarks

This thesis contributes to the existing econometric literature in several ways. First, I show
evidence to support the conclusions from Kerssenfischer (2019, p. 24) who credits the
price puzzle to be mostly a result of misspecification rather than identification. My re-
sults show that when a proper output gap measure is used in a low-dimensional VAR or a
FAVAR is estimated, the resulting dynamic effects are not puzzling, and these results are
qualitatively fairly robust across identification procedures. It could be added though, that
specification seems to be a mandatory requisite for truly identifying and isolating mon-
etary shocks and thus the question of identifying shocks can not be isolated from model
specification.

Second, although the effect magnitudes of this are somewhat unclear, my results seem to
support the hypothesis put out by Lanne, Lütkepohl, andMaciejowska (2010, p. 126). That
is, unjustifiable Cholesky identification might hide omitted variable biases by reducing
estimated effect sizes. This finding is still quite anecdotal however, and more formal
research is warranted. In addition, supporting a growing literature on the matter, almost
all of the models presented in this thesis reject the Cholesky identification procedure. In
light of these two findings, it seems reasonable to conclude that for macroeconometric
applications in general, Cholesky identification cannot be regarded as a priori justified.
Statistical identification procedures might be used to offset this, but the specifics are left
as a case-by-case matter.

Third, as FAVAR and output gap approaches converge in their findings regarding inflation
response to a monetary shock, the empirical findings of this thesis seem quite clear: there
is no price puzzle in the euro area, and the effect of a 25 basis point monetary policy shock
is a reduction of 10 to 15 basis points in the rate of HICP inflation peaking around 12
months. Thus it seems likely that the transmission channels of monetary policy might not
be as ”long and variable” as often attributed. This finding might underline the importance
of proper specification of variables and the underlying monetary regimes.

Fourth, as more complete information sets are introduced either in the form of factor aug-
mentation or the output gap, the peak of the effect seems to get closer to impact. This
seems to support the recent trends mentioned by Powell (2022): the lags of monetary pol-
icy aren’t necessarily as long as previously thought. In light of the findings of this thesis,
in the euro area the peak of the effect seems to happen around 12 months, though some
evidence of even faster effect peaks can be found. This is substantial, as especially the
older literature seemed to indicate that this is the moment when the effect only starts to
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turn negative. The estimates from the VAR models also imply the effects of a monetary
shock on inflation as a whole are contained within three years. Thus these results support
the conclusion that ECBs policy rates are an effective instrument for inflation targeting.

Fifth, the many exercises conducted in Section 4 shed some light on the practical concerns
for applied work. As seen in Sections 4.3 and 4.4, there doesn’t seem to be a one-size-
fits-all solution to model specification. In light of these findings it seems reasonable to
recommend a FAVAR approach when working with monthly data frequencies, as suitable
measures for the output gap are usually not available. Using FAVARs is also recommended
when the effects of monetary policy on other variables than just output and inflation is
of interest. When working with quarterly data, a low-dimensional approach might be
more straight forward to execute when a suitable measure for the output gap is available.
However, quarterly datamight impose challengeswhen shorter sample sizes are of interest.
As the results seen in this thesis seem to diverge from a lot of the literature especially with
regard to the effect lags, it also seems that careful consideration regarding the span of the
data and the underlying monetary regimes is of utmost importance: despite the seductive
allure of the degrees of freedom gained, more data might lead to spurious inference.

As discussed in Section 4.5, the question of integration regarding inflation is one of great
importance, as it has major implications on the long term effects of monetary policy and
the credibility of the central banks inflation targeting. Thus the possibility of a structural
break in the rank of integration with the introduction of ECBs unconventional monetary
policies might provide fruitful soil for future research.
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A Appendix: Estimated impulse responses

In what follows are the impulse responses estimates from the key models in this thesis.
Note that these impulse shocks are the raw ones straight out of estimation and thus have
not been standardized to 25 basis points. As such their magnitude and sign might vary
from the ones presented earlier in this thesis. The results are still the same, as linear
transformations do not change the properties of impulse responses form a linear model
such as these VARs. Grey areas are the 90-percent moving block bootstrap intervals from
1000 simulations. Due to high computational needs bootstrapping has been conducted
only to Cholesky identified models.
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Figure 23: Benchmark model, Cholesky identified
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Figure 24: Benchmark model, GARCH identified
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Figure 25: Benchmark model, NGML identified
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Figure 26: Exchange rate model, Cholesky identified
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Figure 27: Exchange rate model, GARCH identified
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Figure 28: Model with linear estimate for the output gap, Cholesky identified
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Figure 29: Model with linear estimate for the output gap, GARCH identified
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Figure 30: VAR(1) with BN-BVAR estimate for the output gap, Cholesky identified
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Figure 31: VAR(2) with BN-BVAR estimate for the output gap, Cholesky identified
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Figure 32: One common factor FAVAR, Cholesky identified
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Figure 33: One common factor FAVAR, ST identified
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Figure 34: Four common factor FAVAR, NGML identified
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