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In this thesis we develop an open quantum system model for a levitating particle
trapped in an optical cavity by external optical tweezers.

First we de�ne optical forces and see how they can be used to trap particles in optical
tweezers. We study Stokes and Anti-Stokes processes and show that blue detuned
optical cavities can be used to cool trapped particles to their quantum ground states.

We derive the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation for
a general open quantum system, and present its quantum state di�usion (QSD)
unravelling into an ensemble of pure states.

Then we derive the GKSL equation for our system, and use the QSD equations
to �nd di�erential equations for parameters of an ansatz state. We �nd the time
dependent norm for the pure states in the QSD ensemble and show how we can use
it to calculate the expectation values for observables in our system.
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Introduction

Optomechanics studies the e�ects of light-matter interactions on the motion of a

particle. The �rst mention of this �eld is from 1619, when Johannes Kepler used

radiation pressure to explain why the tail of a comet always points away from the

sun [1]. The invention of the laser in 1960 made controlling particles with light

easier and led to the development of optical tweezers by Arthur Ashkin in 1970 [2],

a feat that awarded him a joint Nobel Prize in Physics in 2018.

Levitodynamics is the study of dynamics of a nano- or micro-sized particle when

it is trapped and suspended in an electromagnetic �eld. There are three basic

methods to achieve this: the particle can be trapped by an optical, an electrical,

or a magnetic �eld [3]. In this thesis we are interested mainly in optical trapping,

which, as the name suggests, uses a coherent optical �eld, obtained from a laser, to

trap particles.

Levitated particles are extremely sensitive to external forces, and because they

have a relatively high mass, they are ideal to use in force and acceleration sensing,

to detect minute forces like gravity, or rotational forces.

Today optomechanical applications are used in many �elds. In biology and bio-

chemistry optical tweezers are used to trap individual viruses and bacteria [4], and

even single DNA-molecules [5].

In physics the possible applications are numeorous, ranging from quantum me-

chanical experiments to gravity research. The LIGO gravitational wave detector is

an optomechanical device, that monitors the position of a mechanical oscillator via

its coupling to an optical cavity [6].

Optomechanics is an excellent tool in creating and controlling mechanical quan-

tum states, giving rise to the �eld of quantum optomechanics [7]. Optomechanics

gives new ways to implement quantum systems in theory and experiments. A quan-

tum optical system where two optical modes interact via a non-linear medium can
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be mapped to an optomechanical system where an optical and a mechanical mode

interact via photon momentum tranfer [8]. Trapping a particle in vacuum leads to

a highly isolated system diminishing the unwanted e�ects of its environment. Feed-

back and cavity back-action cooling can be used to cool particles to their quantum

mechanical ground state [9]. Both of these conditions are important when doing

experiments, where quantum e�ects may arise. Optical cavity coupled to a mechan-

ical oscillator can even produce entanglement between the mechanical modes and

optical modes [10].

There are many promising research areas where the use of levitated particles

could lead to new breakthroughs in the future. For example �nding new physics

beyond the standard model of particle physics with highly sensitive detection of high-

energy physics at short distances that allows for the exclusion of dark matter models,

being able to prepare macroscopic superpositions of nanoparticles, or implementing

far-from-equilibrium processes. However there are still many technical challenges to

overcome before these advancements can be reached [3].

A recent work by Vijayan et al. [11] demonstrated that it is possible to control a

cavity-mediated interaction of nanoparticles in a multiparticle optical system. They

showed for the �rst time that creating programmable cavity-mediated interactions

between nanoparticles in vacuum is possible. By controlling the system parameters

like optical frequencies, cavity detuning, and the position and mehcanical frequencies

of the particles, allowed them to choose which of the mechanical modes couple and

to precisely tune the interaction strength, resulting in strong coupling that didn't

decay with distance between particles. Their work is an important towards exploring

many-body e�ects in interacting nano-particle arrays, and creating entanglement of

motion.

In this work develop an open quantum system model to characterize an optically

trapped nanoparticle in a cavity. We describe the physics behind optical trapping,
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introduce the theory of open quantum systems, and apply it in the study of our

system.

First in section 1 we take a look at optical trapping: what are the forces used to

trap particles, and how they can be calculated in general using the Maxwell stress

tensor or using dipole approximation for a small particle. Then we see how these

forces are used in optical tweezers to trap a particle, and lastly take a look at what

optical cavities are and what they are used for in optomechanics.

In section 2 we take a look at the theory of open quantum systems. We derive

the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation for a general

open quantum system and we present also the Quantum State Di�usion (QSD)

unravelling of the QKSL master equation into an ensemble of pure states.

In section 3 we introduce the system we are studying, derive the GKSL equation

for the system from its general form and thus tie the real system into the theoretical

models.

In section 4 we aim to solve the master equation of our system using the methods

of open quantum systems. We use the QSD equation to �nd di�erential equation

for parameters of our ansatz state. In particular we outline how analytical solutions

for this important problem may be obtained.

The analytical model we derive for this system helps our understanding of the

general principles and the physics behind how the system behaves.

1 Optical trapping of nanoparticles

1.1 Optical forces

A photon carries momentum, so it excerts a mechanical force when it interacts

with a particle, whether it is absorbed, emitted, refracted or scattered. This force

can be used to trap nano- and microparticles in an optical �eld and to control
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their mechanics. Solving the optomechanical forces acting on a particle is often a

complicated problem that requires approximation methods. The size parameter ξ =

2πanm

λ
of the particle, where a is the radius of the particle, nm is the refractive index

of the surrounding medium and λ is the trapping wavelength in vacuum, determines

the suitable approximate approach. For particles much smaller than the wavelength

of light, a≪ λ (Rayleigh regime), and we can use the dipole approximation, and for

particles much larger than the wavelength of light, a≫ λ (Geometric optics regime),

we can use ray optics. However, when the size of the particle is comparable to the

wavelength, a ∼ λ (Mie-Lorentz regime), no general approximation exists and we

need to solve Maxwell's stress tensor of the system [12].

Maxwell's stress tensor

Maxwell's stress tensor characterizes the interaction between electromagnetic �elds

and mechanical momentum. Its derivation can be found in full in [13].

To derive the stress tensor and the conservation law for momentum, we start

from Maxwell's equations in vacuum

∇× E(r, t) = − ∂

∂t
B(r, t), (1)

∇×B(r, t) = − 1

c2
∂

∂t
E(r, t) + µ0j(r, t), (2)

∇ · E(r, t) = 1

ϵ0
ρ(r, t), (3)

∇ ·B(r, t) = 0, (4)

where E is the electric �eld, B is the magnetic �ux density, j is the current density, ρ

is the charge density, c is the speed of light in vacuum, µ0 is the vacuum permeability,

ϵ0 is the vacuum permittivity, r is the position vector and t is time. We also need

the electric displacement �eld D = ϵ0E and the magnetic �eld H = 1
µ0
B in vacuum.

Equation 1 is Faraday's law of induction which states that a changing magnetic

�eld induces an electric �eld that is perpendicular to the magentic �eld. Equation 2
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is Ampère's law which states that a temporally varying electric �eld and/or current

density creates a magnetic �eld that is perpendicular to them. Equation 3 is Gauss's

law for electricity that states that a charge density is the source for electric �elds.

Equation 4 is Gauss's law for magnetism that states that magnetic �elds do not

have sources or sinks due to the nonexistence of magnetic monopoles.

To get the Maxwell stress tensor we operate on equation 1 by ×ϵ0E and on

equation 2 by ×µ0H, whereafter we add them together:

ϵ0(∇× E)× E+ µ0(∇×H)×H = −ϵ0µ0
∂

∂t
H× E− ϵ0µ0

∂

∂t
E×H+ µ0j×H,

(5)

where we have omitted arguments r and t to simplify our notation. This relation

subsequently leads to

∇ · [ϵ0EET − µ0HHT − 1

2
(ϵ0E

2 + µ0H
2)I]− ρE = j×B− 1

c2
∂

∂t
[H× E], (6)

where E2 = ETE is the strength of the electric �eld, H2 = HTH is the strength of

the magnetic �eld, and EET and HHT are dyadic products, with the superscript T

denoting the transpose. From the latter relation we de�ne Maxwell's stress tensor

T as

T ≡ ϵ0EE
T − µ0HHT − 1

2
(ϵ0E

2 + µ0H
2)I, (7)

where I is the identity tensor. The last term is the total energy density of the

electromagnetic �eld. According to equations 6 and 7 the divergence of Maxwell's

stress tensor ful�ls

∇ ·T =
d

dt

1

c2
[E×H] + ρE+ j×B. (8)

Next we want to use the Maxwell stress tensor to calculate the mechanical force

acting on the particle. To do this we �rst integrate equation 8 over an arbitrary

volume V that includes all sources ρ and j:∫︂
V

∇ ·TdV =
d

dt

1

c2

∫︂
V

[E×H]dV +

∫︂
V

(ρE+ j×B)dV. (9)
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From this equation we recognise the Lorentz force law

F(r, t) = q[E(r, t) + v(r, t)×B(r, t)] (10)

=

∫︂
V

[ρ(r, t)E(r, t) + j(r, t)×B(r, t)]dV, (11)

where equation 10 expresses the force acting on a single particle of charge q moving

at velocity v, while equation 11 represents the force for a distribution of charge

density ρ and current density j. By now using Stokes theorem on the left hand side

of equation 9 we get the conservation law for linear momentum∫︂
∂V

T · nda =
d

dt

1

c2

∫︂
V

[E×H]dV + F (12)

=
d

dt
[Gfield +Gmech], (13)

where ∂V is the surface of V , n is the unit vector perpendicular to it and da

is an in�nitesimal surface element. In particular Gfield =
∫︁
V

1
c2
[E × H]dV is the

momentum of the electromagnetic �eld within volume V andGmech is the mechanical

momentum, for which d
dt
Gmech = F gives the mechanical force.

We are interested only in the average force so we take a time average of the force

by integrating it over time

⟨F⟩ = 1

T

∫︂ T/2

−T/2
F(s)ds, (14)

where T is the duration of one oscillation period. The light used in optical trapping

is usually monochromatic (a laser), so T is simply the duration of one wavelength

of the light. From equations 13 and 14 we �nd that the average force is

⟨F⟩ =
∫︂
∂V

⟨T(r, t)⟩ · n(r)da− ⟨ d
dt
Gfield⟩. (15)

The expectation value for d
dt
Gfield is zero over one period, so the average force is just

⟨F⟩ =
∫︂
∂V

⟨T(r, t)⟩ · n(r)da. (16)
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Here we see that the force expression does not depend on the material parameters

of the object, but only on the electromagnetic �eld on the surface of the arbitrary

volume. The �eld however is now a superposition of the incident �eld and the �eld

scattered from the object, and of course the scattered �eld depends on the properties

of the object.

Radiation pressure

Radiaton pressure is the pressure that electromagnetic radiation excerts on an ob-

ject. It can be calculated using the mechanical force in equation 16 as [13]

PR =
⟨F⟩
A

=
1

A

∫︂
A

⟨T(r, t)⟩ · n(r)da, (17)

where the integration is done over an area A perpendicular to F.

As a special case, we consider an in�nite plane irradiated at normal incindence by

a linearly polarized monochromatic plane wave. We choose n(r) = −nz and E||nx,

where the subscripts of the unit vectors refer to the x and z axes of a Cartesian

coordinate system. The total electric �eld is the superposition of the incident and

re�ected parts

E(r, t) = E0Re[(e
ikz +Re−ikz)e−iωt]nx, (18)

where E0 is the amplitude, k is the wave number, and ω is the angular frequency of

the electric �eld, and R is a complex re�ection coe�cient with condition |R| ≤ 1.

The magnetic �eld can then be calculated from the electric �eld using Faraday's law

in equation 1:
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H(r, t) =
1

µ0

B(r, t) = − 1

µ0

∫︂
∇× E(r, t)dt

=− 1

µ0

∫︂
E0

∂

∂z
Re[(eikz +Re−ikz)e−iωt]dtny

=− k

µ0

E0

∫︂
Re[(ieikz − iRe−ikz)e−iωt]dtny

=
k

µ0

E0
1

ω
Re[(eikz −Re−ikz)e−iωt]ny

=

√︃
ϵ0
µ0

E0Re[(e
ikz −Re−ikz)e−iωt]ny. (19)

Maxwell's stress tensor is easy to calculate from equations 18 and 19. For brevity

we denote E = Enx and H = Hny. The only nonzero components of the stress

tensor are

Txx =
1

2
ϵ0E

2 − 1

2
µ0H

2, (20)

Tyy = −1

2
ϵ0E

2 − 3

2
µ0H

2, (21)

Tzz = −1

2
(ϵ0E

2 + µ0H
2). (22)

Only the zz-component impacts the pressure, because the other ones are parallel to

the surface, and ⟨T⟩ · (−nz) = −⟨Tzz⟩nz. The averaged zz-component is

⟨Tzz⟩ =− I0
c
(1 + |R|2), (23)

where I0 = ϵ0
2
cE2

0 is the intensity of the plane wave. The full calculation of the zz-

component can be found in appendix A. The radiation pressure is then according

to equations 17 and 23

PRnz =
1

A

∫︂
A

(−⟨Tzz⟩nz)da =
ϵ0
2
E2

0(1 + |R|2)nz. (24)

The radiation pressure depends on the energy of the electric �eld E2
0 . The higher

the energies of the photons are, the higher is the force, and so also the pressure,

they excert on an object. The pressure depends also on the re�ectivity |R|2: the
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minimum value PR,min = ϵ0
2
E2

0 corresponds to a perfectly absorbing surface |R|2 = 0,

and the maximum value PR,max = ϵ0E
2
0 corresponds to a perfectly re�ecting surface

|R|2 = 1.

Dipole approximation

A particle much smaller than the wavelength of light can be approximated as a

dipole. We consider an electric dipole with dipole moment µµµ = qs, where s is the

vector between the two charges of the dipole, and whose center of mass coordinate

is r. Owing to the interaction with the electromagnetic �eld, the dipole experiences

the mechanical force

F(r, t) = (µµµ · ∇)E(r, t) + µµµ̇×B(r, t) + ṙ× (µµµ · ∇)B(r, t). (25)

Here the �rst term is the force acting on a dipole due to an inhomogeneous electric

�eld, the second term is the force acting on a changing dipole due to a magnetic �eld

and the last term is the force acting on a moving dipole due to an inhomogeneous

magnetic �eld. For non-relativistic speeds (|ṙ| ≪ c) the last term is very small

compared to the others [13] and is therefore henceforth left out.

Using the product rule and Faraday's law in equation 1, the second term in the

force expression in equation 25 can be written as

µµµ̇×B =− µµµ× d

dt
B+

d

dt
(µµµ×B)

= µµµ× (∇× E) +
d

dt
(µµµ×B), (26)

and so the force becomes

F = (µµµ · ∇)E+ µµµ× (∇× E) +
d

dt
(µµµ×B)

=
∑︂
i

µi∇Ei +
d

dt
(µµµ×B). (27)

The time average of the force is then simply

⟨F⟩ =
∑︂
i

⟨µi∇Ei⟩, (28)
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because ⟨ d
dt
(µµµ×B)⟩ is zero.

Next we take a closer look at the scenario with a monochromatic �eld of angular

frequency ω as that is the case we are speci�cally interested in when later developing

our model. For a monochromatic �eld the real electric and magnetic �elds are [13]

E(r, t) =Re[E(r)e−iωt], (29)

B(r, t) =Re[B(r)e−iωt], (30)

where E and B are the complex amplitudes of the �elds. Here

E(r) =E0(r)e
iϕ(r)nE, (31)

B(r) =B0(r)e
iϕ(r)nB, (32)

where E0 and B0 arer the real amplitudes of the electric and magnetic �elds, respec-

tively, and ϕ is the phase of the complex amplitude. Considering a linear interaction

and isotropic particle with no static dipole moment, the induced dipole moment is

proportional to the complex polarizability α(ω) = αr(ω) + iαi(ω) and the electric

�eld [13]:

µµµ(r, t) =Re[α(ω)E(r)e−iωt] = Re[µµµe−iωt]. (33)

From equations 28-33 we then �nd that the average force over one cycle is

⟨F⟩ =αr
4
∇E2

0 +
αi
2
E2

0∇ϕ =
αr
2
∇⟨E2⟩+ αiω⟨E×B⟩, (34)

where the �rst term is the gradient (or dipole) force and the second term is the

scattering force.

The gradient force arises from the inhomogeneities of the �eld. Particles with a

positive real polarizability are pulled towards high-intensity regions of the �eld while

particles with a negative real polarizability are pushed out of them. At the extremum

of the optical �eld intensity the force is zero. Because of this the gradient force can

be used to trap particles (of positive polarizability) in the high-intensity region of
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Figure 1. Illustration of an optical tweezer. The particle in the middle (purple) is
trapped with a highly focused light �eld (blue). The light is focused with lenses
(pink). The forces acting on the particle are gravity (G) and the optomechanical
force, which consists of the gradient force and the scattering force (Fopt = Fgrad +
Fscat). In the focus of the optical �eld the net force is zero and the particle is
levitating.

the �eld, and that is exactly how particles are trapped in optical tweezers. The

scattering force is caused by the momentum transfer from the �eld to the particle

and is proportional to the �eld momentum Gfield. It always pushes the particle in

the direction of the beam due to the positive imaginary polarizability, whereupon it

can be used to slow down (cool) the motion of the particle.

1.2 Optical tweezers

Optical tweezers are devices used to trap nano- and microscopic particles using

focused lasers. The method of optical tweezing was �rst proposed by Arthur Ashkin

in 1970 [2] and later demonstrated experimentally by him and his team in 1986 [14].

Since then optical tweezers have become an important tool in many �elds, like in

microbiology for trapping singular cells [15].

In order to trap a particle in an optical �eld, there has to be a point where the
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Figure 2. Illustration of the optical trapping force according to ray optics for parti-
cles bigger than the wavelength of the laser. Here are shown two rays and the force
F acting on the particle. The particle is always pulled towards the focus of the rays
(the crossing of the blue lines).

net force is zero. As we showed before the gradient force of an optical �eld has

exactly this property and it is the force that traps the particle in an optical tweezer

towards to the focus of the beam. Figure 1 shows an illustration of optical tweezers.

The laser is tightly focused using lenses and at the focus optical forces perfectly

counteract gravity which makes the particle levitate. In practice the particle is not

at rest but oscillates around the focus point.

For particles smaller than the wavelength of the laser, we can use the dipole

approximation and the trapping force is simply the gradient force in equation 34.

For particles bigger than the wavelength of the laser, the trapping force can be

calculated using ray optics. An illustration of the optical trapping force is shown

in �gure 2. The illustration shows two light rays and how their trajectories change

when they interact with the particle. The change in the rays' momenta have to be

matched by the change in the particle's momentum, and so the particle experiences
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a force that always pulls it towards the focus of the beam. Again, the force consists

of two parts: the scattering force, in the direction of light propagation, and the

gradient force, which is perpendicular to it [12]. For intermediate particles the full

Maxwell stress tensor is needed to calculate the optomechanical forces.

The trapping force in an optical tweezer is [13]

⟨F(r)⟩ =Q(r)
ϵ2sPt
c
, (35)

where Pt is the power of the trapping beam, c is the vacuum speed of light (as

before), and ϵs is the relative permittivity of the surrounding medium. We work in

vacuum, where ϵs = 1. Q(r) is the trapping e�ciency, which in the Rayleigh regime

and with no particle losses depends on the normalized gradient of the light intensity

and the polarizability of the particle α [13]. The polarizability of a homogeneous

and isotropic spherical particle is the Clausius-Mossotti polarizability [12]

α(ω) = 3ϵ0V0
ϵ(ω)− 1

ϵ(ω) + 2
, (36)

where ϵ0 is the vacuum permittivity, V0 is the volume of the particle, and ϵ(ω) is

the relative permittivity of the particle. Moreover, for small deviations x from the

focus, the restoring force is linear as ⟨F ⟩ = −kx, where k is the trap sti�ness. This

corresponds to a harmonic trapping potential U = 1
2
kx2.

Figure 3 shows a real photo of a levitating nanoparticle in optical tweezers,

taken by the Quantum Nanophotonics Group of the Vamivakas Lab in the Institute

of Optics at the University of Rochester.

1.3 Cavities in optical trapping

The basic model of an optical cavity is presented in �gure 4. It is composed of

two parabolic mirrors facing each other. Between the mirrors is a standing wave,

the cavity mode with frequency ωc. A nanoparticle placed in the cavity couples to
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Figure 3. Photo of a levitated nanoparticle by J. Adam Fenster, University of
Rochester.
https://labsites.rochester.edu/vamivakaslab/research/levitated-optomechanics/

Figure 4. Illustration of a particle in an optical cavity. The particle is trapped in
optical �eld (blue area) and placed between mirrors in a cavity. The particle couples
to the cavity mode with frequency ωc.
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the cavity mode and this interaction can be used to cool down the particle to its

quantum ground state.

The cavity can consist of two modes, one for trapping of the particle and one

for cooling, or the particle can be trapped in an external optical tweezer and placed

inside a cavity with only one mode, so that the trapping �eld and the cavity �eld

are orthogonal [6]. We are interested in the latter case.

In a cavity the light �eld is an active participant in the dynamics. Close to

equilibrium the combined system can be modeled as two coupled quantum harmonic

oscillators, instead of a mechanical oscillator in an external potential, as was the case

in optical tweezers without cavity.

Optical cavities are used for cavity assisted optomechanical cooling, where the

center of mass motion is cooled as photons are scattered o� from the particle into

the blue-detuned cavity [16].

Optomechanical quantum control, preparing and controlling quantum states us-

ing optomechanical tools, requires that the particle is near its quantum ground state,

where thermal energy is much smaller than the mechanical energy of the oscillator:

kBT ≪ ℏΩM . Here kB is the Boltzmann constant, T is temperature, ℏ is the re-

duced Planck constant, and ΩM is the mechanical frequency. This condition can be

reached using cavity assisted cooling [9].

In a blue-detuned cavity, where the resonance frequency of the cavity is higher

than the center of mass motion's, photons scattering from the particle due to op-

tomechanical interaction tend to scatter to higher energies in order to enter the

cavity resonance. This increase in photon energy comes from mechanical motion of

the particle, meaning that the particle slows and cools down. This process is called

the Anti-Stokes process.

The opposite process, where the photon scatters red-shifted, i.e. with a lower

energy that it had before, is called the Stokes process. This process increases the



16

energy of the mechanical oscillator and therefore heats it up. These processes can

happen simultaneously and in order to cool the particle the Anti-Stokes process

must be dominant.

The rate of Anti-Stokes processes is A−, so the transition rate from n to n − 1

phonons is

Γn→n−1 = nA−. (37)

Similarly the rate of the Stokes process is A+ and the transition rate from n to n+1

phonons is

Γn→n+1 = (n+ 1)A+. (38)

When the cavity is blue-detuned the rate of the Stokes process is smaller than the

rate of the Anti-Stokes process.

Both the Anti-Stokes and the Stokes processes contribute to the full optome-

chanical damping rate

Γopt = A− − A+. (39)

The average phonon number n̄ =
∑︁∞

n=0 nPn is a�ected by the processes, so

dn̄

dt
= (n̄+ 1)A+ − n̄A− (40)

In the steady state dn̄
dt

= 0 this gives

n̄ =
A+

A− − A+
. (41)

The rates of (Anti-)Stokes process can be calculated using Fermi's golden rule,

using the optomechanical interaction Hamiltonian that we'll calculate a bit later in

section 3 (equation 95) ĤI = g0â
†â(b̂ + b̂

†
), where g0 is the coupling strength, and

â† (â) and b̂
†
(b̂) are the creation (annihilation) operators for the cavity mode and
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the mechanical mode, respectively. In the weak coupling regime the rates can be

calculated using quantum noise spectrum

SFF (ω) = G2

∫︂ ∞

−∞
dteiωt⟨â†â(t)â†â(0)⟩ = G2SNN(ω), (42)

where SNN is the photon number noise spectrum, that gives us the energy eigenstates

that the photons can scatter into, and is calculated in [17] to be

SNN(ω) = n̄cav
κ

κ2/4 + (∆ + ω)2
, (43)

where n̄cav is the average photon number of the cavity mode, κ is photon dissipation

rate, and ∆ = ωL − ωcav is the detuning between laser frequency ωL and cavity

frequency ωcav.

Using the spectrums, we get that the (Anti-)Stokes process rates are

A± =xZPF2SFF(ω = ∓Ωm) = g20SNN(ω = ∓Ωm) = g20n̄cav
κ

κ2/4 + (∆∓ Ωm)2
, (44)

where xZPF is the zero point �uctuation amplitude of the position operator b̂ + b̂
†
,

and g0 = GxZPF is the single-photon optomechanical coupling strength [9].

Inserting them into equation 41 we get that the steady state the phonon number

is

n̄ =(
A−

A+
− 1)−1 = (

κ2/4 + (∆− Ωm)
2

κ2/4 + (∆ + Ωm)2
− 1)−1. (45)

The phonon number can be minimised by varying the detuning ∆. When κ≪ Ωm,

the minimum is

n̄min = (
κ

4Ω
)2 ≪ 1 (46)

meaning that ground state cooling is possible.

2 Theory of open quantum systems

Some systems, where interactions with environment are insigni�cant, we can ap-

proximate as closed systems fully isolated from their environments. But in reality,
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no system can be fully isolated, and we need the theory of open quantum systems

to describe them.

Open quantum system theory can be used to analyse many di�erent kinds of

systems in many di�erent �elds [18]. For example, in quantum optics it is needed

to describe light sources and dissipation of photons [19]. It can also be used to

describe phenomena in condensed matter physics [20], molecular physics [21], and

in quantum information protocols [22].

Open quantum system interacts with an external environment. Therefore when

we are interested in its dynamics we have to take into account not only the system

itself but also the dynamics of the environment and the interactions between the

system and the environment.

In open quantum systems the total system (with Hilbert space HT , density

matrix ρT and Hamiltonian HT ) is closed and consists of the system of interest

(HS, ρS, HS) and the environment (HE, ρE, HE), as shown in �gure 5. The total

Hilbert space is a composite of the Hilbert spaces of the system and the environment

HT = HS ⊗ HE and each of the reduced density matrices of the subsystems can

be calculated as a partial trace of the total density matrix: ρS(t) = TrE[ρT (t)] and

ρE(t) = TrS[ρT (t)]. The total Hamiltonian consists of a bare system term, a bare

environment term, and an interaction term:

HT = HS ⊗ IE + IS ⊗HE + αHI , (47)

where α is the strength of the system-environment interaction and the interaction

Hamiltonian can be decomposed as

HI =
∑︂
i

Si ⊗ Ei, (48)

where Si ∈ B(HS) and Ei ∈ B(HE) are bounded operators of HS and HE, respec-

tively. In practice, the boundedness assumption is often relaxed.
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Figure 5. The total system is composed of the system we are interested in and the
environment it interacts with.

The equation of motion for the total system is given by the von Neumann equa-

tion

ρ̇T (t) = −i[HT , ρT (t)]. (49)

The next goal is to reduce this equation to �nd the equation of motion for only

the system, e�ectively removing the environment from the equation and making

it easier to solve. This way we �nd the Gorini-Kossakowski-Sudarshan-Lindblad

master equation (GKSL) for the system [23, 24].

2.1 Gorini-Kossakowski-Sudarshan-Lindblad master equation

Lindblad equation is the most general generator for Markovian dynamics in an open

quantum system. We derive it here from microscopic dynamics in a system described

in �gure 5. The derivation follows [25].

We work in the interaction picture, where both density matrices and operators

depend on time, as opposed to Schrödinger picture where only density matrices

depend on time, and Heisenberg picture where only operators depend on time. In
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the interaction picture, an arbitrary operator A ∈ B(HT ) is represented as a time-

dependent operator Â(t) = ei(HS⊗IE+IS⊗HE)tAe−i(HS⊗IE+IS⊗HE)t and evolves due to

the system and environment Hamiltonians, while the time evolution of the density

matrix comes from the interaction Hamiltonian, as given by equation

dρ̂T (t)

dt
= −iα[ĤI(t), ρ̂T (t)]. (50)

Integrating this over time, we get the equation

ρ̂T (t) = ρ̂T (0)− iα

∫︂ t

0

ds[ĤI(s), ρ̂T (s)]. (51)

Then we insert this ρ̂T (t) back into equation 50

dρ̂T (t)

dt
= −iα[ĤI(t), ρ̂T (0)]− α2

∫︂ t

0

ds[ĤI(t), [ĤI(s), ρ̂T (s)]], (52)

and then do the same thing again to ρ̂T (s) in the integral, using ρ(t)ˆ as the initial

condition and integrating backwards in time,

dρ̂T (t)

dt
=− iα[ĤI(t), ρ̂T (0)]

− α2

∫︂ t

0

ds[ĤI(t), [ĤI(s), ρ̂T (t)− iα

∫︂ s

t

ds′[ĤI(s
′), ρ̂T (s

′)]]]

=− iα[ĤI(t), ρ̂T (0)]− α2

∫︂ t

0

ds[ĤI(t), [ĤI(s), ρ̂T (t)]]

+ iα3

∫︂ t

0

ds

∫︂ s

t

ds′[ĤI(t), [Ĥ(s), [ĤI(s
′), ρ̂T (s

′)]]]

=− iα[ĤI(t), ρ̂T (0)]− α2

∫︂ t

0

ds[ĤI(t), [ĤI(s), ρ̂T (t)]], (53)

where on the last line we have assumed that the interaction between system and

environment is weak, i.e. α is small, and therefore the term of order α3 is very small

and can be left out.

This equation 53 is for the total system, and to �nd the equation of motion

for only the system we are interested in, we have to take a partial trace over the
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environment

dρ̂S(t)

dt
=TrE[

dρ̂T (t)

dt
]

=− iαTrE[ĤI(t), ρ̂T (0)]− α2

∫︂ t

0

dsTrE[ĤI(t), [ĤI(s), ρ̂T (t)]]. (54)

This still depends on the total density matrix. We assume that at time t = 0 there

are no correlations between the system and the environment and so the total system

is in a separable state ρ̂T (0) = ρ̂S(0)⊗ ρ̂E(0), and that initially environment is in a

thermal state

ρ̂E(0) =
e
− HE

kBT

Tr[e
− HE

kBT ]
, (55)

where T is the temperature and kB is the Boltzmann constant. Going forward we

set kB = 1. Using the form 48 for the interaction Hamiltonian HI , we can calculate

that the �rst term in 54 is

TrE[ĤI(t), ρ̂T (0)] =TrE[
∑︂
i

Ŝi ⊗ Êi, ρ̂T (0)]

=TrE(
∑︂
i

Ŝiρ̂S(0)⊗ Êiρ̂E(0)−
∑︂
i

ρ̂S(0)Ŝi ⊗ ρ̂E(0)Êi)

=
∑︂
i

(Ŝiρ̂S(0)Tr(Êiρ̂E(0))− ρ̂S(0)ŜiTr(ρ̂E(0)Êi)) (56)

=0, (57)

where we have assumed ⟨Ei⟩ = Tr[Eiρ̂E(0)] = Tr[ρ̂E(0)Ei] = 0, ∀i. If ⟨Ei⟩ is not

zero, we can rewrite the interaction Hamiltonian as

H ′
I =

∑︂
i

Si ⊗ (Ei − ⟨Ei⟩IE), (58)

where clearly now ⟨Ei − ⟨Ei⟩IE⟩ = 0. To cancel out the e�ect that this change has

in the system dynamics we need to add a driving term α
∑︁

i⟨Ei⟩Si to the original
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system Hamiltonian. This way the total Hamiltonian remains unchanged:

HT =H ′
S ⊗ IE + IS ⊗HE + αH ′

I

=(HS + α
∑︂
i

⟨Ei⟩Si)⊗ IE + IS ⊗HE + α
∑︂
i

Si ⊗ (Ei − ⟨Ei⟩IE)

=HS ⊗ IE + IS ⊗HE + α
∑︂
i

Si ⊗ Ei − α⟨Ei⟩
∑︂
i

Si ⊗ IE + α⟨Ei⟩
∑︂
i

Si ⊗ IE

=HS ⊗ IE + IS ⊗HE + αHI , (59)

and we can assume that ⟨E⟩i = 0.

Because the interaction between system and environment is very weak, we can

assume that the system and the environment are always noncorrelated and therefore

the environment is always in thermal state. Corrections to this assumptions are

higher order in α. The total state at time t is then ρ̂T (t) = ρ̂S(t) ⊗ ρ̂E(0) and

equation 54 becomes

dρ̂S(t)

dt
=− α2

∫︂ t

0

dsTrE[ĤI(t), [ĤI(s), ρ̂S(t)⊗ ρ̂E(0)]]. (60)

By taking the upper limit to in�nity and changing the integration variable s→ t−s,

we obtain Red�eld equation

dρ̂S(t)

dt
=− α2

∫︂ ∞

0

dsTrE[ĤI(t), [ĤI(s− t), ρ̂S(t)⊗ ρ̂E(0)]]. (61)

To ensure the complete positivity of the evolution given by the master equation,

we must do a rotating wave approximation. Before that we de�ne a superoperator

H̃A ≡ [HS, A], ∀A ∈ B(H). Operators ful�ling

H̃Si(ω) =[HS, Si(ω)] = −ωSi(ω), (62)

H̃S†
i (ω) =[HS, S

†
i (ω)] = ωS†

i (ω) (63)

are the eigenoperators of the superoperator and form a complete basis of B(H).

Then we can write the system operator Si from the decomposition of interaction
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Hamiltonian 48 in this basis

Si =
∑︂
ω

Si(ω). (64)

We change back to the Schrödinger picture for the system part of the interaction

Hamiltonian by expression

Ŝk = eitHSSke
−itHS = eitHSe−it(HS+ω)Sk = e−iωtSk. (65)

We apply these changes for the interaction Hamiltonian in equation 61, and after

some calculations [25] we get

dρ̂S(t)

dt
=

∑︂
ω′,ω,k,l

(e−i(ω−ω
′)tΓkl(ω)[Sl(ω)ρ̂S(t), S

†
k(ω

′)]

+ ei(ω−ω
′)tΓ∗

lk(ω
′)[Sl(ω), ρ̂S(t)S

†
k(ω

′)]), (66)

where factors Γkl(ω) =
∫︁∞
0

dseiωsTr[Ê
†
k(t)Êl(t − s)ρ̂E(0)] include the e�ects of the

environment.

Here |ω−ω′| gives the frequency of the oscillation for each term. If |ω−ω′| ≫ α2,

the term oscillates much faster than the system evolves, since α2 is the strength of

the interaction and so 1
α2 gives the time scale of evolution. Such terms do not

contribute to the overall time-evolution of the system and we can leave them out of

consideration.

We have already assumed that the interaction between the system and environ-

ment is weak and α is small. Taking α → 0 we are left with only the resonant terms

ω = ω′ in equation 66:

dρ̂S(t)

dt
=
∑︂
ω,k,l

(Γkl(ω)[Sl(ω)ρ̂S(t), S
†
k(ω)] + Γ∗

lk(ω)[Sl(ω), ρ̂S(t)S
†
k(ω)]). (67)

This is the rotating wave approximation.

We divide the operators Γkl(ω) into Hermitian and non-Hermitian parts as

Γkl(ω) =
1

2
γkl(ω) + iπkl(ω), (68)
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where the Hermitian part is

γkl(ω) ≡Γkl(ω) + Γkl(ω)
∗

=

∫︂ ∞

0

dseiωsTr[Ê
†
k(t)Êl(t− s)ρ̂E(0)] +

∫︂ ∞

0

dse−iωsTr[Ê
†
k(t)Êl(t− s)ρ̂E(0)]

=

∫︂ ∞

0

dseiωsTr[Ê
†
k(t)Êl(t− s)ρ̂E(0)]−

∫︂ −∞

0

dseiωsTr[Ê
†
k(t)Êl(t+ s)ρ̂E(0)]

=

∫︂ ∞

−∞
dseiωsTr[Ê

†
k(s)Elρ̂E(0)] (69)

and the non-Hermitian part is πkl(ω) ≡ −i
2
(Γkl(ω) − Γkl(ω)

∗). Using this form for

Γkl(ω) equation 67 becomes

dρ̂S(t)

dt
=
∑︂
ω,k,l

((
1

2
γkl(ω) + iπkl(ω))[Sl(ω)ρ̂S(t), S

†
k(ω)]

+ (
1

2
γkl(ω)− iπkl(ω))[Sl(ω), ρ̂S(t)S

†
k(ω)])

=
∑︂
ω,k,l

(γkl(ω)(Sl(ω)ρ̂S(t)S
†
k(ω)

− 1

2
{S†

k(ω)Sl(ω), ρ̂S(t)})− iπkl[S
†
k(ω)Sl(ω), ρ̂S(t)]). (70)

Then we change fully back into the Schrödinger picture using ρ̂S = eitHSρSe
−itHS .

On the left hand side we get

dρ̂S
dt

=
d

dt
(eitHSρSe

−itHS)

=iHSe
itHSρSe

−itHS + eitHS
dρS
dt

e−itHS − eitHSρSe
−itHS iHS

=eitHS
dρS
dt

e−itHS + ieitHS [HS, ρS]e
−itHS , (71)

and, because operators Sk are eigen operators for H̃, we can take out the exponential

factors in each term on the right hand side in equation 70

S†
k(ω)Sl(ω)e

itHSρSe
−itHS =S†

k(ω)e
itHSeiωtSl(ω)ρSe

−itHS

=eitHSe−iωtS†
k(ω)e

iωtSl(ω)ρSe
−itHS

=eitHSS†
k(ω)Sl(ω)ρSe

−itHS . (72)
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The calculation is almost identical for the other two terms. Then we can cancel out

the exponential factors on both sides of the equation 70. This gives us the master

equation on Schrödinger picture

dρS
dt

=− i[HS +HL, ρS(t)] +
∑︂
ω,k,l

(γkl(ω)(Sl(ω)ρS(t)S
†
k(ω)−

1

2
{S†

k(ω)Sl(ω), ρS(t)})),

(73)

where HL =
∑︁

ω,k,l πklS
†
k(ω)Sl(ω) is called the Lamb shift Hamiltonian. We denote

the full Hamiltonian H = HS +HL.

To get the Lindblad equation we still need to write this in diagonal form. γ(ω) =

(γkl(ω)) is a positive matrix so it can be diagonalized using a unitary transformation

O as

Oγ(ω)O† =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

d1(ω) 0 . . . 0

0 d2(ω) . . . 0

...
...

. . .
...

0 0 . . . dN(ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (74)

Then we de�ne operators Lk =
∑︁

lOlkSl, which form another orthonormal basis.

Using these operators we rewrite the master equation in a diagonal form:

dρS
dt

=− i[H, ρS(t)] +
∑︂
ω,k

dk(ω)(Lk(ω)ρS(t)L
†
k(ω)−

1

2
{L†

k(ω)Lk(ω), ρS(t)}). (75)

Lk are the jump operators, which describe the stochastic part of the dynamics based

on how the environment a�ects the system.

If there is only one relevant frequency ω Lindblad equation simpli�es to

dρS
dt

=− i[H, ρS(t)] +
∑︂
k

dk(LkρS(t)L
†
k −

1

2
{L†

kLk, ρS(t)}). (76)

2.2 Unravellings (Quantum State Di�usion)

We start with an ensemble of state vectors, that satisfy a stochastic di�erential

equation, and whose density matrix satis�es a deterministic master equation. This
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is called an unravelling of the master equation. Each unravelling corresponds to only

on master equation, while a master equation can have many di�erent possible un-

ravellings. One of the unravellings for Lindblad master equation 76 is the Quantum

State Di�usion (QSD) [26, 27].

In QSD the ensemble consists of normalized pure states |ψt⟩ and the density

matrix is the ensemble average of the projection operators for these states:

ρ(t) = ⟨|ψ(t)⟩⟨ψ(t)|⟩. (77)

The QSD equation can be derived by �rst writing the stochastic di�erential equation

for state vector |ψt⟩ in Itô form [28, 29]:

|dψ⟩ = |v⟩dt+
∑︂
k

|uk⟩dξk. (78)

where the �rst term is the drift of the state vector, and the sum is the stochastic �uc-

tuations. Here dξk are independent complex Wiener increments, with independent

and equal �uctuations in their real and imaginary parts, and which satisfy

⟨dξk⟩ = 0, ⟨dξkdξl⟩ = 0, ⟨dξ∗kdξl⟩ = δkldt. (79)

Also the �uctuations at di�erent times are assumed to be independent, so the process

is Markovian.

The �uctuations must be orthogonal to the state vector ⟨ψt|uk⟩ = 0 to preserve

the normalization of the state vector. This means that

⟨|dψ⟩⟩ = |v⟩dt and ⟨|dψ⟩⟨dψ|⟩ = 2
∑︂
k

|uk⟩⟨uk|dt. (80)

The change in the density matrix ρ is in Itô formalism

dρ =d⟨|ψ⟩⟨ψ|⟩ = ⟨|dψ⟩⟨ψ|+ |ψ⟩⟨dψ|+ |dψ⟩⟨dψ|⟩

→ ρ̇ =|v⟩⟨ψ|+ |ψ⟩⟨v|+ 2
∑︂
k

|uk⟩⟨uk|. (81)
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The stochastic terms are orthogonal to |ψ⟩⟨ψ|, so using the Lindblad master equation

76 for ρ̇ and initial density matrix ρψ = |ψ⟩⟨ψ|, that projects onto a pure state, we

see that they are

2
∑︂
k

|uk⟩⟨uk| =(I− |ψ⟩⟨ψ|)ρ̇(I− |ψ⟩⟨ψ|)

=(I− |ψ⟩⟨ψ|)(−[H, ρ] +
∑︂
k

(LkρL
†
k −

1

2
{L†

kLk, ρ}))(I− |ψ⟩⟨ψ|)

=
∑︂
k

(I− |ψ⟩⟨ψ|)Lk|ψ⟩⟨ψ|L†
k(I− |ψ⟩⟨ψ|), (82)

and from this we see that

|uk⟩ = ((Lk)− ⟨Lk⟩ψ)|ψ⟩. (83)

The drift is given by

ρ̇|ψ⟩ =|v⟩+ |ψ⟩⟨v|ψ⟩

⟨ψ|ρ̇|ψ⟩ =⟨v|ψ⟩+ ⟨v|ψ⟩ = 2Re⟨ψ|v⟩, (84)

and so

|v⟩ =ρ̇|ψ⟩ − ⟨ψ|v⟩|ψ⟩ = ρ̇|ψ⟩ − (
1

2
⟨ψ|ρ̇|ψ⟩+ ic)|ψ⟩, (85)

where ic = iIm(⟨ψ|v⟩) is a purely imaginary phase change function that does not

a�ect the physics of the system and is by convention set to zero so that the equation

simpli�es back to Schrödinger equation in absence of an environment.

Similarly as before we insert ρ̇ from Lindblad equation 76 and using initial density
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matrix ρψ we can solve |v⟩

|v⟩ =− i(H|ψ⟩⟨ψ|ψ⟩ − |ψ⟩⟨H⟩ψ)

+
∑︂
k

(Lk|ψ⟩⟨L†
k⟩ −

1

2
(L†

kLk|ψ⟩⟨ψ|ψ⟩+ |ψ⟩⟨L†
k⟩⟨Lk⟩))

− 1

2
(−i⟨H⟩ψ|ψ⟩+ i⟨H⟩ψ|ψ⟩

+
∑︂
k

(⟨Lk⟩ψ⟨L†
k⟩ψ|ψ⟩ −

1

2
(⟨L†

k⟩⟨Lk⟩⟨ψ|ψ⟩|ψ⟩+ ⟨L†
k⟩⟨Lk⟩⟨ψ|ψ⟩|ψ⟩)))

=− iH|ψ⟩+
∑︂
k

[⟨L†
k⟩Lk −

1

2
L†
kLk −

1

2
⟨L†

k⟩⟨Lk⟩]|ψ⟩. (86)

The full stochastic di�erential equation for the state vector is therefore

|dψ⟩ =− iH|ψ⟩dt+
∑︂
k

[⟨L†
k⟩Lk −

1

2
L†
kLk −

1

2
⟨L†

k⟩⟨Lk⟩]|ψ⟩dt

+
∑︂
k

[Lk − ⟨Lk⟩]|ψ⟩dξk. (87)

This is the non-linear QSD equation in Itô form.

However, for our system we want to use a linear QSD equation in Stratonovich

form, so we can solve the equation we using normal rules of calculus. For this reason

we next write the linear QSD equation by simply excluding the non-linear terms [29]

|dψ⟩ =− iH|ψ⟩dt−
∑︂
k

1

2
L†
kLk|ψ⟩dt+

∑︂
k

Lk|ψ⟩dξk. (88)

This linear form no longer preserves the norm of the state for individual states, but

on average produces the GKSL evolution.

In this case, the linear QSD equation is the same in both Itô and Stratonovich

forms, but in Stratonovich form it is usually written in di�erential form

∂

∂t
|ψ⟩ = −iH|ψ⟩ −

∑︂
k

1

2
L†
kLk|ψ⟩+

∑︂
k

ηkLk|ψ⟩, (89)

where the new noise ηk =
dξk
dt

has properties

⟨ηk(t)⟩ = 0, ⟨ηk(t)ηl(s)⟩ = 0, ⟨ηk(t)η∗k(s)⟩ = κδ(t− s). (90)

This form of writing implies that we can use normal rules of calculus when solving

the equation.
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3 System under study

We are interested in a system, where a nanoparticle is trapped in optical tweezers

and placed in an optical cavity. We use a Febry-Pérot cavity, where one mirror is

movable, making it possible to adjust the length of the cavity. This system includes

two modes, a mechanical mode for the center of mass motion of the particle and a

cavity mode for the optical cavity, that interact. We do not take the polarization of

the optical �eld into account, so we have simply assumed that the �eld is a scalar.

The Hamiltonian part of the dynamics must therefore include both modes and

the interaction between them, and the non-Hamiltonian part of the dynamics, given

by jump operators Lm and Lcav, describe the decay of the modes.

To write the GKSL equation for this system we need to know the Hamiltonian

H and the jump operators Lcav, Lm. We use a similar approach as in [9].

The tweezer �eld creates a harmonic potential to trap the particle, meaning that

the Hamiltonian for the mechanical oscillator trapped in the tweezer �eld, but not

coupled to the cavity �eld is

Hm,0 = ωtb̂
†
b̂, (91)

where ωt is the mechanical frequency (the frequency of the harmonic trap), and b̂

(b̂
†
) is the annihilation (creation) operator for the mechanical mode [7].

The cavity mode can also be described by a harmonic oscillator, so its Hamilto-

nian is

Ĥcav = ωcav(x̂)â
†â, (92)

where ωcav(x̂) is the cavity mode frequency, which depends on the length of the

cavity, and â and â† are the annihilation and creation operator for the cavity mode.

Creation and annihilation operators satisfy the usual commutation relation [â, â†] =

1 = [b̂, b̂
†
].
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The presence of the particle disturbs the cavity �eld and mimics a change in

cavity length [6]. The cavity frequency depends on the length of the cavity and

in this way also depends on the displacement of the particle x̂. We can write the

displacement dependence as

ωcav(x̂) ≈ ωcav + x̂
∂ωcav
∂x̂

+ ..., (93)

where we are only interested in linear terms. We de�ne optical frequency shift per

displacement G = ∂ωcav

∂x̂
and use it to write the cavity Hamiltonian as

ωcav(x̂)â
†â ≈ ωcavâ

†â− x̂Gâ†â = ωcavâ
†â+ g0(b̂+ b̂

†
)â†â, (94)

where x̂ = xZPF (b̂ + b̂
†
) is the position operator for a particle in a harmonic trap,

xZPF is the zero point �uctuation amplitude, and g0 = GxZPF is the single-photon

optomechanical coupling strength. This gives us the free cavity mode Hamiltonian

Ĥcav,0 = ωcavâ
†â and the interaction Hamiltonian

ĤI = g0â
†â(b̂+ b̂

†
). (95)

Our full Hamiltonian is then

Ĥ = Ĥ0 + ĤI = ωcavâ
†â+ ωmb̂

†
b̂+ g0â

†â(b̂+ b̂
†
), (96)

where we have denoted the full free Hamiltonian of the system Ĥ0 = Ĥm,0 + Ĥcav,0.

We change into a frame rotating at the frequency of the driving laser ωL with a

unitary transformation Û = eiωLâ
†ât, where the new Hamiltonian is

Ĥ =Û(Ĥ0 + ĤI)Û
†
+ i

∂Û

∂t

=Ĥ0 + ĤI − ωLâ
†âeiωLâ

†ât

=− δâ†â+ ωmb̂
†
b̂+ g0â

†â(b̂+ b̂
†
), (97)

where δ = ωL − ωcav is the detuning of laser frequency from cavity frequency.
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We divide â into classical part and quantum part â = ᾱ + â′, where ᾱ = ⟨â⟩ is

the average coherent amplitude and â′ is a �uctuating term that going forward we

will denote with simply â. The interaction Hamiltonian is then

ĤI =g0(ᾱ + â)†(ᾱ + â)(b̂+ b̂
†
) (98)

=g0(|α|2 + ᾱâ† + ᾱ∗â+ â†â)(b̂+ b̂
†
)

≈g0(ᾱâ† + ᾱ∗â)(b̂+ b̂
†
), (99)

where in the last equation the �rst term is left out, because it implies an average

radiation pressure F̄ = G|ᾱ|2 that can be omitted by shifting displacement's origin

by δx̄ = F̄
meffω2

m
. The last term was left out because â≪ ᾱ.

We assume ᾱ =
√
n̄cav ∈ R and de�ne the optomechanical coupling strength

g = g0
√
n̄cav. Then the interaction Hamiltonian is

ĤI = g(â+ â†)(b̂+ b̂
†
). (100)

The full cavity optomechanics Hamiltonian H is

Ĥ = −δâ†â+ ωb̂
†
b̂+ g(â+ â†)(b̂+ b̂

†
). (101)

It describes the coherent coupling between cavity and mechanical modes [7].

We have two modes so we have two jump operators: Lcav = â the cavity annihi-

lation operator, and Lm = q̂ = b̂+ b̂
†
the mechanical position operator for a particle

in harmonic trap (q̂† = q̂, (q̂2)† = q̂2). These give us the dissipation term for cavity

Lcav[ρ] = κ(âρâ† − 1

2
{â†â, ρ}), (102)

which describes the decay of cavity mode at rate κ due to the presence of the

particle and photon losses caused by mirror imperfections, and the di�usion term

for mechanical mode

Lm = Γ(q̂ρq̂ − 1

2
{q̂2, ρ}), (103)
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which generates decoherence of the mechanical motion at rate Γ due to recoil heating

caused by light scattering o� the particle [7].

The full Lindblad master equation that describes our system is then

ρ̇ = i[ρ, Ĥ] + κ(âρâ† − 1

2
{â†â, ρ}) + Γ(q̂ρq̂ − 1

2
{q̂2, ρ}). (104)

4 Particle dynamics

4.1 Solving the stochastic di�erential equation

We have a master equation [30]

ρ̇ = i[ρ, Ĥ] + κ(âρâ† − 1

2
{â†â, ρ}) + Γ(q̂ρq̂ − 1

2
{q̂2, ρ}), (105)

where H is given by equation 101, and we want to solve the dynamics of the system.

We use quantum state di�usion to change the problem from a master equation for

a density matrix to a stochastic di�erential equation for state vectors. The QSD

equation in this case is

∂

∂t
|ψt⟩ = −iĤ|ψt⟩+ ξ∗t â|ψt⟩ −

κ

2
â†â|ψt⟩+ η∗t q̂|ψt⟩ −

Γ

2
q̂2|ψt⟩, (106)

where the noises ξ∗t and η
∗
t have properties

⟨ξ∗t ⟩ = 0, ⟨ξtξs⟩ = 0, ⟨η∗t ⟩ = 0, ⟨ηtηs⟩ = 0,

⟨ξtξ∗s ⟩ = κδ(t− s), ⟨ηtη∗s⟩ = Γδ(t− s). (107)

We aim to solve ρ that satis�es the master equation as the expectation value

ρ = ⟨|ψt⟩⟨ψt|⟩. (108)

We use the Stratonovich method to solve the stochastic di�erential equation, so

we can use the product rule

∂

∂t
|ψt⟩⟨ψt| = |ψṫ ⟩⟨ψt|+ |ψt⟩⟨ψṫ |. (109)
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The derivative of state ρ is then

∂

∂t
ρ =

∂

∂t
⟨|ψt⟩⟨ψt|⟩ = ⟨|ψṫ ⟩⟨ψt|+ |ψt⟩⟨ψṫ |⟩

=⟨−iĤ|ψt⟩⟨ψt|+ ξ∗t â|ψt⟩⟨ψt| −
κ

2
â†â|ψt⟩⟨ψt|+ η∗t q̂|ψt⟩⟨ψt| −

Γ

2
q̂2|ψt⟩⟨ψt|

+ i|ψt⟩⟨ψt|Ĥ
†
+ ξt|ψt⟩⟨ψt|â† −

κ

2
|ψt⟩⟨ψt|â†â+ ηt|ψt⟩⟨ψt|q̂ −

Γ

2
|ψt⟩⟨ψt|q̂2⟩

=− i[Ĥ, ρ]− κ

2
{â†â, ρ}+ â⟨ξ∗t |ψt⟩⟨ψt|⟩+ ⟨ξt|ψt⟩⟨ψt|⟩â†

− Γ

2
{q̂2, ρ}+ q̂⟨η∗t |ψt⟩⟨ψt|⟩+ ⟨ηt|ψt⟩⟨ψt|⟩q̂†. (110)

Comparing the terms in this equation with the terms in the master equation 105,

we get the equation

κâ⟨|ψt⟩⟨ψt|⟩â† = â⟨ξ∗t |ψt⟩⟨ψt|⟩+ ⟨ξt|ψt⟩⟨ψt|⟩â†, (111)

which can be solved by using the Furutsu-Novikov theorem. We get the solution

⟨ξ∗t |ψt⟩⟨ψt|⟩ =
κ

2
⟨|ψt⟩⟨ψt|⟩â†. (112)

Similarly for the mechanical mode we get equation

Γq̂⟨|ψt⟩⟨ψt|⟩q̂† = q̂⟨η∗t |ψt⟩⟨ψt|⟩+ ⟨ηt|ψt⟩⟨ψt|⟩q̂† (113)

with solution

⟨η∗t |ψt⟩⟨ψt|⟩ =
Γ

2
⟨ηt|ψt⟩⟨ψt|⟩q̂†. (114)

Next we assume that the state is of the form

|ψt⟩ = eX̂ |0, 0⟩, (115)

where X̂ is an operator consisting of the annihilation operators of cavity mode and

center of mass motion

X̂ = λâ† + µb̂
†
− 1

2
r(â†)2 − 1

2
s(b̂

†
)2 − zâ†b̂

†
. (116)
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Taking a derivative of this state we get

∂

∂t
|ψt⟩ =

Ṅ

N
|ψt⟩+ λ̇â†|ψt⟩+ µ̇b̂

†
|ψt⟩ −

1

2
ṙ(â†)2|ψt⟩ −

1

2
ṡ(b̂

†
)2|ψt⟩ − żâ†b̂

†
|ψt⟩. (117)

We want to calculate the stochastic di�erential equation 106 explicitly in terms

of the parameters in our ansatz (λ, µ, r, s, z, and N) and the creation operators

in order to compare it to equation 117 and in that way �nd individual di�erential

equations for each of the parameters. If we can solve the time dependency of all

the parameters in our state, we then know how our state changes in time. Here we

present only the main parts of the calculation. More detailed calculations can be

found in appendix B.

To do this we need to �rst calculate how the creation operators â and b̂ operate

on the state |ψ⟩. We de�ne a new operator â(θ) as

â(θ) = e−θX̂ âeθX̂ . (118)

Its derivative is

∂

∂θ
â(θ) == −e−θX̂ [X̂, â]eθX̂ , (119)

where the commutator is

[X̂, â] = −λ+ râ† + zb̂
†
. (120)

We do the same for the mechanical mode annihilation operator b̂, whose commutator

is

[X̂, b̂] = −µ+ sb̂
†
+ zâ†. (121)

The creation operators commute with operator X̂ and its exponential:

[X̂, â†] = 0 = [eX̂ , â†], (122)

[X̂, b̂
†
] = 0 = [eX̂ , b̂

†
], (123)
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so the derivative 119 becomes

∂

∂θ
â(θ) = λ− râ† − zb̂

†
(124)

By integrating this over θ we see that

â(1)− â(0) =

∫︂ 1

0

dθ
∂

∂θ
â(θ) = λ− râ† − zb̂

†

→ e−X̂ âeX̂ = â+ λ− râ† − zb̂
†
, (125)

and by operating with this on |ψt⟩ we get the result of how the annihilation operator

operates on the state:

e−X̂ âeX̂ |0⟩ = â|0⟩+ (λ− râ† − zb̂
†
)|0⟩

âeX̂ |0⟩ = (λ− râ† − zb̂
†
)eX̂ |0⟩

â|ψt⟩ = (λ− râ† − zb̂
†
)|ψt⟩. (126)

For operator b̂ we get the corresponding solution

b̂|ψt⟩ = (µ− sb̂
†
− zâ†)|ψt⟩. (127)

Now that we know how the annihilation operators â and b̂ operate on the state,

we can calculate how di�erent quadratic combinations of creation and annihilation

operators operate on it:

â†â|ψt⟩ =(λâ† − r(â†)2 − zâ†b̂
†
)|ψt⟩,

b̂
†
b̂|ψt⟩ =(µb̂

†
− s(b̂

†
)2 − zâ†b̂

†
)|ψt⟩,

âb̂|ψt⟩ =[λµ− z − (rµ+ zλ)â† − (sλ+ zµ)b̂
†
+ rz(â†)2 + sz(b̂

†
)2

+ (sr + z2)â†b̂
†
]|ψt⟩,

âb̂
†
|ψt⟩ =(λb̂

†
− z(b̂

†
)2 − râ†b̂

†
)|ψt⟩,

â†b̂|ψt⟩ =(µâ† − z(â†)2 − sâ†â†)|ψt⟩

b̂
†
b̂|ψt⟩ =(µb̂

†
− s(b̂

†
)2 − zâ†b̂

†
)|ψt⟩

b̂
2
|ψt⟩ =(µ2 − s− 2zµâ† − 2sµb̂

†
+ z2(â†)2 + s2(b̂

†
)2 + 2szâ†b̂

†
)|ψt⟩. (128)
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Using these, we can write the QSD equation 106 in terms of the ansatz state pa-

rameters:

∂

∂t
|ψt⟩ =− iĤ|ψt⟩+ ξ∗t â|ψt⟩ −

κ

2
â†â|ψt⟩+ η∗t q̂|ψt⟩ −

Γ

2
q̂2|ψt⟩

=[ξ∗t λ+ η∗t − ig(λµ− z)− 1

2
Γ(µ2 + 1− s)]|ψt⟩

+ [iδλ− ig(−zλ+ µ(1− r))− ξ∗t r − η∗t z −
1

2
κλ+ Γzµ]â†|ψt⟩

+ [−iωµ− ig(−zµ+ λ(1− s))− ξ∗t z − η∗t (1− s)− Γµ(1− s)]b̂
†
|ψt⟩

+ [−iδr + igz(1− r) +
1

2
κr − 1

2
Γz2](â†)2|ψt⟩

+ [iωs+ igz(1− s)− 1

2
Γ(1− s)2](b̂

†
)2|ψt⟩

+ [iz(ω − δ)− ig(z2 + rs− r − s) +
1

2
κz + Γz(1− s)]â†b̂

†
|ψt⟩. (129)

By comparing the terms with the same combination of annihilation operators in this

equation and in equation 117 we get di�erential equations for each of the parameters

in the ansatz state

Ṅ

N
=ξ∗t λ+ η∗t − ig(λµ− z)− 1

2
Γ(µ2 + 1− s), (130)

λ̇ =(iδ + igz − 1

2
κ)λ− igµ(1− r)− ξ∗t r − η∗t z + Γzµ, (131)

µ̇ =(−iω + igz − Γ(1− s))µ− igλ(1− s)− ξ∗t z − η∗t (1− s), (132)

ṙ =(2iδ + 2igz − κ)r − 2igz + Γz2, (133)

ṡ =− 2iωs− 2igz(1− s) + Γ(1− s)2, (134)

ż =(iδ − iω − 1

2
κ− Γ(1− s))z + ig(z2 + rs− r − s). (135)

These equations give us the time dependence for the parameters of the ansatz. This

shows that the solution of the QSD equation is of the form |ψt⟩ = Nte
X̂t |0, 0⟩.

4.2 Norm of the state

We want to be able to calculate the expectation values for creation and annihilation

operators and their combinations. We can do this by taking a derivative of the



37

norm of the state ⟨ψt|ψt⟩ = |N |2⟨0|eX̂
†
eX̂ |0⟩ with respect to one of the parameters

in operator X̂ = λâ† + µb̂
†
− 1

2
r(â†)2 − 1

2
s(b̂

†
)2 − zâ†b̂

†
. For example, we get the

expectation value for operators â† by taking a derivative of the norm with respect

to the parameter λ

∂

∂λ
⟨ψt|ψt⟩ =

∂

∂λ
|N |2⟨0|eX̂

†
eX̂ |0⟩ = |N |2⟨0|eX̂

†
â†eX̂ |0⟩ = ⟨ψt|â†|ψt⟩ = ⟨â†⟩. (136)

This can naturally be expanded for expectation values for combinations of the op-

erators. For example

⟨âb̂
†
⟩ = ∂2

∂λ∗∂µ
⟨ψt|ψt⟩. (137)

To calculate the norm we �rst de�ne new state vectors

||u⟩ = euâ
† |0⟩, ||v⟩ = evb̂

†
|0⟩, ||u, v⟩ = euâ

†+vb̂
†
|0⟩, (138)

that have the property∫︂
d2u

1

π
e−|u|2

∫︂
d2v

1

π
e−|v|2 ||u, v⟩⟨u, v|| = I. (139)

Then we want to know how the creation and annihilation operators operate on the

vector ⟨u, v||. We �nd that

∂

∂u∗
⟨u, v|| = ∂

∂u∗
(⟨0|eu∗â+v∗b̂) = ⟨0|eu∗â+v∗b̂â = ⟨u, v||â, (140)

⟨u, v||â† =⟨0|eu∗ââ†ev∗b̂ = ⟨0|
∞∑︂
k=0

(u∗â)k

k!
â†ev

∗b̂

=⟨0|(â† + u∗(â†â+ 1) +
(u∗)2

2
(â†â2 + a) + ...)ev

∗b̂

=⟨0|u∗
∞∑︂
k=0

(u∗â)k

k!
â†ev

∗b̂ = u∗⟨0|eu∗â+v∗b̂ = u∗⟨u, v||, (141)

with corresponding equations for b̂ and v:

⟨u, v||b̂ = ∂

∂v∗
⟨u, v||, (142)

⟨u, v||â† =u∗⟨u, v||. (143)
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By reorganising the terms in equations 126 and 127 we �nd that |ψt⟩ is an

eigenvector for operators â+ râ† + zb̂
†
and b̂+ sb̂

†
+ zâ† with

(â+ râ† + zb̂
†
)|ψt⟩ = λ|ψt⟩, (144)

(b̂+ sb̂
†
+ zâ†)|ψt⟩ = µ|ψt⟩. (145)

Using these properties we get equations

λ⟨u, v||ψt⟩ =⟨u, v||(â+ râ† + zb̂
†
)|ψt⟩ = (

∂

∂u∗
+ ru∗ + zv∗)⟨u, v||ψt⟩, (146)

µ⟨u, v||ψt⟩ =(
∂

∂v∗
+ sv∗ + zu∗)⟨u, v||ψt⟩. (147)

Let's de�ne f(u∗, v∗) = ⟨u, v||ψt⟩ and assume that it is of form f(u∗, v∗) =

eg(u
∗,v∗). Then from equations 146 and 147 we get a pair of partial di�erential

equations

∂

∂u∗
g + ru∗ + zv∗ − λ = 0, (148)

∂

∂v∗
g + sv∗ + zu∗ − µ = 0, (149)

from which we can solve g(u∗, v∗) and therefore f(u∗, v∗):

g(u∗, v∗) =λu∗ + µv∗ − 1

2
r(u∗)2 − 1

2
s(v∗)2 − zu∗v∗, (150)

f(u∗, v∗) =eλu
∗+µv∗− 1

2
r(u∗)2− 1

2
s(v∗)2−zu∗v∗ , (151)

and �nally use this form to calculate

|⟨u, v||ψt⟩|2 =|f(u∗, v∗)|2

=exp[λu∗ + λ∗u+ µv∗ + µ∗v − 1

2
r(u∗)2 − 1

2
r∗u2

− 1

2
s(v∗)2 − 1

2
s∗v2 − zu∗v∗ − z∗uv]. (152)
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Then we can write the norm of the state as

⟨ψt|ψt⟩ =
∫︂
d2u

∫︂
d2v

1

π2
e−|u|2−|v|2⟨ψt||u, v⟩⟨u, v||ψ⟩

=

∫︂
d2u

∫︂
d2v

1

π2
e−|u|2−|v|2 |f(u∗, v∗)|2

=
1

π2

∫︂
d2ve−|v|2+µv∗+µ∗v− 1

2
s(v∗)2− 1

2
s∗v2∫︂

d2ue−|u|2+(λ−zv∗)u∗+(λ∗−z∗v)u− 1
2
r(u∗)2− 1

2
r∗u2 . (153)

Both the integral over u and integral over v are of the same form

1

π

∫︂
d2ue−|u|2− 1

2
b(u∗)2− 1

2
b∗u2+βu∗+β∗u. (154)

We solve it in this general form, so the solution can be easily applied to both

integrals.

First we want to switch to a matrix notation. We de�ne a vector

u =

⎛⎜⎝ u

u∗

⎞⎟⎠ , (155)

and a matrx

A =

⎛⎜⎝a b

b∗ a

⎞⎟⎠ , (156)

where a ∈ R and b ∈ C. Then the product

1

2
u†Au = a|u|2 + 1

2
b(u∗)2 +

1

2
b∗u2, (157)

is almost the same form as the exponents in equation 153.

With the help of the eigenvalues of matrix A, we aquire the diagonal form

A = CDC†,

where

D =

⎛⎜⎝a− |b| 0

0 a+ |b|

⎞⎟⎠ and C =
1√
2|b|

⎛⎜⎝−b b

|b| |b|

⎞⎟⎠ .
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To achieve the wanted form, we need to add terms that are linear in u. To do

this we de�ne another vector βββ =

⎛⎜⎝ β

β∗

⎞⎟⎠ and use it to write the linear terms as a

vector product

β∗u+ βu∗ = βββ†u. (158)

The exponent in the norm 153 can then be written in matrix form as

Q =− 1

2
u†CDC†u+ βββ†u. (159)

Next we transform the vectors with C†

ũ =

⎛⎜⎝ ũ

ũ∗

⎞⎟⎠ = C†u (160)

βββ̃ =

⎛⎜⎝ β̃

β̃
∗

⎞⎟⎠ = C†βββ (161)

so the exponent is then

Q =− 1

2
ũ†Dũ+ βββ̃

†
ũ. (162)

We can write it also in the form

Q =− 1

2
(ũ−D−1βββ̃)D(ũ−D−1βββ̃) +

1

2
βββ̃
†
D−1βββ̃, (163)

because

−1

2
(ũ† −D−1βββ̃)†D(ũ† −D−1βββ̃) =− 1

2
ũ†Dũ+

1

2
(ũ†βββ̃ + ũβββ̃

†
)− 1

2
βββ̃
†
Dβββ̃

=− 1

2
ũ†Dũ+ βββ̃

†
ũ− 1

2
βββ̃
†
Dβββ̃, (164)

and Q remains unchanged due to the added term 1
2
βββ̃
†
D−1βββ̃.

Now we can write the integral in matrix form

1

π

∫︂
d2ue−|u|2− 1

2
b(u∗)2− 1

2
b∗u2+βu∗+β∗u =

1

π

∫︂
d2ue−

1
2
(ũ−D−1βββ̃)D(ũ−D−1βββ̃)+ 1

2
βββ̃
†
D

−1βββ̃.

(165)
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To solve it, we change the integration parameter d2u to d2ũ. We can write u in

terms of ũ as

u =Cũ =
1√
2|b|

⎛⎜⎝ b(ũ∗ − ũ)

|b|(ũ∗ + ũ)

⎞⎟⎠ , (166)

and use it to calculate the Jacobian for the tranformation

J =

⃓⃓⃓⃓
⃓⃓⃓ ∂
∂ũ
u ∂

∂ũ∗
u

∂
∂ũ
u∗ ∂

∂ũ∗
u∗

⃓⃓⃓⃓
⃓⃓⃓ = − b√

2|b|
1√
2
− 1√

2

b√
2|b|

= − b

|b|
. (167)

So d2u = − b
|b|d

2ũ and the integral 165 becomes

1

π

∫︂
d2ue−

1
2
(ũ−D−1βββ̃)D(ũ−D−1βββ̃)+ 1

2
βββ̃
†
D

−1βββ̃ =
b

π|b|
e

1
2
βββ̃
†
D

−1βββ̃

∫︂
d2ũe−

1
2
(ũ-D−1βββ̃)D(ũ−D−1βββ̃)

=
b

π|b|
e

1
2
βββ̃
†
D

−1βββ̃ 2π√
detD

=
2b

|b|
1√︁

a2 − |b|2
e

1
2
βββ†CD−1

C
dagβββ

=
2b

|b|
1√︁

a2 − |b|2
e

1
a2−|b|2

(a|β|2− 1
2
b(β∗)2− 1

2
b∗β2)

,

(168)

where

1

2
βββ†CD−1C†βββ =

1

2
βββ†A−1βββ =

1

2
βββ† 1

a2 − |b|2

⎛⎜⎝ a −b

−b∗ a

⎞⎟⎠βββ

=
1

a2 − |b|2
(a|β|2 − 1

2
b(β∗)2 − 1

2
b∗β2). (169)

Now we can solve the norm in full. In the integral over u in equation 153 our

parameters are a = 1, b = r, and β = λ− zv∗, so the solution for the integral is

1

π

∫︂
d2ue−|u|2+(λ−zv∗)u∗+(λ∗−z∗v)u− 1

2
r(u∗)2− 1

2
r∗u2

=
2r

|r|
√︁

1− |r|2
exp[

1

1− |r|2
(|λ− zv∗|2 − 1

2
r(λ∗ − z∗v)2 − 1

2
r∗(λ− zv∗))]

=
2r

|r|
√︁

1− |r|2
exp[

1

1− |r|2
(|λ|2 − 1

2
r(λ∗)2 − 1

2
r∗λ2 − |z|2|v|2

+ (r∗λ− λ∗)zv∗ + (rλ∗ − λ)z∗v − 1

2
r(z∗)2v2 − 1

2
r∗z2(v∗)2)], (170)
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and putting this back into the full integral of the norm gives us

⟨ψt|ψt⟩ =
2r

|r|
√︁

1− |r|2
e

1
1−|r|2

(|λ|2− 1
2
r(λ∗)2− 1

2
r∗λ2)

× 1

π

∫︂
dv exp[−(1 +

|z|2

1− |r|2
)|v|2 + (µ+

r∗λz − λ∗z

1− |r|2
)v∗

+ (µ∗ +
rλ∗z∗ − λz∗

1− |r|2
)v − 1

2
(s+

r∗z2

1− |r|2
)(v∗)2 − 1

2
(s∗ +

r(z∗)2

1− |r|2
)v2]

=
2r

|r|
√︁

1− |r|2
exp[

1

1− |r|2
(|λ|2 − 1

2
r(λ∗)2 − 1

2
r∗λ2)]

× 2b

|b|
√︁
a2 − |b|2

exp[
1

a2 − |b|2
(a|β|2 − 1

2
b(β∗)2 − 1

2
b∗β2)], (171)

where the parameters are now a = 1 + |z|2
1−|r|2 , b = s+ r∗z2

1−|r|2 , and β = µ+ r∗λz−λ∗z
1−|r|2 .

In the special case where there is no interaction between the particle and the

cavity z = 0 and the norm is

⟨ψt|ψt⟩ =
2r

|r|
√︁

1− |r|2
e

1
1−|r|2

(|λ|2− 1
2
r(λ∗)2− 1

2
r∗λ2) 2s

|s|
√︁
1− |s|2

e
1

1−|s|2
(|µ|2− 1

2
s(µ∗)2− 1

2
s∗µ2)

.

(172)

5 Conclusions and outlook

Using optical �elds to trap and control particles has proven to be a useful tool in

many research �elds. It has so far been used among other things to trap individual

cells, bacteria and viruses, and in gravitational detectors. As the technology is

developed further, it may �nd use in even more wide-ranged applications, like in

highly sensitive commercial acceleration sensors.

Quantum optomechanics is a promising tool quantum mechanics research. It

can be used to create highly isolated, quantum entangled states and using feedback

and cavity cooling particles can be cooled to their quantum ground states. In the

future, it could be used to generate quantum many-particle systems and macroscopic

quantum superpositions.

In this work we described optical forces and how they are used in optical trapping.
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We saw how the optical force can be calculated from Maxwell stress tensor in general

case, or by using the dipole approximation in the Rayleigh regime.

We went over the basics of open quantum system theory and derived the Lindblad

master equation and the corresponding quantum state di�usion equation for open

quantum systems.

Then we applied these concepts to develop and open quantum system model

for optically trapped nanoparticles. We found the Lindblad master equation for

our system and solved it using stochastic methods for an ansatz state. We also

calculated the time dependent norm for the state.

We found a way to analytically solve the master equation. It gives us insight to

the principles of why the system behaves as it does.

In this thesis we studied a basic model of a nanoparticle trapped in an optical

cavity. There are many ways this model could be expanded upon in the future.

For example we could add an external control �eld to control the dynamics of the

system.

We excluded the polarization e�ects by using non-polarized light in our model.

By considering a model with polarized light and comparing it with the basic model

we can study how the polarization a�ects the system dynamics.

Our model had a particle trapped in an optical cavity, but we could also consider

a case with no cavity, simply a particle levitating in an optical trap. Comparing

these systems would show us how the presence of the cavity a�ects the dynamics of

the particle.

Optical traps can be used to trap multiple particles at once, so we could study a

system of two or more particles trapped in the �eld. This could give insight to the

interactions between particles in the absence of external forces.
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A zz-component of the average Maxwell stress ten-

sor

We want to calculate the zz-component of the average Maxwell tensor for a plane
wave. The electric �eld is now

E(t) =E0Re[(e
ikz +Re−ikz)e−iωt]nx

=E0[cos(kz − ωt) + Rr cos(kz + ωt) + Ri sin(kz + ωt)]nx, (173)

where E0 is the amplitude, k is the wave number, and ω is the angular frequency
of the electric �eld, and R = Rr + iRi is a complex re�ection coe�cient, and the
magnetic �eld is

H(t) =

√︃
ϵ0
µ0

E0Re[(e
ikz −Re−ikz)e−iωt]ny

=

√︃
ϵ0
µ0

E0[cos(kz − ωt)−Rr cos(kz + ωt)−Ri sin(kz + ωt)]ny. (174)

The zz-component of the average Maxwell stress tensor is then

⟨Tzz⟩ =− 1

2
⟨ϵ0E2 + µ0H

2⟩

=− 1

2
⟨ϵ0E2

0 [cos(kz − ωt) + Rr cos(kz + ωt) + Ri sin(kz + ωt)]2

+ µ0
ϵ0
µ0

E2
0 [cos(kz − ωt)−Rr cos(kz + ωt)−Ri sin(kz + ωt)]2⟩

=− 1

2
⟨ϵ0E2

0 [cos
2(kz − ωt) + R2

r cos
2(kz + ωt) + R2

i sin
2(kz + ωt)

+ 2Rr cos(kz − ωt) cos(kz + ωt) + 2Ri cos(kz − ωt) sin(kz + ωt)

+ 2RrRi cos(kz + ωt) sin(kz + ωt)

+ cos2(kz − ωt) + R2
r cos

2(kz + ωt) + R2
i sin

2(kz + ωt)]

− 2Rr cos(kz − ωt) cos(kz + ωt)− 2Ri cos(kz − ωt) sin(kz + ωt)

+ 2RrRi cos(kz + ωt) sin(kz + ωt)⟩

=− 1

2
⟨ϵ0E2

02[cos
2(kz − ωt) + R2

r cos
2(kz + ωt) + R2

i sin
2(kz + ωt)

+ 2RrRi cos(kz + ωt) sin(kz + ωt)]⟩

=− ϵ0E
2
0

ω

π

∫︂ π
ω

0

[cos2(kz − ωt) + R2
r cos

2(kz + ωt) + R2
i sin

2(kz + ωt)

+ 2RrRi cos(kz + ωt) sin(kz + ωt)]dt

=− ϵ0E
2
0

ω

π

π

2ω
(1 + R2

r +R2
i )

=− ϵ0
2
E2

0(1 + |R|2)

=− I0
c
(1 + |R|2), (175)

where I0 = ϵ0
2
cE2

0 is the intensity of the plane wave.



47

B Derivation of the equations of motion for the

ansatz state

The QSD equation for our system is

∂

∂t
|ψt⟩ = −iĤ|ψt⟩+ ξ∗t â|ψt⟩ −

κ

2
â†â|ψt⟩+ η∗t q̂|ψt⟩ −

Γ

2
q̂2|ψt⟩, (176)

where the noises ξ∗t and η
∗
t have properties

⟨ξ∗t ⟩ = 0, ⟨ξtξs⟩ = 0, ⟨η∗t ⟩ = 0, ⟨ηtηs⟩ = 0,

⟨ξtξ∗s ⟩ = κδ(t− s), ⟨ηtη∗s⟩ = Γδ(t− s). (177)

We try to solve it using an ansatz state

|ψt⟩ = eX̂ |0, 0⟩, (178)

where X̂ is

X̂ = λâ† + µb̂
†
− 1

2
r(â†)2 − 1

2
s(b̂

†
)2 − zâ†b̂

†
. (179)

The time derivative of this state is

∂

∂t
|ψt⟩ =

Ṅ

N
|ψt⟩+ λ̇â†|ψt⟩+ µ̇b̂

†
|ψt⟩ −

1

2
ṙ(â†)2|ψt⟩ −

1

2
ṡ(b̂

†
)2|ψt⟩ − żâ†b̂

†
|ψt⟩. (180)

We de�ne a new operator:

â(θ) = e−θX̂ âeθX̂ (181)

and take the time derivative of it:

∂

∂θ
â(θ) = −e−θX̂X̂âeθX̂ + e−θX̂ âX̂eθX̂ = −e−θX̂ [X̂, â]eθX̂ . (182)

The commutator [X̂, â] is easily calculated:

[X̂, â] = λ[â†, â]− 1

2
r[(â†)2, â]− zb̂

†
[â†, â]

= −λ− 1

2
r(â†â†â− â†ââ† + â†ââ† − ââ†â†)

= −λ− 1

2
r(â†[â†, â] + [â†, â]â†) + zb̂

†

= −λ+ râ† + zb̂
†
, (183)

and we can clearly see that the other commutators are

[X̂, b̂] = −µ+ sb̂
†
+ zâ† (184)

[X̂, â†] = 0 = [eX̂ , â†] (185)

[X̂, b̂
†
] = 0 = [eX̂ , b̂

†
]. (186)
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So the derivative is then

∂

∂θ
â(θ) = λe−θX̂eθX̂ − re−θX̂ â†eθX̂ − ze−θX̂ b̂

†
eθX̂ = λ− râ† − zb̂

†
(187)

By integrating the derivative over θ we see that

â(1)− â(0) =

∫︂ 1

0

dθ
∂

∂θ
â(θ) =

∫︂ 1

0

dθ(λ− râ† − zb̂
†
) = λ− râ† − zb̂

†

→ e−X̂ âeX̂ = â+ λ− râ† − zb̂
†
. (188)

Then we operate on |ψt⟩ on both sides and get the result

e−X̂ âeX̂ |0⟩ = â|0⟩+ (λ− râ† − zb̂
†
)|0⟩

âeX̂ |0⟩ = (λ− râ† − zb̂
†
)eX̂ |0⟩

â|ψt⟩ = (λ− râ† − zb̂
†
)|ψt⟩. (189)

For operator b̂ we get the corresponding solution

b̂|ψt⟩ = (µ− sb̂
†
− zâ†)|ψt⟩, (190)

and using these solutions we can calculate how di�erent quadratic combinations of
creation and annihilation operators operate on the state |ψt⟩:

â†â|ψt⟩ =(λâ† − r(â†)2 − zâ†b̂
†
)|ψt⟩,

b̂
†
b̂|ψt⟩ =(µb̂

†
− s(b̂

†
)2 − zâ†b̂

†
)|ψt⟩,

âb̂|ψt⟩ =â(µ− sb̂
†
− zâ†)|ψt⟩

=[(µ− sb̂
†
)(λ− râ† − zb̂

†
)− z(1 + â†(λ− râ† − zb̂

†
))]|ψt⟩

=[λµ− z − (rµ+ zλ)â† − (sλ+ zµ)b̂
†
+ rz(â†)2 + sz(b̂

†
)2

+ (sr + z2)â†b̂
†
]|ψt⟩,

âb̂
†
|ψt⟩ =(λb̂

†
− z(b̂

†
)2 − râ†b̂

†
)|ψt⟩,

â†b̂|ψt⟩ =(µâ† − z(â†)2 − sâ†â†)|ψt⟩

b̂
†
b̂|ψt⟩ =(µb̂

†
− s(b̂

†
)2 − zâ†b̂

†
)|ψt⟩

b̂
2
|ψt⟩ =b̂(µ− sb̂

†
− zâ†)|ψt⟩ = [(µ− s†b− zâ)(µ− sb̂

†
− zâ†)− s]|ψt⟩

=(µ2 − s− 2zµâ† − 2sµb̂
†
+ z2(â†)2 + s2(b̂

†
)2 + 2szâ†b̂

†
)|ψt⟩. (191)

The �rst term in the stochastic di�erential equation 176 is

−iĤ|ψt⟩ =− i(−δâ†â+ ωb̂
†
b̂+ g(âb̂+ âb̂

†
+ â†b̂+ â†b̂

†
))|ψt⟩,

=− i[g(λµ− z)− (δλ+ g(rµ+ zλ− µ))â† + (ωµ− g(sλ+ zµ− λ))b̂
†

+ (rδ + gz(r − 1))(â†)2 + (−sω + gz(s− 1))(b̂
†
)2

+ (z(δ − ω) + g(z2 + rs− r − s))â†b̂
†
]|ψt⟩, (192)
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the second, third and fourth terms are

ξ∗t â|ψt⟩ =ξ∗t (λ− râ† − zb̂
†
)|ψt⟩, (193)

−κ
2
â†â|ψt⟩ =− κ

2
(λâ† − r(â†)2 − zâ†b̂

†
)|ψt⟩, (194)

η∗t q̂|ψt⟩ =η∗t (µ+ (1− s)b̂
†
− zâ†)|ψt⟩, (195)

and the last term is

−1

2
Γq̂2|ψt⟩ =− 1

2
Γ(b̂

2
+ b̂b̂

†
+ b̂

†
b̂+ (b̂

†
)2)|ψt⟩ = −1

2
Γ(b̂

2
+ 1 + 2b̂

†
b̂+ (b̂

†
)2)|ψt⟩

=− 1

2
Γ[µ2 + 1− s− 2zµâ† − 2µ(1− s)b̂

†
+ z2(â†)2

+ (1− 2s+ s2)(b̂
†
)2 + 2z(s− 1)â†b̂

†
]|ψt⟩. (196)

Combining these we get the full di�erential equation for the state

∂

∂t
|ψt⟩ =− iĤ|ψt⟩+ ξ∗t â|ψt⟩ −

κ

2
â†â|ψt⟩+ η∗t q̂|ψt⟩ −

Γ

2
q̂2|ψt⟩

=[ξ∗t λ+ η∗t − ig(λµ− z)− 1

2
Γ(µ2 + 1− s)]|ψt⟩

+ [iδλ− ig(−zλ+ µ(1− r))− ξ∗t r − η∗t z −
1

2
κλ+ Γzµ]â†|ψt⟩

+ [−iωµ− ig(−zµ+ λ(1− s))− ξ∗t z − η∗t (1− s)− Γµ(1− s)]b̂
†
|ψt⟩

+ [−iδr + igz(1− r) +
1

2
κr − 1

2
Γz2](â†)2|ψt⟩

+ [iωs+ igz(1− s)− 1

2
Γ(1− s)2](b̂

†
)2|ψt⟩

+ [iz(ω − δ)− ig(z2 + rs− r − s) +
1

2
κz + Γz(1− s)]â†b̂

†
|ψt⟩. (197)
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